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ABSTRACT

Cloud computing is rapidly increasing in popularity. Com-
panies such as RedHat, Microsoft, Amazon, Google, and
IBM are increasingly funding cloud computing infrastruc-
ture and research, making it important for students to gain
the necessary skills to work with cloud-based resources. This
paper presents a free, educational research platform called
Seattle that is community-driven, a common denominator
for diverse platform types, and is broadly deployed.

Seattle is community-driven — universities donate avail-
able compute resources on multi-user machines to the plat-
form. These donations can come from systems with a wide
variety of operating systems and architectures, removing the
need for a dedicated infrastructure.

Seattle is also surprisingly flexible and supports a variety
of pedagogical uses because as a platform it represents a
common denominator for cloud computing, grid computing,
peer-to-peer networking, distributed systems, and network-
ing. Seattle programs are portable. Students’ code can run
across different operating systems and architectures without
change, while the Seattle programming language is expres-
sive enough for experimentation at a fine-grained level. Our
current deployment of Seattle consists of about one thou-
sand computers that are distributed around the world. We
invite the computer science education community to employ
Seattle in their courses.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:

Computer science education; C.2.4 [Computer-Communi-
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zation]: Performance of Systems—design studies, measure-

ment techniques
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1. INTRODUCTION

Cloud computing is rapidly increasing in popularity as
many organizations outsource hardware and maintenance
and instead focus on software [3, 4, 11, 12, 14, 8, 16]. How-
ever, despite the attention, there is a lot of disparity in
what cloud computing means. RedHat / Amazon’s EC2 [3]
provides cloud computing as a collection of Linux machines
with storage functionality [4]. Google’s platform for cloud
computing hides locality and scalability issues from the pro-
grammer who writes programs to a custom programming
API [11]. Microsoft views it as a virtualization layer between
the hardware and the OS and is releasing a developer toolkit
for providing the user with “software plus service.” [16]

We provide an educational platform called Seattle that is a
common denominator for a wide range of these definitions.
Seattle’s simple to learn programming language, a subset
of the Python language, is expressive enough to allow stu-
dents to build algorithms for inter-machine interaction (like
a global store or a DHT). As a result, Seattle is useful in
many pedagogical contexts ranging from courses in cloud
computing, networking, and distributed systems, to parallel
programming, grid computing, and peer-to-peer computing.

Seattle is a community-driven effort that depends on re-
sources donated by users of the software (and as such is free
to use). A user can install Seattle onto their personal com-
puter to enable Seattle programs to run using a portion of
the computer’s resources. Seattle programs are sandboxed
and securely isolated from other programs running on the
same computer. Seattle provides hard resource guarantees
that an erroneous or malicious program cannot circumvent.

In addition, Seattle runs on a variety of different operat-
ing systems and architectures including Windows, Mac OS-
X, Linux, FreeBSD, and even portable devices like Nokia
N800s and jail broken iPhones. Code written for Seattle is
automatically (and transparently) portable to different ar-
chitectures and runs the same across all systems.

Seattle has a preexisting base of installed computers and is
already widely deployed on almost one thousand computers
that are spread across hundreds of universities worldwide.
Seattle users can run their programs on computers span-



ning the Internet — a feature that is currently being used by
several classes at major universities.

This paper describes the architecture of the Seattle cloud
computing platform (Section 2) including the programming
APT (Section 2.1), the sandboxing mechanism (Section 2.2),
the control of sandboxes on a host computer (Section 2.3),
and the way in which students manage their running pro-
grams (Section 2.5). Following this, we describe the compu-
tational resources available to classes using Seattle and how
we expect this platform to grow in the future (Section 3).
Next, we provide some example assignments to demonstrate
how Seattle can be used in courses (Section 4). We then
discuss related work (Section 5) and conclude (Section 6).

2. ARCHITECTURE

To use Seattle, the instructor creates an account on our
website and obtains an installer. The machines that run the
installer (such as computers in the universities computer lab)
donate resources that are credited to the instructor. The
instructor can then obtain resources on machines around
the world. As of December 1st, 2008 the current policy is
that for each donation, the instructor receives resources on
ten other computers. However, the instructor can delegate
those resources either directly to students or to TAs who do
more fine-grained delegation. Students and TAs download
a toolkit and then experiment with their resources.

Seattle’s architecture is comprised of several components.
At the lowest level the sandbor component guarantees secu-
rity and resource control for an individual program. Pro-
grams are written to the Seattle API in a subset of the
Python programming language. This API provides portable
access to low level operations (like opening files and sending
messages). At a higher layer, the node manager determines
which sandboxed programs get to run on the local computer.
A public key infrastructure is used to authorize control over
sandboxed programs. Lastly, the experiment manager lets
students control their program instances across computers.

2.1 Seattle API

Seattle provides a programming API for low-level opera-
tions (like writing to files or sending network messages) and
maintains program portability using an abstraction layer.
Platform specific code below this abstraction layer handles
non-portable operations enabling unmodified programs to
run on a wide variety of platforms.

The API consists of five categories: file, network, timer,
locking, and miscellaneous. The file APT calls enable limited
access to the local computer’s persistent storage (interact-
ing only with files in a single directory). The network API
calls provide the local IP address, perform a DNS lookup,
enable sending and receiving of UDP messages, and man-
aging of and communicating over TCP connections. The
timer API calls enable the programmer to put the current
thread to sleep and to schedule functions to be called at
later times. For example, the programmer can register an
event to periodically send a heartbeat message to another
computer. The locking functions allow the programmer to
handle concurrency in their program (as common state may
be accessed and modified by multiple threads at the same
time). The miscellaneous API calls allow the programmer
to exit the program, to generate random numbers, and to
provide the amount of time the program has been running.
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2.2 The Sandbox

The sandbox’s primary goal is to securely execute user
code. There are two aspects to this — preventing insecure
actions and limiting resource consumption. To prevent in-
secure actions the sandbox hooks into the Python parser
and reads the program’s parse tree. Only actions that the
sandbox can verify as safe may execute.

To control resource consumption on the host the sandbox
interposes on all API calls made by a program. The sandbox
monitors the overall use of resources like CPU, memory, and
disk space to ensure the program does not exceed its bounds.
Each API call that uses a monitored resource is evaluated
before being granted or denied the resource. The sandbox
also restricts the rate at which API calls are performed.

The restrictions and resource limits of the sandbox are
configurable and may restrict different programs in different
ways. For example, one program may only be allowed to
receive UDP packets on port 11111, while another program
may be restricted to receiving UDP packets on port 22222.
This enables multiple sandboxes on the same computer to
host programs controlled by different users.

2.3 Node Manager

While useful in itself, the sandbox is part of a larger
ecosystem. The sandbox isolates a specific running program
on a host computer, but does not address how that program
is started, which programs are run, and who has permis-
sion to run a program. Such functionality is provided by
the node manager, which manages sandboxed running pro-
grams as part of what we call vessels. The node manager
stores information about the vessels it controls and allows
vessels to be started, stopped, combined, split, and changed.

2.3.1

A vessel is a controlled environment for running code (im-
plemented using the Seattle sandbox). Intuitively, a vessel
includes the program’s sandbox and the node manager state
(such as the resources and restrictions assigned to the pro-
gram). Vessels have well defined boundaries that prevent
them from interfering with one another (for example, dif-
ferent vessels have their own disjoint set of network ports).
Each vessel has associated with it a restrictions file, a stop
file, and a log. The restrictions file lists what the vessel can
and cannot do (such as the network ports that can be used)
along with the amount of each resource the vessel may use.
The stop file enables the node manager to stop the vessel (by
creating a file with that name). The log is a circular buffer
written by the vessel to communicate useful information to
the vessel owner. The log helps the programmer to diagnose
failures and to capture program state for off-line analysis.

A common scenario is for a student to obtain a vessel from
their instructor. The student then decides the program they
want to run in their vessel. To do this, she directs the ex-
periment manager to install the program on a node. The
experiment manager uploads the program to the student’s
vessel (along with any data files) and executes the program
in the vessel. The student also can easily perform this ac-
tion on groups of vessels spread across many different nodes.
The student can then monitor the status of her program by
looking at a status indicator provided by querying the node
manager (coarse-grained monitoring) or by downloading in-
formation about the program from its circular log buffer
(fine-grained monitoring). The user can also stop the vessel
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while retaining all of the state so that she can examine data
files and logs.

In a more complex example an instructor splits a single
vessel on a node into multiple vessels, and assigns each vessel
to a student in the class. Vessels may also be combined for
flexibility. For example, the students may be allowed to
work in groups. Once the groups are formed, some of the
students may decide to combine their vessels so as to get
more resources in a single vessel.

2.4 Locating Seattle Nodes

It is important to note that there is nothing parallel or dis-
tributed about the node manager. The node manager only
manages the vessels on the local system. To facilitate global
location of resources, the node manager inserts a key/value
pair into two different public DHTs (OpenDHT [19]) every
five minutes. The inserted key is the owner’s public key and
the value is the local computer’s IP address. This allows a
user to lookup their public key to find the nodes with vessels
they control without needing to keep track of these nodes
on their own.

2.5 Experiment Manager

The experiment manager is the main tool in the toolkit
that students use to interact with Seattle. The experiment
manager transparently handles discovery of vessels the user
controls by querying the DHT, and communicates with re-
mote node managers to perform actions on the user’s behalf.

The experiment manager provides the user with a shell
interface (similar to PLuSH [1]) in which the user can issue
commands. For example, users can install software in their
vessels — the experiment manager uploads a program into
the vessels the user specifies. Users can also start and stop
vessels, or report on the status of a vessel. A vessel’s status
can be fresh (has never run a program), started (is running
a program), stopped (was requested to stop), or terminated
(terminated due to a normal exit or an unhandled program
exception). When a vessel has failed (perhaps due to a bug
in the student’s code), exception information with a stack
trace of the fault is logged. The student can use the ex-
periment manager to find the failed program instances to
inspect their logs or to see an exception’s stack trace.

3. DEPLOYMENT

Since it is unclear what the future of cloud computing
will be, we are interested in providing students with the
most diverse set of resources possible. Seattle runs on Linux,
FreeBSD, Mac 0OS-X, XO (one laptop per child)*, and Win-
dows platforms. Seattle also runs on mobile devices like the
iPhone' (if jail broken) and Nokia N800'. We are inter-
ested in adding support for other platforms as users express
interest in running Seattle on new platforms.

In addition to platform diversity, network connection di-
versity is also important. Seattle is already widely deployed
at universities around the world. An instance of Seattle is
running on each PlanetLab [18] node, giving a presence on
close to one thousand nodes at hundreds of universities.

PlanetLab provides access to computers at a large num-
ber of well connected locations, although most only have two

!Some threading libraries and operating systems do not pro-
vide accurate CPU and/or memory information. As a result,
certain resources cannot be effectively sandboxed

computers per site available. As we are now publicly releas-
ing Seattle for educational use, we expect to see an increase
in resource diversity. We anticipate that universities will in-
stall Seattle on most of the computers in their lab. Such
deployments will provide a distributed environment that ef-
fectively emulates cluster computing. We also anticipate
that many students will load Seattle on their home comput-
ers. This will allow for emulation of peer-to-peer computing
as home computers will typically have connectivity charac-
teristics representative of the average Internet user.

We believe that the diversity of platforms and network
connections enables a wide range of pedagogical uses. Stu-
dents can experiment with cluster computing, grid comput-
ing, peer-to-peer, and cloud computing by simply varying
where their program is deployed. Additionally, the same
program will run in any of these environments. Of course,
the characteristics of the environment will determine the effi-
ciency and scalability of the employed distributed algorithm
— a crucial distributed systems lesson for students.

4. SEATTLE IN THE CLASSROOM

This section describes educational resources available to
the student and instructor. The resources are divided into
two areas. There is a student portal which contains resources
for students who are learning the basics of Seattle. There is
also an educator portal that contains resources for educators
to help them use Seattle in the classroom.

4.1 Student Resources

To aid students learning Seattle, we provide a student por-
tal with tutorials describing how to program and use Seat-
tle, documentation for the API, a resources and restrictions
guide, and other documentation. The tutorials provide code
snippets demonstrating the API, and explains how to use the
experiment manager to perform different tasks. Our experi-
ence has shown that students can quickly learn the Python
programming language [20, 6] and quickly learn to program
in Seattle. Our experience is that undergraduates who had
no previous networking experience can implement programs
like overlay multicast and TCP forwarding with a few hours
of effort after completing the tutorial.

To illustrate how easy it is to program Seattle, A popular
first project for networking students is the Echo client /server.
The two complete Seattle programs are both concise and
simple. The echo client is just 6 lines of code:

# Handle an incoming message
def got_reply(srcip, srcport, mess, ch):
print ’received:’,mess,"from",srcip,srcport

if callfunc == ’initialize’:
# when a message arrives on my IP, port 43210,
# start an event to call the function ’got_reply’
recvmess (getmyip(), 43210, got_reply)
# send a hello message to my IP, port 54321
sendmess (getmyip(), 54321, ’hello’, getmyip(), 43210)
# exit in one second
settimer(1,exitall, ())

The echo server consists of just 4 lines of code:

# Handle an incoming message
def got_message(srcip, srcport, mess, ch):
sendmess (srcip,srcport,mess)

if callfunc == ’initialize’:
recvmess (getmyip(), 54321, got_message)



Furthermore, a first project for many students in dis-
tributed systems is to measure the connectivity character-
istics between pairs of computers [2]. The Appendix lists a
complete 30 line Seattle program that performs an all-pairs-
ping and displays its results in a webpage when contacted.

4.2 Educator Resources

To aid instructors in integrating Seattle into their exist-
ing curriculum, we also provide an educator portal. The first
item on the educator portal is a description of instructor ex-
periences with Seattle. After Seattle has been used, we have
asked the students to fill out a survey outlining how they
felt the platform impacted their experience. We recorded
the results on the web page.

Besides information about experiences with Seattle, the
educator portal also contains course materials such as hand-
outs and example assignments. One special-purpose assign-
ment called the TakeHomeAssignment requires no program-
ming and takes about 1 hour to do. The purpose of the
TakeHomeAssignment is to show the student or instructor
the practical effects of non-transitive connectivity and NAT's
on the Internet today, while introducing them to Seattle.

In addition, the educator portal provides a collection of
ready-to-go programming assignments for use with Seattle.
The assignments include implementing a reliable protocol
on top of UDP, performing overlay routing using link-state
routing on the Internet, building application level services
like a webserver, and understand layering of services by cre-
ating a chat server that operates over HT'TP.

The educator portal also provides assignment ideas that
are appropriate for course long projects or graduate assign-
ments. For example, students may implement a DHT (such
as Chord [22]) to better understand non-transitive connec-
tivity. A simple implementation will work well on LAN
environments but will fail horribly on the Internet due to
non-transitive connectivity and other network effects. After
measuring these effects and then understanding the reason
behind Chord’s poor performance, the students can discuss
solutions to these problems. Students can then implement
and test these solutions to achieve better performance and
reliability. This assignment emphasizes good software engi-
neering practices (since code is reused), that test and deploy-
ment environments may differ significantly, and encourages
students to come up with unique solutions to the problem
yet is easily evaluated using a small set of metrics.

5. RELATED WORK

There are many different cloud computing platforms in
use today. Amazon runs a cloud of RedHat servers to pro-
vide computing resources [3], which are similar in purpose to
Seattle but provide a virtual machine instead of a program-
ming language instance. This leads to better performance,
but is not flexible to support donated resources and is not
free. Their storage back end is functionally similar to the
global data store proposed as an assignment on Seattle’s
educator portal.

Microsoft proposes a software plus services [16] architec-
ture where the cloud is used as an auxiliary to enhance
the capabilities of local software. While Microsoft has an-
nounced the pending availability of a developer toolkit, to
the best of our knowledge it is not available at this time.

Google provides a cloud computing-like infrastructure with
AppEngine [11], which executes programs written in a con-
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strained version of the Python language and supports high
level abstractions (like a global database). While useful for
building locality-oblivious web applications, its transparent
handling of scalability and locality makes it unsuitable for
teaching these fundamental distributed systems topics.

IBM has announced plans for a cloud computing prod-
uct called “Blue Cloud” [8], which supports OS images us-
ing Xen and PowerVM Linux. Blue Cloud also supports
Hadoop [13] for MapReduce-type query processing and is in-
tended to support high performance computing. Hadoop has
also been used to teach cluster computing for large data pro-
cessing [15]. The MapReduce [9] paradigm used by Hadoop
simplifies distributed data processing. However, this simpli-
fying abstraction also limits the scope of systems concepts
that may be taught with Hadoop. We believe that a more
general platform should be used to teach the system con-
cepts that power Hadoop’s implementation. These concepts
may then be applied more broadly to other distributed com-
puting abstractions, and cloud computing more generally.

In addition to cloud computing, there are a variety of grid
computing and volunteer computing platforms. Globus [10]
is a popular Grid toolkit, which has been used to build a vari-
ety of service-oriented applications. BOINC [5] is a volunteer
computing platform supporting the SETIQHome and Fold-
ing@Home projects. BOINC leverages donated CPU cycles
for computation, particularly spare resources on home ma-
chines. Globus and BOINC both target distributed compu-
tation and strive to hide locality and similar information
from the programmer. Seattle is lighter-weight software
that exposes locality and is therefore suited for students
in distributed systems courses. Seattle also comes with a
widely accessible ready-to-use platform of thousands of ma-
chines. We are not aware of any Globus- or BOINC-powered
testbeds available for educational use.

Limited compute resources have been a key constraint in
teaching distributed systems [21]. Seattle is architected to
do this safely and efficiently. Recent efforts engaged under-
graduates in distributed computing with simple-to-use plat-
forms designed for cluster computing. The DCEZ platform
offers a simple interface that students can use without any
prior knowledge of distributed computing [17]. We have like-
wise endeavored to make Seattle simple to use, but target
teaching of distributed systems issues that arise at Internet
scales. Lastly, because Seattle runs on a variety of embedded
platforms with limited resources, such as cellular phones and
PDAs, our platform complements prior work on platforms
for teaching ubiquitous computing [7].

6. CONCLUSION AND FUTURE WORK

This work presents the educational networking platform
Seattle. Seattle is a free, portable, and lightweight platform
using donated computational resources. Seattle enables stu-
dents to learn the concepts of networking and distributed
systems on computers spread around the Internet. Seattle
can also emulate cloud computing, peer-to-peer computing,
and cluster computing within a simple framework. Comput-
ers running Seattle are protected from malicious and misbe-
having code, making it safe to contribute resources from
multi-use computers. Seattle has resources available for stu-
dents to use on about a thousand computers worldwide.

We are currently working to extend Seattle to improve
Seattle’s NAT traversal and to provide better aggregate re-
strictions on Seattle traffic.
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APPENDIX

The following Seattle program measures network latency to
a list of IP addresses and displays a webpage showing the
latency to each node. This program has 30 lines of code, with
11 lines of comments. Without the webpage functionality
the program is only 21 lines of code. This is a complete
Seattle program — no code is omitted or abbreviated.

# send a probe message to each neighbor
def probe_neighbors(port):
for neighborip in mycontext["neighborlist"]:
mycontext[’sendtime’] [neighborip] = getruntime()
sendmess (neighborip, port, ’ping’,getmyip(),port)
# probe again in 10 seconds
settimer (10, probe_neighbors, (port,))

# handle an incoming message
def got_message(srcip,srcport,mess,ch):

if mess == ’ping’:
sendmess (srcip,srcport, ’pong’)
elif mess == ’pong’:

# elapsed time is now - time when I sent the ping
mycontext [’latency’] [srcip] = getruntime() - \
mycontext [’sendtime’] [srcip]

# display a web page with the latency information
def show_status(srcip,srcport,connobj, ch, mainch):
connobj.send("<html><head><title>Latency Information</title>"+ \
"</head><body><hi>Latency information from "+ \
getmyip()+’ </hi><table border="1">’)
# list a row for each node we are talking to
for neighborip in mycontext[’neighborlist’]:
if neighborip in mycontext[’latency’]:
connobj.send ("<tr><td>"+neighborip+"</td><td>"+ \
str(mycontext [’latency’] [neighborip])+"<td></tr>")
else:
connobj.send ("<tr><td>"+neighborip+"</td><td>Unknown<td></tr>")
connobj.send("</table></html>")
connobj.close()

if callfunc == ’initialize’:
# this holds the response information (i.e. when nodes responded)
mycontext [’latency’] = {}
# this remembers when we sent a probe
mycontext[’sendtime’] = {}
# get the nodes to probe
mycontext [’neighborlist’] = []
for line in file("neighboriplist.txt"):

mycontext [’neighborlist’].append(line.strip())

# call gotmessage whenever receiving a message
pingport = int(callargs[0])
recvmess (getmyip() ,pingport,got_message)

probe_neighbors (pingport)
# register a function to show a status webpage

pageport = int(callargs[1])
waitforconn(getmyip() ,pageport,show_status)



