
A DoS-limiting Network Architecture

Xiaowei Yang
University of California, Irvine

xwy@ics.uci.edu

David Wetherall
University of Washington
djw@cs.washington.edu

Thomas Anderson
University of Washington
tom@cs.washington.edu

ABSTRACT
We present the design and evaluation of TVA, a network archi-
tecture that limits the impact of Denial of Service (DoS) floods
from the outset. Our work builds on earlier work on capabilities in
which senders obtain short-term authorizations from receivers that
they stamp on their packets. We address the full range of possible
attacks against communication between pairs of hosts, including
spoofed packet floods, network and host bottlenecks, and router
state exhaustion. We use simulation to show that attack traffic can
only degrade legitimate traffic to a limited extent, significantly out-
performing previously proposed DoS solutions. We use a modified
Linux kernel implementation to argue that our design can run on
gigabit links using only inexpensive off-the-shelf hardware. Our
design is also suitable for transition into practice, providing incre-
mental benefit for incremental deployment.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking

General Terms
Security, Design

Keywords
Denial-of-Service, Internet

1. INTRODUCTION
Denial of Service (DoS) attacks have become an increasing threat

to the reliability of the Internet. An early study showed that DoS
attacks occurred at a rate of nearly 4000 attacks per week [18]. In
2001, a DoS attack [4] was able to take down seven of the thirteen
DNS root servers. And more recently, DoS attacks have been used
for online extortion [5].

The importance of the problem has led to a raft of proposed so-
lutions. Researchers have advocated filtering to prevent the use of
spoofed source addresses [8], traceback to locate the source of the
disrupting packets [20, 22, 21, 24], overlay-based filtering [12, 1,
14] to protect approaches to servers, pushback of traffic filters into
the network [16, 10, 3], address isolation to distinguish client and
server traffic [9], and capabilities to control incoming bandwidth [2,
25].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 22–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

Each of these proposals has merit and provides techniques that
can help address the DoS problem. Yet we argue that each ad-
dresses only an aspect of DoS rather than the overall problem. In
contrast, our goal is to provide a comprehensive solution to the
DoS problem. We require that a DoS-limiting network architecture
ensure that any two legitimate nodes be able to effectively commu-
nicate despite the arbitrary behavior ofk attacking hosts. We limit
ourselves to open networks, such as the Internet, where the com-
municating hosts are not known in advance; this rules out statically
configured networks that, for example, only permit predetermined
legitimate hosts to send packets to each other.

Our solution is the Traffic Validation Architecture (TVA1). TVA
is based on the notion of capabilities that we advocated in earlier
work [2] and which were subsequently refined by Yaaret. al.[25].
Our attraction to capabilities is that they cut to the heart of the DoS
problem by allowing destinations to control the packets they re-
ceive. However, capabilities are currently little understood at a de-
tailed level or leave many important questions unanswered. A key
contribution of our work is the careful design and evaluation of a
more complete capability-based network architecture. TVA coun-
ters a broader set of possible attacks, including those that flood
the setup channel, that exhaust router state, that consume network
bandwidth, and so forth.

We have also designed TVA to be practical in three key respects.
First, we bound both the computation and state needed to process
capabilities. We report on an implementation that suggests our de-
sign will be able to operate at gigabit speeds with commodity hard-
ware. Second, we have designed our system to be incrementally
deployable in the current Internet. This can be done by placing
inline packet processing boxes at trust boundaries and points of
congestion, and upgrading collections of hosts to take advantage of
them. No changes to Internet routing or legacy routers are needed,
and no cross-provider relationships are required. Third, our design
provides a spectrum of solutions that can be mixed and matched
to some extent. Our intent is to see how far it is possible to go
towards limiting DoS with a practical implementation, but we are
pragmatic enough to realize that others may apply a different cost-
benefit tradeoff.

The remainder of this paper discusses our work in more detail.
We discuss related work in Section 2, motivating our approach in
Section 3. Section 4 describes a concrete implementation of our ar-
chitecture and illustrates its behavior. Sections 5, 6 and 7 evaluate
our approach using a combination of simulation, a kernel imple-
mentation, and analysis. Section 8 discusses deployment issues.
Section 9 summarizes our work.

1The name TVA is inspired by the Tennessee Valley Authority,
which operates a large-scale network of dams to control flood dam-
age, saving more than $200 million annually.

241

2. BACKGROUND
Our design leverages previous proposals to address DoS attacks.

We discuss this work, using attack scenarios to illustrate its strengths
and weaknesses and to motivate our approach.

Early work in the area of DoS sought to make all sources identifi-
able, e.g., ingress filtering [8] discards packets with widely spoofed
addresses at the edge of the network, and traceback uses routers to
create state so that receivers can reconstruct the path of unwanted
traffic [20, 21, 22]. This is a key step, but it is insufficient as a com-
plete solution. For example, an attacker might flood a link between
a source and a destination. She might then hide her tracks by us-
ing the IP TTL field to cause the attack packets to be dropped after
they have done their damage but before they arrive at the destina-
tion. The network then simply appears to be broken from the point
of view of the source and the destination.

One might think that fair queuing [6] would help by ensuring
that each flow gets its fair share of the bottleneck bandwidth. Yet
even if we assume ingress filtering (so there are no spoofed source
addresses)k hosts attacking a destination limit a good connection
to 1/k of the bandwidth. This applies even if the destination knows
it does not want any of the attack traffic. The problem is worse
if fair queuing is performed across source and destination address
pairs. Then, an attacker in control ofk well-positioned hosts can
create a large number of flows to limit the useful traffic to only 1/k2

of the congested link. For example, 30 well-placed hosts could cut
a gigabit link to only a megabit or so of usable traffic.

A different tack is for the network to limit communication to
previously established patterns, e.g., by giving legitimate hosts an
authenticator off-line that permits them to send to specificdesti-
nations. SOS [12] and Mayday [1] take this approach. Our goalis
to design an open network, one where any two hosts can commu-
nicate without prior arrangement. Our work can thus be seen as
automating the provision of authenticators.

An insidious aspect of the Internet model is that receivers have
no control over the resources consumed on their behalf: a host can
receive (and have to pay for!) a repetitive stream of packetsre-
gardless of whether they are desired. One response is to install
packet filters at routers upstream from the destination to cause un-
wanted packets to be dropped in the network before they consume
the resources of the destination, e.g., pushback [16, 10] and more
recently AITF [3]. Unfortunately, these filters will block some le-
gitimate traffic from the receiver because there is no clean way to
discriminate attack traffic from other traffic, given that attackers
can manufacture packets with contents of their choosing. Our work
can be seen as a robust implementation of network filtering.

In earlier work, we proposed the approach of putting a capability,
or token, into each data packet to demonstrate that the packet was
requested by the receiver [2]. Communication takes two steps: first,
the sender requests permission to send; after verifying thesender is
good, the receiver provides it with a token. When included ina
packet, this token allows the network to verify that the packet was
authorized by the receiver. By itself, this does not preventattacks
against the initial request packet, the router state or computation
needed to verify the packet, and so forth. For example, in ourini-
tial work we used a separate overlay for transmitting the request
packets; an attack against this channel would disrupt hoststhat had
not yet established a capability to send.

In SIFF, Yaaret. al. refine the capability approach to eliminate
the separate overlay channel for request packets and per-flow state.
Instead, routers stamp packets with a key that reaches the receiver
and is returned to authorize the sender, which uses it on subsequent
packets [25]. This is reminiscent of work in robust admission con-
trol [15]. We adopt this approach, with some enhancements mo-

tivated by weaknesses of the SIFF proposal. First, in SIFF, router
stamps are embedded in normal IP packets, which requires each
router stamp to be extremely short (2 bits), and thus potentially
discoverable by brute-force attack. We show how to combine the
security of long stamps with the efficiency of short stamps. Sec-
ond, initial request packets are forwarded with low priority. This
allows attacking hosts to establish “approved” connections purely
amongst themselves and flood a path and prevent any further con-
nections from being established along its congested links.We ad-
dress this through a more careful treatment of request packets. Fi-
nally, routers allow all copies of packets with a valid stampthrough
because they have no per-flow state. Thus, an attacker that isin-
correctly granted a capability by a receiver can flood the receiver
at an arbitrary rate until the permission expires. This is problem-
atic because a typical Web server will only know after a connection
starts whether the traffic is legitimate and given the timeout con-
stants suggested in [25], even a small rate of incorrect decisions
would allow DoS attacks to succeed. Our approach is to provide
fine-grained control over how many packets can be sent based on a
single authorization.

In summary, existing proposed DoS solutions have a number of
good ideas but are incomplete. Our goal is to provide a more com-
prehensive solution. We further restrict ourselves to solutions that
might be practically implemented in today’s technology, e.g., with
limited state at each router and with reasonable amount of compu-
tation at each hop.

3. TVA DESIGN OVERVIEW
In this section, we motivate the key components of our design.

Later in Section 4, we describe the protocol and sketch its common
case of operation. The overall goal of TVA is to strictly limit the
impact of packet floods so that two hosts can communicate despite
attacks by other hosts. To achieve this, we start with standard IP
forwarding and routing. We then extend hosts and routers with the
handling described below, conceptually at the IP level. Forsim-
plicity of exposition, we consider a network in which all routers
and hosts run our protocol. However, our design only requires up-
grades at network locations that are trust boundaries or that experi-
ence congestion.

3.1 Packets with Capabilities
To prevent a destination from losing connectivity because of a

flood of unwanted packets, the network must discard those packets
before they reach a congested link. Otherwise the damage hasal-
ready been done. This in turn requires that routers have a means
of identifying wanted packets and providing them with preferential
service. To cleanly accomplish this, we require that each packet
carry information that each router can check to determine whether
the packet is wanted by the destination. We refer to this explicit
information as a capability [2].

Capabilities have significant potential benefits compared to other
schemes that describe unwanted packets using implicit features [16,
10]. They do not require a difficult inference problem to be solved,
are precise since attackers cannot spoof them, and are not foiled by
end-to-end encryption. However, to be viable as a solution,capa-
bilities must meet several implied requirements. First, they must be
granted by the destination to the sender, so that they can be stamped
on packets. This raises an obvious bootstrap issue, which wead-
dress shortly. Second, capabilities must be unforgeable and not
readily transferable across senders or destinations. Thisis to pre-
vent attackers from stealing or sharing valid capabilities. Third,
routers must be able to verify capabilities without trusting hosts.
This ensures malicious hosts cannot spoof capabilities. Fourth, ca-

242

destsender router router

request

response

(1)

(2)

Figure 1: A sender obtaining initial capabilities by (1) sending a re-
quest to the destination, to which routers add pre-capabilities; and (2)
receiving a response, to which the destination added capabilities.

pabilities must expire so that a destination can cut off a sender from
whom it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The rest
of our design is geared towards meeting these requirements.

3.2 Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent from
a sender to a destination, e.g., as part of a TCP SYN packet. The
destination then returns capabilities to the sender if it chooses to
authorize the sender for further packets, e.g., piggybacked on the
TCP SYN/ACK response. This is shown in Figure 1 for a single di-
rection of transfer; each direction is handled independently, though
requests and responses in different directions can be combined in
one packet. Once the sender has capabilities, the communications
is bootstrapped in the sense that the sender can send furtherpackets
with capabilities that routers can validate.

Ignoring legacy issues for the moment, we expect the number of
packets without associated capabilities to be small in mostsettings.
This is because one capability covers all connections between two
hosts, and new capabilities for a long transfer can be obtained us-
ing the current capability before it expires. Nonetheless,it is crucial
that the initial request channel not open an avenue for DoS attacks,
either by flooding a destination or blocking the requests of legit-
imate senders. The first issue is straightforward to address: we
rate-limit requests at all network locations so that they cannot con-
sume all of the bandwidth. Request packets should comprise only
a small fraction of bandwidth. Even with 250 bytes of requestfor a
10KB flow, request traffic is 2.5% of the bandwidth. This allows us
to rate-limit request traffic to be no more than 5% of the capacity
of each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers from
overwhelming requests from legitimate clients. Ideally, we would
like to use per-source fair queuing to ensure that no source can
overwhelm others, regardless of how many different destinations
it contacts. However, this is problematic because source addresses
may be spoofed, but per-source fair queuing requires an authenti-
cated source identifier. One possibility is ingress filtering, but we
discarded it as too fragile because a single unprotected ingress al-
lows remote spoofing. Another possibility is to sign packetsusing
a public key infrastructure, but we discarded it as too much of a
deployment hurdle.

Instead, we build a path identifier analogous to Pi [24] and use
it as an approximate source locator. Each router at the ingress of
a trust boundary, e.g., AS edge, tags the request with a small(16
bit) value derived from its incoming interface that is likely to be
unique across the trust boundary, e.g., a pseudo-random hash. This
tag identifies the upstream party. Routers not at trust boundaries do
not tag requests as the upstream has already tagged. The tagsact as

path−identifier queue
requests

capability checking

regular packets

yes

legacy packets

no

low priority queue

per−destination queue

Figure 2: Queue management at a capability router. There are three
types of traffic: requests that are rate-limited; regular packets with
associated capabilities that receive preferential forwarding; and legacy
traffic that competes for any remaining bandwidth.

an identifier for a network path. We then fair-queue requestsusing
the most recent tag to identify a queue. This is shown in Figure 2.
As a better approximation, earlier tags can be used within a given
queue to break ties.

Queuing based on a path identifier has two benefits. First the
number of queues is bounded because the tag space is bounded.
This in turn bounds the complexity of fair queuing, ensuringthat
we will not exhaust router resources. Second, the scheme offers
defense-in-depth because each trust domain such as an AS places
the most trust in the domain that precedes it. Therefore, an attacker
at the edge of the network or a compromised router who writes
arbitrary tags can at most cause queue contention at the nextdown-
stream trust domain (AS). One consequence of this is that senders
that share the same path identifier share fate, localizing the impact
of an attack and providing an incentive for improved local security.

3.3 Destination Policies
The next question we consider is how a destination can deter-

mine whether to authorize a request. This is a matter of policy, and
it depends on the role the destination plays in the network. We con-
sider two extreme cases of a client and a public server to argue that
simple policies can be effective.

A client may act in a way that by default allows it to contact any
server but not otherwise be contacted, as is done by firewallsand
NAT boxes today. To do this, it accepts incoming requests if they
match outgoing requests it has already made and refuses themoth-
erwise. Note that the client can readily do this because capabilities
are added to existing packets rather than carried as separate pack-
ets. For example, a client can accept a request on a TCP SYN/ACK
that matches its earlier request on a TCP SYN.

A public server may initially grant all requests with a default
number of bytes and timeout, using the path identifier to fairly serve
different sources when the load is high. If any of the sendersmis-
behave, by sending unexpected packets or floods, that sendercan
be temporarily blacklisted and its capability will soon expire. This
blacklisting is possible because the handshake involved inthe ca-
pability exchange weakly authenticates that the source address cor-
responds to a real host. The result is that misbehaving senders are
quickly contained. More sophisticated policies may be based on
HTTP cookies that identify returning customers, CAPTCHAs that
distinguish zombies from real users [11], and so forth.

243

Pre-capability (routers)

timestamp (8 bits) hash(src IP, dest IP, time, secret) (56 bits)

Capability (hosts)

hash(pre-capability, N, T) (56 bits)timestamp (8 bits)

Figure 3: Format of capabilities.

3.4 Unforgeable Capabilities
Having provided a bootstrap mechanism and policy, we turn our

attention to the form of capabilities themselves. Our key require-
ment is that an attacker can neither forge a capability, nor make use
of a capability that they steal or transfer from another party. We
also need capabilities to expire.

We use cryptography to bind each capability to a specific net-
work path, including source and destination IP addresses, at a spe-
cific time. Each router that forwards a request packet generates its
own pre-capability and attaches it to the packet. This pre-capability
is shown in Figure 3. It consists of a local router timestamp and a
cryptographic hash of that timestamp plus the source and destina-
tion IP addresses and a slowly-changing secret known only tothe
router. Observe that each router can verify for itself that apur-
ported pre-capability attached to a packet is valid by re-computing
the hash, since the router knows all of the inputs, but it is crypto-
graphically hard for other parties to forge the pre-capability with-
out knowing the router secret. Each router changes its secret at
twice the rate of the timestamp rollover, and only uses the current
or the previous secret to validate capability. This ensuresthat a
pre-capability expires within at most the timestamp rollover period,
and each pre-capability is valid for about the same time period re-
gardless of when it is issued. The high-order bit of the timestamp
indicates whether the current or the previous router secretshould
be used for validation. This trick allows a router to try onlyone
secret even if the router changed its secret right after issuing a pre-
capability.

The destination thus receives an ordered list of pre-capabilities
that corresponds to a specific network path with fixed source and
destination IP endpoints. It is this correspondence that prevents
an attacker from successfully using capabilities issued toanother
party: it cannot generally arrange to send packets with a specific
source and destination IP address through a specific sequence of
routers unless it is co-located with the source. In the latter case, the
attacker is indistinguishable from the source as far as the network
is concerned, and shares its fate in the same manner as for requests.
(And other, more devastating attacks are possible if local security
is breached.) Thus we reduce remote exploitation to the problem
of local security.

If the destination wishes to authorize the request, it returns an
ordered list of capabilities to the sender via a packet sent in the
reverse direction. Conceptually, the pre-capabilities wehave de-
scribed could directly serve as these capabilities. However, we pro-
cess them further to provide greater control, as is described next.

3.5 Fine-Grained Capabilities
Even effective policies will sometimes make the wrong decision

and the receiver will authorize traffic that ultimately is not wanted.
For example, with our blacklist server policy an attacker will be
authorized at least once, and with our client policy the server that
a client accesses may prove to be malicious. If authorizations were

ts

� (t2-t1) x N

t1 t4 ts+Tt2

ttl

time

t3

� (t4-t3) x N � N

Figure 4: Bound on the bytes of a capability with caching.

binary, attackers whose requests were granted would be ableto ar-
bitrarily flood the destination until their capabilities expire. This
problem would allow even a very small rate of false authorizations
to deny service. This argues for a very short expiration period, yet
protocol dynamics such as TCP timeouts place a lower bound on
what is reasonable.

To tackle this problem, we design fine-grained capabilitiesthat
grant the right to send up toN bytes along a path within the nextT
seconds, e.g., 100KB in 10 seconds2. That is, we limit the amount
of data as well as the period of validity. The form of these ca-
pabilities is shown in Figure 3. The destination converts the pre-
capabilities it receives from routers to full capabilitiesby hashing
them withN andT . Each destination can chooseN andT (within
limits) for each request, using any method from simple defaults to
models of prior behavior. It is these full capabilities, along withN
andT , that are returned to authorize the sender. For longer flows,
the sender should renew these capabilities before they reach their
limits.

With this scheme, routers verify their portion of the capabilities
by re-computing the hashes much as before, except that now two
hashes are required instead of one. The routers now perform two
further checks, one forN and one forT . First, routers check that
their local time is no greater than the router timestamp plusT to
ensure that the capability has not expired. This requires that T
be at most one half of the largest router timestamp so that twotime
values can be unambiguously compared under a modulo clock. The
replay of very old capabilities for which the local router clock has
wrapped are handled as before by periodically changing the router
secret. Second, routers check that the capability will not be used
for more thanN bytes. This check is conceptually simple, but
it requires state and raises the concern that attackers may exhaust
router state. We deal with this concern next.

3.6 Bounded Router State
We wish to ensure that attackers cannot exhaust router mem-

ory to bypass capability limits. This is especially a concern given
that we are counting the bytes sent with a capability and colluding
attackers may create many authorized connections across a target
link.

To handle this problem, we design an algorithm that bounds the
bytes sent using a capability while using only a fixed amount of
router state no matter how attackers behave. In the worst case, a
capability may be used to send2N bytes inT seconds. The same
capability will still be precisely limited toN bytes if there is no
memory pressure.

The high level idea of the algorithm is to make a router keep state
only for flows (a flow is defined on a sender to a destination basis.)
with valid capabilities that send faster thanN/T . The router does
not need to keep state for other authorized flows because theywill

2An alternative would be to build rapid capability revocation. We
believe this to be a less tractable problem.

244

not send more thanN bytes before their capabilities expire inT
seconds. We track flows via their rates by using the rateN/T to
convert bytes to equivalent units of time, as we describe next.

When a router receives a packet with a valid capability for which
it does not have state, it begins to track byte counts for the capabil-
ity and also associates a minimal time-to-live (ttl) with the state.
The ttl is set to the time equivalent value of the packet:L ∗ T/N
seconds (withL being the packet length). Thisttl is decremented
as time passes (but our implementation simply sets an expiration
time of now + ttl) and incremented as subsequent packets are
charged to the capability. When thettl reaches zero, it is permissi-
ble for the router to reclaim the state for use with a new capability.

We now show that this scheme bounds the number of bytes sent
using a capability. Referring to Figure 4, suppose that the router
created the capability at timets and it expires at timets + T . Fur-
ther suppose that the router creates state for the capability at time
t1 > ts, and reclaims the state when itsttl reaches zero at time
t2 < ts + T . Then by the definition of thettl, the capability
must have been used for at most(t2 − t1)/T ∗ N bytes fromt1
to t2. This may occur more than once, but regardless of how many
times it occurs, the time intervals can total to no more thanT sec-
onds. Thus the total bytes used for the capability must be at most
T/T ∗ N = N bytes. If a capability has state created at time im-
mediately precedingts + T , then up toN bytes can be sent at a
rate faster thanN/T . Therefore, at mostN + N = 2N bytes can
be sent before the capability is expired.

This scheme requires only fixed memory to avoid reclaiming
state with non-zerottl values, as required above. Suppose the ca-
pacity of the input link isC. To have state at timet, a capability
must be used to send faster thanN/T beforet. Otherwise, thettl
associated with the state will reach zero and the state may bere-
claimed. There can be at mostC/(N/T) such capabilities. We
require that the minimumN/T rate be greater than an architec-
tural constraint(N/T)min. This bounds the state a router needs
to C/(N/T)min records. As an example, if the minimum sending
rate is 4K bytes in 10 seconds, a router with a gigabit input line will
only need 312,500 records. If each record requires 100 bytes, then
a line card with 32MB of memory will never run out of state.

3.7 Efficient Capabilities
We want capabilities to be bandwidth efficient as well as secure.

Yet these properties are in conflict, since security benefitsfrom long
capabilities (i.e., a long key length) while efficiency benefits from
short ones (i.e., less overhead). To reconcile these factors, we ob-
serve that most bytes reside in long flows for which the same ca-
pability is used repeatedly on packets of the flow. Thus we use
long capabilities (64 bits per router) to ensure security, and cache
capabilities at routers so that they can subsequently be omitted for
bandwidth efficiency. We believe that this is a better tradeoff than
short capabilities that are always present, e.g., SIFF uses2 bits per
router. Short capabilities are vulnerable to a brute force attack if
the behavior of individual routers can be inferred, e.g., from band-
width effects, and do not provide effective protection witha limited
initial deployment.

In our design, when a sender obtains new capabilities from a
receiver, it chooses a random flow nonce and includes it together
with the list of capabilities in its packets. When a router receives
a packet with a valid capability it caches the capability relevant in-
formation and flow nonce, and initializes a byte counter andttl as
previously described. Subsequent packets can then carry the flow
nonce and omit the list of capabilities. Observe that path MTU dis-
covery is likely unaffected because the larger packet is thefirst one
sent to a destination. Routers look up a packet that omits itscapa-

bilities using its source and destination IP addresses, andcompare
the cached flow nonce with that in the packet. A match indicates
that a router has validated the capabilities of the flow in previous
packets. The packets are then subject to byte limit and expiration
time checking as before.

For this scheme to work well, senders must know when routers
will evict their capabilities from the cache. To do so, hostsmodel
router cache eviction based on knowledge of the capability param-
eters and how many packets have used the capability and when.By
the construction of our algorithm, eviction should be rare for high-
rate flows, and it is only these flows that need to remain in cache
to achieve overall bandwidth efficiency. This modeling can either
be conservative, based on later reverse path knowledge of which
packets reached the destination3, or optimistic, assuming that loss
is infrequent. In the occasional case that routers do not have the
needed capabilities in cache, the packets will be demoted tolegacy
packets rather than lost, as we describe next.

3.8 Route Changes and Failures
To be robust, our design must accommodate route changes and

failures such as router restarts. The difficulty this presents is that a
packet may arrive at a router that has no associated capability state,
either because none was set up or because the cache state or router
secret has been lost.

This situation should be infrequent, but we can still minimize its
disruption. First, we demote such packets to be the same priority as
legacy traffic (which have no associated capabilities) by changing a
bit in the capability header. They are likely to reach the destination
in normal operation when there is little congestion. The destination
then echoes demotion events to the sender by setting a bit in the
capability header of the next message sent on the reverse channel.
This tells the sender that it must re-acquire capabilities.

3.9 Balancing Authorized Traffic
Capabilities ensure that only authorized traffic will compete for

the bandwidth to reach a destination, but we remain vulnerable to
floods of authorized traffic: a pair of colluding attackers can au-
thorize high-rate transfers between themselves and disrupt other
authorized traffic that shares the bottleneck. This would allow, for
example, a compromised insider to authorize floods on an access
link by outside attackers.

We must arbitrate between authorized traffic to mitigate this at-
tack. Since we do not know which authorized flows are malicious,
if any, we simply seek to give each capability a reasonable share of
the network bandwidth. To do this we use fair-queuing based on
the authorizing destination IP address. This is shown in Figure 2.
Users will now get a decreasing share of bandwidth as the network
becomes busier in terms of users (either due to legitimate usage or
colluding attackers), but they will be little affected unless the num-
ber of attackers is much larger than the number of legitimateusers.

Note that we could queue on the source address (if source ad-
dress can be trusted) or other flow definitions involving prefixes.
The best choice is a matter of AS policy that likely depends on
whether the source or destination is a direct customer of theAS,
e.g., the source might be used when the packet is in the sender
ISP’s network and vice versa.

One important consideration is that we limit the number of queues
to bound the implementation complexity of fair queuing. To do
this, we again fall back on our router state bound, and fair-queue
over the flows that have their capabilities in cache. In this man-
ner, the high-rate flows that send more rapidly thanN/T will fairly

3We ignore for the present the layering issues involved in using
transport knowledge instead of building more mechanism.

245

share the bandwidth. These are the flows that we care most about
limiting. The low-rate flows will effectively receive FIFO service
with drops depending on the timing of arrivals. This does notguar-
antee fairness but is adequate in that it prevents starvation. An alter-
native approach would have been to hash the flows to a fixed num-
ber of queues in the manner of stochastic fair queuing [23]. How-
ever, we believe our scheme has the potential to prevent attackers
from using deliberate hash collisions to crowd out legitimate users.

3.10 Short, Slow or Asymmetric Flows
TVA is designed to run with low overhead for long, fast flows

that have a reverse channel. Short or slow connections will expe-
rience a higher relative overhead, and in the extreme may require
a capability exchange for each packet. However, several factors
suggest that TVA is workable even in this regime. First, the effect
on aggregate efficiency is likely to be small given that most bytes
belong to long flows. Second, and perhaps more importantly, our
design does not introduce added latency in the form of handshakes,
because capabilities are carried on existing packets, e.g., a request
may be bundled with a TCP SYN and the capability returned on the
TCP SYN/ACK. Third, short flows are less likely because flows are
defined on a sender to a destination IP address basis. Thus allTCP
connections or DNS exchanges between a pair of hosts can take
place using a single capability.

TVA will have its lowest relative efficiency when all flows near
a host are short, e.g., at the root DNS servers. Here, the portion
of request bandwidth must be increased. TVA will then provide
benefits by fair-queuing requests from different regions ofthe net-
work. Truly unidirectional flows would also require capability-only
packets in the reverse direction. Fortunately, even media streaming
protocols typically use some reverse channel communications. Fi-
nally, we have not addressed IP multicast as it already require some
form of authorization action from the receiver. It would be inter-
esting to see whether we can provide a stronger protection inthis
setting by using capabilities.

4. TVA PROTOCOL
In this section, we describe TVA in terms of how hosts and

routers process packets and provide a more detailed view of the
common case for data transfer. We consider attacks more system-
atically in the following sections. We ignore legacy concerns for
the moment, returning to them in Section 8.

There are three elements in our protocol: packets that carryca-
pability information; hosts that act as senders and destinations; and
routers that process capability information. We describe each in
turn.

4.1 Packets with Capabilities
Other than legacy traffic, all packets carry a capability header

that extends the behavior of IP. We implement this as a shim layer
above IP, piggybacking capability information on normal packets
so that there are no separate capability packets.

There are two types of packets from the standpoint of capabili-
ties: request packets and regular packets. They share an identify-
ing capability header and are shown in Figure 5. Request packets
carry a list of blank capabilities and path identifiers that are filled in
by routers as requests travel towards destinations. Regular packets
have two formats: packets that carry both a flow nonce and a list of
valid capabilities, and packets that carry only a flow nonce.(Recall
that a flow is defined by a source and a destination IP address.)A
regular packet with a list of capabilities may be used to request a
new set of capabilities. We refer to such packets as renewal pack-
ets. If a regular packet does not pass the capability check, it may be

Common Header type (4) upper protocol (8)version (4)

path−id 1 (16)

capability 1 (64)

capability n (64)

blank capability 1 (64)

blank capability n (64)

path−id n (16)

Request Header

capability num (8) capability ptr (8)

flow nonce (48)

capability num (8) capability ptr (8)

N (10) T (6)

 xx01: regular w/ capabilities

 x1xx: return info

 xx00: request

common header (16)

common header (16)Regular / Renewal

Header

cached

Return info return type (8)

 xx10: regular w/ nonce only

 xx11: renewal

 1xxx: demoted

00000001: demotion notification

and a list of return capabilities follow this field.
0000001x: a 8−bit capability num fied, N, T,

Figure 5: Types of capability packets. Return information is present
if the return bit in the common header is set. Sizes are in bits. The units
for N are KB; the units for T are seconds.

demoted to low priority traffic that is treated as legacy traffic. Such
packets are called demoted packets.

We use the lowest two bits of thetype field in the capability
header to indicate the type and the format of packets: request packet,
regular packet with a flow nonce only, regular packet with both a
flow nonce and a list of capabilities, and renewal packet. Onebit in
the typefield is used by routers to indicate that the packet has been
demoted. The remaining bit indicates whether there is also return
information being carried in the reverse direction to a sender. This
information follows the capability payload. It may be a listof ca-
pabilities granted by the destination or a demote notification.

Each capability is as described in Section 3: a 64 bit value, bro-
ken down into 8 bits of router timestamp in seconds (a modulo 256
clock), and 56 bits of a keyed hash.

4.2 Senders and Destinations
To send to a destination for which it has no valid capabilities, a

sender must first send a request. A request will typically be com-
bined with the first packet a sender sends, such as a TCP SYN.
When a destination receives the request, it must decide whether to
grant or refuse the transfer. We described some simple policies in
Section 3.3; there is also an issue we have not tackled of how to

246

express policies within the socket API. If the destination chooses
to authorize the transfer, it sends a response with capabilities back
to the sender, again combined with another packet, such as a TCP
SYN/ACK. This SYN/ACK will also carry a request for the reverse
direction. The reverse setup occurs in exactly the same manner
as the forward setup, and we omit its description. To refuse the
transfer, the destination may instead return an empty capability list,
again combined with a packet such as a TCP RST.

Once the sender receives capabilities, the remainder of thetrans-
fer is straightforward. The sender sends data packets, initially with
capabilities, and models capability expiration and cache expiration
at routers to conservatively determine when routers will have their
capabilities in cache, and when to renew the capabilities. In the
common case, the flow nonce and capabilities are cached at every
router. This enables the source to transmit most packets with only
the flow nonce.

The destination simply implements a capability granting policy
and does not need to model router behavior. It also echoes any
demote signals to the sender, so that the sender may repair the path.

4.3 Routers
Routers route and forward packets as required by IP and ad-

ditionally process packets according to the capability information
that they carry. At a high level, routers share the capacity of each
outgoing link between three classes of traffic. This is shownin Fig-
ure 2. Request packets, which do not have valid capabilities, are
guaranteed access to a small, fixed fraction of the link (5% isour
default) and are rate-limited not to exceed this amount. Regular
packets with associated capabilities may use the remainderof the
capacity. Legacy traffic is treated as the lowest priority, obtaining
bandwidth that is not needed for either requests or regular packets
in the traditional FIFO manner.

To process a request, the router adds a pre-capability to theend
of the list and adds a new path identifier if it is at a trust boundary.
The pre-capability is computed as the local timestamp concatenated
with the hash of a router secret, the current, local router time in
seconds using its modulo 256 clock, and the source and destination
IP addresses of the packet. This is shown in Figure 3. The path
identifier is a constant that identifies the ingress to the trust do-
main, either with high likelihood using pseudo-random functions
or with configuration information. Requests are fair-queued for on-
ward transmission using the most recent path identifiers.

To process a regular packet, routers check that the packet isau-
thorized, update the cached information and packet as needed, and
schedule the packet for forwarding. First, the router triesto lo-
cate an entry for the flow using the source and the destinationIP
address from the packet. An entry will exist if the router hasre-
ceived a valid regular packet from that flow in the recent past. The
cache entry stores the valid capability, the flow nonce, the autho-
rized bytes to send (N), the valid time (T), and thettl and byte
count as described in Section 3.6.

If there is a cached entry for the flow, the router compares the
flow nonce to the packet. If there is a match, it further checksand
updates the byte count and thettl, and then fair queues the packet
as described below. If the flow nonce does not match and a list of
capabilities are present, this could be the first packet witha renewed
capability, and so the capability is checked and if valid, replaced in
the cache entry. Equivalently, if there is not a cached entryfor the
flow, the capability is checked, and a cache entry is allocated if it is
valid. If the packet has a valid capability and is a renewal packet, a
fresh pre-capability is minted and placed in the packet.

A router validates capability using the information in the packet
(the source and destination addresses,N , andT) plus the router’s

if (pkt−>protocol == TVA) {
isValid = false;
if (isRTS(pkt)) { /* rts pkt */

insert precappi(pkt);
enqueRts(pkt); /* per path identifier queue */

} else { /* regular pkt */
entry = lookup(pkt);
if (entry) { /* has entry */

if (pkt−>nonce == entry−>nonce) {
/* check byte count, expiration, update entry */
isValid = updateEntry(entry, pkt);

} else if (validateCap(pkt)) { /* comp two hashes */
/* first renewed pkt. replace and check entry */
isValid = replaceEntry(entry, pkt);

}
} else { /* no entry */

if (validateCap(pkt)) {
isValid = createEntry(pkt); /* create and check entry */

}
}
if (isValid) {

if (isRenewal(pkt)) { /* renewal pkt */
renewPkt(pkt); /* insert precap */

}
enqueRegular(pkt); /* per-destination queue */

} else {
demote(pkt);
enqueLegacy(pkt);

}
}

} else {
enqueLegacy(pkt);

}

Figure 6: How a capability router processes a packet.

secret. It recomputes the two hash functions to check whether they
match the capability value. The router also checks that the byte
count does not exceedN , and the current time does not exceed the
expiration time (of timestamp+T) and updates the entry’sttl. Any
packet with a valid capability or flow nonce is scheduled using fair
queuing. Our scheme does this across flows cached at the router
using destination addresses by default.

If neither the packet’s flow nonce nor capability is valid, then
the packet is marked as demoted and queued along with legacy
packets. Figure 6 shows the pseudo-code on how a capability router
processes a packet.

5. SIMULATION RESULTS
In this section, we usens to simulate TVA, SIFF, pushback and

the legacy Internet to see how well TVA limits the impact of DoS
floods. TVA is as described in the previous sections, except that we
rate-limit capability requests to1% of the link capacity, down from
our default of5%, to stress our design. SIFF is implemented as
described in [25]. It treats capacity requests as legacy traffic, does
not limit the number of times a capability is used to forward traffic,
and does not balance authorized traffic sent to different destina-
tions. Pushback is implemented as described in [16]. It recursively
pushes destination-based network filters backwards acrossthe in-
coming link that contributes most of the flood.

For each scheme, we set up fixed length transfers between le-
gitimate users, and a destination under various attacks. Wethen
measure: i) the average fraction of completed transfers, and ii) the
average time of the transfers that complete. These metrics are use-
ful because a successful DoS attack will cause heavy loss that will

247

10ms

10ms

10ms

1~100 attackers

10Mb, 10ms

bottleneck

colluder

10 legitimate users

destination

Figure 7: Simulation topology

both slow legitimate transfers and eventually cause the applications
to abort them.

We simulate the dumbbell topology shown in Figure 7. The bot-
tleneck link in our simulation is provisioned to give a legitimate
user a nominal throughput of 1Mb/s over a bottleneck link with
a nominal capacity of 10Mb/s. The RTT is 60ms. Each attacker
floods at the rate of a legitimate user, 1Mb/s, and we vary intensity
of the attacks from 1/10 of the bottleneck bandwidth to 10 times
the bottleneck bandwidth by varying the number of attackersfrom
1 to 100. We use these relatively low rates to speed the simulation,
since the key variables are the ratios between attacker, legitimate
user, and the bottleneck bandwidth, given that there is a bandwidth-
delay product sufficient to avoid small window effects.

Each legitimate user sends a 20KB file a thousand times using
TCP, the next transfer starting after the previous one completes or
aborts due to excessive loss. Capability requests are piggybacked
on TCP SYNs. To provide a fair comparison for other schemes,
we modify TCP to have a more aggressive connection establish-
ment algorithm. Specifically, the timeout for TCP SYNs is fixed
at one second (without the normal exponential backoff) and up to
eight retransmissions are performed. Without this change,SIFF
suffers disproportionately because it treats SYN packets with capa-
bility requests as legacy traffic, and therefore its performance under
overload will be dominated by long TCP timeouts. Similarly,we
set the TCP data exchange to abort the connection if its retransmis-
sion timeout for a regular data packet exceeds 64 seconds, orit has
transmitted the same packet more than 10 times.

We note that TCP inefficiencies limit the effective throughput
of a legitimate user to be no more than 533Kb/s in our scenario,
given the transfer of 20KB with a 60ms RTT. This implies that there
is virtually no bandwidth contention with a pool of 10 legitimate
users – the contention effects we see come directly from massed
attackers.

5.1 Legacy Packet Floods
The first scenario we consider is that of each attacker flooding

the destination with legacy traffic at 1Mb/s. Figure 8 shows the
fraction of completions and the average completion time forTVA
in comparison with SIFF, pushback, and the current Internet.

We see that TVA maintains the fraction of completions near100%
and the average completion time remains small as the intensity of
attacks increases. That is, our design strictly limits the impact of
legacy traffic floods. This is because we treat legacy traffic with
lower priority than request traffic.

SIFF treats both legacy and request packets as equally low pri-
ority traffic. Therefore, when the intensity of legacy traffic exceeds
the bottleneck bandwidth, a legitimate user’s request packets begin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

F
ra

ct
io

n
of

 c
om

pl
et

io
n

Number of attackers

Internet
SIFF

pushback
TVA

 0

 1

 2

 3

 4

 5

 6

 1 10 100
T

ra
ns

fe
r

tim
e

(s
)

Number of attackers

Internet
SIFF

pushback
TVA

Figure 8: Legacy traffic flooding does not increase the file transfer
time or decrease the fraction of completed transfers with TVA. With
SIFF, file transfer time increases and the fraction of completed trans-
fer drops when the intensity of attack increases; With pushback, as the
number of attackers increases, pushback poorly isolates attack and le-
gitimate traffic, and the transfer time increases and the fraction of com-
pleted transfer drops sharply; with today’s Internet, the transfer time
increases sharply, and the fraction of completion quickly approaches
zero.

to suffer losses. We see this in Figure 8 when the number of attack-
ers is greater than 10 and the fraction of completions drops and the
completion time increases. When the aggregate attack bandwidth
Ba is greater than the bottleneck bandwidthBl, the packet loss
ratep is approximately(Ba −Bl)/Ba. Once a request packet gets
through, a sender’s subsequent packets are authorized packets and
are treated with higher priority. So the probability that a file trans-
fer completes with SIFF is equal to the probability a requestgets
through within nine tries, i.e.,(1−p9). When the number of attack-
ers is 100,p is 90%, giving a completion rate of(1−0.99) = 0.61.
This is consistent with our results. Similarly, the averagetime for a
transfer to complete with up to 9 tries is:

Tavg = (

9
X

i=1

·i · pi−1
· (1 − p))/(1 − p9)

When there are 100 attackers, this time is 4.05 seconds, which is
again consistent with our results.

Pushback performs well until the number of attackers is large,
at which stage it provides poor isolation between attack traffic and
legitimate traffic. This is because attack traffic becomes harder to
identify as the number of attackers increases since each incoming
link contributes a small fraction of the overall attack. As can be

248

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

F
ra

ct
io

n
of

 c
om

pl
et

io
n

Number of attackers

Internet
SIFF

pushback
TVA

 0

 1

 2

 3

 4

 5

 6

 1 10 100

T
ra

ns
fe

r
tim

e
(s

)

Number of attackers

Internet
SIFF

pushback
TVA

Figure 9: Request packet flooding does not increase the transfer time
or decrease the fraction of completed transfers with TVA.

seen in Figure 8, when the number of attackers is less than 40,
pushback is able to cut off a significant portion of the attacktraf-
fic: the file transfer time increases by less than 2 seconds, and the
faction of completed transfers remains at 100%. However, push-
back becomes markedly less effective as the number of attackers
increases further. The file transfer time increases significantly, and
the fraction of completed transfers drops sharply. TVA could be
viewed as an alternative pushback scheme that is always activated
and uses capabilities as a robust signature to separate attack traffic
and legitimate traffic.

With the Internet, legitimate traffic and attack traffic are treated
alike. Therefore, every packet from a legitimate user encounters
a loss rate ofp. The probability for a file transfer ofn packets
to get through, each within a fixed number of retransmissionsk is
(1−pk)n. This probability decreases polynomially as the drop rate
p increases and exponentially as the number of packetsn (or the
file size) increases. This explains the results we see in Figure 8: the
fraction of completed transfers quickly approaches to zeroas the
number of attackers increases. The few completed transfershave
a completion time hundreds of seconds, and are out of the y-axis
scope in Figure 8.

5.2 Request Packet Floods
The next scenario we consider is that of each attacker flooding

the destination with request packets at 1Mb/s. In this attack, we
assume the destination was able to distinguish requests from legit-
imate users and those from attackers. With TVA, request packets
are rate limited and will not reduce the available capacity for au-
thorized packets. Requests from attackers and legitimate users are

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

F
ra

ct
io

n
of

 c
om

pl
et

io
n

Number of attackers

Internet
SIFF

pushback
TVA

 0

 1

 2

 3

 4

 5

 6

 1 10 100
T

ra
ns

fe
r

tim
e

(s
)

Number of attackers

Internet
SIFF

pushback
TVA

Figure 10: With TVA, per-destination queue ensures that the desti-
nation and the colluder equally share the access link bandwidth. The
transfer time slightly increases (not noticeable from the figure) as a
result of reduced bandwidth, and the fraction of completion remains
100%.

queued separately, so that excessive requests from attackers will
be dropped without causing requests from legitimate users to be
dropped. We see this in Figure 9: the fraction of completionsdoes
not drop and the transfer time does not increase. In contrast, the re-
sults for SIFF are similar to those for legacy packets floods,as SIFF
treats both requests and legacy traffic as low priority traffic. Both
pushback and the legacy Internet treat RTS traffic as regulardata
traffic. The results for them are the same as those for the legacy
traffic attack.

5.3 Authorized Packet Floods
Strategic attackers will realize that it is more effective to collude

when paths can be found that share the bottleneck link with the des-
tination. The colluders grant capabilities to requests from attackers,
allowing the attackers to send authorized traffic at their maximum
rate. Figure 10 shows the results under this attack. BecauseTVA al-
locates bandwidth approximately fairly among all destinations and
allows destinations to use fine-grained capabilities to control how
much bandwidth to allocate to a sender, this attack causes band-
width to be fairly allocated between the colluder and the destina-
tion. The transfer time slightly increases (from 0.31 second to 0.33
second, not noticeable from the figure) as a result of reducedband-
width, and all transfers complete. If the number of colluders that
share a bottleneck link with the destination increases, thedestina-
tion gets a decreased share of the bandwidth. Each legitimate user
will get a lesser share of the bandwidth, but no user will be starved.

249

 0
 1
 2
 3
 4
 5
 6

 0 10 20 30 40 50 60

T
ra

ns
fe

r
tim

e
(s

)

Time (s)

TVA

all at once
10 at a time

 0
 1
 2
 3
 4
 5
 6

 0 10 20 30 40 50 60

T
ra

ns
fe

r
tim

e
(s

)

Time (s)

SIFF

all at once
10 at a time

Figure 11: Attackers can only cause temporary damage if a destina-
tion stops renewing their capabilities. TVA uses a fine-grained capabil-
ity to limit the impact of authorizing an attacker to a smaller amount
of attack traffic compared to SIFF, even assuming SIFF has a rapid-
changing router secret that expires every 3 seconds.

Under the same attack with SIFF, legitimate users are completely
starved when the intensity of the attack exceeds the bottleneck band-
width. Again, this is because the request packets are treated with
low priority and are dropped in favor of the authorized attack traffic.
We see in Figure 10 that the request completion rate drops sharply
to zero when the attacking bandwidth reaches the bottleneckband-
width of 10Mb/s. The very few transfers that complete do so only
because of traffic fluctuations, and suffer a sharp increase in the
average transfer time.

Both pushback and the legacy Internet treat request traffic and
authorized traffic as regular traffic. Thus, the results for each scheme
under an authorized traffic attack is similar to each scheme under
a legacy traffic attack. Pushback will identify the flow aggregate
destined to the colluder as the offending aggregate that causes most
packet drops, but it fails to rate limit the aggregate to its fair share
of bandwidth.

5.4 Imprecise Authorization Policies
Finally, we consider the impact of imprecise policies, whena

destination sometimes authorizes attackers because it cannot reli-
ably distinguish between legitimate users and attackers atthe time
that it receives a request. In the extreme that the destination cannot
differentiate attackers from users at all, it must grant them equally.

However, if the destination is able to differentiate likelyattack
requests, even imprecisely, TVA is still able to limit the damage
of DoS floods. To see this, we simulate the simple authorization

Packet type Processing time

Request 460 ns
Regular with a cached entry 33 ns
Regular without a cached entry 1486 ns
Renewal with a cached entry 439 ns
Renewal without a cached entry 1821 ns

Table 1: Processing overhead of different types of packets.

policy described in Section 3.3: a destination initially grants all re-
quests, but stops renewing capabilities for senders that misbehave
by flooding traffic. We set the destination to grant an initialcapabil-
ity of 32KB in 10 seconds. This allows an attacker to flood at a rate
of 1Mb/s, but for only 32KB until the capability expires. Thedesti-
nation does not renew capabilities because of the attack. Figure 11
shows how the transfer time changes for TVA with this policy as
an attack commences. There are two attacks: a high intensityone
in which all 100 attackers attack simultaneously; and a low inten-
sity one in which the 100 attackers divide into 10 groups thatflood
one after the other, as one group finishes their attack. We seethat
both attacks are effective for less than 5 seconds, causing temporary
congestion and increasing the transfer time of some connections by
about 2 seconds.

Figure 11 also shows the results for SIFF under the same attacks.
In SIFF, the expiration of a capability depends on changing arouter
secret – even if the destination determines that the sender is misbe-
having it is powerless to revoke the authorization beforehand. This
suggests that rapid secret turnover is needed, but there arepracti-
cal limitations on how quickly the secret can be changed, e.g., the
life time of a router secret should be longer than a small multi-
ple of TCP timeouts. In our experiment, we assume SIFF can ex-
pire its capabilities every three seconds. By contrast, TVAexpires
router secret every 128 seconds. We see that both attacks have a
much more pronounced effect on SIFF. The high intensity attack
increases the transfer time by 4 seconds, and the low intensity at-
tack lasts for 30 seconds. In each attack period of three seconds, all
legitimate requests are blocked until the next transition.As a result,
the transfer time jumps to more than three seconds.

6. IMPLEMENTATION
We prototyped TVA using the Linux netfilter framework [19]

running on commodity hardware. We implemented the host por-
tion of the protocol as a user-space proxy, as this allows legacy
applications to run without modification. We implemented router
capability processing as a kernel module using the AES-hashas the
first hash function (for pre-capabilities) and SHA1 as the second
hash function [17] (for capabilities).

The purpose of this effort was to check the completeness of our
design and to understand the processing costs of capabilities. We
did not consider the processing costs of fair queuing. In ourexper-
iment, we set up a router using a dual-processor 3.2GHz Pentium
Xeon machine running a Linux 2.6.8 Kernel. It used the native
Linux forwarding module. We then used a kernel packet genera-
tor to generate different types of packets and sent them through the
router, modifying the code to force the desired execution path. For
each run, our load generator machines sent one million packets of
each type to the router. We recorded the average number of instruc-
tion cycles for the router to process each type of packet, averaging
the results over five experiments.

Table 1 shows the results of this experiment, with cycles con-
verted to time. In normal operation, the most common type of
packet is a regular packet with an entry at a router. The processing

250

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400

O
ut

pu
t r

at
e

(k
pp

s)

Input rate (kpps)

legacy IP
regular w/ entry

request
renewal w/ entry
regular w/o entry

renewal w/o entry

Figure 12: The peak output rate of different types of packets.

overhead for this type is the lowest at 33 ns. The processing over-
head for validating a capability for a packet without a cached entry
is about 1486 ns, as it involves computing two hash functions. The
cost to process a request packet is lower and similar to the cost to
process a renewal packet with a cached entry because both involve a
pre-capability hash computation. The most computation-intensive
operation is forwarding a renewal packet without a cached entry. In
this case the router needs to compute three hash functions: two to
check the validity of the old capability, and one to compute anew
pre-capability hash. The processing cost is 1821 ns.

We also tested how rapidly a Linux router could forward capa-
bility packets. The results are shown in Figure 12. The output rate
increases with the input rate and reaches a peak of 160 to 280Kpps,
depending on the type of packet. This compares well with the
peak lossless rate for vanilla IP packets of about 280Kpps. In both
cases these rates are dominated by per packet interrupt handling,
and they could be increased markedly with a polling device driver,
as demonstrated by Click [13]. We expect that removing the 3.5us
interrupt penalty would improve the output rate to 500-1400Kpps,
equivalent to 240 to 670Mbps with minimum size packets (of 40
TCP/IP bytes plus 20 capability bytes). An attacker might attempt
to overwhelm the CPU by flooding spoofed short renewal pack-
ets; they would not match, but that might still lead to packetloss
of good traffic if the processing was done in the order received.
Fortunately, we can use Lazy Receiver Processing (LRP) for this
case [7]: when the CPU is overloaded, separately queue incoming
packets based on their required computation per input bit. Normal
traffic, consisting of short requests and full-size regularpackets will
then be processed at full speed.

We conclude that our implementation can handle 100 Mbps in-
terfaces with off-the-shelf hardware; in the near future, we expect
to be able to demonstrate that an optimized implementation can run
at a gigabit without specialized hardware.

7. SECURITY ANALYSIS
The security of TVA is based on the inability of an attacker toob-

tain capabilities for routers along the path to a destination they seek
to attack. We briefly analyze how TVA counters various threats.

An attacker might try to obtain capabilities by breaking thehash-
ing scheme. We use standard cryptographic functions with a suf-
ficient amount of key material and change keys every 128 seconds
as to make breaking keys a practical impossibility.

An attacker may try to observe the pre-capabilities placed in its
requests by routers, e.g., by causing ICMP error messages tobe re-

turned to the sender from within the network, or by using IP source
routing. To defeat these vulnerabilities, we use a packet format that
does not expose pre-capabilities in the first 8 bytes of the IPpacket
(which are visible in ICMP messages) and require that capability
routers treat packets with IP source routes as legacy traffic. Beyond
this, we rely on Internet routing to prevent the intentionalmisdeliv-
ery of packets sent to a remote destination.

A different attack is to steal and use capabilities belonging to a
sender (maybe another attacker) who was authorized by the desti-
nation. Since a capability is bound to a specific source, destination,
and router, the attacker will not generally be able to send packets
along the same path as the authorized sender. The case in which
we cannot prevent theft is when the attacker can eavesdrop onthe
traffic between an authorized sender and a destination. Thisin-
cludes a compromised router. In this case, the attacker can co-opt
the authorization that belongs to the sender. In fact, it canspeak for
any senders for whom it forwards packets. However, even in this
situation our design provides defense in depth. The compromised
router is just another attacker – it does not gain more leverage than
an attacker at the compromised location. DoS attacks on a destina-
tion will still be limited as long as there are other capability routers
between the attacker and the destination.

Another attack an eavesdropper can launch is to masquerade
a receiver to authorize attackers to send attack traffic to the re-
ceiver. Similarly, our design provides defense in depth. Ifthe
attacker is a compromised router, this attack can only congest the
receiver’s queues at upstream links, because the router cannot forge
pre-capabilities of downstream routers. This attack is no worse than
the router simply dropping all traffic to the receiver. If theattacker
is a comprised host that shares a local broadcast network with a
receiver, the attacker can be easily spotted and taken off-line.

Alternatively, an attacker and a colluder can spoof authorized
traffic as if it were sent by a different senderS. The attacker sends
requests to the colluder withS’s address as the source address, and
the colluder returns the list of capabilities to the attacker’s real ad-
dress. The attacker can then flood authorized traffic to the colluder
usingS’s address. This attack is harmful if per-source queuing is
used at a congested link. If the spoofed traffic andS’s traffic share
the congested link,S’s traffic may be completely starved. This at-
tack has little effect on a sender’s traffic if per-destination queueing
is used, which is TVA’s default. ISPs should not use per-source
queuing if source addresses cannot be trusted.

Finally, other attacks may target capability routers directly, seek-
ing to exhaust their resources. However, the computation and state
requirements for our capability are bounded by design. Theymay
be provisioned for the worst case.

8. DEPLOYMENT
Our design requires both routers and hosts to be upgraded, but

does not require a flag day. We expect incremental deploymentto
proceed organization by organization. For example, a government
or large scale enterprise might deploy the system across their in-
ternal network, to ensure continued operation of the network even
if the attacker has compromised some nodes internal to the organi-
zation, e.g., with a virus. Upstream ISPs in turn might deploy the
system to protect communication between key customers.

Routers can be upgraded incrementally, at trust boundariesand
locations of congestion, i.e., the ingress and egress of edge ISPs.
This can be accomplished by placing an inline packet processing
box adjacent to the legacy router and preceding a step-down in ca-
pacity (so that its queuing has an effect). No cross-provider or inter-
router arrangements are needed and routing is not altered. Further
deployment working back from a destination then provides greater

251

protection to the destination in the form of better attack localiza-
tion, because floods are intercepted earlier.

Hosts must also be upgraded. We envision this occurring with
proxies at the edges of customer networks in the manner of a NAT
box or firewall. This provides a simpler option than upgrading indi-
vidual hosts and is possible since legacy applications do not need to
be upgraded. Observe that legacy hosts can communicate withone
another unchanged during this deployment because legacy traffic
passes through capability routers, albeit at low priority.However,
we must discover which hosts are upgraded if we are to use capa-
bilities when possible and fall back to legacy traffic otherwise. We
expect to use DNS to signal which hosts can handle capabilities
in the same manner as other upgrades. Additionally, a capability-
enabled host can try to contact a destination using capabilities di-
rectly. This will either succeed, or an ICMP protocol error will be
returned when the shim capability layer cannot be processed, as
evidence that the host has not been upgraded.

9. CONCLUSION
We have presented and evaluated TVA, a network architecture

that limits denial of service attacks so that two hosts are able to
communicate effectively despite a large number of attackers; we
have argued that existing mechanisms do not meet this goal. Our
design is based on the concept of capabilities that enable destina-
tions to authorize senders, in combination with routers that pref-
erentially forward authorized traffic. Our main contribution is to
flesh out the design of a comprehensive and practical capability
system for the first time. This includes protections for the initial
request exchange, consideration of destination policies for autho-
rizing senders, and ways to bound both router computation and
state requirements. Our simulation results show that, withour de-
sign, even substantial (10x) floods of legacy traffic, request traffic,
and other authorized traffic have little or limited impact onthe per-
formance of legitimate users. We have striven to keep our design
practical. We implemented a prototype of our design in the Linux
kernel, and used it to argue that our design will be able to runat gi-
gabit speeds on commodity PCs. We also constrained our design to
be easy to transition into practice. This can be done by placing in-
line packet processing boxes near legacy routers, with incremental
deployment providing incremental gain.

10. ACKNOWLEDGEMENTS
We thank Ratul Mahajan for help with the pushback approach,

Ersin Uzun for pointing out the attack on per-source queuing, and
the anonymous SIGCOMM reviewers for their comments. This
work was supported in part by the NSF (Grant CNS-0430304).

11. REFERENCES
[1] D. Andersen. Mayday: Distributed Filtering for Internet Ser-

vices. In3rd Usenix USITS, 2003.
[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet

Denial of Service with Capabilities. InProc. HotNets-II, Nov.
2003.

[3] K. Argyraki and D. Cheriton. Active Internet Traffic Filter-
ing: Real-Time Response to Denial-of-Service Attacks. In
USENIX 2005, 2005.

[4] DDoS attacks still pose threat to Internet. BizReport, 11/4/03.
[5] Extortion via DDoS on the rise. Network World, 5/16/05.
[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Sim-

ulation of a Fair Queueing Algorithm. InACM SIGCOMM,
1989.

[7] P. Druschel and G. Banga. Lazy Receiver Processing (LRP):
A Network Subsystem Architecture for Server Systems. In
2nd OSDI, 1996.

[8] P. Ferguson and D. Senie. Network Ingress Filtering: Defeat-
ing Denial of Service Attacks that Employ IP Source Address
Spoofing. Internet RFC 2827, 2000.

[9] M. Handley and A. Greenhalgh. Steps Towards a DoS-
Resistant Internet Architecture. InACM SIGCOMM Work-
shop on Future Directions in Network Architecture (FDNA),
2004.

[10] J. Ioannidis and S. Bellovin. Implementing Pushback: Router-
Based Defense Against DoS Attacks. InNDSS, 2002.

[11] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale:
Surviving organized DDoS attacks that mimic flash crowds.
In 2nd NSDI, May 2005.

[12] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. InACM SIGCOMM, 2002.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router.ACM Transactions on
Computer Systems, 18(3):263–297, Aug. 2000.

[14] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica.
Taming IP Packet Flooding Attacks. InProc. HotNets-II,
2003.

[15] S. Machiraju, M. Seshadri, and I. Stoica. A Scalable andRo-
bust Solution for Bandwidth Allocation . InIWQoS’02, 2002.

[16] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling High Bandwidth Aggregates in
the Network.Computer Communications Review, 32(3), July
2002.

[17] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Hand-
book of applied cryptography, chapter 9. CRC Pres, 1997.

[18] D. Moore, G. Voelker, and S. Savage. Inferring InternetDe-
nial of Service Activity. InUsenix Security Symposium 2001,
2001.

[19] http://www.netfilter.org/.
[20] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practi-

cal Network Support for IP Traceback. InACM SIGCOMM,
2000.

[21] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakoun-
tio, S. Kent, and W. Strayer. Hash-Based IP Traceback. In
ACM SIGCOMM, 2001.

[22] D. Song and A. Perrig. Advance and Authenticated Marking
Schemes for IP Traceback. InProc. IEEE Infocom, 2001.

[23] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth Allo-
cations in High Speed Networks. InACM SIGCOMM, 1998.

[24] A. Yaar, A. Perrig, and D. Song. Pi: A Path Identification
Mechanism to Defend Against DDoS Attacks. InIEEE Sym-
posium on Security and Privacy, 2003.

[25] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet
Flow Filter to Mitigate DDoS Flooding Attacks. InIEEE Sym-
posium on Security and Privacy, 2004.

252

