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Internet-based real-time health? 

Continuous Blood Glucose Monitor 

Insulin Infusion Pump 

Compare with 
trend, history 

for this patient, 
history for 

others… 

Glucose 
Measurement 

Insulin Dosage 



Internet Routing 

Primary goal of the Internet is availability 
−  “There is only one failure, and it is complete partition” 

Clark, Design Philosophy of the Internet Protocols 

Physical path => route  
 route => efficient data path  
 efficient data path => data flows 



Internet routing today 

Physical path => route 
−  10-15% of BGP updates cause loops and inconsistent 

routing tables 
−  Loops account for 90% of all packet losses in core 

Route => efficient data path 
−  40% of Google clients have > 400ms RTT 

Efficient data path => data flows 
−  Large scale botnets => almost every service vulnerable 

to large scale Internet denial of service attacks 

X 

X 

X 



Characterizing Internet Outages 

Two month study: more than 2M outages 



Characterizing Internet Outages 

Two month study: more than 2M outages 

90% of outages last                      
< 10 minutes 

10% of outages account for 
40% of the downtime 



Roadmap 
Brief primer on Internet routing 

Interdomain routing convergence (consensus routing) 
−  Towards high availability at a fine-grained time scale [NSDI 08] 

Interdomain routing diagnosis (Hubble/reverse traceroute) 
−  Towards high availability at a long time scale [NSDI 08, NSDI 10] 

Distributed denial of service protection (phalanx) 
−  Towards withstanding million node botnets [NSDI 08] 



Federation of Autonomous Networks 



Establishing Inter-Network Routes 

Border Gateway Protocol (BGP) 
−  Internet’s interdomain routing protocol 
−  Network chooses path based on its own opaque policy 
−  Forward your preferred path to neighbors 

WS 

L3WS 

SprintL3WS 

AT&TL3WS 

UWAT&TL3WS 



BGP Paths Can Be Asymmetric 

Asymmetric paths are a consequence of policy 
−  Available paths depend on policy at other networks 
−  Network chooses path based on its own opaque policy ($$) 
−  Allowing policy-based decisions leads to asymmetry 

UW 

SprintUW 

AT&TUW 

L3Sprint  UW 
WSL3SprintUW 



From Interdomain Path to Router-
Level 

Each ISP decides how to route across its network and 
where to hand traffic to next ISP 

End-to-end depends on interdomain + intradomain 
−  Performance and availability stem from these decisions 

UWAT&TL3WS 



Roadmap 
Brief primer on Internet routing 

Interdomain routing convergence (consensus routing) 
−  Towards high availability at a fine-grained time scale [NSDI 08] 

Interdomain routing diagnosis (Hubble/reverse traceroute) 
−  Towards high availability at a long time scale [NSDI 08, NSDI 10] 

Distributed denial of service protection (phalanx) 
−  Towards withstanding million node botnets [NSDI 08] 



Border Gateway Protocol 
  Key idea: opaque policy routing under local control 

−  Preferred routes visible to neighbors 
−  Underlying policies are not visible 

  Mechanism: 
−  ASes send their most preferred path (to each IP prefix) to 

neighboring ASes 
−  If an AS receives a new path, start using it right away 
−  Forward the path to neighbors, with a minimum inter-

message interval  
•  essential to prevent exponential message blowup 

−  Path eventually propagates in this fashion to all AS’s 



Failures Cause Loops in BGP 
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Failures Cause Loops in BGP 

2 

3 

4 

1 

5: 5 
5: 2‐4‐5 

5: ? 

AS2 and AS3 
now switch to 
next best path 

A rouAng loop is formed 
between AS2 and AS3! 

5: 4‐5 
5: 2‐4‐5 

5: 4‐5 
5: 3‐4‐5 
5: 1‐5 

Similar scenario 
causes blackholes in 
iBGP 



Policy Changes Cause Loops in BGP 

2 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4 

1 

6 

If AS4 withdraws a route from AS2 and AS3, but 
not AS6, a rouAng loop is formed! 

Or if AS5 wants to swap its primary/backup 
provider from 4 ‐> 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1‐>4, a loop is formed 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The Internet as a Distributed System 

BGP mixes liveness and safety: 
−  Liveness: routes are available quickly after a change 
−  Safety: only policy compliant routes are used 

BGP achieves neither! 
−  Messages are delayed to avoid exponential blowup 
−  Updates are applied asynchronously, forming 

temporary loops and blackholes 

This is a distributed state management problem! 



Consensus Routing 
Separate concerns of liveness and safety 

−  Different mechanism is appropriate for each 

Liveness: routing system adapts to failures quickly 
−  Dynamically re-route around problem using known, stable 

routes (e.g., with backup paths or tunnels) 

Safety: forwarding tables are always consistent and policy 
compliant 
−  AS’s compute and forward routes as before, including timers to 

reduce message overhead  
−  Only apply updates that have reached everywhere 
−  Apply updates at the same time everywhere 



Mechanism 

1 
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Periodically, a 
distributed snapshot 

is taken 
Updates in transit, or 
being processed are 

marked incomplete 

1.  Run BGP, but don’t apply 

 the updates 



Mechanism 
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1.  Run BGP, but don’t apply 

 the updates 

2.  Distributed Snapshot 

ASes send list of incomplete 
updates to the consolidators 

Consolidators 



Mechanism 

1 

4 

6 5 

3 

2 

1.  Run BGP, but don’t apply 

 the updates 

2.  Distributed Snapshot 

3.  Send info to consolidators 

Consolidators run a 
consensus algorithm to 

agree on the set of 
incomplete updates 

Consolidators 



Mechanism 

1 

4 

6 5 

3 

2 

1.  Run BGP, but don’t apply 

 the updates 

2.  Distributed Snapshot 

3.  Send info to consolidators 

4.  Consensus Consolidators flood the 
incomplete set to all the 

ASes 

Consolidators 



Mechanism 

1 

4 

6 5 

3 

2 

1.  Run BGP, but don’t apply 

 the updates 

2.  Distributed Snapshot 

3.  Send info to consolidators 

4.  Consensus 

5.  Flood 

Apply completed updates 



Liveness 

Problem: Upon link failure, need to wait till path 
reaches everyone 

Solution: Dynamically re-route around the failed 
link 
−  Failure carrying packets (FCP) 
−  Pre-computed backup paths 
−  Detour routing 
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Consensus Routing 
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Link Failure  

or other BGP event 

Global 

reachability 

Completely 

Unreachable 

Switch to  

transient routing Snapshot 



Availability After Failure 



BGP loops, path prepending 



BGP loops, prefix engineering 



Control traffic overhead 



Average delay in reaching consensus 



Roadmap 
Brief primer on Internet routing 

Interdomain routing convergence (consensus routing) 
−  Towards high availability at a fine-grained time scale [NSDI 08] 

Interdomain routing diagnosis (Hubble/reverse traceroute) 
−  Towards high availability at a long time scale [NSDI 08, NSDI 10] 

Distributed denial of service protection (phalanx) 
−  Towards withstanding million node botnets [NSDI 08] 



Characterizing Internet Outages 

Two month study found more than 2M outages 

90% of outages last                      
< 10 minutes 

10% of outages account for 
40% of the downtime 



Current Troubleshooting: 
Traceroute 

To troubleshoot these routing problems, network 
operators need better tools 
−  Protocols do not provide much visibility 
−  Networks do not have incentive to divulge 

Traceroute: measures route from the computer 
running traceroute to anywhere 
−  Provides no information about reverse path  

“The number one go-to tool is traceroute.” 
NANOG Network operators troubleshooting tutorial, 2009. 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 

Is client served by distant data center? 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 

Is client served by distant data center?  Check logs: No 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 

Is path from data center to client indirect? 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 

Is path from data center to client indirect?  Traceroute: No 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 

Is reverse path from client back to data center indirect? 



Data Centers Need Better Tools 

Clients in Taiwan experiencing 500ms network latency 

Is reverse path from client back to data center indirect? 

“To more precisely troubleshoot problems, 
[Google] needs the ability to gather  
information about the reverse path  
back from clients to Google.” 

                                      [IMC 2009] 



Want path from D back  
to S, don’t control D 

Technique does not require control of destination 
KEY IDEAS FOR REVERSE TRACEROUTE 



Technique does not require control of destination 
KEY IDEAS FOR REVERSE TRACEROUTE 

Want path from D back  
to S, don’t control D 

Can issue FORWARD 
traceroute from S to D 
  But likely asymmetric 

Can’t use 
traceroute on 
reverse path 



Want path from D back  
to S, don’t control D 

Set of vantage points 
  Can measure an 

atlas of routes 

Multiple VPs combine for view unattainable from any one 
KEY IDEAS FOR REVERSE TR. 



Traceroute from all  
vantage points to S 

Gives atlas of paths to S;  
if we hit one, we know  
rest of path 
  Destination-based  

routing 

Traceroute atlas gives baseline we bootstrap from 
KEY IDEAS FOR REVERSE TR. 



Destination-based routing 
  Path from R1 depends only on S 

  Does not depend on source 

  Does not depend on 
path from D to R1 

Destination-based routing lets us stitch path hop-by-hop 
KEY IDEAS FOR REVERSE TR. 



Destination-based routing lets us stitch path hop-by-hop 
KEY IDEAS FOR REVERSE TR. 

Destination-based routing 
  Path from R3 depends only on S 

  Does not depend on source 

  Does not depend on  
path from D to R3 



Destination-based routing lets us stitch path hop-by-hop 
KEY IDEAS FOR REVERSE TR. 

Destination-based routing 
  Path from R4 depends only on S 

  Does not depend on source 

  Does not depend on  
path from D to R4 



Destination-based routing lets us stitch path hop-by-hop 

Traceroute atlas gives baseline we bootstrap from 

KEY IDEAS FOR REVERSE TR. 

Once we intersect a path in 
our atlas, we know rest of route 



Destination-based routing lets us stitch path hop-by-hop 

Traceroute atlas gives baseline we bootstrap from 

Segments combine to give  
complete path 

But how do we get segments? 

KEY IDEAS FOR REVERSE TR. 



How do we get segments? 

Unlike TTL, IP Options  
are reflected in reply 

Record Route (RR) Option 
  Record first 9 routers 

  If D within 8, 
reverse hops  
fill rest of slots 

IP Options work over forward and reverse path 
KEY IDEAS FOR REVERSE TR. 
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Record Route (RR) Option 
  Record first 9 routers 

  If D within 8,  
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IP Options work over forward and reverse path 
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How do we get segments? 

Unlike TTL, IP Options  
are reflected in reply 

Record Route (RR) Option 
  Record first 9 routers 

  If D within 8, 
reverse hops  
fill rest of slots 

  … but average  
path is 15 hops,  
30 round-trip 

IP Options work over forward and reverse path 
KEY IDEAS FOR REVERSE TR. 



From vantage point  
within 8 hops of D,  
ping D spoofing as S with  
Record Route Option 

D’s response records  
hop(s) on return path 

Spoofing lets us use vantage point in best position 

To: D 
Fr: S 
Ping? 
RR:__ 

To: D 
Fr: S 
Ping? 
RR: h1,…,h7 

To: S 
Fr: D 
Ping! 
RR: h1,…,h7,D,R1 

KEY IDEAS FOR REVERSE TR. 

To: S 
Fr: D 
Ping! 
RR: h1,…,h7,D 



Iterate, performing spoofed  
Record Routes to each router  
we discover on return path 

Spoofing lets us use vantage point in best position 

Destination-based routing lets us stitch path hop-by-hop 

To: R1 
Fr: S 
Ping? 
RR:__ 

To: S 
Fr: R1 
Ping! 
RR: h1,…,h6,R1,R2,R3 

KEY IDEAS FOR REVERSE TR. 



KEY IDEAS FOR REVERSE TR. 
Spoofing lets us use vantage point in best position 

Destination-based routing lets us stitch path hop-by-hop 

What if no vantage point is within  
8 hops for Record Route? 

Consult atlas of known  
paths to find adjacencies 



Known paths provide set of candidate next hops 
KEY IDEAS FOR REVERSE TR. 

What if no vantage point is within  
8 hops for Record Route? 

Consult atlas of known  
paths to find adjacencies 



How do we verify which possible 
next hop is actually on path? 

IP Timestamp (TS) Option 
  Specify ≤ 4 IPs,  

each timestamps if  
traversed in order 

To: R3 
Fr: S  
Ping? 
TS: R3? R4? 

To: S 
Fr: R3 
Ping! 
TS: R3! R4? 

To: S 
Fr: R3 
Ping! 
TS: R3! R4! 

KEY IDEAS FOR REVERSE TR. 
Known paths provide set of candidate next hops 

IP Options work over forward and reverse path 



Destination-based routing lets us stitch path hop-by-hop 
KEY IDEAS FOR REVERSE TR. 



Once we intersect a path in 
our atlas, we know rest of route 

KEY IDEAS FOR REVERSE TR. 
Destination-based routing lets us stitch path hop-by-hop 

Traceroute atlas gives baseline we bootstrap from 



Techniques combine  
to give complete path 

KEY IDEAS FOR REVERSE TR. 
Destination-based routing lets us stitch path hop-by-hop 

Traceroute atlas gives baseline we bootstrap from 



Key Ideas For Reverse Traceroute 
Works without control of destination 
Multiple vantage points 
Traceroute atlas provides:  

−  Baseline paths  
−  Adjacencies 

Stitch path hop-by-hop 
IP Options work over forward and reverse path 
Spoofing lets us use vantage point in best position 

Additional techniques to address: 
Accuracy: Some routers process options incorrectly  
Coverage: Some ISPs filter probe packets 
Scalability: Need to select vantage points carefully 



Deployment 
Coverage tied to set of vantage points (VPs) 

Current deployment: 
−  VPs: ~90 PlanetLab / Measurement Lab sites 
−  Sources: PlanetLab sites 
−  Try it at http://revtr.cs.washington.edu 



Evaluation 
Quick summary: 
Coverage: The combination of techniques is 

necessary to get good coverage 
Overhead: Reasonable overhead, 

10x traceroute (in terms of time, # of probes) 

Next: 
Accuracy: Does it yield the same path as if you could 

issue a traceroute from destination? 
−  2200 PlanetLab to PlanetLab paths 
−  Allows comparison to direct traceroute on “reverse” path 



We identify most hops seen by traceroute 
Why we do not always see all the traceroute hops: 

1.  Hard to know if 2 IPs actually are the same router 
2.  Coverage will improve further with more vantage points 

Does it give the same path as traceroute? 

Median: 38% if 
assume symmetric 

Median: 87% 
with our system 



Example of debugging inflated path 

Indirectness: FLDCFL 
But only explains half of latency inflation 

150ms round-trip time Orlando to Seattle, 2-3x expected 
−  E.g., Content provider detects poor client performance 

(Current practice) Issue traceroute, check if indirect 



Example of debugging inflated path 

Indirectness: WA LAWA 
Bad reverse path causes inflated round-trip delay 

(Current practice) Issue traceroute, check if indirect 
−  Does not fully explain inflated latency 

(Our tool) Use reverse traceroute to check reverse path 



Operators Struggle to Locate Failures 

Mailing List User 1 
1 Home router 
2 Verizon in Baltimore

3 Verizon in Philly

4 Alter.net in DC

5 Level3 in DC

6 * * *

7 * * *


Mailing List User 2 
1 Home router 
2 Verizon in DC 
3 Alter.net in DC 
4 Level3 in DC 
5 Level3 in Chicago 
6 Level3 in Denver 
7 * * * 
8 * * * 

“Traffic attempting to pass through Level3's network in the Washington, DC area is 
getting lost in the abyss. Here's a trace from Verizon residential to Level3.” 



 
 
 
            Outages mailing list, December 
2010




How Can We Locate a Problem? 

Group paths 

We have: 

Fwd/rev 
traceroute 

Current paths 

Historic atlas 



How Can We Locate a Problem? 

Group paths – Looks like Cox failure, but: 
−  Failure could be on reverse path 
−  Cannot tell which ISP is responsible, as paths may be 

asymmetric 

We have: 

Fwd/rev 
traceroute 

Current paths 

Historic atlas 



How Can We Locate a Problem? 

Group paths 
Use Reverse Traceroute to isolate direction 

−  Also lets us measure working direction 

Fr: Z 
To: D 
Ping?  

Fr: D 
To: Z 
Ping! 

Fr: Z 
To: D 
Ping?  

Fr: D 
To: Z 
Ping! 

We have: 

Fwd/rev 
traceroute 

Current paths 

Historic atlas 



How Can We Locate a Problem? 

Group paths 
Use Reverse Traceroute to isolate direction 
Use historic atlas to reason about what changed 

We have: 

Fwd/rev 
traceroute 

Current paths 

Historic atlas 

R 



Partial Outages: An Opportunity 
Initial version of isolation system running 

continuously.  Preliminary results: 

Working routes exist, even during failures 
−  68% of black holes are partial 

•  Paths from some vantage points fail, others work 

−  Can’t be explained by hardware failure: 
misconfiguration or result of policy 

−  69% are one-way failures, other direction work 



Self-Repair of Forward Paths 

Straightforward: Choose a different path or data center. 



Ideal Self-Repair of Reverse Paths 

Don’t 
use ATT 

Don’t 
use ATT 

Don’t 
use ATT 

We want a way to signal to ISPs which networks to avoid. 



Practical Self-Repair of Reverse 
Paths 

Use BGP loop prevention to force switch to working path. 

WS 

L3WS 

UWATTL3WS 

SprintQwestWS 

AISPQwestWS 

UWSprintQwestWSATT 

SprintQwestWSATT 

AISPQwestWSATT 

? 

L3WSATT 

WSATT 

ATTL3WS 

QwestWS QwestWSATT 



Remediation Goals 
Without control of the network causing a failure, 

automatically reroute traffic in a way that is: 
Effective: Allows networks to avoid failure

Non-disruptive: Little effect on working paths

Predictable: Understandable effect, and reverts 

when no longer needed 

BGP loop-prevention as our basic mechanism, 
with:


Proposed techniques for each of 3 properties

Experiments in progress




Summary 
Substantial improvements in Internet availability are both 

needed, and possible 

Interdomain routing convergence (consensus routing) 
−  Towards high availability at a fine-grained time scale 

Interdomain routing diagnosis (Hubble/reverse traceroute) 
−  Towards high availability at a long time scale 

Distributed denial of service protection (phalanx) 
−  Towards withstanding million node botnets 



Final Thought 

“A good network is one that I never have to think 
about” – Greg Minshall 



Botnets are Big 
Botnet: Group of infected computers controlled by a hacker 

to launch various attacks 
−  Infected via viruses, trojans and worms 
−  Botnets patch the vulnerability to let the hacker maintain control 
−  Self-sustaining economy in attack technologies 

Total bots: 
−  6 million [Symantec] 
−  150 million [Vint Cerf] 

Single botnets have numbered 1.5 million 
Back of the envelope: 4.5 Tb/s attack possible today 

−  If average bot matches bittorrent distribution 



Plenty of Vulnerabilities 



Solution Space 
Many research proposals for in-network changes 

(traceback, pushback, AITF, TVA, SIFF, NIDS, …) 
−  But a million node botnet =>  need near complete deployment 
−  Plus a terabit/sec can overwhelm any NIDS 

For read-only data, Akamai is an effective solution 
−  Put a copy of the data on every Akamai node 
−  Works today for most US government web sites 

Many services aren’t read-only:  
−  Estonia (egovt), IRS e-filing, Amazon, eBay, Skype, etc. 

What if we had a swarm for this case? 



84 

Single Mailbox 

Mailbox queues packet until 
destination explicitly 
requests it 



85 

Single Mailbox 
If the botnet can 
discover the mailbox, 
game over 



86 

Many Mailboxes 
Source sends packets 
through a random sequence 
of mailboxes 
Sequence known to 
destination, but not to 
attacker 
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Botnet can take down one 
mailbox 
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Many Mailboxes 
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Botnet can take down one 
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But communication 
continues 



89 

Many Mailboxes 
Source sends packets 
through a random sequence 
of mailboxes 
Sequence known to 
destination, but not to 
attacker 
Botnet can take down one 
mailbox 
But communication 
continues 
Diluted attacks against all 
mailboxes fail 



90 

Why not just attack the server? 



Filtering Ring 
Each request has a nonce 
Exit router keeps a list of 
requests 
Drop all incoming pkts 
without the nonce 
Remove the nonce once used 
Efficient implementation 
using bloom filters 

Attack needs to flood all 
border routers of an ISP to be 
effective 



Phalanx Example 



Phalanx Latency Penalty 



Phalanx vs. In Network Solutions 



Phalanx Scalability 



Measuring Link Latency 

Many applications want link latencies 
−  IP geolocation, ISP performance, performance prediction, … 

Traditional approach is to assume symmetry: 
 Delay(A,B) = ( RTT(S,B) – RTT(S,A) ) / 2 

Asymmetry skews link latency inferred with traceroute 



Reverse Traceroute Detects 
Symmetry 

Reverse traceroute identifies symmetric traversal 
−  Identify cases when RTT difference is accurate 
−  We can determine latency of (S,A) and (S,C) 

Solved 
(S,A) 
(S,C) 



Reverse TR Constrains Link 
Latencies 

Build up system of constraints on link latencies of all 
intermediate hops 

−  Traceroute and reverse traceroute to all hops 
−  RTT = Forward links + Reverse links 

Solved 
(S,A) 
(S,C) 



Reverse TR Constrains Link 
Latencies 

Build up system of constraints on link latencies of all 
intermediate hops 

−  Traceroute and reverse traceroute to all hops 
−  RTT = Forward links + Reverse links 

Solved 
(S,A) 
(S,C) 
(V,B) 
(B,C) 
(A,B) 



Case Study: Sprint Link Latencies 

Reverse traceroute sees 79 of 89 inter-PoP links, 
whereas traceroute only sees 61 
Median (0.4ms), mean (0.6ms), worst case (2.2ms) 
error all 10x better than with traditional approach 


