A DoS-limiting Network Architecture

Xiaowei Yang David Wetherall Thomas Anderson
University of California, Irvine University of Washington University of Washington
Xwy@ics.uci.edu djiw@cs.washington.edu tom@cs.washington.edu
ABSTRACT Each of these proposals has merit and provides techniques that

can help address the DoS problem. Yet we argue that each ad-
dresses only an aspect of DoS rather than the overall problem. In
contrast, our goal is to provide a comprehensive solution to the
DoS problem. We require that a DoS-limiting network architecture
ensure that any two legitimate nodes be able to effectively commu-
nicate despite the arbitrary behavior/ottacking hosts. We limit
ourselves to open networks, such as the Internet, where the com-
municating hosts are not known in advance; this rules out statically
configured networks that, for example, only permit predetermined
legitimate hosts to send packets to each other.

Our solution is the Traffic Validation Architecture (TVA TVA
is based on the notion of capabilities that we advocated in earlier
work [2] and which were subsequently refined by Yearal.[25].
Our attraction to capabilities is that they cut to the heart of the DoS
problem by allowing destinations to control the packets they re-
ceive. However, capabilities are currently little understood at a de-
tailed level or leave many important questions unanswered. A key

We present the design and evaluation of TVA, a network archi-
tecture that limits the impact of Denial of Service (DoS) floods
from the outset. Our work builds on earlier work on capabilities in
which senders obtain short-term authorizations from receivers that
they stamp on their packets. We address the full range of possible
attacks against communication between pairs of hosts, including
spoofed packet floods, network and host bottlenecks, and router
state exhaustion. We use simulation to show that attack traffic can
only degrade legitimate traffic to a limited extent, significantly out-
performing previously proposed DoS solutions. We use a modified
Linux kernel implementation to argue that our design can run on
gigabit links using only inexpensive off-the-shelf hardware. Our
design is also suitable for transition into practice, providing incre-
mental benefit for incremental deployment.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internetworking contribution of our work is the careful design and evaluation of a
more complete capability-based network architecture. TVA coun-
General Terms ters a broader set of possible attacks, including those that flood

the setup channel, that exhaust router state, that consume network
bandwidth, and so forth.
We have also designed TVA to be practical in three key respects.

Security, Design

Keywords First, we bound both the computation and state needed to process

Denial-of-Service. Internet capabilities. We report on an implementation that suggests our de-
’ sign will be able to operate at gigabit speeds with commodity hard-

1. INTRODUCTION ware. Second, we have designed our system to be incrementally

.])) deployable in the current Internet. This can be done by placing
Denial of Service (DoS) attacks have become an increasing threatiyjine packet processing boxes at trust boundaries and points of
to the reliability of the Internet. An early study showed that DOS ¢ongestion, and upgrading collections of hosts to take advantage of
attacks occurred at a rate of nearly 4000 attacks per week [18]. Inthem. No changes to Internet routing or legacy routers are needed,
2001, a DosS attack [4] was able to take down seven of the thirteen 4ng no cross-provider relationships are required. Third, our design

DNS root servers. And more recently, DoS attacks have been usedqyides a spectrum of solutions that can be mixed and matched
for online extortion [5]. to some extent. Our intent is to see how far it is possible to go
The importance of the problem has led to a raft of proposed so- {oyards limiting DoS with a practical implementation, but we are
lutions. Researchers have advocated filtering to prevent the use Ofpragmatic enough to realize that others may apply a different cost-
spoofed source addresses [8], traceback to locate the source of thganefit tradeoft.
disrupting packets [20, 22, 21, 24], overlay-based filtering [12, 1, The remainder of this paper discusses our work in more detail.
14] to protect approaches to servers, pushback of traffic filters into \we discuss related work in Section 2, motivating our approach in
the network [16, 10, 3], address isolation to distinguish client and gection 3. Section 4 describes a concrete implementation of our ar-
server traffic [9], and capabilities to control incoming bandwidth [2, chitecture and illustrates its behavior. Sections 5, 6 and 7 evaluate
25]. our approach using a combination of simulation, a kernel imple-
mentation, and analysis. Section 8 discusses deployment issues.
Section 9 summarizes our work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. The name TVA is inspired by the Tennessee Valley Authority,
SGCOMM:’ 05, August 22-26, 2005, Philadelphia, Pennsylvania, USA. which operates a large-scale network of dams to control flood dam-
Copyright 2005 ACM 1-59593-009-4/05/000855.00. age, saving more than $200 million annually.

241

2. BACKGROUND

Our design leverages previous proposals to address Daksatta
We discuss this work, using attack scenarios to illusttatetiengths
and weaknesses and to motivate our approach.

Early work in the area of DoS sought to make all sources ifienti
able, e.g., ingress filtering [8] discards packets with Widpoofed
addresses at the edge of the network, and traceback usessrtut
create state so that receivers can reconstruct the pathnafnied
traffic [20, 21, 22]. This is a key step, but it is insufficiestaacom-
plete solution. For example, an attacker might flood a lirtkvieen
a source and a destination. She might then hide her tracks-by u
ing the IP TTL field to cause the attack packets to be droppied af
they have done their damage but before they arrive at théndest
tion. The network then simply appears to be broken from thetpo
of view of the source and the destination.

One might think that fair queuing [6] would help by ensuring
that each flow gets its fair share of the bottleneck bandwid#t
even if we assume ingress filtering (so there are no spooiateso
addressesh hosts attacking a destination limit a good connection
to 1/k of the bandwidth. This applies even if the destination knows
it does not want any of the attack traffic. The problem is worse
if fair queuing is performed across source and destinatiluhiess
pairs. Then, an attacker in control bfwell-positioned hosts can
create a large number of flows to limit the useful traffic toyoh)ik>
of the congested link. For example, 30 well-placed hostédcout
a gigabit link to only a megabit or so of usable traffic.

A different tack is for the network to limit communication to
previously established patterns, e.g., by giving legiterfzosts an
authenticator off-line that permits them to send to spedésti-
nations. SOS [12] and Mayday [1] take this approach. Our goal

tivated by weaknesses of the SIFF proposal. First, in SidiRer
stamps are embedded in normal IP packets, which requirds eac
router stamp to be extremely short (2 bits), and thus patinti
discoverable by brute-force attack. We show how to combiee t
security of long stamps with the efficiency of short stampec-S
ond, initial request packets are forwarded with low prioriThis
allows attacking hosts to establish “approved” connestiparely
amongst themselves and flood a path and prevent any further co
nections from being established along its congested lies.ad-
dress this through a more careful treatment of request packe
nally, routers allow all copies of packets with a valid staimpugh
because they have no per-flow state. Thus, an attacker that is
correctly granted a capability by a receiver can flood theivec

at an arbitrary rate until the permission expires. This bpgm-
atic because a typical Web server will only know after a catina
starts whether the traffic is legitimate and given the tintemmn-
stants suggested in [25], even a small rate of incorrectsirw
would allow DoS attacks to succeed. Our approach is to peovid
fine-grained control over how many packets can be sent basad o
single authorization.

In summary, existing proposed DoS solutions have a number of
good ideas but are incomplete. Our goal is to provide a mare co
prehensive solution. We further restrict ourselves totsmhg that
might be practically implemented in today’s technologg. ewith
limited state at each router and with reasonable amountrapae
tation at each hop.

3. TVA DESIGN OVERVIEW

In this section, we motivate the key components of our design
Later in Section 4, we describe the protocol and sketch itsnaon

to design an open network, one where any two hosts can commu-case of operation. The overall goal of TVA is to strictly lirtie

nicate without prior arrangement. Our work can thus be seen a
automating the provision of authenticators.

An insidious aspect of the Internet model is that receiversgeh
no control over the resources consumed on their behalf: techos
receive (and have to pay for!) a repetitive stream of packets
gardless of whether they are desired. One response is @dlinst
packet filters at routers upstream from the destination tsean-
wanted packets to be dropped in the network before they comsu
the resources of the destination, e.g., pushback [16, IDhere
recently AITF [3]. Unfortunately, these filters will bloclome le-
gitimate traffic from the receiver because there is no cleay w
discriminate attack traffic from other traffic, given thataakers
can manufacture packets with contents of their choosing.wotk
can be seen as a robust implementation of network filtering.

In earlier work, we proposed the approach of putting a cdipgbi
or token, into each data packet to demonstrate that the paeise
requested by the receiver [2]. Communication takes twassftianst,
the sender requests permission to send; after verifyingahder is
good, the receiver provides it with a token. When included in
packet, this token allows the network to verify that the grackas
authorized by the receiver. By itself, this does not prewtacks
against the initial request packet, the router state or coatipn
needed to verify the packet, and so forth. For example, inrdur
tial work we used a separate overlay for transmitting theiest
packets; an attack against this channel would disrupt lioathad
not yet established a capability to send.

In SIFF, Yaaret. al. refine the capability approach to eliminate
the separate overlay channel for request packets and pestébe.
Instead, routers stamp packets with a key that reachesdhivee
and is returned to authorize the sender, which uses it oregubst
packets [25]. This is reminiscent of work in robust admission-
trol [15]. We adopt this approach, with some enhancements mo

242

impact of packet floods so that two hosts can communicateatdesp
attacks by other hosts. To achieve this, we start with stahiia
forwarding and routing. We then extend hosts and routefs tivi
handling described below, conceptually at the IP level. $tor-
plicity of exposition, we consider a network in which all tets
and hosts run our protocol. However, our design only require
grades at network locations that are trust boundaries bexeeri-
ence congestion.

3.1 Packets with Capabilities

To prevent a destination from losing connectivity becausa o
flood of unwanted packets, the network must discard thodeepsc
before they reach a congested link. Otherwise the damagalhas
ready been done. This in turn requires that routers have asnea
of identifying wanted packets and providing them with prefeial
service. To cleanly accomplish this, we require that eadketa
carry information that each router can check to determinetiadr
the packet is wanted by the destination. We refer to thisiexpl
information as a capability [2].

Capabilities have significant potential benefits compasexttier
schemes that describe unwanted packets using implicitreaf16,
10]. They do not require a difficult inference problem to blved,
are precise since attackers cannot spoof them, and areileck iy
end-to-end encryption. However, to be viable as a solutapa-
bilities must meet several implied requirements. Firgytmust be
granted by the destination to the sender, so that they canimpsd
on packets. This raises an obvious bootstrap issue, whichdwe
dress shortly. Second, capabilities must be unforgealdenan
readily transferable across senders or destinations. i hispre-
vent attackers from stealing or sharing valid capabilitidird,
routers must be able to verify capabilities without trugthrosts.
This ensures malicious hosts cannot spoof capabilitiegttiroca-

request
(1) 1 — —
sender router router dest
o l
-— 11 1(2)
response

Figure 1: A sender obtaining initial capabilities by (1) sending a re-
quest to the destination, to which routers add pre-capabities; and (2)
receiving a response, to which the destination added capdiies.

pabilities must expire so that a destination can cut off @eefrom
whom it no longer wants to receive packets. Finally, to betizal,
capabilities must add little overhead in the common case. réht
of our design is geared towards meeting these requirements.

3.2 Bootstrapping Capabilities

In our design, capabilities are initially obtained usingjuest
packets that do not have capabilities. These requests rirérem
a sender to a destination, e.g., as part of a TCP SYN packet. Th
destination then returns capabilities to the sender if dtogles to
authorize the sender for further packets, e.g., piggylshckethe
TCP SYN/ACK response. This is shown in Figure 1 for a single di
rection of transfer; each direction is handled indeperyethiough
requests and responses in different directions can be oeahlin
one packet. Once the sender has capabilities, the comntioniga
is bootstrapped in the sense that the sender can send fpaitiets
with capabilities that routers can validate.

Ignoring legacy issues for the moment, we expect the number o
packets without associated capabilities to be small in Is@tsings.
This is because one capability covers all connections heivixeo
hosts, and new capabilities for a long transfer can be obdairs-
ing the current capability before it expires. Nonetheléss crucial
that the initial request channel not open an avenue for DiaSleat,
either by flooding a destination or blocking the requestsegfti
imate senders. The first issue is straightforward to address
rate-limit requests at all network locations so that theyncd con-
sume all of the bandwidth. Request packets should compnilse o
a small fraction of bandwidth. Even with 250 bytes of reqdiest
10KB flow, request traffic is 2.5% of the bandwidth. This altous
to rate-limit request traffic to be no more than 5% of the cipac
of each link, with the added margin for bursts.

It is more challenging to prevent requests from attackewsfr
overwhelming requests from legitimate clients. Ideallg would
like to use per-source fair queuing to ensure that no sousce c
overwhelm others, regardless of how many different destina
it contacts. However, this is problematic because sourdeeades
may be spoofed, but per-source fair queuing requires areatith
cated source identifier. One possibility is ingress filtgribut we
discarded it as too fragile because a single unprotectedsagl-
lows remote spoofing. Another possibility is to sign packetmg
a public key infrastructure, but we discarded it as too muich o
deployment hurdle.

Instead, we build a path identifier analogous to Pi [24] aral us
it as an approximate source locator. Each router at the sSsgré
a trust boundary, e.g., AS edge, tags the request with a $héall
bit) value derived from its incoming interface that is likdb be
unique across the trust boundary, e.g., a pseudo-randdm hiais
tag identifies the upstream party. Routers not at trust bemiesido
not tag requests as the upstream has already tagged. Tlaetags

243

path—identifier queue

requests

P ——

per—destination queue

regular packets
—|capability checking]y_es>

no

low priority queue

legacy packets

.
—

Figure 2: Queue management at a capability router. There are three
types of traffic: requests that are rate-limited; regular packets with
associated capabilities that receive preferential forwading; and legacy
traffic that competes for any remaining bandwidth.

an identifier for a network path. We then fair-queue requesitsg
the most recent tag to identify a queue. This is shown in Ei@ur
As a better approximation, earlier tags can be used withiveng
queue to break ties.

Queuing based on a path identifier has two benefits. First the
number of queues is bounded because the tag space is bounded.
This in turn bounds the complexity of fair queuing, ensurihgt
we will not exhaust router resources. Second, the schemeesoff
defense-in-depth because each trust domain such as an & pla
the most trust in the domain that precedes it. Thereforettaokeer
at the edge of the network or a compromised router who writes
arbitrary tags can at most cause queue contention at theloext
stream trust domain (AS). One consequence of this is thatesen
that share the same path identifier share fate, localiziegntipact
of an attack and providing an incentive for improved locaisy.

3.3 Destination Policies

The next question we consider is how a destination can deter-
mine whether to authorize a request. This is a matter of ypaied
it depends on the role the destination plays in the networkciv-
sider two extreme cases of a client and a public server teeatat
simple policies can be effective.

A client may act in a way that by default allows it to contacy an
server but not otherwise be contacted, as is done by fireaatls
NAT boxes today. To do this, it accepts incoming requestkef/t
match outgoing requests it has already made and refusesotihem
erwise. Note that the client can readily do this becausehiites
are added to existing packets rather than carried as sepzaek-
ets. For example, a client can accept a request on a TCP SYW/AC
that matches its earlier request on a TCP SYN.

A public server may initially grant all requests with a ddfau
number of bytes and timeout, using the path identifier tdfaerve
different sources when the load is high. If any of the sendéss
behave, by sending unexpected packets or floods, that seader
be temporarily blacklisted and its capability will soon a®p This
blacklisting is possible because the handshake involvehderca-
pability exchange weakly authenticates that the sourcesadator-
responds to a real host. The result is that misbehaving seade
quickly contained. More sophisticated policies may be tame
HTTP cookies that identify returning customers, CAPTCHWAatt
distinguish zombies from real users [11], and so forth.

Pre-capability (routers)

timestamp (8 bits) ‘ hash(src IP, dest IP, time, secret) (56 bits)‘

Capability (hosts)

timestamp (8 bits) ‘ hash(pre-capability, N, T) (56 bits)

Figure 3: Format of capabilities.

3.4 Unforgeable Capabilities

Having provided a bootstrap mechanism and policy, we tur
attention to the form of capabilities themselves. Our keyunes-
ment is that an attacker can neither forge a capability, rakenus
of a capability that they steal or transfer from anotherypawe
also need capabilities to expire.

We use cryptography to bind each capability to a specific net-
work path, including source and destination IP addressesspe-
cific time. Each router that forwards a request packet geeeits
own pre-capability and attaches it to the packet. This jgability
is shown in Figure 3. It consists of a local router timestamg a
cryptographic hash of that timestamp plus the source artthdes
tion IP addresses and a slowly-changing secret known ortlyeto
router. Observe that each router can verify for itself thaua
ported pre-capability attached to a packet is valid by meqmating
the hash, since the router knows all of the inputs, but it yptor-
graphically hard for other parties to forge the pre-cajighbitith-
out knowing the router secret. Each router changes its tsatre
twice the rate of the timestamp rollover, and only uses thecot
or the previous secret to validate capability. This enstinas a
pre-capability expires within at most the timestamp radioperiod,
and each pre-capability is valid for about the same timeoplene-
gardless of when it is issued. The high-order bit of the tiaep
indicates whether the current or the previous router sestretld
be used for validation. This trick allows a router to try omlye
secret even if the router changed its secret right afteimgsapre-
capability.

The destination thus receives an ordered list of pre-céipebi
that corresponds to a specific network path with fixed sounck a
destination IP endpoints. It is this correspondence thewets
an attacker from successfully using capabilities issuedntather
party: it cannot generally arrange to send packets with aifipe
source and destination IP address through a specific seguénc
routers unless it is co-located with the source. In thelatise, the
attacker is indistinguishable from the source as far as éteark
is concerned, and shares its fate in the same manner as faistsq
(And other, more devastating attacks are possible if loealisty
is breached.) Thus we reduce remote exploitation to thelgmob
of local security.

If the destination wishes to authorize the request, it retum
ordered list of capabilities to the sender via a packet serheé
reverse direction. Conceptually, the pre-capabilitieshaee de-
scribed could directly serve as these capabilities. Howewe pro-
cess them further to provide greater control, as is desttrilest.

3.5 Fine-Grained Capabilities

Even effective policies will sometimes make the wrong deais
and the receiver will authorize traffic that ultimately is manted.
For example, with our blacklist server policy an attackel &
authorized at least once, and with our client policy the eetliat
a client accesses may prove to be malicious. If authorizaticere

244

Elt) XN EN

MMM

tS t t+T

S (g t3)XN

time —

Figure 4: Bound on the bytes of a capability with caching.

binary, attackers whose requests were granted would beéahate
bitrarily flood the destination until their capabilitiespse. This
problem would allow even a very small rate of false authdiaze

to deny service. This argues for a very short expirationqokryet
protocol dynamics such as TCP timeouts place a lower bound on
what is reasonable.

To tackle this problem, we design fine-grained capabilities
grant the right to send up t bytes along a path within the nekt
seconds, e.g., 100KB in 10 secohd$hat is, we limit the amount
of data as well as the period of validity. The form of these ca-
pabilities is shown in Figure 3. The destination converts phe-
capabilities it receives from routers to full capabiliti®g hashing
them with N andT'. Each destination can choodgandT (within
limits) for each request, using any method from simple dé&fao
models of prior behavior. It is these full capabilities, rdovith N
andT, that are returned to authorize the sender. For longer flows,
the sender should renew these capabilities before thep tead
limits.

With this scheme, routers verify their portion of the cafitibs
by re-computing the hashes much as before, except that now tw
hashes are required instead of one. The routers now perfeom t
further checks, one falV and one forI". First, routers check that
their local time is no greater than the router timestamp filus
ensure that the capability has not expired. This requirasZh
be at most one half of the largest router timestamp so thatita®
values can be unambiguously compared under a modulo cldek. T
replay of very old capabilities for which the local routeock has
wrapped are handled as before by periodically changingater
secret. Second, routers check that the capability will moused
for more thanN bytes. This check is conceptually simple, but
it requires state and raises the concern that attackers xhayst
router state. We deal with this concern next.

3.6 Bounded Router State

We wish to ensure that attackers cannot exhaust router mem-
ory to bypass capability limits. This is especially a comcgiven
that we are counting the bytes sent with a capability andidoib
attackers may create many authorized connections acr@sget t
link.

To handle this problem, we design an algorithm that bounes th
bytes sent using a capability while using only a fixed amodnt o
router state no matter how attackers behave. In the worst eas
capability may be used to seBdVv bytes inT seconds. The same
capability will still be precisely limited taV bytes if there is no
memory pressure.

The high level idea of the algorithm is to make a router keefest
only for flows (a flow is defined on a sender to a destinationsbgsi
with valid capabilities that send faster thafyT". The router does
not need to keep state for other authorized flows becausenitiey

2An alternative would be to build rapid capability revocatioNe
believe this to be a less tractable problem.

not send more thaiV bytes before their capabilities expire Th
seconds. We track flows via their rates by using the rgtg" to
convert bytes to equivalent units of time, as we describé. nex
When a router receives a packet with a valid capability foicivh
it does not have state, it begins to track byte counts for ipaloil-
ity and also associates a minimal time-to-livélY with the state.
Thettl is set to the time equivalent value of the packetk T'/N
seconds (withl being the packet length). Thig! is decremented
as time passes (but our implementation simply sets an egira
time of now + ttl) and incremented as subsequent packets are
charged to the capability. When thi reaches zero, it is permissi-
ble for the router to reclaim the state for use with a new cipab

bilities using its source and destination IP addressescangare
the cached flow nonce with that in the packet. A match indgcate
that a router has validated the capabilities of the flow irviores
packets. The packets are then subject to byte limit and abiquir
time checking as before.

For this scheme to work well, senders must know when routers
will evict their capabilities from the cache. To do so, hasisdel
router cache eviction based on knowledge of the capabiitamp-
eters and how many packets have used the capability and \Blyen.
the construction of our algorithm, eviction should be rametfigh-
rate flows, and it is only these flows that need to remain in €ach
to achieve overall bandwidth efficiency. This modeling cihex

We now show that this scheme bounds the number of bytes sentbe conservative, based on later reverse path knowledge ichwh

using a capability. Referring to Figure 4, suppose that theer
created the capability at tintg and it expires at times + 7. Fur-
ther suppose that the router creates state for the capadtilitme

t1 > ts, and reclaims the state when g reaches zero at time
to < ts + T. Then by the definition of thetl, the capability
must have been used for at mdst — ¢1)/7 * N bytes fromt;

to t2. This may occur more than once, but regardless of how many
times it occurs, the time intervals can total to no more tfiesec-
onds. Thus the total bytes used for the capability must becst m
T/T = N = N bytes. If a capability has state created at time im-
mediately precedings + T, then up toN bytes can be sent at a
rate faster thadV/T. Therefore, at mosV + N = 2N bytes can
be sent before the capability is expired.

This scheme requires only fixed memory to avoid reclaiming
state with non-zerotl values, as required above. Suppose the ca-
pacity of the input link isC'. To have state at timg a capability
must be used to send faster th&{T" beforet. Otherwise, thetl
associated with the state will reach zero and the state mag-be
claimed. There can be at moSY/(N/T) such capabilities. We
require that the minimuniV/T" rate be greater than an architec-
tural constraint N/T")m:». This bounds the state a router needs
to C/(N/T)min records. As an example, if the minimum sending
rate is 4K bytes in 10 seconds, a router with a gigabit inmet Viill
only need 312,500 records. If each record requires 100 hiytes
a line card with 32MB of memory will never run out of state.

3.7 Efficient Capabilities

We want capabilities to be bandwidth efficient as well as s=cu
Yet these properties are in conflict, since security berfefits long
capabilities (i.e., a long key length) while efficiency bgisefrom
short ones (i.e., less overhead). To reconcile these faat@ ob-
serve that most bytes reside in long flows for which the same ca
pability is used repeatedly on packets of the flow. Thus we use
long capabilities (64 bits per router) to ensure securitg eache
capabilities at routers so that they can subsequently bteatrior
bandwidth efficiency. We believe that this is a better trdidisan
short capabilities that are always present, e.g., SIFF2ibéts per
router. Short capabilities are vulnerable to a brute fortach if
the behavior of individual routers can be inferred, e.@nfiband-
width effects, and do not provide effective protection vétlimited
initial deployment.

In our design, when a sender obtains new capabilities from a
receiver, it chooses a random flow nonce and includes it heget
with the list of capabilities in its packets. When a routereaiges
a packet with a valid capability it caches the capabilitgvaht in-
formation and flow nonce, and initializes a byte counter @hes
previously described. Subsequent packets can then carfjoth
nonce and omit the list of capabilities. Observe that pathUMiis-
covery is likely unaffected because the larger packet ifitseone
sent to a destination. Routers look up a packet that omitsajts-

245

packets reached the destinafipar optimistic, assuming that loss
is infrequent. In the occasional case that routers do nat tae
needed capabilities in cache, the packets will be demottegjtay
packets rather than lost, as we describe next.

3.8 Route Changes and Failures

To be robust, our design must accommodate route changes and
failures such as router restarts. The difficulty this préesenthat a
packet may arrive at a router that has no associated capatilte,
either because none was set up or because the cache stateeor ro
secret has been lost.

This situation should be infrequent, but we can still mirdenits
disruption. First, we demote such packets to be the sametpias
legacy traffic (which have no associated capabilities) landng a
bit in the capability header. They are likely to reach thetidasion
in normal operation when there is little congestion. Theidation
then echoes demotion events to the sender by setting a lhiein t
capability header of the next message sent on the reversaaha
This tells the sender that it must re-acquire capabilities.

3.9 Balancing Authorized Traffic

Capabilities ensure that only authorized traffic will congpfor
the bandwidth to reach a destination, but we remain vulnherab
floods of authorized traffic: a pair of colluding attackers eau-
thorize high-rate transfers between themselves and disther
authorized traffic that shares the bottleneck. This woudlmhalfor
example, a compromised insider to authorize floods on arsacce
link by outside attackers.

We must arbitrate between authorized traffic to mitigate #ti
tack. Since we do not know which authorized flows are mal&iou
if any, we simply seek to give each capability a reasonaldeesof
the network bandwidth. To do this we use fair-queuing based o
the authorizing destination IP address. This is shown iniféi@.
Users will now get a decreasing share of bandwidth as theanktw
becomes busier in terms of users (either due to legitimatgaier
colluding attackers), but they will be little affected usdethe num-
ber of attackers is much larger than the number of legitimaégs.

Note that we could queue on the source address (if source ad-
dress can be trusted) or other flow definitions involving pesfi
The best choice is a matter of AS policy that likely depends on
whether the source or destination is a direct customer ofAthe
e.g., the source might be used when the packet is in the sender
ISP’s network and vice versa.

One important consideration is that we limit the number afups
to bound the implementation complexity of fair queuing. T® d
this, we again fall back on our router state bound, and fagug
over the flows that have their capabilities in cache. In thexm
ner, the high-rate flows that send more rapidly thaf7" will fairly

3We ignore for the present the layering issues involved imgisi
transport knowledge instead of building more mechanism.

share the bandwidth. These are the flows that we care most abou
limiting. The low-rate flows will effectively receive FIFCesvice
with drops depending on the timing of arrivals. This doesguar-
antee fairness but is adequate in that it prevents stanvaiio alter-
native approach would have been to hash the flows to a fixed num-
ber of queues in the manner of stochastic fair queuing [28wH
ever, we believe our scheme has the potential to preverakatts
from using deliberate hash collisions to crowd out legitienasers.

3.10 Short, Slow or Asymmetric Flows

TVA is designed to run with low overhead for long, fast flows
that have a reverse channel. Short or slow connections xyk-e
rience a higher relative overhead, and in the extreme mayireeq
a capability exchange for each packet. However, severabriac
suggest that TVA is workable even in this regime. First, tfiect
on aggregate efficiency is likely to be small given that mgsed
belong to long flows. Second, and perhaps more importanily, o
design does not introduce added latency in the form of haakesh
because capabilities are carried on existing packets,argquest
may be bundled with a TCP SYN and the capability returned en th
TCP SYN/ACK. Third, short flows are less likely because floves a
defined on a sender to a destination IP address basis. THUGRII

connections or DNS exchanges between a pair of hosts can take

place using a single capability.

TVA will have its lowest relative efficiency when all flows mea
a host are short, e.g., at the root DNS servers. Here, theoport
of request bandwidth must be increased. TVA will then previd
benefits by fair-queuing requests from different regionthefnet-
work. Truly unidirectional flows would also require capélyionly
packets in the reverse direction. Fortunately, even meddarming
protocols typically use some reverse channel communitstibi-
nally, we have not addressed IP multicast as it already regoime
form of authorization action from the receiver. It would teerr-
esting to see whether we can provide a stronger protectitimsn
setting by using capabilities.

4. TVAPROTOCOL

In this section, we describe TVA in terms of how hosts and
routers process packets and provide a more detailed vieweof t
common case for data transfer. We consider attacks morensyst
atically in the following sections. We ignore legacy comtefor
the moment, returning to them in Section 8.

There are three elements in our protocol: packets that carry
pability information; hosts that act as senders and detims and
routers that process capability information. We describehen
turn.

4.1 Packets with Capabilities

Other than legacy traffic, all packets carry a capabilitydeza
that extends the behavior of IP. We implement this as a shierla
above IP, piggybacking capability information on normatkets
so that there are no separate capability packets.

There are two types of packets from the standpoint of capabil
ties: request packets and regular packets. They share itifyele
ing capability header and are shown in Figure 5. Requestepack
carry a list of blank capabilities and path identifiers thatfidled in
by routers as requests travel towards destinations. Regatkets
have two formats: packets that carry both a flow nonce and eflis
valid capabilities, and packets that carry only a flow noriBecall
that a flow is defined by a source and a destination IP addrass.)
regular packet with a list of capabilities may be used to estja
new set of capabilities. We refer to such packets as reneaed-p
ets. If aregular packet does not pass the capability cheaigy be

246

Common Header %/ersion) ‘ type (4) ‘ upper protocol (8)

demoted

return info

request

regular w/ capabilities
regular w/ nonce only
renewal

1xxx:
x1xx:
xx00:
xx01:
xx10:
xx11:

common header (16)

capability num (8)
path—id 1 (16)

capability ptr (8)

Request Header blank capability 1 (64)

path—id n (16)

blank capability n (64)

Regular / Renewal common header (16)

Header flow nonce (48)
capability num (8) ‘ capability ptr (8)
N (10) ‘ T (6)
cached capability 1 (64)

capability n (64)

return type (8)

00000001: demotion notification
0000001x: a 8—bit capability num fied, N, T,
and a list of return capabilities follow this field.

Return info

Figure 5: Types of capability packets. Return information is present
if the return bit in the common header is set. Sizes are in bitsThe units
for N are KB; the units for T are seconds.

demoted to low priority traffic that is treated as legacyficafSuch
packets are called demoted packets.

We use the lowest two bits of thiype field in the capability
header to indicate the type and the format of packets: répaeket,
regular packet with a flow nonce only, regular packet withhbet
flow nonce and a list of capabilities, and renewal packet. litia
thetypefield is used by routers to indicate that the packet has been
demoted. The remaining bit indicates whether there is atom
information being carried in the reverse direction to a send@his
information follows the capability payload. It may be a lidtca-
pabilities granted by the destination or a demote notificati

Each capability is as described in Section 3: a 64 bit valte, b
ken down into 8 bits of router timestamp in seconds (a mod&® 2
clock), and 56 bits of a keyed hash.

4.2 Senders and Destinations

To send to a destination for which it has no valid capabditie
sender must first send a request. A request will typicallydra-c
bined with the first packet a sender sends, such as a TCP SYN.
When a destination receives the request, it must decidenehtd
grant or refuse the transfer. We described some simpleigslic
Section 3.3; there is also an issue we have not tackled of bhow t

express policies within the socket API. If the destinatiboases if (pkt—>protocol == TVA) {

to authorize the transfer, it sends a response with capabiback isValid = false
to the sender, again combined with another packet, such &Pa T if (isRTSpkL) { /* rts pkt */
SYN/ACK. This SYN/ACK will also carry a request for the reser insert precap pi(pky);

enqueRtfpkt); /* per path identifier queue */
} else { /* regular pkt */
entry = lookup(pkt);

direction. The reverse setup occurs in exactly the same enann
as the forward setup, and we omit its description. To refasge t

transfer, the destination may instead return an empty diétyaist, if (entry) { /* has entry *
again combined with a packet such as a TCP RST. if (pkt—>nonce== entry—>noncg {

Once the sender receives capabilities, the remainder tfeths- * check byte count, expiration, update entry */
fer is straightforward. The sender sends data packetilipiwvith isValid = updateEntr{entry, pk);

} else if (validateCafpkt)) { /* comp two hashes */
[* first renewed pkt. replace and check entry */
isValid = replaceEntr{entry, pkt);

capabilities, and models capability expiration and cactpération
at routers to conservatively determine when routers wilettaeir

capabilities in cache, and when to renew the capabilitiesthé }

common case, the flow nonce and capabilities are cached gt eve } else { /* no entry *

router. This enables the source to transmit most packebtsomiy if (validateCafpkt)) {

the flow nonce. isValid = createEntr{pkt); /* create and check entry */
The destination simply implements a capability grantinigyo }

and does not need to model router behavior. It also echoes any |}f (isvalid) {

demote signals to the sender, so that the sender may repaiath. if (isRenewapkt)) { /* renewal pkt */

renewPkfpkt); /* insert precap */

4.3 Routers . enqueReguldpkt); /* per-destination queue */
Routers route and forward packets as required by IP and ad- } else {

ditionally process packets according to the capabilitpiimfation demotépkt);

that they carry. At a high level, routers share the capaditash enquelegadipky);

outgoing link between three classes of traffic. This is shiowig- }

ure 2. Request packets, which do not have valid capabijlities } }élse{

guaranteed access to a small, fixed fraction of the link (5%uis enqueLegadpkt);

default) and are rate-limited not to exceed this amount. uReg
packets with associated capabilities may use the remaofdée
capacity. Legacy traffic is treated as the lowest prioribtaming
bandwidth that is not needed for either requests or regualekeis Figure 6: How a capability router processes a packet.
in the traditional FIFO manner.

To process a request, the router adds a pre-capability terttie

of the list and adds a new path identifier if it is at a trust tiany. secret. It recomputes the two hash functions to check whéibg
The pre-capability is computed as the local timestamp deneded match the capability value. The router also checks that ttte b
with the hash of a router secret, the current, local routeetin count does not exceel, and the current time does not exceed the

seconds using its modulo 256 clock, and the source and distin - expiration time (of timestamp7") and updates the entrytgl. Any
IP addresses of the packet. This is shown in Figure 3. The path packet with a valid capability or flow nonce is scheduled gdair

identifier is a constant that identifies the ingress to thettdo- queuing. Our scheme does this across flows cached at the route

main, either with high likelihood using pseudo-random fiorts using destination addresses by default.

or with configuration information. Requests are fair-quefee on- If neither the packet's flow nonce nor capability is valideth

ward transmission using the most recent path identifiers. the packet is marked as demoted and queued along with legacy
To process a regular packet, routers check that the packetis packets. Figure 6 shows the pseudo-code on how a capabilitgrr

thorized, update the cached information and packet as deedd processes a packet.

schedule the packet for forwarding. First, the router tt@so-
cate an entry for the flow using the source and the destin#fion
address from the packet. An entry will exist if the router has 5. SIMULATION RESULTS

ceived a valid regular packet from that flow in the recent pake In this section, we usasto simulate TVA, SIFF, pushback and
cache entry stores the valid capability, the flow nonce, thiba the legacy Internet to see how well TVA limits the impact of$o
rized bytes to sendX), the valid time), and thettl and byte floods. TVA is as described in the previous sections, exd¢givte
count as described in Section 3.6. rate-limit capability requests t% of the link capacity, down from

If there is a cached entry for the flow, the router compares the our default of5%, to stress our design. SIFF is implemented as
flow nonce to the packet. If there is a match, it further chexks described in [25]. It treats capacity requests as legadfjcirdoes

updates the byte count and ttik and then fair queues the packet not limit the number of times a capability is used to forwaatfic,
as described below. If the flow nonce does not match and aflist o0 and does not balance authorized traffic sent to differentirges
capabilities are present, this could be the first packet arimewed tions. Pushback is implemented as described in [16]. Itredoely

capability, and so the capability is checked and if valig)aeed in pushes destination-based network filters backwards atesis-
the cache entry. Equivalently, if there is not a cached efoiryhe coming link that contributes most of the flood.
flow, the capability is checked, and a cache entry is allatiieis For each scheme, we set up fixed length transfers between le-
valid. If the packet has a valid capability and is a renewakpg a gitimate users, and a destination under various attacks.thére
fresh pre-capability is minted and placed in the packet. measure: i) the average fraction of completed transfersjipthe

A router validates capability using the information in trecket average time of the transfers that complete. These meteasse-

(the source and destination addres9ésandT) plus the router’s ful because a successful DoS attack will cause heavy lossvitha

247

10 legitimate users

destination

10Mb, 10ms

bottleneck
colluder

1~100 attackers

Figure 7: Simulation topology

both slow legitimate transfers and eventually cause thécgpions
to abort them.

We simulate the dumbbell topology shown in Figure 7. The bot-
tleneck link in our simulation is provisioned to give a légiate
user a nominal throughput of 1Mb/s over a bottleneck linkhwit
a nominal capacity of 10Mb/s. The RTT is 60ms. Each attacker
floods at the rate of a legitimate user, 1Mb/s, and we varynsitg
of the attacks from 1/10 of the bottleneck bandwidth to 10e8m
the bottleneck bandwidth by varying the number of attackers
1 to 100. We use these relatively low rates to speed the siionja
since the key variables are the ratios between attacketiniege
user, and the bottleneck bandwidth, given that there is evoiaith-
delay product sufficient to avoid small window effects.

Each legitimate user sends a 20KB file a thousand times using

TCP, the next transfer starting after the previous one ceteplor
aborts due to excessive loss. Capability requests are lpigined

on TCP SYNs. To provide a fair comparison for other schemes,
we modify TCP to have a more aggressive connection establish
ment algorithm. Specifically, the timeout for TCP SYNs is fixe
at one second (without the normal exponential backoff) gmtbu
eight retransmissions are performed. Without this chaSgEF
suffers disproportionately because it treats SYN packétsaapa-
bility requests as legacy traffic, and therefore its perfmoe under
overload will be dominated by long TCP timeouts. Similavig

set the TCP data exchange to abort the connection if itsetris-
sion timeout for a regular data packet exceeds 64 second$)aw
transmitted the same packet more than 10 times.

We note that TCP inefficiencies limit the effective throughp
of a legitimate user to be no more than 533Kb/s in our scenario
given the transfer of 20KB with a 60ms RTT. This implies thegre
is virtually no bandwidth contention with a pool of 10 legitite
users — the contention effects we see come directly from edass
attackers.

5.1 Legacy Packet Floods

The first scenario we consider is that of each attacker flgpdin
the destination with legacy traffic at 1Mb/s. Figure 8 shohe t
fraction of completions and the average completion timeTfdA
in comparison with SIFF, pushback, and the current Internet

We see that TVA maintains the fraction of completions ng€éf%
and the average completion time remains small as the ityeofsi
attacks increases. That is, our design strictly limits thpact of
legacy traffic floods. This is because we treat legacy trafftb w
lower priority than request traffic.

SIFF treats both legacy and request packets as equally iew pr
ority traffic. Therefore, when the intensity of legacy tra#ixceeds
the bottleneck bandwidth, a legitimate user’s requestgtadikegin

248

C
§e) 1 @t
@ T
g- 0.8 x 1
3 06 *y
5 L4
c 0.4 Internet = i
2 SIFF * :
9 0.2 pushback .
L 0 TVA + o
1 10 100
Number of attackers
6 :
Internet &
w 57 SIFF * 1
© g4l pushback -e [V
E TVA v
2 2 A
© .. i
1+ e 1
O * . t t —
1 100
Number of attackers
Figure 8: Legacy traffic flooding does not increase the file transfer

time or decrease the fraction of completed transfers with TYA. With

SIFF, file transfer time increases and the fraction of compleed trans-
fer drops when the intensity of attack increases; With pushlack, as the
number of attackers increases, pushback poorly isolates t@ck and le-
gitimate traffic, and the transfer time increases and the fration of com-
pleted transfer drops sharply; with today’s Internet, the transfer time
increases sharply, and the fraction of completion quickly aproaches
zero.

to suffer losses. We see this in Figure 8 when the numberadflatt
ers is greater than 10 and the fraction of completions drodgtse
completion time increases. When the aggregate attack batidw
B, is greater than the bottleneck bandwidth, the packet loss
ratep is approximately B, — B;)/B,. Once a request packet gets
through, a sender’s subsequent packets are authorizedtpauid
are treated with higher priority. So the probability thatla frans-
fer completes with SIFF is equal to the probability a requgsts
through within nine tries, i.e(1—p°). When the number of attack-
ers is 100p is 90%, giving a completion rate afl —0.9%) = 0.61.
This is consistent with our results. Similarly, the avertige for a
transfer to complete with up to 9 tries is:

9
Tavg = (Q_-i-p'""-(1-p)/(1-p°)
=1
When there are 100 attackers, this time is 4.05 secondshvigic
again consistent with our results.

Pushback performs well until the number of attackers isearg
at which stage it provides poor isolation between attadki¢rand
legitimate traffic. This is because attack traffic becomasidrato
identify as the number of attackers increases since eacming
link contributes a small fraction of the overall attack. Aencdbe

[
el 1 gt
g 0.8
[S1)
IS "
8 06 i
S ®
c 0.4 Internet =
8 SIFF
¢ 0.2} pushback e .
T 0 TVA + |
1 10 100
Number of attackers
6 :
Internet &

w S5 SIFF ;
o 4 pushback - D ek
£ TVA + e
+— | %
@ 3 e
2 2 P
© S
= 1+ .

0 * L) + + ot

1 100

Number of attackers

Figure 9: Request packet flooding does not increase the transfer time
or decrease the fraction of completed transfers with TVA.

C
je) 1 e e
3 s |
o 4
2 .
S8 06 Internet =
5 SIFF *
c 04 rpushback
2 ool TVA -+
g .
L 0 —
1 10 100
Number of attackers
6
*
z 5 f
g 4 Internet = 1
= SIFF
ko 3 Ipushback « | :]
2 o TVA + |]
© “ O
= o
O *) + + + +
1 100

Number of attackers

Figure 10: With TVA, per-destination queue ensures that the desti-
nation and the colluder equally share the access link bandwih. The
transfer time slightly increases (not noticeable from the fjure) as a
result of reduced bandwidth, and the fraction of completionremains

seen in Figure 8, when the number of attackers is less than 40,100%.

pushback is able to cut off a significant portion of the attaek-
fic: the file transfer time increases by less than 2 secondkthen
faction of completed transfers remains at 100%. Howeveshpu

queued separately, so that excessive requests from ataoke

back becomes markedly less effective as the number of attack be dropped without causing requests from legitimate useiset

increases further. The file transfer time increases sigmifig, and
the fraction of completed transfers drops sharply. TVA dooé
viewed as an alternative pushback scheme that is alwaystacti
and uses capabilities as a robust signature to separat& atéic
and legitimate traffic.

With the Internet, legitimate traffic and attack traffic areated
alike. Therefore, every packet from a legitimate user entarg
a loss rate ofp. The probability for a file transfer of packets
to get through, each within a fixed number of retransmissioiss

(1—p*)™. This probability decreases polynomially as the drop rate

p increases and exponentially as the number of packdty the
file size) increases. This explains the results we see in&guthe
fraction of completed transfers quickly approaches to zerthe
number of attackers increases. The few completed traniséses

dropped. We see this in Figure 9: the fraction of completidoss
not drop and the transfer time does not increase. In contteste-
sults for SIFF are similar to those for legacy packets floadSIFF
treats both requests and legacy traffic as low priority tafBoth
pushback and the legacy Internet treat RTS traffic as reglalt
traffic. The results for them are the same as those for theyega
traffic attack.

5.3 Authorized Packet Floods

Strategic attackers will realize that it is more effectigecbllude
when paths can be found that share the bottleneck link witld#s-
tination. The colluders grant capabilities to requestsfattackers,
allowing the attackers to send authorized traffic at theiximam
rate. Figure 10 shows the results under this attack. Bedavsal-

a completion time hundreds of seconds, and are out of thésy-ax |gcates bandwidth approximately fairly among all destimat and

scope in Figure 8.

5.2 Request Packet Floods

allows destinations to use fine-grained capabilities tarcbimow
much bandwidth to allocate to a sender, this attack causes$ ba
width to be fairly allocated between the colluder and thetidas

The next scenario we consider is that of each attacker flgodin tion. The transfer time slightly increases (from 0.31 selctn0.33

the destination with request packets at 1Mb/s. In this kitae
assume the destination was able to distinguish requests|&mgit-

imate users and those from attackers. With TVA, requestgiack

are rate limited and will not reduce the available capadaitydu-
thorized packets. Requests from attackers and legitinsstesiare

249

second, not noticeable from the figure) as a result of redbaad-
width, and all transfers complete. If the number of collsdrat
share a bottleneck link with the destination increasesdéstina-
tion gets a decreased share of the bandwidth. Each legtiosatr
will get a lesser share of the bandwidth, but no user will bevetd.

TVA
6 : : :
) all at once -
5 2 10 atatime
E 4
3 3
2 2
S 1t
|_
0 L L L L L
0 10 20 30 40 50 60
Time (s)
SIFF
6 : : :
@ all at once —
5 2 10 at atime
E 47
B 3 L x*x)&xxn,“
g 2] |
S 1+t
|_
0
0 10 20 30 40 50 60

Time (s)

Figure 11: Attackers can only cause temporary damage if a destina-
tion stops renewing their capabilities. TVA uses a fine-graied capabil-
ity to limit the impact of authorizing an attacker to a smaller amount
of attack traffic compared to SIFF, even assuming SIFF has a naid-
changing router secret that expires every 3 seconds.

Under the same attack with SIFF, legitimate users are cdgiple
starved when the intensity of the attack exceeds the bettlelband-
width. Again, this is because the request packets are tredth
low priority and are dropped in favor of the authorized dttaaffic.
We see in Figure 10 that the request completion rate dropplgha
to zero when the attacking bandwidth reaches the bottlebach-
width of 10Mb/s. The very few transfers that complete do sl on
because of traffic fluctuations, and suffer a sharp increashe
average transfer time.

Both pushback and the legacy Internet treat request traffic a
authorized traffic as regular traffic. Thus, the results &mtescheme
under an authorized traffic attack is similar to each schenueu
a legacy traffic attack. Pushback will identify the flow agte
destined to the colluder as the offending aggregate thaesanost
packet drops, but it fails to rate limit the aggregate todis $hare
of bandwidth.

5.4 Imprecise Authorization Policies

Finally, we consider the impact of imprecise policies, wizen
destination sometimes authorizes attackers becauseribcasli-
ably distinguish between legitimate users and attacketfseeaime
that it receives a request. In the extreme that the desiimatinnot
differentiate attackers from users at all, it must granbtfegually.

However, if the destination is able to differentiate likeltack
requests, even imprecisely, TVA is still able to limit themtzge
of DoS floods. To see this, we simulate the simple authodmati

250

[Packet type | Processing timg
Request 460 ns
Regular with a cached entry 33ns
Regular without a cached entry 1486 ns
Renewal with a cached entry 439 ns
Renewal without a cached entfy 1821 ns

Table 1: Processing overhead of different types of packets.

policy described in Section 3.3: a destination initiallpgts all re-
quests, but stops renewing capabilities for senders trsttehave
by flooding traffic. We set the destination to grant an initegbabil-
ity of 32KB in 10 seconds. This allows an attacker to flood atta r
of 1Mb/s, but for only 32KB until the capability expires. THesti-
nation does not renew capabilities because of the attagkréil1
shows how the transfer time changes for TVA with this polisy a
an attack commences. There are two attacks: a high inteorsity
in which all 100 attackers attack simultaneously; and a lateni-
sity one in which the 100 attackers divide into 10 groups fleaid
one after the other, as one group finishes their attack. Wehsee
both attacks are effective for less than 5 seconds, causingdrary
congestion and increasing the transfer time of some coiumsadby
about 2 seconds.

Figure 11 also shows the results for SIFF under the samekattac
In SIFF, the expiration of a capability depends on changirauger
secret — even if the destination determines that the sesdeisbe-
having it is powerless to revoke the authorization befonehd his
suggests that rapid secret turnover is needed, but thergract-
cal limitations on how quickly the secret can be changed, thg
life time of a router secret should be longer than a small imult
ple of TCP timeouts. In our experiment, we assume SIFF can ex-
pire its capabilities every three seconds. By contrast, Expires
router secret every 128 seconds. We see that both attacksahav
much more pronounced effect on SIFF. The high intensitycktta
increases the transfer time by 4 seconds, and the low ityeatsi
tack lasts for 30 seconds. In each attack period of threansiscall
legitimate requests are blocked until the next transitisa result,
the transfer time jumps to more than three seconds.

6. IMPLEMENTATION

We prototyped TVA using the Linux netfilter framework [19]
running on commaodity hardware. We implemented the host por-
tion of the protocol as a user-space proxy, as this allowachkeg
applications to run without modification. We implementedtes
capability processing as a kernel module using the AES-hsie
first hash function (for pre-capabilities) and SHA1 as theose
hash function [17] (for capabilities).

The purpose of this effort was to check the completenessof ou
design and to understand the processing costs of capedilive
did not consider the processing costs of fair queuing. Inexper-
iment, we set up a router using a dual-processor 3.2GHz uenti
Xeon machine running a Linux 2.6.8 Kernel. It used the native
Linux forwarding module. We then used a kernel packet genera
tor to generate different types of packets and sent thenugfrthe
router, modifying the code to force the desired executich.p@or
each run, our load generator machines sent one million paoke
each type to the router. We recorded the average numbertnféns
tion cycles for the router to process each type of packetagieg
the results over five experiments.

Table 1 shows the results of this experiment, with cycles con
verted to time. In normal operation, the most common type of
packet is a regular packet with an entry at a router. The geicg

400 ‘ |
legacy IP +
350 ¢ regular w/ entry > |
%) request -
2 300 t renewal w/ entry v |
o regular w/o entry -e-
i‘z 250 t renewal w/o entry -® ‘ |
2200 .
S 7
O p L L
0 100 200 300 400

Input rate (kpps)

Figure 12: The peak output rate of different types of packets.

overhead for this type is the lowest at 33 ns. The processiag o
head for validating a capability for a packet without a caceetry
is about 1486 ns, as it involves computing two hash functidihe
cost to process a request packet is lower and similar to thietgo
process arenewal packet with a cached entry because botterav
pre-capability hash computation. The most computatioerisive
operation is forwarding a renewal packet without a cachéxy.eim
this case the router needs to compute three hash functignsot
check the validity of the old capability, and one to computeear
pre-capability hash. The processing cost is 1821 ns.

We also tested how rapidly a Linux router could forward capa-
bility packets. The results are shown in Figure 12. The dutpie
increases with the input rate and reaches a peak of 160 to80K
depending on the type of packet. This compares well with the
peak lossless rate for vanilla IP packets of about 280Kppboth
cases these rates are dominated by per packet interruplirigand
and they could be increased markedly with a polling devideedr
as demonstrated by Click [13]. We expect that removing tBas3.
interrupt penalty would improve the output rate to 500- 1460s,
equivalent to 240 to 670Mbps with minimum size packets (of 40
TCP/IP bytes plus 20 capability bytes). An attacker migterapt
to overwhelm the CPU by flooding spoofed short renewal pack-
ets; they would not match, but that might still lead to padkes
of good traffic if the processing was done in the order reckive
Fortunately, we can use Lazy Receiver Processing (LRPfer t
case [7]: when the CPU is overloaded, separately queue ingom
packets based on their required computation per input titndl
traffic, consisting of short requests and full-size regpkckets will
then be processed at full speed.

We conclude that our implementation can handle 100 Mbps in-
terfaces with off-the-shelf hardware; in the near future, expect
to be able to demonstrate that an optimized implementatiarren
at a gigabit without specialized hardware.

7. SECURITY ANALYSIS

The security of TVA is based on the inability of an attackeole
tain capabilities for routers along the path to a destimatiey seek
to attack. We briefly analyze how TVA counters various thseat

An attacker might try to obtain capabilities by breaking liash-
ing scheme. We use standard cryptographic functions witlf-a s
ficient amount of key material and change keys every 128 siscon
as to make breaking keys a practical impossibility.

An attacker may try to observe the pre-capabilities placeitsi
requests by routers, e.g., by causing ICMP error messadpesre

251

turned to the sender from within the network, or by using I@rse
routing. To defeat these vulnerabilities, we use a packetdivthat
does not expose pre-capabilities in the first 8 bytes of thgatRet
(which are visible in ICMP messages) and require that céipabi
routers treat packets with IP source routes as legacy tr8figond
this, we rely on Internet routing to prevent the intentiomédeliv-
ery of packets sent to a remote destination.

A different attack is to steal and use capabilities belogdma
sender (maybe another attacker) who was authorized by 8te de
nation. Since a capability is bound to a specific sourcejrosin,
and router, the attacker will not generally be able to seruketa
along the same path as the authorized sender. The case ih whic
we cannot prevent theft is when the attacker can eavesdrdipeon
traffic between an authorized sender and a destination. ifhis
cludes a compromised router. In this case, the attacker @aptc
the authorization that belongs to the sender. In fact, itspaak for
any senders for whom it forwards packets. However, evenii th
situation our design provides defense in depth. The comigemin
router is just another attacker — it does not gain more |gesthan
an attacker at the compromised location. DoS attacks ontades
tion will still be limited as long as there are other capapitouters
between the attacker and the destination.

Another attack an eavesdropper can launch is to masquerade
a receiver to authorize attackers to send attack traffic ¢oréh
ceiver. Similarly, our design provides defense in depth.thé
attacker is a compromised router, this attack can only csirthe
receiver’s queues at upstream links, because the routeotfoge
pre-capabilities of downstream routers. This attack is ams@than
the router simply dropping all traffic to the receiver. If thacker
is a comprised host that shares a local broadcast netwokkawit
receiver, the attacker can be easily spotted and takeineff-I

Alternatively, an attacker and a colluder can spoof auteoti
traffic as if it were sent by a different sender The attacker sends
requests to the colluder witf's address as the source address, and
the colluder returns the list of capabilities to the attaiskeeal ad-
dress. The attacker can then flood authorized traffic to thed=y
using S’s address. This attack is harmful if per-source queuing is
used at a congested link. If the spoofed traffic &gltraffic share
the congested link$’s traffic may be completely starved. This at-
tack has little effect on a sender’s traffic if per-destioatijueueing
is used, which is TVAs default. ISPs should not use per-seur
queuing if source addresses cannot be trusted.

Finally, other attacks may target capability routers diyeseek-
ing to exhaust their resources. However, the computatidrstate
requirements for our capability are bounded by design. Thay
be provisioned for the worst case.

8. DEPLOYMENT

Our design requires both routers and hosts to be upgraded, bu
does not require a flag day. We expect incremental deploytoent
proceed organization by organization. For example, a gonent
or large scale enterprise might deploy the system acrossithe
ternal network, to ensure continued operation of the nétwegen
if the attacker has compromised some nodes internal to tenor
zation, e.g., with a virus. Upstream ISPs in turn might deplhe
system to protect communication between key customers.

Routers can be upgraded incrementally, at trust boundanés
locations of congestion, i.e., the ingress and egress of £8Bs.
This can be accomplished by placing an inline packet praugss
box adjacent to the legacy router and preceding a step-dowa-i
pacity (so that its queuing has an effect). No cross-proadater-
router arrangements are needed and routing is not altetethef
deployment working back from a destination then providestgr

protection to the destination in the form of better attactalza-
tion, because floods are intercepted earlier.

Hosts must also be upgraded. We envision this occurring with
proxies at the edges of customer networks in the manner ofla NA
box or firewall. This provides a simpler option than upgradimdi-
vidual hosts and is possible since legacy applications tioeed to
be upgraded. Observe that legacy hosts can communicatemédth
another unchanged during this deployment because legaii tr
passes through capability routers, albeit at low prioritpwever,
we must discover which hosts are upgraded if we are to use capa
bilities when possible and fall back to legacy traffic othisev We
expect to use DNS to signal which hosts can handle capabsiliti
in the same manner as other upgrades. Additionally, a clityabi
enabled host can try to contact a destination using capaebilii-
rectly. This will either succeed, or an ICMP protocol errdl we
returned when the shim capability layer cannot be processed
evidence that the host has not been upgraded.

9. CONCLUSION

We have presented and evaluated TVA, a network architecture

that limits denial of service attacks so that two hosts ate &b
communicate effectively despite a large number of attagkee
have argued that existing mechanisms do not meet this gaal. O
design is based on the concept of capabilities that enalsknde
tions to authorize senders, in combination with routers phaf-
erentially forward authorized traffic. Our main contritmitiis to
flesh out the design of a comprehensive and practical cétyabil
system for the first time. This includes protections for thigial
request exchange, consideration of destination policesditho-
rizing senders, and ways to bound both router computatiah an
state requirements. Our simulation results show that, aiithde-
sign, even substantial (10x) floods of legacy traffic, retjtredfic,
and other authorized traffic have little or limited impacttba per-
formance of legitimate users. We have striven to keep ougdes
practical. We implemented a prototype of our design in theuki
kernel, and used it to argue that our design will be able tcatgi-
gabit speeds on commodity PCs. We also constrained ountisig
be easy to transition into practice. This can be done by mdgici-
line packet processing boxes near legacy routers, witleimental
deployment providing incremental gain.

10. ACKNOWLEDGEMENTS

We thank Ratul Mahajan for help with the pushback approach,
Ersin Uzun for pointing out the attack on per-source queuamgl
the anonymous SIGCOMM reviewers for their comments. This
work was supported in part by the NSF (Grant CNS-0430304).

11. REFERENCES

[1] D. Andersen. Mayday: Distributed Filtering for Intetrger-
vices. In3rd Usenix USITS2003.

[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventingrimgt
Denial of Service with Capabilities. IAroc. HotNets-I] Nov.
2003.

[3] K. Argyraki and D. Cheriton. Active Internet Traffic Fat-
ing: Real-Time Response to Denial-of-Service Attacks.
USENIX 20052005.

[4] DDosS attacks still pose threat to Internet. BizRepot¥4103.

[5] Extortion via DDoS on the rise. Network World, 5/16/05.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Sim-
ulation of a Fair Queueing Algorithm. IACM SIGCOMM
1989.

252

[7] P. Druschel and G. Banga. Lazy Receiver Processing (LRP)
A Network Subsystem Architecture for Server Systems. In
2nd OSD] 1996.

P. Ferguson and D. Senie. Network Ingress Filtering:eaef

ing Denial of Service Attacks that Employ IP Source Address

Spoofing. Internet RFC 2827, 2000.

M. Handley and A. Greenhalgh. Steps Towards a DoS-

Resistant Internet Architecture. IWRCM SIGCOMM Work-

shop on Future Directions in Network Architecture (FDNA)

2004.

10] J.loannidis and S. Bellovin. Implementing Pushbackuter-

Based Defense Against DoS Attacks NBDSS 2002.

S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botzales

Surviving organized DDoS attacks that mimic flash crowds.

In 2nd NSD) May 2005.

[12] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. IANCM SIGCOMM 2002.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular RoutekCM Transactions on
Computer System&8(3):263—297, Aug. 2000.

[14] K. Lakshminarayanan, D. Adkins, A. Perrig, and |. Siic
Taming IP Packet Flooding Attacks. IRroc. HotNets-I)
2003.

[15] S. Machiraju, M. Seshadri, and |. Stoica. A Scalable Rod
bust Solution for Bandwidth Allocation . IWQo0S’02 2002.

[16] R. Mahajan, S. Bellovin, S. Floyd, J. loannidis, V. Paxs
and S. Shenker. Controlling High Bandwidth Aggregates in
the Network.Computer Communications Revied2(3), July
2002.

[17] A.J.Menezes, P. C. van Oorschot, and S. A. Vanstdaed-
book of applied cryptographyhapter 9. CRC Pres, 1997.

[18] D. Moore, G. Voelker, and S. Savage. Inferring Interbet
nial of Service Activity. InUsenix Security Symposium 2001
2001.

[19] http://www. netfilter.org/.

[20] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.dlra
cal Network Support for IP Traceback. ACM SIGCOMM
2000.

[21] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tehak
tio, S. Kent, and W. Strayer. Hash-Based IP Traceback. In
ACM SIGCOMM 2001.

[22] D. Song and A. Perrig. Advance and Authenticated Magkin
Schemes for IP Traceback. Rroc. IEEE Infocom2001.

[23] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fai
Queueing: Achieving Approximately Fair Bandwidth Allo-
cations in High Speed Networks. ACM SIGCOMM 1998.

[24] A. Yaar, A. Perrig, and D. Song. Pi: A Path Identification
Mechanism to Defend Against DDoS Attacks.IEEE Sym-
posium on Security and Privacg003.

[25] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Ingern
Flow Filter to Mitigate DDoS Flooding Attacks. lEEE Sym-
posium on Security and Privacg004.

(8]

9]

[11]

