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A major challenge in molecular biology is to understand the mechanisms 
that regulate the expression of genes. An important step in this challenge 
is the ability to identify regulatory elements, notably the binding sites in 
DNA for transcription factors. Transcription factors are proteins that 
bind to DNA, typically upstream from and close to the transcription 
start site of a gene, and regulate the expression of that gene by activating 
or inhibiting the transcription machinery. The prediction of such regu-
latory elements is a problem where computational methods offer great 
hope, and indeed computational biologists have invested considerable 
effort into solving this problem.

Because little is known about most transcription factors and their 
target binding sites, even in well studied organisms, we focus here on 
those computational tools designed for the discovery of novel regula-
tory elements, where nothing is assumed a priori of the transcription 
factor or its preferred binding sites. Usually, a user provides a collec-
tion of regulatory regions of genes that are believed to be coregulated, 
and the computational tool identifies short DNA sequence ‘motifs’ that 
are statistically overrepresented in these regulatory regions. Accurate 

identification of these motifs is difficult because they are short signals 
(typically about 10 bp long) in the midst of a great amount of statistical 
noise (a typical input being one regulatory region of length 1,000 bp 
upstream of each gene). To make matters worse, there is sequence vari-
ability among the binding sites of a given transcription factor, and the 
nature of the variability itself is not well understood.

Over the past few years, numerous tools have become available for 
this task of motif prediction, differing from each other chiefly in their 
definition of what constitutes a motif, what constitutes statistical over-
representation of a motif and the method used to find statistically 
overrepresented motifs. However, the biologist has been offered little 
guidance in the choice among these tools. The purpose of the current 
assessment is twofold: to provide some guidance regarding the accuracy 
of currently available computational tools in various settings, and to 
provide a benchmark of data sets for assessing future tools.

There have been only a few small-scale assessments of some of these 
motif discovery tools, for instance, those of Pevzner & Sze1 and Sinha 
& Tompa2. The current assessment is modeled on earlier large-scale 
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assessments for a different computational problem, namely the pre-
diction of genes themselves, reported by Burset & Guigó3, by Burge & 
Karlin4, and by Reese et al5,6. In this study, we assess 13 motif-discovery 
tools, all available on the internet, that do not use auxiliary informa-
tion, such as comparative sequence analysis, mRNA expression levels 
or chromatin immunoprecipitation results.

In brief, we created data sets containing known binding sites to test 
these tools. Without revealing the known binding sites, each author with 
specific expertise on a particular tool then ran that tool on these data sets. 
Experts were chosen to test each tool so that none would be put at the 
disadvantage of being run with an uninformed setting of its parameters. 
The expert predictions were then compared with known binding sites, 
using various statistics to assess the correctness of the predictions.

The study reported here is a first attempt and therefore by no means 
perfect. We introduce an experimental design and statistical analy-
ses that solve some of the problems in comparing tools, but we also 
believe that future assessments will benefit from our mistakes, enabling 
improved comparisons. We conclude by offering suggestions for such 
future improvements.

METHODS
The tools compared in this assessment are AlignACE7, ANN-
Spec8, Consensus9, GLAM10, Improbizer11, MEME12, MITRA13, 
MotifSampler14, oligo/dyad-analysis15,16, QuickScore17, SeSiMCMC18, 
Weeder19 and YMF20. Short descriptions of them are provided in 
Table 1.

Creating good data sets posed some immediate challenges. At one 
extreme, we could use real genomic promoter sequences containing 
real annotated transcription factor binding sites. The drawback of this 
approach is that no one knows the complete ‘correct’ answer: there could 
be unannotated binding sites, and programs that correctly predict these 
would necessarily be penalized. At the other extreme, we could assure 
that we know the complete correct answer by using artificially con-
structed sequences. For instance, we could generate random sequences 
using a Markov chain, and implant at random positions instances of 
a randomly chosen position-specific scoring matrix. The drawback of 
this approach is that no one knows the ‘correct’ stochastic process that 
nature uses, and so we would be introducing biases that favor certain 
tools over others.

Table 1  Details about the operation principles, basic technical data and URLs of 13 analyzed tools

Program Operating principle Technical data URL Reference

AlignACE Gibbs sampling algorithm that 
returns a series of motifs as 
weight matrices that are over-
represented in the input set

Judges alignments sampled during the course of the algorithm 
using a maximum a priori log likelihood score, which gauges 
the degree of overrepresentation. Provides an adjunct measure 
(group specificity score) that takes into account the sequence of 
the entire genome and highlights those motifs found preferen-
tially in association with the genes under consideration.

http://atlas.med.harvard.
edu/

7

ANN-Spec Models the DNA-binding speci-
ficity of a transcription factor 
using a weight matrix 

Objective function based on log likelihood that transcription fac-
tor binds at least once in each sequence of the positive training 
data compared with the number of times it is estimated to bind 
in the background training data. Parameter fitting is accom-
plished with a gradient descent method, which includes Gibbs 
sampling of the positive training examples.

http://www.cbs.dtu.
dk/∼workman/ann-spec/

8

Consensus Models motifs using weight 
matrices, searching for the 
matrix with maximum informa-
tion content

Uses a greedy method, first finding the pair of sequences that 
share the motif with greatest information content, then finding 
the third sequence that can be added to the motif resulting in 
greatest information content, and so on.

http://bifrost.wustl.edu/
consensus/

9

GLAM Gibbs sampling-based algo-
rithm that automatically 
optimizes the alignment width 
and evaluates the statistical 
significance of its output

Since the basic algorithm cannot find multiple motif instances 
per sequence, long sequences were fragmented into shorter 
ones, and the alignment was transformed into a weight matrix 
and used to scan the sequences to obtain the final site predic-
tions.

http://zlab.bu.edu/glam/ 10

The Improbizer Uses expectation maximization 
to determine weight matrices 
of DNA motifs that occur 
improbably often in the input 
sequences

As a background (null) model it uses up to a second-order 
Markov model of background sequence. Optionally, Improbizer 
constructs a Gaussian model of motif placement, so that motifs 
that occur in similar positions in the input sequences are more 
likely to be found.

http://www.soe.ucsc.
edu/∼kent/improbizer

11

MEME Optimizes the E-value of a sta-
tistic related to the information 
content of the motif 

Rather than sum of information content of each motif column, 
statistic used is the product of the P values of column informa-
tion contents. The motif search consists of performing expec-
tation maximization from starting points derived from each 
subsequence occurring in the input sequences. MEME differs 
from MEME3 mainly in using a correction factor to improve the 
accuracy of the objective function.

http://meme.sdsc.edu/ 12

MITRA Uses an efficient data structure 
to traverse the space of IUPAC 
patterns. 

For each pattern, MITRA computes the hypergeometric score 
of the occurrences in the target sequences relative to the back-
ground sequences and reports the highest scoring patterns.

http://www.calit2.net/
compbio/mitra/

13

MotifSampler Matrix-based, motif-finding 
algorithm that extends Gibbs 
sampling by modeling the 
background with a higher order 
Markov model

The probabilistic framework is further exploited to estimate the 
expected number of motif instances in the sequence.

http://www.esat.kuleu-
ven.ac.be/∼dna/BioI/
Software.html

14

Table 1 continued on following page
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For the binding sites, we decided to use the TRANSFAC database21 
(http://www.gene-regulation.com/pub/databases.html#transfac) 
to choose real transcription factors, their known binding sites, 
and the positions and orientations of those binding sites. (Because 
TRANSFAC contains only eukaryotic transcription factors, we 
restricted ourselves to eukaryotic data sets, though it would be ben-
eficial to do a similar assessment on prokaryotic data sets.) Each 
such transcription factor gives rise to one data set of sequences. Each 
such data set consists of one of three different types of background 
sequence, with the transcription factor’s known binding sites planted 
at their known positions and orientations. The three types are (i) the 
binding sites’ real promoter sequences (called ‘real’ in the sequel) (ii) 
randomly chosen promoter sequences from the same genome (called 
‘generic’) and (iii) sequences generated by a Markov chain of order 
3 (called ‘markov’). Using some of each type, we intended to avoid 
systematic effects of the drawbacks described above. No attempt was 
made to eliminate sequences that might contain additional tran-
scription factor binding sites, since our ability to identify such sites 
accurately is limited.

The process for selecting transcription factors and binding sites 
from TRANSFAC was as follows. We selected only transcription fac-
tors for which TRANSFAC also lists a binding site consensus sequence. 
For each factor, we removed duplicate instances of the same binding 
site, removed binding sites missing sequence or position information, 
removed binding sites whose position was annotated with respect to 
anything other than transcription or translation start site, removed 
binding sites whose position was less than –3,000 bp or greater than 0, 
and removed sequences with two reported binding sites contradicting 
each other in sequence and position. Any factor with fewer than five 
remaining binding sites in a single species was then discarded. (Some 
data sets lost additional binding sites in subsequent consistency tests 
against genomic sequence data.) Only fly, human, mouse, rat and yeast 
had at least four remaining data sets; we discarded the rat sequences, as 
the rat genome was not yet completely sequenced and these data sets 
might be too close to mouse.

This resulted in 52 data sets. Six of the data sets are from fly, 26 from 
human, 12 from mouse and 8 from yeast. As negative controls, we added 
4 additional data sets of type markov containing no planted binding 

Table 1  Continued

Program Operating principle Technical data URL Reference

Oligo/dyad-analysis Detects overrepresented oligo-
nucleotides with oligo-analy-
sis15 and spaced motifs with 
dyad-analysis16

These algorithms detect statistically significant motifs by 
counting the number of occurrences of each word or dyad and 
comparing these with expectation. Most crucial parameter is 
choice of appropriate probabilistic model for the estimation of 
occurrence significance. In this study, a negative binomial dis-
tribution on word distributions was obtained from 1,000 random 
promoter selections of the same size as the test sets

http://rsat.scmbb.ulb.
ac.be/rsat/

15,16

QuickScore Based on an exhaustive search-
ing algorithm that estimates 
probabilities of rare or frequent 
words in genomic texts

Incorporates an extended consensus method allowing well-
defined mismatches and uses mathematical expressions for 
efficiently computing z-scores and P values, depending on the 
statistical models used in their range of applicability. Special 
attention is paid to the drawbacks of numerical instability. The 
background model is Markovian, with order up to 3.

http://algo.inria.fr/dolley/
QuickScore/

17

SeSiMCMC Modification of Gibbs sam-
pler algorithm that models 
the motif as a weight matrix, 
optionally with the symmetry 
of a palindrome or of a direct 
repeat, and optionally with 
spacers

Includes two alternating stages. The first one optimizes the 
weight matrix for a given motif and spacer length. The algorithm 
changes the positions of the motif occurrences in the sequences 
and infers the motif model from the current occurrences. These 
changes are used to optimize the likelihood of sequences as 
being segmented into the (Bernoulli) background and the motif 
occurrences. The optimization is organized via a Gibbs-like 
Markov chain, which samples positions in sequences one by 
one, until the Markov chain converges. The second stage looks 
for best motif and spacer lengths for obtained motif positions. 
It optimizes the common information content of motif and of 
distributions of motif occurrence positions.

http://favorov.hole.ru/
gibbslfm/

18

Weeder Consensus-based method that 
enumerates exhaustively all the 
oligos up to a maximum length 
and collects their occurrences 
(with substitutions) from input 
sequences

Each motif evaluated according to number of sequences in which 
it appears and how well conserved it is in each sequence, with 
respect to expected values derived from the oligo frequency analy-
sis of all the available upstream sequences of the same organism. 
Different combinations of ‘canonical’ motif parameters derived 
from the analysis of known instances of yeast transcription factor 
binding sites (length ranging from 6 to 12, number of substitutions 
from 1 to 4) are automatically tried by the algorithm in different 
runs. It also analyzes and compares the top-scoring motifs of each 
run with a simple clustering method to detect which ones could be 
more likely to correspond to transcription factor binding sites. Best 
instances of each motif are selected from sequences using a weight 
matrix built with sites found by consensus-based algorithm.

http://159.149.109.16/
Tool/ind.php

19

YMF Uses an exhaustive search 
algorithm to find motifs with 
the greatest z-scores

A P value for the z-score is used to assess significance of motif. 
Motifs themselves are short sequences over the IUPAC alphabet, 
with spacers (‘N’s) constrained to occur in the middle of the 
sequence.

http://bio.cs.washington.
edu/software.html#ymf

20
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sites, and added 2 of them to the fly collection and 2 of them to the yeast 
collection. For each species, about one-third of its data sets are of each 
vof the types real, generic and markov. To 31 of the 38 data sets of type 
generic or markov, we added 1 to 4 additional sequences with no planted 
binding sites, so that each input sequence contains 0 or more planted 
binding sites. The number of sequences per data set varies from 1 to 35 
with mean 7, and the individual sequence length per data set varies from 
500 bp to 3,000 bp. The total size of each data set varies from 1 to 70 kb 
with mean 8 kb. The number of planted binding sites per data set varies 
from 0 to 76 with mean 9.

The data sets are available as a benchmark at the assessment web 
site http://bio.cs.washington.edu/assessment/ (see also Supplementary 
Data online). In fact, each of the 52 data sets (excluding the 4 negative 
controls) is available there in each of the data set types real, generic, and 
markov, although the assessment described here used only one of those 
three types for each data set.

Each of the 56 data sets was supplied for testing as a FASTA file with 
an indication of their species of origin, but with no indication of the 
type (real, generic or markov) or any other information. For each data 
set, the prediction tools were required either to select the single best 
motif and report the positions and sequences of that motif ’s occur-
rences or to report that the data set contains no significant motif. It was 
permissible to vary parameter settings from data set to data set, mask 
repeats in the input sequences, postprocess the output to eliminate 
low-complexity motifs and generally perform any pre- and postpro-
cessing deemed appropriate. Neither consultation of TRANSFAC nor 
the employment of methods that would not be available in a real appli-
cation of novel motif discovery were permitted. Data sets were sup-
plied in November 2003 and prediction results returned in February 
2004 (see Box 1).

RESULTS
Figure 1a shows the results of all seven statistics (see Box 2)—nucleo-
tide-level sensitivity (nSn), nucleotide-level positive predictive value 
(nPPV), nucleotide-level performance coefficient (nPC), nucleotide-
level correlation coefficient (nCC), site-level sensitivity (sSn), site-level 
positive predictive value (sPPV) and site-level average site performance 
(sASP)—summarized over all 56 data sets (regardless of species, data set 
type). The values nPPV and sPPV should be noted with some caution. 
As described in Box 2, these statistics are undefined on each data set for 
which a program predicts no motif. As a result, these PPV values will 
be exaggerated for those programs that make no predictions on hard 

data sets. Table 2 summarizes the number of data sets on which each 
tool made no prediction.

Figure 1b breaks down the data sets according to species (regardless 
of data set type), using the correlation coefficient nCC as a proxy for 
correctness. Figure 1c breaks down the data sets according to type real, 
generic or markov (regardless of species). This figure suggests greater 
difficulty with the real type data sets, likely for the reasons described 
in the Methods section above. Because of this, Figure 1d recapitulates 
the seven statistics of Figure 1a over just the data sets of types generic 
and markov. Figure 1e shows nSp for the four negative control data sets 
containing no planted motif.

Finally, Table 3 shows the improvement possible in the correlation 
coefficient nCC when a pair of tools’ predictions are used rather than 
a single tool, summarized over all 56 data sets (regardless of species, 
data set type). The purpose of this table is not to simulate what a biolo-
gist might do with two tools, but rather to demonstrate that tools may 
complement each other: on some data sets the first tool will have bet-
ter predictions and on others the second will have better predictions. 
The primary tool T is listed in the row header and the secondary tool 
T′ in the column header. For each individual data set D, we choose 
the nucleotide level scores nTP, nFN, nFP and nTN of whichever of T 
or T′ has the greater nCC score on D, if T predicts some motif on D, 
otherwise we choose the nucleotide level scores of T on D. (Note the 
asymmetry when primary tool T predicts no motif on D.) We then add 
these chosen nucleotide level scores over all 56 data sets, as described 
for the ‘Combined’ method of summarizing in Box 2, and compute the 
correlation coefficient nCC for the combined scores. This is the value 
shown in Table 3 in row T and column T′. If T = T′, then the value is 
equal to the individual nCC score from Figure 1a.

DISCUSSION
We have described an assessment of 13 different computational tools for 
de novo prediction of regulatory elements. Data in Figure 1a–d reveal 
that the absolute measures of correctness of these programs are low: site 
sensitivity sSn is at most 0.22 and correlation coefficient nCC is at most 
0.20 in Figure 1d, for example. This should not be taken as an indictment 
of computational methods for prediction of regulatory elements, for a 
very great number of reasons:

1.   Most importantly, the underlying biology of regulatory mechanisms 
is very incompletely understood. We lack an absolute standard against 
which to measure the correctness of tools (unlike the crystal structures 

In a real application, a biologist would select one of these tools 
and perhaps pursue a number of the top motifs reported. In this 
study, however, we allowed only one ‘best’ motif per data set. 
The explanation for this decision is tied to the fact that no single 
statistic is perfect for measuring the correctness of predictions. If 
we allowed multiple predictions, on what basis would we compare 
the performance of two tools on a given data set? Even with only 
one predicted motif per tool, there are still many appropriate 
statistics with which they may be compared.

We restricted our assessment to tools that do not make use 
of auxiliary data, such as comparative sequence analysis (also 
known as phylogenetic footprinting). Although we believe such 
comparative analysis to be important and effective, the fact is 

that many tools (including all of the participating tools in this 
assessment) are not designed to exploit it, and users of these 
tools need to know how accurate they are. If these tools are not 
sufficiently accurate, then a detailed analysis of the data sets on 
which they fail will point out problems in our current approaches 
and hopefully the path to improving them. An as sessment of tools 
designed for phylogenetic footprinting would be equally important, 
but must necessarily be the subject of a separate study.

As outlined in Box 2, there are numerous statistics available 
to measure a tool’s correctness on a data set, various ways of 
summarizing those statistics over a collection of data sets and 
numerous interesting collections of data sets over which to 
summarize.

Box 1  Study design
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used in the Critical Assessment of Techniques for Protein Structure 
Prediction22). For these reasons, our benchmark of data sets is likely 
a poor approximation for the biological truth.

2.  Each participant was required to predict a single motif per data set (or 
none), this choice necessarily being subjective and sometimes arbi-
trary. In practice, one might instead pursue the top several motifs 
predicted by any given tool. This has a dramatic effect on sensitivity.

3.  The assessment allowed no comparative sequence analysis among spe-
cies, a powerful method for the prediction of regulatory elements.

4.  The assessment allowed no exploitation, except possibly in the data 
sets of type real, of the fact that the binding sites of multiple transcrip-
tion factors often occur in close proximity to each other.

5.  The assessment depends on TRANSFAC21 as its standard for the true 
binding sites; any such database is fallible and biased.

6.  Many of the binding sites cataloged in TRANSFAC21 are unusually 
long: 35 of the binding sites used in this assessment were each 31–71 
bp in length. This may reflect lack of precision in the experimental 
method used, with the true binding site actually a shorter subsequence 
of the cataloged site. Such long cataloged sites have a detrimental 
effect on measured sensitivity, both at the nucleotide and site levels.

7.  The assessment allows only one known motif for each data set, despite 
the fact that the 18 data sets of type real are likely to have binding sites 
for multiple transcription factors.

In addition, in comparing the performance of the tools, one must 
keep in mind the fact that each predicted set of motif instances was 
subject to human choices of parameters and pre- and postprocessing, 
and that the amount of time and effort invested by the participants 

Figure 1  Representative statistics comparing the accuracy of the 13 tools assessed in this analysis. (a) Combined measures of correctness over all 56 data 
sets. See Tables 1 and 2 for details on the individual tools, Methods section for an explanation of data set types and Box 2 for definitions of all statistics. 
(b) Correlation coefficient (nCC) by species. (c) Correlation coefficient (nCC) by data set type. (d) Combined measures of correctness over generic and Markov 
data sets. (e) Specificity (nSp) on four negative control data sets.
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varied dramatically. These factors of judgment will have had an impact 
on each algorithms’ performance. When comparing tools using the 
statistics nPPV, nCC, sPPV and sASP, one must also keep in mind the 
fact that these measures are affected by the data sets on which the tools 
predicted no motif, as explained in Box 2.

With the caveats outlined above, several interesting observations on 
the results can be made. First, an inspection of Figure 1 reveals that two 

different versions of the tool MEME were run independently by two 
experts. It is gratifying to see that, despite the great room for human 
judgment in the choice of parameters and the final choice of a single (or 
no) motif per data set, the two collections of MEME results are remark-
ably consistent across all the measurements.

The tool Weeder outperformed the other tools in most domains 
and by most measures in this assessment. We believe that some part of 

For each tool T and each data set D, we now have the set of known 
binding sites and the set of predicted binding sites. The correctness 
of T on D can be assessed both at the nucleotide level and at the site 
level. Specifically, at the nucleotide level define true positives (nTP), 
false negatives (nFN) and others as follows:

•   nTP is the number of nucleotide positions in both known sites and 
predicted sites,

•   nFN is the number of nucleotide positions in known sites but not in 
predicted sites,

•   nFP is the number of nucleotide positions not in known sites but in 
predicted sites, and

•   nTN is the number of nucleotide positions in neither known sites 
nor predicted sites.

We will say that a predicted site overlaps a known site if they over-
lap by at least one-quarter the length of the known site. (Although 
this cutoff is somewhat arbitrary, the motivation is that, if an experi-
mentalist were to remove the predicted site, enough of the known 
site would be deleted so that one might be able to see a difference in 
expression.) At the site level, then, let:

•   sTP be the number of known sites overlapped by predicted sites,
•   sFN be the number of known sites not overlapped by predicted 

sites, and
•   sFP be the number of predicted sites not overlapped by known sites.

At either the nucleotide (x = n) or site (x = s) level, one can then 
define:

•   Sensitivity: xSn = xTP/(xTP + xFN), and
•   Positive Predictive Value: xPPV = xTP/(xTP + xFP).

The sensitivity gives the fraction of known sites (or site nucleotides) 
that are predicted, and the positive predictive value gives the fraction 
of predicted sites (or site nucleotides) that are known.

At the nucleotide level one can also define:

Specificity: nSP = nTN /(nTN + nFP).

Finally, it is enlightening to consider various single statistics that in 
some sense average (some of) these quantities. Following Pevzner & 
Sze1, define the (nucleotide level) performance coefficient as:

•   nPC = nTP/(nTP + nFN + nFP).

Following Burset & Guigó3, define the (nucleotide level) correlation 
coefficient as:

nCC =

and the (site level) average site performance as:

•   sASP = (sSn + sPPV)/2.

The correlation coefficient nCC is the Pearson product-moment 
coefficient of correlation in the particular case of two binary variables, 
also called the ‘phi coefficient of correlation.’ The two binary variables 
are the characteristic vectors of the known nucleotide positions and 

of the predicted nucleotide positions, so that this statistic measures 
the correlation between those two sets of positions. The value of nCC 
ranges from –1 (indicating perfect anticorrelation) to +1 (indicating 
perfect correlation). Thus, if the predicted motifs exactly coincide with 
the known binding sites, nCC will be +1. If each nucleotide position 
were predicted to be in the motif randomly and independently, then 
the expected value of nCC would be 0, indicating no correlation.

No single statistic captures correctness perfectly. For those 
who want to compute other statistics, the seven ‘raw scores’ nTP, 
nFN, nFP, nTN, sTP, sFN and sFP are tabulated at the assess-
ment web site (http://bio.cs.washington.edu/assessment/) for 
each data set and each tool.

For the four negative control data sets that have no planted bind-
ing sites, TP + FN = 0, so nSn, nCC, sSn, and sASP are undefined, 
and nPPV, nPC and sPPV are uninformative. We will simply inspect 
the specificity nSp on these four data sets separately. A far greater 
analysis problem arises in those cases in which some tool predicts no 
motif in a data set. In these cases, TP + FP = 0, so nPPV, nCC, sPPV 
and sASP are undefined, and nSn, nPC and sSn are uninformative. 
This hampers any straightforward attempt to compare the tools across 
this data set.

In any case, we need a way of summarizing the performance of a 
given tool over a collection of data sets, where that collection might 
be all the data sets, or all the yeast data sets, or all the generic data 
sets. For each tool T, each statistic M, and each collection C of data 
sets of interest, we summarize T ’s performance on C by each of the 
methods below. (If statistic M is undefined for tool T on a particular 
data set in C, then omit that data set when summarizing for T, except 
in the Combined method where this omission is unnecessary.)

1.  Average. The usual arithmetic mean of the M scores.
2.   Normalized. For each data set, normalize the M scores by sub-

tracting the mean and dividing by the standard deviation over all 
the programs on that data set. Average these normalized scores 
over the data sets in C. This method puts easy and hard data sets 
on the same scale.

3.   Combined. Add nTP, nFP, nFN, nTN, sTP, sFP and sFN over the 
data sets in C, and compute the measure M as though C were one 
large data set. For measures such as Sn and PPV, this is exactly a 
weighted average, where each term is weighted by its denominator. 
This method has the advantage that the measure M is rarely unde-
fined. However, the problem posed when a tool makes no predic-
tion on a data set is still present, since the method treats that data 
set as weighted by zero in the weighted average.

There were few qualitative differences among these three methods 
of summarizing, except that averaging nPPV, sPPV and nCC scores 
tends to reward programs that make no predictions on many data 
sets. The results presented here all use the ‘Combined’ method.

The assessment web site (http://bio.cs.washington.edu/assessment/) 
provides tools for computing these statistics on predictions made by 
developers who want to test a new tool on the benchmark data sets.

Box 2  Statistics used to assess tool performance quality

nTP · nTN – nFN · nFP
(nTP + nFN) (nTN + nFP) (nTP + nFP) (nTN + nFN)
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Weeder’s success is due to judicious choices regarding when to predict 
no motif in a data set: Weeder was run in a ‘cautious mode,’ where only 
the strongest motifs were reported. A few small exceptions to Weeder’s 
domination are shown in Figure 1b, where SeSiMCMC did somewhat 
better on the fly data sets, and MEME3 and YMF somewhat better on 
the mouse data sets.

What is most striking about Figure 1b is the fact that so many tools 
perform much better on the yeast data sets than on other species. This 
suggests that computational biologists have been more successful at 
modeling binding sites in yeast than in metazoans. Little significance 
should be read into the slightly negative nCC values in Figure 1b: these 
are so close to zero that they should be interpreted simply as no correla-
tion between the known and predicted binding sites.

Although the shapes of the curves are very similar in Figure 1a and 
Figure 1d, the scale is different. Nearly all tools performed better accord-

ing to most of the seven measures when the 
data sets of type real were removed. For exam-
ple, the correlation coefficient nCC, averaged 
over all tools, improved by 39% from Figure 
1a to Figure 1d. This seems to say more about 
the experimental design than about the tools 
themselves: it is likely that the data sets of type 
real contain functional motifs other than the 
single TRANSFAC binding site on which they 
were scored, and that tools that discovered 
other functional motifs were unduly penalized. 
The tool most affected by this is YMF, whose 
seven measures each improved between 45% 
and 67% when the real data sets were removed. 
Interestingly, there is one tool that did not 
improve by this removal: MotifSampler’s per-
formance was somewhat better on the data sets 
of type real than on the others. This aspect of 
MotifSampler can also be seen in Figure 1c for 
the measure nCC.

We have not discovered any simple feature, 
such as type of motif search, that determines 
the accuracy of these tools. Nor should we 
expect such a simple conclusion: the tools are 

based on algorithms and motif models that are varied and complex, and 
predicting their performance on complex data is beyond our current 
analytical ability.

Table 3 shows some very interesting complementary behaviors among 
certain pairs of tools. For example, MotifSampler’s predictions comple-
ment well the predictions of MEME, oligo/dyad-analysis, ANN-Spec and 
YMF, improving their individual nCC scores by 64–92%. It is also infor-
mative to see that MEME’s predictions improve the individual nCC score 
of MEME3 by 53%. This gives some idea of the improvement possible by 
allowing a given tool to predict two motifs rather than just one.

Exploiting comparative sequence analysis, using tools not covered 
in this assessment, provides a powerful adjunct to these methods. As 
an example, a recent tool called PhyME that combines intraspecies 
overrepresentation and interspecies conservation reported success23 in 
predicting the binding sites for one of the most difficult human data 

Table 2  Number of data sets for which each tool predicted no motifa

Tool Total (56) Fly (8) Mouse (12) Human (26) Yeast (10)

AlignACE 32 7 5 17 3

ANN-Spec 3 1 0 1 1

Consensus 37 4 3 26 4

GLAM 3 0 1 2 0

Improbizer 0 0 0 0 0

MEME 6 1 2 2 1

MEME3 14 0 5 8 1

QuickScore 20 2 4 14 0

SeSiMCMC 0 0 0 0 0

MITRA 11 7 3 0 1

MotifSampler 7 2 2 0 3

Oligo/dyad-analysis 23 1 5 13 4

Weeder 17 3 3 10 1

YMF 7 0 2 4 1
aThe total number of data sets is given parenthetically in the column header.

Table 3  Correlation coefficient (nCC) for all pairs of toolsa

Quick 
score

GLAM
SeSi 

MCMC
MITRA Consen Improb Align ACE

Motif 
sampler

MEME3 MEME
Oligo/
dyad

ANN-
Spec

YMF Weeder

QuickScore 0.009 0.020 0.042 0.030 0.025 0.052 0.068 0.072 0.072 0.074 0.038 0.064 0.061 0.084

GLAM 0.031 0.016 0.060 0.037 0.039 0.068 0.066 0.084 0.088 0.086 0.052 0.082 0.090 0.113

SeSiMCMC 0.049 0.059 0.024 0.068 0.042 0.083 0.071 0.091 0.081 0.088 0.058 0.103 0.104 0.092

MITRA 0.042 0.041 0.072 0.031 0.054 0.082 0.084 0.097 0.106 0.105 0.070 0.101 0.103 0.131

Consensus 0.067 0.060 0.075 0.053 0.042 0.077 0.079 0.109 0.084 0.077 0.074 0.082 0.081 0.098

Improbizer 0.065 0.069 0.083 0.077 0.056 0.052 0.089 0.117 0.096 0.098 0.083 0.112 0.091 0.117

AlignACE 0.088 0.084 0.089 0.090 0.085 0.111 0.068 0.097 0.102 0.091 0.088 0.091 0.115 0.119

MotifSampler 0.071 0.092 0.107 0.097 0.077 0.103 0.099 0.068 0.112 0.119 0.103 0.127 0.130 0.134

MEME3 0.089 0.094 0.092 0.102 0.074 0.102 0.093 0.124 0.069 0.106 0.094 0.129 0.126 0.114

MEME 0.091 0.090 0.100 0.102 0.077 0.091 0.095 0.120 0.100 0.073 0.104 0.123 0.121 0.121

Oligo/dyad 0.073 0.088 0.111 0.088 0.082 0.082 0.099 0.136 0.119 0.112 0.071 0.106 0.107 0.130

ANN-Spec 0.085 0.091 0.111 0.094 0.090 0.100 0.085 0.122 0.114 0.110 0.089 0.074 0.118 0.117

YMF 0.094 0.095 0.112 0.101 0.093 0.100 0.114 0.146 0.121 0.129 0.092 0.131 0.084 0.137

Weeder 0.164 0.169 0.162 0.167 0.157 0.171 0.166 0.186 0.168 0.164 0.173 0.167 0.167 0.156
aThe primary tool is listed in the row header and the secondary tool in the column header. The score shown for the same tool on both axes (that is, along the main diagonal) is the individual nCC 
score from Figure 1. Numerical values are categorized by color, ranging from dark blue (poorer predictions) to red (better predictions).
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sets from this assessment (data set hm20, corresponding to the human 
transcription factor Sp1) on which all the assessed tools performed 
extremely poorly.

Despite considerable effort to date, prediction of regulatory elements 
remains a wonderful and complex challenge for computational biolo-
gists. Biologists would be well advised to use a few complementary tools 
in combination rather than relying on a single one and to pursue the top 
few predicted motifs of each rather than the single most significant motif. 
Even so, more work is clearly needed to optimize tool performance, 
particularly in the modeling of regulatory elements in the metazoans. 
The assessment web site (see above) can be used to identify particularly 
challenging data sets, those on which none of the tools succeeded in 
predicting the known binding sites with any accuracy. Further testing on 
these data will hopefully lead to improved prediction methods.

One of the surprises resulting from this assessment is the realization 
that the design of a good assessment is itself far from straightforward. 
Constructing representative data sets, when we do not understand the 
full truth about transcription factor binding sites, is problematic from 
the outset. Choosing the most appropriate statistics for evaluating the 
correctness of predictions is also challenging. This is particularly the case 
in light of the reality that different tools may predict zero, one or more 
significant motifs on a given data set, and that real promoter sequences 
may indeed contain binding sites for zero, one or more distinct tran-
scription factors.

For the next such assessment of motif discovery tools, we suggest the 
following changes in experimental design: (i) eliminate the data sets 
of type ‘real,’ (ii) eliminate the negative control data sets that contain 
no planted binding sites (iii) require each tool to predict exactly (say) 
three motifs per data set and (iv) for each tool and data set, choose 
the predicted motif with the greatest nCC score to represent that tool. 
These changes will eliminate the great difficulties caused by undefined 
statistics and will raise the sensitivity of the tools closer to what it would 
be in practice, when a user pursues the top few motifs rather than just 
the top one.
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