CSE 599 I
Accelerated Computing - Programming GPUs

Intro to CUDA C
Lecture 2.1 - Introduction to CUDA C

CUDA C vs. Thrust vs. CUDA Libraries
Objective

– To learn the main venues and developer resources for GPU computing
 – Where CUDA C fits in the big picture
3 Ways to Accelerate Applications

- **Libraries**
 - Easy to use
 - Most Performance

- **Compiler Directives**
 - Easy to use
 - Portable code

- **Programming Languages**
 - Most Performance
 - Most Flexibility
Libraries: Easy, High-Quality Acceleration

• **Ease of use:** Using libraries enables GPU acceleration without in-depth knowledge of GPU programming

• **“Drop-in”:** Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes

• **Quality:** Libraries offer high-quality implementations of functions encountered in a broad range of applications
GPU Accelerated Libraries

Linear Algebra
FFT, BLAS, SPARSE, Matrix

- NVIDIA cuFFT, cuBLAS, cuSPARSE
- CULA tools
- MAGMA
- CUSP

Numerical & Math
RAND, Statistics

- NVIDIA Math Lib
- ArrayFire
- NVIDIA cuRAND

Data Struct. & AI
Sort, Scan, Zero Sum

- Thrust
- NVIDIA NPP
- GPU AI - Board Games
- GPU AI - Path Finding

Visual Processing
Image & Video

- NVIDIA NPP
- NVIDIA Video Encode
- Sundog Software
Vector Addition in Thrust

```cpp
thrust::device_vector<float> deviceInput1(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1, hostInput1 + inputLength, deviceInput1.begin());
thrust::copy(hostInput2, hostInput2 + inputLength, deviceInput2.begin());

thrust::transform(deviceInput1.begin(), deviceInput1.end(),
                  deviceInput2.begin(), deviceOutput.begin(),
                  thrust::plus<float>());
```
Compiler Directives: Easy, Portable Acceleration

- **Ease of use:** Compiler takes care of details of parallelism management and data movement

- **Portable:** The code is generic, not specific to any type of hardware and can be deployed into multiple languages

- **Uncertain:** Performance of code can vary across compiler versions
OpenACC

- Compiler directives for C, C++, and FORTRAN

```c
#pragma acc parallel loop
copyin(input1[0:inputLength], input2[0:inputLength]),
copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {
    output[i] = input1[i] + input2[i];
}
```
Programming Languages: Most Performance and Flexible Acceleration

- **Performance:** Programmer has best control of parallelism and data movement

- **Flexible:** The computation does not need to fit into a limited set of library patterns or directive types

- **Verbose:** The programmer often needs to express more details
GPU Programming Languages

Numerical analytics
- MATLAB
- Mathematica
- LabVIEW

Fortran
- CUDA Fortran

C
- CUDA C

C++
- CUDA C++

Python
- PyCUDA
- Copperhead
- Numba

F#
- Alea.cuBase
CUDA - C

Applications

- Libraries
 - Easy to use
 - Most Performance

- Compiler Directives
 - Easy to use
 - Portable code

- Programming Languages
 - Most Performance
 - Most Flexibility
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Lecture 2.2 - Introduction to CUDA C
Memory Allocation and Data Movement API Functions
Objective

– To learn the basic API functions in CUDA host code
 – Device Memory Allocation
 – Host-Device Data Transfer
Data Parallelism - Vector Addition Example

vector A

vector B

\[B[0] \quad B[1] \quad B[2] \quad \ldots \quad B[N-1] \]

vector C

\[C[0] \quad C[1] \quad C[2] \quad \ldots \quad C[N-1] \]
Vector Addition – Traditional C Code

// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
 int i;
 for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];
}

int main()
{
 // Memory allocation for h_A, h_B, and h_C
 // I/O to read h_A and h_B, N elements
 ...
 vecAdd(h_A, h_B, h_C, N);
}
Heterogeneous Computing vecAdd CUDA Host Code

#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n) {
 int size = n* sizeof(float);
 float *d_A, *d_B, *d_C;
 // Part 1
 // Allocate device memory for A, B, and C
 // copy A and B to device memory

 // Part 2
 // Kernel launch code – the device performs the actual vector addition

 // Part 3
 // copy C from the device memory
 // Free device vectors
}
Partial Overview of CUDA Memories

- Device code can:
 - R/W per-thread registers
 - R/W all-shared global memory

- Host code can
 - Transfer data to/from per grid global memory

We will cover more memory types and more sophisticated memory models later.
CUDA Device Memory Management API functions

- `cudaMalloc()`
 - Allocates an object in the device global memory
 - Two parameters
 - **Address of a pointer** to the allocated object
 - **Size of** allocated object in terms of bytes

- `cudaFree()`
 - Frees object from device global memory
 - One parameter
 - **Pointer** to freed object
Host-Device Data Transfer API functions

- `cudaMemcpy()`
 - memory data transfer
 - Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
 - Transfer to device is asynchronous
Vector Addition Host Code

```c
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
    int size = n * sizeof(float); float *d_A, *d_B, *d_C;

cudaMalloc((void **) &d_A, size);
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_B, size);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_C, size);

    // Kernel invocation code – to be shown later

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);
}
```
In Practice, Check for API Errors in Host Code

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {
 printf("%s in %s at line %d\n", cudaGetErrorString(err), __FILE__, __LINE__);
 exit(EXIT_FAILURE);
}

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Lecture 2.3 – Introduction to CUDA C

Threads and Kernel Functions
Objective

- To learn about CUDA threads, the main mechanism for exploiting of data parallelism
 - Hierarchical thread organization
 - Launching parallel execution
 - Thread index to data index mapping
Data Parallelism - Vector Addition Example

vector A

vector B

vector C

+ + + ... +
Vector Addition – Traditional C Code

// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
 int i;
 for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];
}

int main()
{
 // Memory allocation for h_A, h_B, and h_C
 // I/O to read h_A and h_B, N elements
 ...
 vecAdd(h_A, h_B, h_C, N);
}
CUDA Execution Model

- Heterogeneous host (CPU) + device (GPU) application C program
 - Serial parts in **host** C code
 - Parallel parts in **device** SPMD kernel code

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);
From Natural Language to Electrons

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Natural Language (e.g., English)</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High-Level Language (C/C++...)</td>
<td>Instruction Set Architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microarchitecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circuits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrons</td>
</tr>
</tbody>
</table>

©Yale Patt and Sanjay Patel, *From bits and bytes to gates and beyond*
A program at the ISA level

- A program is a set of instructions stored in memory that can be read, interpreted, and executed by the hardware.
 - Both CPUs and GPUs are designed based on (different) instruction sets

- Program instructions operate on data stored in memory and/or registers.
A Thread as a Von-Neumann Processor

A thread is a “virtualized” or “abstracted” Von-Neumann Processor
Vector Addition Kernel

// compute vector sum C = A + B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(const float * A, const float * B, float * C, int n)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < n) C[i] = A[i] + B[i];
}
Arrays of Parallel Threads

- A CUDA kernel is executed by a grid (array) of threads
 - All threads in a grid run the same kernel code (Single Program Multiple Data)
 - Each thread has indexes that it uses to compute memory addresses and make control decisions

```c
i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];
...```

```plaintext
0 1 2 254 255
```
Thread Blocks: Scalable Cooperation

- Divide thread array into multiple blocks
  - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
  - Threads in different blocks do not interact

```c
i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];
```
blockIdx and threadIdx

- Each thread uses indices to decide what data to work on
  - blockIdx: 1D, 2D, or 3D (CUDA 4.0)
  - threadIdx: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
  - Image processing
  - Solving PDEs on volumes
  - ...
Putting it all together

```c
void vecAdd(float * A, float * B, float * C, int n)
{
 int size = n * sizeof(float);
 float *d_A, *d_b, *d_C;

 cudaMalloc((void **) &d_A, size);
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &d_B, size);
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &d_C, size);

 vecAddKernel<<<ceil(n/256.0), 256>>>(d_A, d_B, d_C, n);

 cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}
```
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).
Lecture 2.4 – Introduction to CUDA C
Introduction to the CUDA Toolkit
Objective

- To become familiar with some valuable tools and resources from the CUDA Toolkit
  - Compiler flags
  - Debuggers
  - Profilers
# GPU Programming Languages

<table>
<thead>
<tr>
<th>Category</th>
<th>Tools/Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical analytics</td>
<td>MATLAB, Mathematica, LabVIEW</td>
</tr>
<tr>
<td>Fortran</td>
<td>CUDA Fortran</td>
</tr>
<tr>
<td>C</td>
<td>CUDA C</td>
</tr>
<tr>
<td>C++</td>
<td>CUDA C++</td>
</tr>
<tr>
<td>Python</td>
<td>PyCUDA, Copperhead, Numba, NumbaPro</td>
</tr>
<tr>
<td>F#</td>
<td>Alea.cuBase</td>
</tr>
</tbody>
</table>
CUDA - C

Applications

Libraries
- Easy to use
- Most Performance

Compiler Directives
- Easy to use
- Portable code

Programming Languages
- Most Performance
- Most Flexibility
NVCC Compiler

- NVIDIA provides a CUDA-C compiler
  - nvcc
- NVCC compiles device code then forwards code on to the host compiler (e.g. g++)
- Can be used to compile & link host only applications
Example 1: Hello World

```c
int main() {
 printf("Hello World!\n");
 return 0;
}
```

Instructions:
1. Build and run the hello world code
2. Modify Makefile to use nvcc instead of g++
3. Rebuild and run
CUDA Example 1: Hello World

```c
__global__ void mykernel(void) {
}

int main(void) {
 mykernel<<<1,1>>>()
 printf("Hello World!\n");
 return 0;
}
```

Instructions:
1. Add kernel and kernel launch to main.cc
2. Try to build
CUDA Example 1: Build Considerations

- Build failed
  - Nvcc only parses .cu files for CUDA
- Fixes:
  - Rename main.cc to main.cu
  OR
  - nvcc –x cu
    - Treat all input files as .cu files

Instructions:
1. Rename main.cc to main.cu
2. Rebuild and Run
Hello World! with Device Code

```c
__global__ void mykernel(void) {
}

int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
}
```

Output:

```
$ nvcc main.cu
$./a.out
Hello World!
```

- **mykernel** *(does nothing, somewhat anticlimactic!)*
Developer Tools - Debuggers

NSIGHT
CUDA-GDB
CUDA MEMCHECK

NVIDIA Provided

allinea DDT
TotalView®

3rd Party

Compiler Flags

- Remember there are two compilers being used
  - NVCC: Device code
  - Host Compiler: C/C++ code
- NVCC supports some host compiler flags
  - If flag is unsupported, use –Xcompiler to forward to host
    - e.g. –Xcompiler –fopenmp
- Debugging Flags
  - -g: Include host debugging symbols
  - -G: Include device debugging symbols
  - -lineinfo: Include line information with symbols
CUDA-MEMCHECK

- Memory debugging tool
  - No recompilation necessary
    %> cuda-memcheck ./exe
- Can detect the following errors
  - Memory leaks
  - Memory errors (OOB, misaligned access, illegal instruction, etc)
  - Race conditions
  - Illegal Barriers
  - Uninitialized Memory
- For line numbers use the following compiler flags:
  - -Xcompiler -rdynamic -lineinfo

http://docs.nvidia.com/cuda/cuda-cuda-memcheck
Example 2: CUDA-MEMCHECK

Instructions:
1. Build & Run Example 2
   Output should be the numbers 0-9
   Do you get the correct results?
2. Run with cuda-memcheck
   %> cuda-memcheck ./a.out
3. Add nvcc flags “–Xcompiler
   –rdynamic –lineinfo”
4. Rebuild & Run with cuda-memcheck
5. Fix the illegal write

http://docs.nvidia.com/cuda/cuda-memcheck
CUDA-GDB

- cuda-gdb is an extension of GDB
  - Provides seamless debugging of CUDA and CPU code
- Works on Linux and Macintosh
  - For a Windows debugger use NSIGHT Visual Studio Edition

http://docs.nvidia.com/cuda/cuda-cuda-gdb
Example 3: cuda-gdb

Instructions:

1. Run exercise 3 in cuda-gdb
   %> cuda-gdb --args ./a.out

2. Run a few cuda-gdb commands:
   (cuda-gdb) b main  //set break point at main
   (cuda-gdb) r     //run application
   (cuda-gdb) l     //print line context
   (cuda-gdb) b foo //break at kernel foo
   (cuda-gdb) c     //continue
   (cuda-gdb) cuda thread //print current thread
   (cuda-gdb) cuda thread 10 //switch to thread 10
   (cuda-gdb) cuda block //print current block
   (cuda-gdb) cuda block 1 //switch to block 1
   (cuda-gdb) d     //delete all break points
   (cuda-gdb) set cuda memcheck on //turn on cuda memcheck
   (cuda-gdb) r     //run from the beginning

3. Fix Bug

http://docs.nvidia.com/cuda/cuda-gdb
Developer Tools - Profilers

NSIGHT  NVVP  NVPROF
NVIDIA Provided

TAU  VampirTrace
3rd Party

NVPROF

Command Line Profiler
- Compute time in each kernel
- Compute memory transfer time
- Collect metrics and events
- Support complex process hierarchies
- Collect profiles for NVIDIA Visual Profiler
- No need to recompile
Example 4: nvprof

Instructions:
1. Collect profile information for the matrix add example
   %> nvprof ./a.out
2. How much faster is add_v2 than add_v1?
3. View available metrics
   %> nvprof --query-metrics
4. View global load/store efficiency
   %> nvprof --metrics
gld_efficiency,gst_efficiency ./a.out
5. Store a timeline to load in NVVP
   %> nvprof –o profile.timeline ./a.out
6. Store analysis metrics to load in NVVP
   %> nvprof –o profile.metrics --analysis-metrics ./a.out
NVIDIA’s Visual Profiler (NVVP)

Guided System

Analysis

Timeline

1. CUDA Application Analysis
2. Performance-Critical Kernels
3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory bandwidth, or instruction/memory latency. The results at right indicate that the performance of kernel “Step10_cuda_kernel” is most likely limited by compute.

- Perform Compute Analysis
- Perform Latency Analysis
- Perform Memory Bandwidth Analysis

Instruction and memory latency and memory bandwidth are likely not the primary performance bottleneck for this kernel, but you may still want to perform these analyses.

If you modify the kernel, you need to rerun your application to update the analysis.
Example 4: NVVP

Instructions:
1. Import nvprof profile into NVVP
   Launch nvvp
   Click File/ Import/ Nvprof/ Next/ Single process/
   Next / Browse
   Select profile.timeline
   Add Metrics to timeline
   Click on 2nd Browse
   Select profile.metrics
   Click Finish
2. Explore Timeline
   Control + mouse drag in timeline to zoom in
   Control + mouse drag in measure bar (on top)
   to measure time
Example 4: NVVP

Instructions:
1. Click on a kernel
2. On Analysis tab click on the unguided analysis

2. Click Analyze All
   Explore metrics and properties
What differences do you see between the two kernels?

Note:
If kernel order is non-deterministic you can only load the timeline or the metrics but not both.
If you load just metrics the timeline looks odd but metrics are correct.
Example 4: NVVP

Let’s now generate the same data within NVVP

1. Click File / New Session / Browse
   Select Example 4/a.out
   Click Next / Finish

2. Click on a kernel
   Select Unguided Analysis
   Click Analyze All
NVTX

- Our current tools only profile API calls on the host
  - What if we want to understand better what the host is doing?
- The NVTX library allows us to annotate profiles with ranges
  - Add: #include <nvToolsExt.h>
  - Link with: -lnvToolsExt
- Mark the start of a range
  - nvtxRangePushA("description");
- Mark the end of a range
  - nvtxRangePop();
- Ranges are allowed to overlap

# NVTX Profile

![NVIDIA Visual Profiler](image)

### Process "a.out" (27465)
- Thread 2935871360
  - Runtime API
  - Driver API
  - Markers and Ranges
  - Profiling Overhead

### [0] Tesla K40m
- Context 1 (CUDA)
  - Memcopy (HtoD)
  - Memcopy (DtoH)
- Compute
  - 100.0% kernel(float*, int, int)
  - kernel(float*, int, int)

### Streams
- Stream 13
- Stream 14
- Stream 15
NSIGHT

- CUDA enabled Integrated Development Environment
  - Source code editor: syntax highlighting, code refactoring, etc
  - Build Manager
  - Visual Debugger
  - Visual Profiler

- Linux/Macintosh
  - Editor = Eclipse
  - Debugger = cuda-gdb with a visual wrapper
  - Profiler = NVVP

- Windows
  - Integrates directly into Visual Studio
  - Profiler is NSIGHT VSE
Example 4: NSIGHT

Let’s import an existing Makefile project into NSIGHT

Instructions:
1. Run nsight
   Select default workspace
2. Click File / New / Makefile Project With Existing CodeTest
3. Enter Project Name and select the Example15 directory
4. Click Finish
5. Right Click On Project / Properties / Run Settings / New / C++ Application
6. Browse for Example 4/a.out
7. In Project Explorer double click on main.cu and explore source
8. Click on the build icon
9. Click on the run icon
10. Click on the profile icon
Profiler Summary

- Many profile tools are available
- NVIDIA Provided
  - NVPROF: Command Line
  - NVVP: Visual profiler
  - NSIGHT: IDE (Visual Studio and Eclipse)
- 3rd Party
  - TAU
  - VAMPIR
Optimization

- Assess
- Parallelize
- Optimize
- Deploy
Assess

- Profile the code, find the hotspot(s)
- Focus your attention where it will give the most benefit
Optimize

Timeline

Guided System

Analysis

1. CUDA Application Analysis
2. Performance-Critical Kernels
3. Compute, Bandwidth, or Latency Bound

Perform Compute Analysis
The most likely bottleneck to performance for this kernel is compute so you should first perform compute analysis to determine how it is limiting performance.

Perform Memory Bandwidth Analysis
Instruction and memory locality and memory bandwidth are likely not the primary performance bottlenecks for this kernel, but you may still want to perform these analyses.

If you modify the kernel you need to rerun your application to update the analysis.
Bottleneck Analysis

- Don’t assume an optimization was wrong
- Verify if it was wrong with the profiler

129 GB/s → 4 GB/s

### Shared Memory Alignment and Access Pattern

Memory bandwidth is used most efficiently when each shared memory load and store has proper alignment and access pattern.

**Optimization:** Select each entry below to open the source code to a shared load or store within the kernel with an inefficient alignment or access pattern. For each access pattern of the memory access.

<table>
<thead>
<tr>
<th>Line / File</th>
<th>main.cu - /home/juitjens/code/CudaHandsOn/Example19</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Shared Load Transactions/Access = 16, Ideal Transactions/Access = 1</td>
</tr>
</tbody>
</table>
Performance Analysis

<table>
<thead>
<tr>
<th>GPU Transpose Kernel (int, int, float const *, float)</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Start</strong></td>
<td>770.067s</td>
</tr>
<tr>
<td><strong>End</strong></td>
<td>770.324s</td>
</tr>
<tr>
<td><strong>Duration</strong></td>
<td>256.714s</td>
</tr>
<tr>
<td><strong>Grid Size</strong></td>
<td>[64,64,1]</td>
</tr>
<tr>
<td><strong>Block Size</strong></td>
<td>[32,32,1]</td>
</tr>
<tr>
<td><strong>Registers/Thread</strong></td>
<td>10</td>
</tr>
<tr>
<td><strong>Shared Memory/Block</strong></td>
<td>4.125 KiB</td>
</tr>
<tr>
<td><strong>Efficiency</strong></td>
<td></td>
</tr>
<tr>
<td>Global Load Efficiency</td>
<td>100%</td>
</tr>
<tr>
<td>Global Store Efficiency</td>
<td>100%</td>
</tr>
<tr>
<td>Shared Efficiency</td>
<td>50%</td>
</tr>
<tr>
<td>Warp Execution Efficiency</td>
<td>100%</td>
</tr>
<tr>
<td>Non-Predicated Warp Execution Efficiency</td>
<td>97.1%</td>
</tr>
<tr>
<td><strong>Occupancy</strong></td>
<td></td>
</tr>
<tr>
<td>Achieved</td>
<td>87.7%</td>
</tr>
<tr>
<td>Theoretical</td>
<td>100%</td>
</tr>
<tr>
<td><strong>Shared Memory Configuration</strong></td>
<td></td>
</tr>
<tr>
<td>Shared Memory Requested</td>
<td>48 KiB</td>
</tr>
<tr>
<td>Shared Memory Executed</td>
<td>48 KiB</td>
</tr>
</tbody>
</table>

84 GB/s → 137 GB/s
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.