
A Structural Approach to Latency Prediction

Harsha V. Madhyastha∗ Thomas Anderson Arvind Krishnamurthy
University of Washington University of Washington University of Washington

Neil Spring Arun Venkataramani
University of Maryland University of Massachusetts Amherst

ABSTRACT
Several models have been recently proposed for predicting the la-
tency of end to end Internet paths. These models treat the Internet
as a black-box, ignoring its internal structure. While these models
are simple, they can often fail systematically; for example, the most
widely used models use metric embeddings that predict no benefit
to detour routes even though half of all Internet routes can benefit
from detours.

In this paper, we adopt a structural approach that predicts path
latency based on measurements of the Internet’s routing topology,
PoP connectivity, and routing policy. We find that our approach
outperforms Vivaldi, the most widely used black-box model. Fur-
thermore, unlike metric embeddings, our approach successfully pre-
dicts 65% of detour routes in the Internet. The number of measure-
ments used in our approach is comparable with that required by
black box techniques, but using traceroutes instead of pings.

Categories and Subject Descriptors
C.2.3 [Communication Networks]: Architecture and Design—
topology; C.2.5 [Communication Networks]: Local and Wide-
Area Networks—Internet

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Latency prediction, Internet topology, Route measurements

1. INTRODUCTION
The latency between Internet hosts is an important component

of path and server selection in many distributed applications. Pop-
ular Internet services such as Google, Akamai, and Bittorrent use
latency estimates to direct clients to nearby peers or replicas. Over-
lay routing systems can use latency estimates for neighbor selection

∗Email: harsha@cs.washington.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

in distributed hash tables, construction of efficient multicast trees,
and detour routing on the Internet.

To meet this demand, several network distance estimation tech-
niques such as IDMaps, GNP, and Vivaldi have been proposed [2,
12, 1, 17, 9]. These techniques use latency measurements from a
few vantage points to clients to predict the latencies of paths that
are not directly measured. A popular prediction methodology is to
embed nodes in a low-dimensional coordinate space and use the
corresponding vector distance to predict the latency between arbi-
trary nodes.

These techniques treat the network as an unknown “black box.”
Black-box approaches are desirable if they can obtain good accu-
racy using simple models that abstract away unimportant details
of the system. However, despite their compelling simplicity, these
techniques have some serious shortcomings. For example, black
box techniques appear poorly suited to predicting complex path
properties such as bottleneck capacity, loss and jitter. Furthermore,
popular black box techniques based on metric embeddings [12, 1]
are fundamentally incapable of predicting detour routes. Detours
exist when underlying distances violate the triangle inequality—a
common occurrence in the Internet today [15, 21].

Our position is that measuring the Internet’s topology and mod-
eling complex routing protocols is fundamental to accurately pre-
dicting its end to end performance characteristics. To this end, we
develop and evaluate a structural model of Internet routing at the
granularity of Points of Presence (PoPs); we use this model to pre-
dict latency and show that it outperforms Vivaldi, the most widely
used black box model. We first measure the network to construct
an “atlas” of the Internet, launching probes from vantage points
distributed across the world. Clients add themselves into the atlas
by contributing a small number of traceroutes, and then download
predictions for the sets of IP prefixes with unique routing behav-
ior. This is similar to how clients use a small number of measure-
ments to position themselves today in a black box metric embed-
ding. Once a client integrates itself to the Internet atlas, the sys-
tem can make accurate predictions about the client’s connectivity
to other end hosts.

Our goal is to determine a simple structural model that predicts
paths and latencies with high accuracy. To this end, we rely on
the comprehensiveness of the atlas and observed routing behavior
as much as possible. Our basic principle is to exploit similarity of
routes. Our hypothesis is that given a large number of distributed
vantage points, the route from any source to a destination will be
similar to the route to the same destination from a vantage point
close to the source. To abstract away details, we group geograph-
ically proximate routers using a novel clustering method. Infor-
mally, our method “zooms out” on the atlas and splices a short path
segment from the source with an observed path segment going to

the destination as an estimate of the actual path. The latency of
the path is then estimated from measured latencies of constituent
segments.

A limitation of our approach is that it requires the investment
of measurement effort in generating the atlas. However, the traffic
overhead is small. Regenerating the entire atlas on a daily basis, a
time period over which most routes are stationary [13], takes 4Kbps
for each vantage point. Once the atlas is generated, new clients
need make as few as ten measurements to gain its benefits.

While we focus on latency in this paper to provide a direct com-
parison to previous techniques, our long term goal is to use struc-
tural models to predict a broader set of path properties, such as
capacity, loss rate, and available bandwidth. A subsequent paper
explores this in more detail [8]. Further, we believe the trend to
increased instrumentation of the Internet favors structural models.
Improvements in Internet measurement will increase the coverage
and quality of maps over time, and one common database can be
used for different applications. A structural model is also amenable
to gradual refinement: for example, a disagreement between the
path latency estimate provided by the model and observed path la-
tency may trigger further measurement to refine the model. These
issues are left for future work.

2. STRUCTURAL MODEL
We seek to develop a simple structural model that is capable

of predicting latency between an arbitrary pair of Internet hosts.
As it is both infeasible and unscalable to obtain fine-grained data
about the entire Internet, the model has to operate with incomplete
and coarse-grained information without compromising its predic-
tion accuracy. We seek to strike a balance between scalability and
accuracy in our approach.

2.1 Overview
Our technique predicts end-to-end paths between a pair of nodes

by composing path segments, fragments of known Internet paths.
Most of these segments are obtained from an Internet atlas that is
constructed and maintained by a set of distributed vantage points.
The atlas comprises the topology and round trip latency measure-
ments of the Internet core and some selected portions of the edge
to the vantage points. When an end-host desires predictions, it lo-
cates itself within the atlas using a small number of measurements.
These new measurements are combined with the core atlas for path
prediction. To reflect asymmetry of routes, we separately predict
the path in the forward and reverse directions and derive end-to-
end RTT using the latency measurements of the segments traversed
in each direction. These predictions can then be downloaded to the
client or local server to enable fast lookups for all destinations.

The basic principle underlying our approach is to exploit simi-
larity of routes. Since the Internet predominantly uses destination
based routing, routes from sources that are close by will tend to
converge when heading to the same destination. For example, when
both sources are co-located in the same AS, early convergence of
routes will occur in the case of both early exit (both take the same
nearest exit) and late exit (both take the exit nearest the destina-
tion). So, our hypothesis is that, given a sufficient number of ge-
ographically distributed vantage points, the route from any source
to a destination will have a significant overlap with some path seg-
ment to the destination from one of the vantage points. We hope to
make accurate predictions by maximizing this overlap, subject to
the way routing protocols optimize key routing metrics such as AS
path length, hop counts, or latency.

The following challenges and questions are the most significant:
• What portions of the Internet should be probed by the vantage

points to generate a sufficiently rich atlas? The challenge is to
ensure sufficient coverage without requiring exhaustive probing.

• What is the granularity of structural information used by the at-
las? If the atlas stores topology at the granularity of network
interfaces, it might fail to detect the nearness of two observed
paths. If it is too coarse-grained and combines routers from dif-
ferent ASes into a single entity, it might fail to capture routing
policy.

• How do we select among the many different candidates of com-
posed paths?

• How do we estimate the end-to-end latency once we have per-
formed path prediction?
A summary of the various techniques we employ in addressing

these challenges is listed in Table 1.

2.2 Building an Atlas
Our primary tool for building the atlas is traceroute, which

allows us to identify the forward path from the probing entity to the
destination. Traceroute also provides us with hop-by-hop round-
trip times from which one could infer the latency of path segments.
Asymmetry in the return routes, however, complicates this infer-
ence. We also use targeted probes to network interfaces, some of
them with UDP messages and some with ICMP messages, in order
to identify interfaces that are co-located at the same router or at the
same PoP, so that they can be clustered together in the atlas.

We need geographically distributed vantage points in order to
build the atlas. PlanetLab servers that are located at over 300 sites
around the world are obvious choices for our measurement infras-
tructure. Probes can be issued from PlanetLab nodes at a reason-
ably fast rate; a traceroute probe every second translates to mea-
surement traffic of about 4Kbps, a modest load on the PlanetLab
nodes. We issue probes from the PlanetLab nodes to representative
IP addresses in routable BGP prefixes, choosing just one IP address
for a prefix, thereby minimizing the measurement load.

The PlanetLab measurements can be augmented with measure-
ments from traceroute servers that outnumber PlanetLab nodes and
are also more diverse in terms of administrative domains. We use
these servers sparingly, issuing a traceroute request only once ev-
ery few minutes. In spite of this limitation, they serve as a valuable
additional source of information about local routing policies.

Finally, we use BGP snapshot information from RouteViews [11]
to determine which routers belong to which autonomous systems,
to infer when routes cross organizational boundaries, and to de-
termine what subset of prefixes are to be probed by the vantage
points. We leave for future work determining the improvement in
prediction accuracy by using end-host data from sources such as
DIMES [16].

2.3 Client Integration
We envision a system where the source issues a small number

(e.g., 10) of traceroute probes in order to integrate itself into the In-
ternet atlas constructed by the vantage points. Clients issue probes
to representative destinations in a small randomly chosen subset of
the prefixes obtained from BGP tables.

The client can then issue queries for latency estimates of arbi-
trary paths. These queries will be processed using the measure-
ments contributed by the client in combination with the atlas gath-
ered from the vantage points. Paths from only the sources are as-
sumed to be available, with none from the destinations, reflecting
the usage model where a client wants to communicate with some
destination that is not necessarily participating in the infrastruc-
ture. Measurements contributed by a client will be used only to
service queries from that client, in order to make the system robust

Technique Description Goal Section
Traceroutes from
vantage points

Paths to all prefixes/atoms are measured from a large number of geo-
graphically distributed vantage points

Build router-level at-
las

Section 2.2

Traceroutes from
clients

Every client performs traceroutes to destinations in 10 randomly cho-
sen prefixes

Characterize access
link latency and local
routing behaviour

Section 2.3

Return TTL cluster-
ing

Router interfaces that return similar TTLs to a large number of vantage
points are clustered together

Cluster routers into
PoPs

Section 2.6

Path composition Observed routing segments from a source and to a destination are com-
posed to predict a path between the source and destination

Predict end-to-end
paths

Section 2.4
and 3.1

Inference of segment
latencies

Latency of an observed routing segment is estimated from the tracer-
outes in which the segment occurs

Predict end-to-end
latencies

Section 2.5
and 3.3

Table 1: Summary of techniques employed in our approach

S

V1

Actual route

I'

I

Predicted route

Route from distant vantage point
merges close to destination

Choose closer
intersection point I Route from nearby vantage point

merges nearer to the source

(dotted line)

V2

BGP1

BGP2

D

Figure 1: The route from S to D is obtained by composing a route
from S with a route to D from a vantage point close to S (V1). BGP1

and BGP2 are destinations in two random prefixes to which S per-
forms traceroutes.

to misbehaving clients. These measurements will also be garbage
collected by the prediction engine after the client leaves the system.

2.4 Path Prediction
Figure 1 depicts how we predict the path from a source S to a

destination D using the few paths going out from S and paths from
all vantage points to D. We seek to determine a path from one
of our vantage points to D that has a significant overlap with the
actual path from S to D. We traverse paths going out from S until
we find an intersection I with one of the paths going into D. The
predicted path from S to D is obtained by splicing the segment
from S to I (S → I) with the segment from I to D (I → D). In
case no intersection is found, we then use paths from our vantage
points to S instead of paths from S, and intersect these with paths to
D. Similarly, when predicting the reverse path back from D, from
which no paths are present in the system, we splice paths from our
vantage points to D with paths to S.

The atlas gathered by the vantage points includes traceroutes to
only one destination in each routable prefix. Hence, when predict-
ing the path between a pair of end-hosts, the atlas may not include
paths to either end-host. In such cases, we approximate the path
between S and D with the path predicted between the representa-
tive end-hosts in the same prefixes as S and D. Further, we extend
this predicted path to S if the few paths contributed by S intersect
with the path segments to the representative end-host in the same
prefix as S.

There are of course many pairs of path segments that can be com-
posed to predict the end-to-end path. Which path should one pick?
We approximate the path the Internet chooses by modeling how In-
ternet routing works in practice. We use BGP tables to determine
the origin AS for each IP address encountered on a path segment.
Each path segment is then assigned a path length in AS hops, a path
length in IP hops, and a latency estimate. These metrics are known
to largely determine paths used in the Internet. For example, in-
terdomain routing prefers shorter AS paths over longer ones in the
absence of conflicting locally preferred policies, and intradomain
routing uses latency of paths within the AS to determine the appro-
priate exit point. In Section 3, we show how to use these metrics
to determine which combination of path segments to compose to
determine the end-to-end path.

2.5 Latency Estimation
We estimate the round-trip latency by a simple technique that

considers the paths predicted for the forward and reverse directions.
For the forward direction, we first generate an estimate for the de-
lay from S to I by halving the RTT measured to I as part of the
traceroute from S. When using a path measured from a vantage
point to S, we estimate the delay from S to I as half the difference
of the RTTs reported by probes to S and I . We similarly estimate
the delay from I to D. These do not necessarily represent the true
latencies of segments (S → I) and (I → D) since the reverse
path back from any hop observed on a traceroute could be asym-
metric. So, we approximate the true latency of a segment as the
median of all its latency estimates. For example, if the segment
(I → D) is seen on traceroutes to D from V1, V7, and V9, we
derive an estimate for this segment from each of these traceroutes
(the difference between RTTs from Vi to D and from Vi to I) and
then approximate the latency along this segment as the median of
these estimates. Since we typically observe a segment from multi-
ple vantage points, the hope is that the median is close to the true
latency. We sum latencies over segments instead of links to prevent
accumulation of errors associated with the estimate for each link.
The estimated latency of the forward path is simply the sum of the
delay estimates for the two segments (S → I), and (I → D). We
similarly estimate the reverse path latency. The estimated round
trip time is the sum of the estimated latencies for the forward and
reverse paths.

2.6 Clustering Routers
Our approach allows path compositions to be determined at var-

ious granularities. One could declare two paths to have intersected
only if the same network interface address appears on both paths,
but such a strategy would fail to compose paths that pass through

distinct network interfaces co-located on the same router/PoP. On
the other hand, declaring an intersection if both paths traverse a
common AS is prone to significant prediction error as it allows
for composition of paths passing through different PoPs within the
same AS. Thus, paths need to composed at a level coarser-grained
than network interfaces but finer-grained than ASes.

We determine clusters of router interfaces that are similar from
a routing perspective, e.g., aliased network interface addresses be-
longing to the same router, routers belonging to the same PoP, and
routers that belong to the same AS and are also geographically
nearby. To avoid incorrectly predicting transit between ASes, we
only cluster routers that belong to the same AS. There is a trade-
off between the utility of clusters and their correctness. Increas-
ing cluster sizes initially improves prediction accuracy by detect-
ing missed intersections, but subsequently degrades accuracy by
predicting non-existent paths. Our clustering algorithm attempts to
hit the knee of this curve.

Our clustering methodology involves two distinct steps — alias
resolution and intra-AS clustering. For clustering router interfaces
into routers by resolving aliases, we use the source-address based
technique employed by Mercator [4]. Next, we cluster routers into
PoPs by probing each router from a large number of vantage points.
We use the response TTL value to estimate the length of the reverse
path, as done in [10]. Routers in the same AS that are geograph-
ically nearby will normally take similar reverse paths back to the
vantage point. We associate each router with a reverse path length
vector — a vector with as many components as the number of van-
tage points, in which the ith component is the length of the re-
verse path from the router back to the ith vantage point. If two
path length vectors are similar, in the sense that the average and
the maximum of the component-wise differences are below certain
thresholds, then the two corresponding routers are grouped together
in the same cluster.

Of the 341,602 router interfaces that we observed in all our tracer-
outes, 260,637 responded to our ICMP probes from at least half of
the 143 PlanetLab nodes acting as vantage points, and these were
clustered into 62,453 clusters. Improvements to our clustering al-
gorithm using geographic information based on DNS names [19,
14] are presented in [8].

3. EVALUATION
We use nodes in PlanetLab, and several public traceroute and

looking glass servers to perform our measurements. Our atlas com-
prises measurements to a wide range of destinations made from
158 PlanetLab nodes that serve as our vantage points. We obtained
the list of all globally routable prefixes from RouteViews [11] and
in each prefix, determined a .1 address that responded to probes.
On 3 February 2006, we performed traceroutes from our vantage
points to 87,334 destinations. Our atlas also includes traceroutes
performed on the same day from 582 public traceroute and look-
ing glass servers to destinations in 200 random prefixes each. To
evaluate our model, we use paths measured from these traceroute
servers as our validation set. Whenever we use a traceroute server
as a client, we exclude measurements made from it from the at-
las. Instead we include what it would do as a typical client; a few
traceroutes to random prefixes, not including the test cases.

3.1 Does our atlas include the true AS path?
We begin by evaluating the feasibility of AS path prediction. To

compare the actual and predicted AS paths, we define an AS path
similarity metric that is similar to the RSIM metric used in [6]. We
define the similarity metric between two AS paths to be the ratio
of the size of the intersection to the size of the union, of the sets

Figure 2: Accuracy of AS path prediction with varying number of
paths from the source. The number of paths available from each source
is in brackets.

Figure 3: Comparison of AS path prediction accuracy across policies
used for predicting paths.

of ASes in each of the paths; the ordering of ASs in the paths is
not considered. The maximum value of this metric is 1, when both
paths pass through exactly the same set of ASes.

For each source-destination pair, we considered all intersections
obtained using the basic technique of intersecting paths from/to the
source with paths to the destination in our atlas. We refer to the
policy that chooses (using the validation data set) the intersection
such that the resulting predicted path maximizes the AS similarity
metric as the optimal policy. Figure 2 plots the distribution of the
similarity metric for this optimal policy. Availability of 10 paths
from the source to random destinations increases the fraction of
paths for which the optimal policy gets the AS path exactly right
from 63% to 84%. We found that the marginal increase in the
ability to perform AS path prediction with the use of more than 10
paths is small. So, for the rest of our evaluation, we assume that we
have 10 paths from each source.

3.2 Can we predict the AS path?
The previous result demonstrates that in most cases, the actual

AS path exists in our atlas as a combination of path segments. To
find this path, we need to determine a policy to choose among the
set of path segments joining the source and destination. We eval-
uated a handful of policies. The policies that worked best, both in
terms of predicting paths and estimating latencies, choose I (the
intersection) that minimizes end-to-end AS path length along the
predicted path. Minimizing AS path length approximates BGP’s
default objective function, and hence, is likely to choose a policy
compliant path. Among those that minimize the AS path length,
we consider two policies. The first chooses I such that the distance
to exit the first-hop AS is minimized. Minimizing the distance, in

Figure 4: Comparison of latency estimates based on our predicted
paths with Vivaldi based estimates.

terms of latency, covered by the path within the first-hop AS en-
codes the default early exit intradomain routing policy. The second
picks the I closest in RTT to the source. We refer to these two
policies as (Min AS path, early exit) and (Min AS path, min RTT).
Figure 3 plots the accuracy with which these policies help in find-
ing the correct AS path, for the case when we have 10 traceroutes
from the source. Among the 83% of paths for which the AS path
exists in our atlas, either policy predicts the AS path correctly for
at least 65% of paths.

Since our model does not involve use of inferred AS relation-
ships, the paths we predict could violate policy routing. To see if
this is a problem, we applied Gao’s AS relationship inference algo-
rithm [3] on AS paths observed in all our measurements as well as
on AS paths obtained from the RouteViews [11] BGP dump. We
then computed how many of the AS paths in our validation set, and
how many of the predicted AS paths, violate valley-free routing [3].
Of the 42,028 paths in our validation set, valley-free routing was vi-
olated in 119 of the observed AS paths and in 212 of the predicted
AS paths. This demonstrates that our policies do usually manage
to find policy-compliant paths. As noted earlier, our choice of an
intersection close to the source minimizes the number of policy
decisions our model must predict. This result also suggests that
constraining our model to only choose amongst policy-compliant
candidate paths will not decrease its predictive ability.

3.3 Can we estimate latencies?
We now study the accuracy of our latency estimates in compar-

ison with that of one of the best existing coordinate-based sys-
tems, Vivaldi [1]. Feeding the latencies of all paths in our at-
las into Vivaldi, we generate 2-dimensional Euclidean coordinates
with height vectors for all end-hosts in our validation set. Vivalidi
was run until its coordinates converged. We use these coordinates
to predict latencies. The number of measurements used in our ap-
proach is comparable with that given as input to Vivaldi, but uses
traceroutes instead of pings. Our predictions are based on the paths
traced by traceroutes from the vantage points to various prefixes,
while Vivaldi’s coordinates were generated from the end-to-end la-
tencies for all of these measured paths.

Figure 4 compares the latency estimates obtained using Vivaldi
with the estimates obtained using our predicted paths. Our latency
estimates, obtained using 10 paths from the source, are better than
those yielded by Vivaldi’s coordinates in terms of absolute error.
For example, 54% of our predictions across all paths are within
10 ms of actual latency, while only 35% of Vivaldi’s are. Our la-
tency estimates are also better than those of Vivaldi in terms of

Figure 5: Benefits of choosing detours using predicted latencies. Note
that the graph has a log-scale y axis.

relative error, the metric for evaluation used in [1].1 The latency
estimates shown in Figure 4 were those obtained using the (Min AS
path, min RTT) policy; the accuracy of estimates obtained with the
(Min AS path, early exit) policy were similar.

Our approach of estimating latency based on predicted paths also
helps us reason as to why an estimate is accurate/inaccurate. Fig-
ure 4 shows the accuracy of our latency estimates for the cases
when we predict the AS path correctly, and when we do not. Our la-
tency estimates are significantly more accurate when the predicted
AS path is correct.

3.4 Can we predict detours?
Detecting better latency detours is one of the several applica-

tions enabled by our approach. Note that Vivaldi, by construction,
predicts no detours. To evaluate how well our latency estimates
preserve detours, we consider only paths measured from PlanetLab
nodes. From the 158 PlanetLab nodes in our dataset, we chose 35
at random to serve as the sources in our experiment. The remain-
ing 123 PlanetLab nodes serve as potential detour nodes. For each
path from the 35 sources, we compute the best latency path, includ-
ing the direct path to the destination and the set of one-hop detour
paths via any of the 123 detour nodes. We then do the same using
the predicted latency for the direct path to the destination. Figure 5
compares the detour benefits (ratio of underlay to detour latency)
obtained. Our model predicts the existence of a detour for 43% of
all paths whereas 66% actually show a benefit. Though we predict
a detour when it does not exist for 10% of paths, only for 1% of
all paths does the chosen detour stretch the latency of the path by
more than 30% (not shown in the figure).

4. RELATED WORK
This work provides a bridge between two islands of research:

Internet measurement and Internet distance estimation.
Several recent measurement studies analyze the effects of In-

ternet structure and routing policy on path performance. Spring
et al. [18] use an analytical model of routing to isolate different
factors that cause a path through the network to be longer than nec-
essary. Our results are consistent with theirs in that modeling the
AS path is important for accuracy of latency prediction. Spring
et al. choose a restricted subset of the Internet to study and use
geographic path distance as a baseline to analyze latency inflation.
Our goals are different: we seek to find the simplest composition
of internal network performance information and topology that can
be used to predict Internet path latency.
1In our experiments, the relative error distribution for Vivaldi is
consistent with that reported in [1].

Internet distance estimation has been motivated by applications
such as overlay routing networks and server selection, e.g., a re-
cent Bittorrent client, Azureus, uses Vivaldi [1] to select nearby
peers. Such applications have spurred a large body of black box
techniques to predict latencies, which broadly fall into two broad
categories, the landmark approach and the dimensionality reduc-
tion approach.

Landmark Approach IDMaps, one of the first techniques to
predict Internet latencies, estimates the latency between two clients
i and j as the latency from i to its closest vantage point plus the
latency from j to its closest vantage point plus the latency between
the two vantage points. Our approach can be seen as a generaliza-
tion of IDMaps, by using measured information about the structure
of the network to yield better composite paths. King [5] is simi-
lar to IDMaps but uses DNS servers as landmarks. Meridian [20]
performs on-demand probing from a carefully chosen subset of its
landmarks to determine the landmark closest to a given destination.
Meridian implicitly assumes an underlying metric space to predict
the closest node, and it is unclear how to extend it to predict latency
between an arbitrary pair of nodes.

Dimensionality Reduction Approach The dimensionality re-
duction approach attempts to compactly represent measured laten-
cies between vantage points and clients in a low dimensional ge-
ometric space. The techniques in this space can be classified as
metric, i.e., the resulting distances satisfy the triangle inequality,
and nonmetric.
• Metric Embeddings: GNP [12] pioneered the dimensionality

reduction approach by embedding vantage points and clients
in a low-dimensional Euclidean space. Vivaldi [1], the model
we use for comparison, uses a non-Euclidean embedding where
nodes lie on a plane with a positive height coordinate and the
distance between a pair of nodes is the sum of their heights
plus the distance along the plane. Earlier published data shows
that these blackbox techniques outperform both IDMaps and
King [1, 12]. However, a serious drawback of metric embed-
dings [7, 21] is that the method is fundamentally incapable of
detecting detours, because Euclidean and Vivaldi-like distances
obey the triangle inequality.

• Nonmetric Approaches: Shavitt and Tankel [17] embed nodes
in a hyperbolic coordinate space and demonstrate improved ac-
curacy over Euclidean embeddings. However, the hyperbolic
coordinate system has been shown to perform poorly compared
to Vivaldi [7], the coordinate system against which we evaluate
our model. More recently, Mao et al. [9] proposed a dimen-
sionality reduction technique based on matrix factorization. Ex-
plicitly accounting for the asymmetry of paths and using a non-
metric embedding makes this approach promising. However, it
is unclear how to obtain one-way latencies from vantage points
to arbitrary clients; the evaluation in [9] assumes symmetric
RTTs.

5. CONCLUSION
In this paper, we have presented a simple structural approach

for predicting Internet path latencies that outperforms black box
techniques. Our latency predictions are based on an underlying
path prediction model that can predict PoP-level paths with high
accuracy. Encouraged by the results obtained, we have extended
our approach to predict other path properties such as bottleneck
capacity and loss rate, as part of the iPlane system [8]. We plan to
make iPlane publicly available as a service in the near future.

Acknowledgments
We would like to thank members of the DIMES project [16] for
providing us an independently collected data set for validation and
Morley Mao for the AS path and relationship data set used in our
evaluation. This research was partially supported by the National
Science Foundation under Grants CNS-0435065 and CNS-0519696.

6. REFERENCES
[1] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A

decentralized network coordinate system. In SIGCOMM,
2004.

[2] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance
estimation service. IEEE/ACM Trans. on Networking, 2001.

[3] L. Gao. On inferring autonomous system relationships in the
Internet. IEEE/ACM Trans. on Networking, 2001.

[4] R. Govindan and H. Tangmunarunkit. Heuristics for Internet
map discovery. In INFOCOM, 2000.

[5] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary Internet end hosts. In
IMW, 2002.

[6] N. Hu and P. Steenkiste. Quantifying Internet end-to-end
route similarity. In PAM, 2006.

[7] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft.
On the accuracy of embeddings for Internet coordinate
systems. In IMC, 2005.

[8] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and A. Venkataramani.
iPlane: An information plane for distributed services. In
OSDI, 2006.

[9] Y. Mao and L. Saul. Modeling distances in large-scale
networks by matrix factorization. In IMC, 2004.

[10] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On AS-level path
inference. In SIGMETRICS, 2005.

[11] D. Meyer. Routeviews.
http://www.routeviews.org.

[12] E. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In INFOCOM, 2002.

[13] V. Paxson. End-to-end routing behavior in the Internet.
IEEE/ACM Trans. on Networking, 1997.

[14] Sarangworld project.
http://www.sarangworld.com/TRACEROUTE/.

[15] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: A case for informed
Internet routing and transport. IEEE Micro, 19(1), 1999.

[16] Y. Shavitt and E. Shir. Dimes: Let the Internet measure itself.
CCR, 35(5), 2005.

[17] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
INFOCOM, 2004.

[18] N. Spring, R. Mahajan, and T. Anderson. Quantifying the
causes of path inflation. In SIGCOMM, 2003.

[19] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring ISP topologies with Rocketfuel. IEEE/ACM
Trans. on Networking, 2004.

[20] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
lightweight network location service without virtual
coordinates. In SIGCOMM, 2005.

[21] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet routing
policies and round-trip-times. In PAM, 2005.

