
Towards a Highly Available Internet

Tom Anderson

University of Washington

Joint work with: John P. John, Ethan Katz-Bassett, Dave Choffnes,
Colin Dixon, Arvind Krishnamurthy, Harsha Madhyastha, Colin Scott,

Justine Sherry, Arun Venkataramani, and David Wetherall

Financial support from: NSF, Cisco, Intel, and Google

Internet-based real-time health?

Continuous Blood Glucose Monitor

Insulin Infusion Pump

Compare with
trend, history

for this patient,
history for

others…

Glucose
Measurement

Insulin Dosage

Internet Routing

Primary goal of the Internet is availability
−  “There is only one failure, and it is complete partition”

Clark, Design Philosophy of the Internet Protocols

Physical path => route
 route => efficient data path
 efficient data path => data flows

Internet routing today

Physical path => route
−  10-15% of BGP updates cause loops and inconsistent

routing tables
−  Loops account for 90% of all packet losses in core

Route => efficient data path
−  40% of Google clients have > 400ms RTT

Efficient data path => data flows
−  Large scale botnets => almost every service vulnerable

to large scale Internet denial of service attacks

X

X

X

Characterizing Internet Outages

Two month study: more than 2M outages

Characterizing Internet Outages

Two month study: more than 2M outages

90% of outages last
< 10 minutes

10% of outages account for
40% of the downtime

Roadmap
Brief primer on Internet routing

Interdomain routing convergence (consensus routing)
−  Towards high availability at a fine-grained time scale [NSDI 08]

Interdomain routing diagnosis (Hubble/reverse traceroute)
−  Towards high availability at a long time scale [NSDI 08, NSDI 10]

Distributed denial of service protection (phalanx)
−  Towards withstanding million node botnets [NSDI 08]

Federation of Autonomous Networks

Establishing Inter-Network Routes

Border Gateway Protocol (BGP)
−  Internet’s interdomain routing protocol
−  Network chooses path based on its own opaque policy
−  Forward your preferred path to neighbors

WS

L3WS

SprintL3WS

AT&TL3WS

UWAT&TL3WS

BGP Paths Can Be Asymmetric

Asymmetric paths are a consequence of policy
−  Available paths depend on policy at other networks
−  Network chooses path based on its own opaque policy ($$)
−  Allowing policy-based decisions leads to asymmetry

UW

SprintUW

AT&TUW

L3Sprint  UW
WSL3SprintUW

From Interdomain Path to Router-
Level

Each ISP decides how to route across its network and
where to hand traffic to next ISP

End-to-end depends on interdomain + intradomain
−  Performance and availability stem from these decisions

UWAT&TL3WS

Roadmap
Brief primer on Internet routing

Interdomain routing convergence (consensus routing)
−  Towards high availability at a fine-grained time scale [NSDI 08]

Interdomain routing diagnosis (Hubble/reverse traceroute)
−  Towards high availability at a long time scale [NSDI 08, NSDI 10]

Distributed denial of service protection (phalanx)
−  Towards withstanding million node botnets [NSDI 08]

Border Gateway Protocol
  Key idea: opaque policy routing under local control

−  Preferred routes visible to neighbors
−  Underlying policies are not visible

  Mechanism:
−  ASes send their most preferred path (to each IP prefix) to

neighboring ASes
−  If an AS receives a new path, start using it right away
−  Forward the path to neighbors, with a minimum inter-

message interval
•  essential to prevent exponential message blowup

−  Path eventually propagates in this fashion to all AS’s

Failures Cause Loops in BGP

2 

3 

4 

1 

5: 5 
5: 2‐4‐5 

5: 5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

Failures Cause Loops in BGP

2 

3 

4 

1 

5: 5 
5: 2‐4‐5 

5: 5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

5: 4‐5 
5: 2‐4‐5 

Link Failure!! 4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

Failures Cause Loops in BGP

2 

3 

4 

1 

5: 5 
5: 2‐4‐5 

5: ? 

AS2 and AS3 
now switch to 
next best path 

A rouAng loop is formed 
between AS2 and AS3! 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

Similar scenario 
causes blackholes in 
iBGP 

Policy Changes Cause Loops in BGP

2 

3 

4 

1 

6 

If AS4 withdraws a route from AS2 and AS3, but 
not AS6, a rouAng loop is formed! 

Or if AS5 wants to swap its primary/backup 
provider from 4 ‐> 1, or 1‐>4, a loop is formed 

5: 4‐5 
5: 3‐4‐5 
5: 6‐4‐5  5: 4‐5 

5: 2‐4‐5 
5: 6‐4‐5 

5: 4‐5 
5: 2‐4‐5 

The Internet as a Distributed System

BGP mixes liveness and safety:
−  Liveness: routes are available quickly after a change
−  Safety: only policy compliant routes are used

BGP achieves neither!
−  Messages are delayed to avoid exponential blowup
−  Updates are applied asynchronously, forming

temporary loops and blackholes

This is a distributed state management problem!

Consensus Routing
Separate concerns of liveness and safety

−  Different mechanism is appropriate for each

Liveness: routing system adapts to failures quickly
−  Dynamically re-route around problem using known, stable

routes (e.g., with backup paths or tunnels)

Safety: forwarding tables are always consistent and policy
compliant
−  AS’s compute and forward routes as before, including timers to

reduce message overhead
−  Only apply updates that have reached everywhere
−  Apply updates at the same time everywhere

Mechanism

1

4

6 5

3

2

Periodically, a
distributed snapshot

is taken
Updates in transit, or
being processed are

marked incomplete

1.  Run BGP, but don’t apply

 the updates

Mechanism

1

4

6 5

3

2

1.  Run BGP, but don’t apply

 the updates

2.  Distributed Snapshot

ASes send list of incomplete
updates to the consolidators

Consolidators

Mechanism

1

4

6 5

3

2

1.  Run BGP, but don’t apply

 the updates

2.  Distributed Snapshot

3.  Send info to consolidators

Consolidators run a
consensus algorithm to

agree on the set of
incomplete updates

Consolidators

Mechanism

1

4

6 5

3

2

1.  Run BGP, but don’t apply

 the updates

2.  Distributed Snapshot

3.  Send info to consolidators

4.  Consensus Consolidators flood the
incomplete set to all the

ASes

Consolidators

Mechanism

1

4

6 5

3

2

1.  Run BGP, but don’t apply

 the updates

2.  Distributed Snapshot

3.  Send info to consolidators

4.  Consensus

5.  Flood

Apply completed updates

Liveness

Problem: Upon link failure, need to wait till path
reaches everyone

Solution: Dynamically re-route around the failed
link
−  Failure carrying packets (FCP)
−  Pre-computed backup paths
−  Detour routing

BGP

Time

C
on

ne
ct

iv
it

y

Link Failure

or other BGP event

BGP converges

to alternate path

Global

reachability

Completely

Unreachable

Consensus Routing

Time

C
on

ne
ct

iv
it

y

Link Failure

or other BGP event

Global

reachability

Completely

Unreachable

Switch to

transient routing Snapshot

Availability After Failure

BGP loops, path prepending

BGP loops, prefix engineering

Control traffic overhead

Average delay in reaching consensus

Roadmap
Brief primer on Internet routing

Interdomain routing convergence (consensus routing)
−  Towards high availability at a fine-grained time scale [NSDI 08]

Interdomain routing diagnosis (Hubble/reverse traceroute)
−  Towards high availability at a long time scale [NSDI 08, NSDI 10]

Distributed denial of service protection (phalanx)
−  Towards withstanding million node botnets [NSDI 08]

Characterizing Internet Outages

Two month study found more than 2M outages

90% of outages last
< 10 minutes

10% of outages account for
40% of the downtime

Current Troubleshooting:
Traceroute

To troubleshoot these routing problems, network
operators need better tools
−  Protocols do not provide much visibility
−  Networks do not have incentive to divulge

Traceroute: measures route from the computer
running traceroute to anywhere
−  Provides no information about reverse path

“The number one go-to tool is traceroute.”
NANOG Network operators troubleshooting tutorial, 2009.

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Is client served by distant data center?

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Is client served by distant data center? Check logs: No

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Is path from data center to client indirect?

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Is path from data center to client indirect? Traceroute: No

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Is reverse path from client back to data center indirect?

Data Centers Need Better Tools

Clients in Taiwan experiencing 500ms network latency

Is reverse path from client back to data center indirect?

“To more precisely troubleshoot problems,
[Google] needs the ability to gather
information about the reverse path
back from clients to Google.”

 [IMC 2009]

Want path from D back
to S, don’t control D

Technique does not require control of destination
KEY IDEAS FOR REVERSE TRACEROUTE

Technique does not require control of destination
KEY IDEAS FOR REVERSE TRACEROUTE

Want path from D back
to S, don’t control D

Can issue FORWARD
traceroute from S to D
  But likely asymmetric

Can’t use
traceroute on
reverse path

Want path from D back
to S, don’t control D

Set of vantage points
  Can measure an

atlas of routes

Multiple VPs combine for view unattainable from any one
KEY IDEAS FOR REVERSE TR.

Traceroute from all
vantage points to S

Gives atlas of paths to S;
if we hit one, we know
rest of path
  Destination-based

routing

Traceroute atlas gives baseline we bootstrap from
KEY IDEAS FOR REVERSE TR.

Destination-based routing
  Path from R1 depends only on S

  Does not depend on source

  Does not depend on
path from D to R1

Destination-based routing lets us stitch path hop-by-hop
KEY IDEAS FOR REVERSE TR.

Destination-based routing lets us stitch path hop-by-hop
KEY IDEAS FOR REVERSE TR.

Destination-based routing
  Path from R3 depends only on S

  Does not depend on source

  Does not depend on
path from D to R3

Destination-based routing lets us stitch path hop-by-hop
KEY IDEAS FOR REVERSE TR.

Destination-based routing
  Path from R4 depends only on S

  Does not depend on source

  Does not depend on
path from D to R4

Destination-based routing lets us stitch path hop-by-hop

Traceroute atlas gives baseline we bootstrap from

KEY IDEAS FOR REVERSE TR.

Once we intersect a path in
our atlas, we know rest of route

Destination-based routing lets us stitch path hop-by-hop

Traceroute atlas gives baseline we bootstrap from

Segments combine to give
complete path

But how do we get segments?

KEY IDEAS FOR REVERSE TR.

How do we get segments?

Unlike TTL, IP Options
are reflected in reply

Record Route (RR) Option
  Record first 9 routers

  If D within 8,
reverse hops
fill rest of slots

IP Options work over forward and reverse path
KEY IDEAS FOR REVERSE TR.

How do we get segments?

Unlike TTL, IP Options
are reflected in reply

Record Route (RR) Option
  Record first 9 routers

  If D within 8,
reverse hops
fill rest of slots

IP Options work over forward and reverse path
KEY IDEAS FOR REVERSE TR.

How do we get segments?

Unlike TTL, IP Options
are reflected in reply

Record Route (RR) Option
  Record first 9 routers

  If D within 8,
reverse hops
fill rest of slots

  … but average
path is 15 hops,
30 round-trip

IP Options work over forward and reverse path
KEY IDEAS FOR REVERSE TR.

From vantage point
within 8 hops of D,
ping D spoofing as S with
Record Route Option

D’s response records
hop(s) on return path

Spoofing lets us use vantage point in best position

To: D
Fr: S
Ping?
RR:__

To: D
Fr: S
Ping?
RR: h1,…,h7

To: S
Fr: D
Ping!
RR: h1,…,h7,D,R1

KEY IDEAS FOR REVERSE TR.

To: S
Fr: D
Ping!
RR: h1,…,h7,D

Iterate, performing spoofed
Record Routes to each router
we discover on return path

Spoofing lets us use vantage point in best position

Destination-based routing lets us stitch path hop-by-hop

To: R1
Fr: S
Ping?
RR:__

To: S
Fr: R1
Ping!
RR: h1,…,h6,R1,R2,R3

KEY IDEAS FOR REVERSE TR.

KEY IDEAS FOR REVERSE TR.
Spoofing lets us use vantage point in best position

Destination-based routing lets us stitch path hop-by-hop

What if no vantage point is within
8 hops for Record Route?

Consult atlas of known
paths to find adjacencies

Known paths provide set of candidate next hops
KEY IDEAS FOR REVERSE TR.

What if no vantage point is within
8 hops for Record Route?

Consult atlas of known
paths to find adjacencies

How do we verify which possible
next hop is actually on path?

IP Timestamp (TS) Option
  Specify ≤ 4 IPs,

each timestamps if
traversed in order

To: R3
Fr: S
Ping?
TS: R3? R4?

To: S
Fr: R3
Ping!
TS: R3! R4?

To: S
Fr: R3
Ping!
TS: R3! R4!

KEY IDEAS FOR REVERSE TR.
Known paths provide set of candidate next hops

IP Options work over forward and reverse path

Destination-based routing lets us stitch path hop-by-hop
KEY IDEAS FOR REVERSE TR.

Once we intersect a path in
our atlas, we know rest of route

KEY IDEAS FOR REVERSE TR.
Destination-based routing lets us stitch path hop-by-hop

Traceroute atlas gives baseline we bootstrap from

Techniques combine
to give complete path

KEY IDEAS FOR REVERSE TR.
Destination-based routing lets us stitch path hop-by-hop

Traceroute atlas gives baseline we bootstrap from

Key Ideas For Reverse Traceroute
Works without control of destination
Multiple vantage points
Traceroute atlas provides:

−  Baseline paths
−  Adjacencies

Stitch path hop-by-hop
IP Options work over forward and reverse path
Spoofing lets us use vantage point in best position

Additional techniques to address:
Accuracy: Some routers process options incorrectly
Coverage: Some ISPs filter probe packets
Scalability: Need to select vantage points carefully

Deployment
Coverage tied to set of vantage points (VPs)

Current deployment:
−  VPs: ~90 PlanetLab / Measurement Lab sites
−  Sources: PlanetLab sites
−  Try it at http://revtr.cs.washington.edu

Evaluation
Quick summary:
Coverage: The combination of techniques is

necessary to get good coverage
Overhead: Reasonable overhead,

10x traceroute (in terms of time, # of probes)

Next:
Accuracy: Does it yield the same path as if you could

issue a traceroute from destination?
−  2200 PlanetLab to PlanetLab paths
−  Allows comparison to direct traceroute on “reverse” path

We identify most hops seen by traceroute
Why we do not always see all the traceroute hops:

1.  Hard to know if 2 IPs actually are the same router
2.  Coverage will improve further with more vantage points

Does it give the same path as traceroute?

Median: 38% if
assume symmetric

Median: 87%
with our system

Example of debugging inflated path

Indirectness: FLDCFL
But only explains half of latency inflation

150ms round-trip time Orlando to Seattle, 2-3x expected
−  E.g., Content provider detects poor client performance

(Current practice) Issue traceroute, check if indirect

Example of debugging inflated path

Indirectness: WA LAWA
Bad reverse path causes inflated round-trip delay

(Current practice) Issue traceroute, check if indirect
−  Does not fully explain inflated latency

(Our tool) Use reverse traceroute to check reverse path

Operators Struggle to Locate Failures

Mailing List User 1
1 Home router
2 Verizon in Baltimore

3 Verizon in Philly

4 Alter.net in DC

5 Level3 in DC

6 * * *

7 * * *

Mailing List User 2
1 Home router
2 Verizon in DC
3 Alter.net in DC
4 Level3 in DC
5 Level3 in Chicago
6 Level3 in Denver
7 * * *
8 * * *

“Traffic attempting to pass through Level3's network in the Washington, DC area is
getting lost in the abyss. Here's a trace from Verizon residential to Level3.”

 Outages mailing list, December
2010

How Can We Locate a Problem?

Group paths

We have:

Fwd/rev
traceroute

Current paths

Historic atlas

How Can We Locate a Problem?

Group paths – Looks like Cox failure, but:
−  Failure could be on reverse path
−  Cannot tell which ISP is responsible, as paths may be

asymmetric

We have:

Fwd/rev
traceroute

Current paths

Historic atlas

How Can We Locate a Problem?

Group paths
Use Reverse Traceroute to isolate direction

−  Also lets us measure working direction

Fr: Z
To: D
Ping?

Fr: D
To: Z
Ping!

Fr: Z
To: D
Ping?

Fr: D
To: Z
Ping!

We have:

Fwd/rev
traceroute

Current paths

Historic atlas

How Can We Locate a Problem?

Group paths
Use Reverse Traceroute to isolate direction
Use historic atlas to reason about what changed

We have:

Fwd/rev
traceroute

Current paths

Historic atlas

R

Partial Outages: An Opportunity
Initial version of isolation system running

continuously. Preliminary results:

Working routes exist, even during failures
−  68% of black holes are partial

•  Paths from some vantage points fail, others work

−  Can’t be explained by hardware failure:
misconfiguration or result of policy

−  69% are one-way failures, other direction work

Self-Repair of Forward Paths

Straightforward: Choose a different path or data center.

Ideal Self-Repair of Reverse Paths

Don’t
use ATT

Don’t
use ATT

Don’t
use ATT

We want a way to signal to ISPs which networks to avoid.

Practical Self-Repair of Reverse
Paths

Use BGP loop prevention to force switch to working path.

WS

L3WS

UWATTL3WS

SprintQwestWS

AISPQwestWS

UWSprintQwestWSATT

SprintQwestWSATT

AISPQwestWSATT

?

L3WSATT

WSATT

ATTL3WS

QwestWS QwestWSATT

Remediation Goals
Without control of the network causing a failure,

automatically reroute traffic in a way that is:
Effective: Allows networks to avoid failure

Non-disruptive: Little effect on working paths

Predictable: Understandable effect, and reverts

when no longer needed 

BGP loop-prevention as our basic mechanism,
with:

Proposed techniques for each of 3 properties

Experiments in progress

Summary
Substantial improvements in Internet availability are both

needed, and possible

Interdomain routing convergence (consensus routing)
−  Towards high availability at a fine-grained time scale

Interdomain routing diagnosis (Hubble/reverse traceroute)
−  Towards high availability at a long time scale

Distributed denial of service protection (phalanx)
−  Towards withstanding million node botnets

Final Thought

“A good network is one that I never have to think
about” – Greg Minshall

Botnets are Big
Botnet: Group of infected computers controlled by a hacker

to launch various attacks
−  Infected via viruses, trojans and worms
−  Botnets patch the vulnerability to let the hacker maintain control
−  Self-sustaining economy in attack technologies

Total bots:
−  6 million [Symantec]
−  150 million [Vint Cerf]

Single botnets have numbered 1.5 million
Back of the envelope: 4.5 Tb/s attack possible today

−  If average bot matches bittorrent distribution

Plenty of Vulnerabilities

Solution Space
Many research proposals for in-network changes

(traceback, pushback, AITF, TVA, SIFF, NIDS, …)
−  But a million node botnet => need near complete deployment
−  Plus a terabit/sec can overwhelm any NIDS

For read-only data, Akamai is an effective solution
−  Put a copy of the data on every Akamai node
−  Works today for most US government web sites

Many services aren’t read-only:
−  Estonia (egovt), IRS e-filing, Amazon, eBay, Skype, etc.

What if we had a swarm for this case?

84

Single Mailbox

Mailbox queues packet until
destination explicitly
requests it

85

Single Mailbox
If the botnet can
discover the mailbox,
game over

86

Many Mailboxes
Source sends packets
through a random sequence
of mailboxes
Sequence known to
destination, but not to
attacker

87

Many Mailboxes
Source sends packets
through a random sequence
of mailboxes
Sequence known to
destination, but not to
attacker
Botnet can take down one
mailbox

88

Many Mailboxes
Source sends packets
through a random sequence
of mailboxes
Sequence known to
destination, but not to
attacker
Botnet can take down one
mailbox
But communication
continues

89

Many Mailboxes
Source sends packets
through a random sequence
of mailboxes
Sequence known to
destination, but not to
attacker
Botnet can take down one
mailbox
But communication
continues
Diluted attacks against all
mailboxes fail

90

Why not just attack the server?

Filtering Ring
Each request has a nonce
Exit router keeps a list of
requests
Drop all incoming pkts
without the nonce
Remove the nonce once used
Efficient implementation
using bloom filters

Attack needs to flood all
border routers of an ISP to be
effective

Phalanx Example

Phalanx Latency Penalty

Phalanx vs. In Network Solutions

Phalanx Scalability

Measuring Link Latency

Many applications want link latencies
−  IP geolocation, ISP performance, performance prediction, …

Traditional approach is to assume symmetry:
 Delay(A,B) = (RTT(S,B) – RTT(S,A)) / 2

Asymmetry skews link latency inferred with traceroute

Reverse Traceroute Detects
Symmetry

Reverse traceroute identifies symmetric traversal
−  Identify cases when RTT difference is accurate
−  We can determine latency of (S,A) and (S,C)

Solved
(S,A)
(S,C)

Reverse TR Constrains Link
Latencies

Build up system of constraints on link latencies of all
intermediate hops

−  Traceroute and reverse traceroute to all hops
−  RTT = Forward links + Reverse links

Solved
(S,A)
(S,C)

Reverse TR Constrains Link
Latencies

Build up system of constraints on link latencies of all
intermediate hops

−  Traceroute and reverse traceroute to all hops
−  RTT = Forward links + Reverse links

Solved
(S,A)
(S,C)
(V,B)
(B,C)
(A,B)

Case Study: Sprint Link Latencies

Reverse traceroute sees 79 of 89 inter-PoP links,
whereas traceroute only sees 61
Median (0.4ms), mean (0.6ms), worst case (2.2ms)
error all 10x better than with traditional approach

