CSE 599 I
Accelerated Computing - Programming GPUs
Memory and data locality
Module 4.1 – Memory and Data Locality
CUDA Memories
Objective

- To learn to effectively use the CUDA memory types in a parallel program
 - Importance of memory access efficiency
 - Registers, shared memory, global memory
 - Scope and lifetime
// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
 for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {
 int curRow = Row + blurRow;
 int curCol = Col + blurCol;
 // Verify we have a valid image pixel
 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
 pixVal += in[curRow * w + curCol];
 pixels++;
 // Keep track of number of pixels in the accumulated total
 }
 }
}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);
How about performance on a GPU

- All threads access global memory for their input matrix elements
 - One memory accesses (4 bytes) per floating-point addition
 - 4B/s of memory bandwidth/FLOPS
- Assume a GPU with
 - Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
 - 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
 - The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS
- This limits the execution rate to 3.3% (50/1500) of the peak floating-point execution rate of the device!
- Need to drastically cut down memory accesses to get close to the 1,500 GFLOPS
Example – Matrix Multiplication
A Basic Matrix Multiplication

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

    // Calculate the row index of the P element and M
    int Row = blockIdx.y*blockDim.y+threadIdx.y;

    // Calculate the column index of P and N
    int Col = blockIdx.x*blockDim.x+threadIdx.x;

    if ((Row < Width) && (Col < Width)) {
        float Pvalue = 0;
        // each thread computes one element of the block sub-matrix
        for (int k = 0; k < Width; ++k) {
            Pvalue += M[Row*Width+k]*N[k*Width+Col];
        }
        P[Row*Width+Col] = Pvalue;
    }
}
```
Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

 // Calculate the row index of the P element and M
 int Row = blockIdx.y*blockDim.y+threadIdx.y;

 // Calculate the column index of P and N
 int Col = blockIdx.x*blockDim.x+threadIdx.x;

 if ((Row < Width) && (Col < Width)) {
 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k) {
 Pvalue += M[Row*Width+k]*N[k*Width+Col];
 }
 P[Row*Width+Col] = Pvalue;
 }
}

A Toy Example: Thread to P Data Mapping

Thread(0,0) -> Block(0,0)
Thread(1,0) -> Block(0,1)
Thread(1,1) -> Block(1,0)
Thread(0,1) -> Block(1,1)

BLOCK_WIDTH = 2
Calculation of \(P_{0,0} \) and \(P_{0,1} \)
Memory and Registers in the Von-Neumann Model
Programmer View of CUDA Memories

- Grid
- Global Memory
- Constant Memory
- Host
- Block (0, 0)
 - Shared Memory
 - Registers
 - Thread (0, 0)
 - Thread (1, 0)
- Block (1, 0)
 - Shared Memory
 - Registers
 - Thread (0, 0)
 - Thread (1, 0)
Declaring CUDA Variables

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>int LocalVar;</td>
<td>register</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **__device__** is optional when used with **__shared__**, or **__constant__**
- Automatic variables reside in a register
 - Except per-thread arrays that reside in global memory
Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{
 __shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];
 ...
}
Where to Declare Variables?

Can host access it?

- global constant
- outside of any Function
- In the kernel
- register shared
Shared Memory in CUDA

- A special type of memory whose contents are explicitly defined and used in the kernel source code
 - One in each SM
 - Accesses at much higher speed (in both latency and throughput) than global memory
 - Scope of access and sharing - thread blocks
 - Lifetime - thread block, contents will disappear after the corresponding thread finishes terminates execution
 - Accessed by memory load/store instructions
 - A form of scratchpad memory in computer architecture
Hardware View of CUDA Memories

- Global Memory
- Shared Memory
- Processing Unit
- ALU
- Register File
- Control Unit
- PC
- IR
- Processor (SM)
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Module 4.2 – Memory and Data Locality

Tiled Parallel Algorithms
Objective

- To understand the motivation and ideas for tiled parallel algorithms
 - Reducing the limiting effect of memory bandwidth on parallel kernel performance
 - Tiled algorithms and barrier synchronization
Global Memory Access Pattern of the Basic Matrix Multiplication Kernel

Global Memory

Thread 1

Thread 2
Tiling/Blocking - Basic Idea

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time
Tiling/Blocking - Basic Idea

Global Memory

On-chip Memory

Thread 1

Thread 2
Basic Concept of Tiling

- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
 - Carpooling for commuters
 - Tiling for global memory accesses
 - drivers = threads accessing their memory data operands
 - cars = memory access requests
Some Computations are More Challenging to Tile

– Some carpools may be easier than others
 – Car pool participants need to have similar work schedule
 – Some vehicles may be more suitable for carpooling
– Similar challenges exist in tiling
Carpools need synchronization.

- Good: when people have similar schedule
Carpools need synchronization.

- Bad: when people have very different schedule
Same with Tiling

- Good: when threads have similar access timing
- Bad: when threads have very different timing
Barrier Synchronization for Tiling

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

... Thread N-3
Thread N-2
Thread N-1

Time
Outline of Tiling Technique

- Identify a tile of global memory contents that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Use barrier synchronization to make sure that all threads are ready to start the phase
- Have the multiple threads to access their data from the on-chip memory
- Use barrier synchronization to make sure that all threads have completed the current phase
- Move on to the next tile
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Module 4.3 - Memory Model and Locality

Tiled Matrix Multiplication
Objective

- To understand the design of a tiled parallel algorithm for matrix multiplication
 - Loading a tile
 - Phased execution
 - Barrier Synchronization
Matrix Multiplication

- Data access pattern
 - Each thread - a row of M and a column of N
 - Each thread block – a strip of M and a strip of N
Tiled Matrix Multiplication

- Break up the execution of each thread into phases
- so that the data accesses by the thread block in each phase are focused on one tile of M and one tile of N
- The tile is of BLOCK_SIZE elements in each dimension
Loading a Tile

- All threads in a block participate
 - Each thread loads one M element and one N element in tiled code
Phase 0 Load for Block (0,0)
Phase 0 Use for Block (0,0) (iteration 0)
Phase 0 Use for Block (0,0) (iteration 1)
Phase 1 Load for Block (0,0)

Shared Memory

$N_{0,0} N_{0,1} N_{0,2} N_{0,3}
N_{1,0} N_{1,1} N_{1,2} N_{1,3}
N_{2,0} N_{2,1} N_{2,2} N_{2,3}
N_{3,0} N_{3,1} N_{3,2} N_{3,3}$

$M_{0,0} M_{0,1} M_{0,2} M_{0,3}
M_{1,0} M_{1,1} M_{1,2} M_{1,3}
M_{2,0} M_{2,1} M_{2,2} M_{2,3}
M_{3,0} M_{3,1} M_{3,2} M_{3,3}$

$P_{0,0} P_{0,1} P_{0,2} P_{0,3}
P_{1,0} P_{1,1} P_{1,2} P_{1,3}
P_{2,0} P_{2,1} P_{2,2} P_{2,3}
P_{3,0} P_{3,1} P_{3,2} P_{3,3}$
Phase 1 Use for Block (0,0) (iteration 0)

<table>
<thead>
<tr>
<th>N_{0,0}</th>
<th>N_{0,1}</th>
<th>N_{0,2}</th>
<th>N_{0,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{1,0}</td>
<td>N_{1,1}</td>
<td>N_{1,2}</td>
<td>N_{1,3}</td>
</tr>
<tr>
<td>N_{2,0}</td>
<td>N_{2,1}</td>
<td>N_{2,2}</td>
<td>N_{2,3}</td>
</tr>
<tr>
<td>N_{3,0}</td>
<td>N_{3,1}</td>
<td>N_{3,2}</td>
<td>N_{3,3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N_{2,0}</th>
<th>N_{2,1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{3,0}</td>
<td>N_{3,1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{0,0}</th>
<th>M_{0,1}</th>
<th>M_{0,2}</th>
<th>M_{0,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{1,0}</td>
<td>M_{1,1}</td>
<td>M_{1,2}</td>
<td>M_{1,3}</td>
</tr>
<tr>
<td>M_{2,0}</td>
<td>M_{2,1}</td>
<td>M_{2,2}</td>
<td>M_{2,3}</td>
</tr>
<tr>
<td>M_{3,0}</td>
<td>M_{3,1}</td>
<td>M_{3,2}</td>
<td>M_{3,3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_{0,0}</th>
<th>P_{0,1}</th>
<th>P_{0,2}</th>
<th>P_{0,3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{1,0}</td>
<td>P_{1,1}</td>
<td>P_{1,2}</td>
<td>P_{1,3}</td>
</tr>
<tr>
<td>P_{2,0}</td>
<td>P_{2,1}</td>
<td>P_{2,2}</td>
<td>P_{2,3}</td>
</tr>
<tr>
<td>P_{3,0}</td>
<td>P_{3,1}</td>
<td>P_{3,2}</td>
<td>P_{3,3}</td>
</tr>
</tbody>
</table>

Shared Memory

Shared Memory
Phase 1 Use for Block (0,0) (iteration 1)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{0,0}$</td>
<td>$N_{0,1}$</td>
<td>$N_{0,2}$</td>
<td>$N_{0,3}$</td>
</tr>
<tr>
<td>$N_{1,0}$</td>
<td>$N_{1,1}$</td>
<td>$N_{1,2}$</td>
<td>$N_{1,3}$</td>
</tr>
<tr>
<td>$N_{2,0}$</td>
<td>$N_{2,1}$</td>
<td>$N_{2,2}$</td>
<td>$N_{2,3}$</td>
</tr>
<tr>
<td>$N_{3,0}$</td>
<td>$N_{3,1}$</td>
<td>$N_{3,2}$</td>
<td>$N_{3,3}$</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{0,0}$</td>
<td>$M_{0,1}$</td>
<td>$M_{0,2}$</td>
<td>$M_{0,3}$</td>
</tr>
<tr>
<td>$M_{1,0}$</td>
<td>$M_{1,1}$</td>
<td>$M_{1,2}$</td>
<td>$M_{1,3}$</td>
</tr>
<tr>
<td>$M_{2,0}$</td>
<td>$M_{2,1}$</td>
<td>$M_{2,2}$</td>
<td>$M_{2,3}$</td>
</tr>
<tr>
<td>$M_{3,0}$</td>
<td>$M_{3,1}$</td>
<td>$M_{3,2}$</td>
<td>$M_{3,3}$</td>
</tr>
</tbody>
</table>

Shared Memory

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{0,0}$</td>
<td>$N_{1,0}$</td>
<td>$N_{2,0}$</td>
<td>$N_{3,0}$</td>
</tr>
<tr>
<td>$N_{0,1}$</td>
<td>$N_{1,1}$</td>
<td>$N_{2,1}$</td>
<td>$N_{3,1}$</td>
</tr>
<tr>
<td>$N_{0,2}$</td>
<td>$N_{1,2}$</td>
<td>$N_{2,2}$</td>
<td>$N_{3,2}$</td>
</tr>
<tr>
<td>$N_{0,3}$</td>
<td>$N_{1,3}$</td>
<td>$N_{2,3}$</td>
<td>$N_{3,3}$</td>
</tr>
</tbody>
</table>

Shared Memory
Execution Phases of Toy Example

<table>
<thead>
<tr>
<th>Thread</th>
<th>Phase 0</th>
<th>Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>thread_0,0</td>
<td>(M_{0,0}) \Downarrow \ Mds_{0,0} \Downarrow \ Nds_{0,0} \Downarrow \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{0,0} \rightarrow \ Mds{0,0} \cdot Nds_{0,0} + \ Mds_{0,1} \cdot Nds_{1,0})</td>
<td>(M_{0,2}) \Downarrow \ Mds_{0,0} \Downarrow \ Nds_{0,0} \Downarrow \</td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{0,0} \rightarrow \ Mds{0,0} \cdot Nds_{0,0} + \ Mds_{0,1} \cdot Nds_{1,0})</td>
<td>(N_{2,0}) \Downarrow \ Nds_{0,0} \Downarrow \</td>
</tr>
<tr>
<td>thread_0,1</td>
<td>(M_{0,1}) \Downarrow \ Mds_{0,1} \Downarrow \ Nds_{1,0} \Downarrow \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{0,1} \rightarrow \ Mds{0,0} \cdot Nds_{0,1} + \ Mds_{0,1} \cdot Nds_{1,1})</td>
<td>(M_{0,3}) \Downarrow \ Mds_{0,1} \Downarrow \ Nds_{0,1} \Downarrow \</td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{0,1} \rightarrow \ Mds{0,0} \cdot Nds_{0,1} + \ Mds_{0,1} \cdot Nds_{1,1})</td>
<td>(N_{2,1}) \Downarrow \ Nds_{0,1} \Downarrow \</td>
</tr>
<tr>
<td>thread_1,0</td>
<td>(M_{1,0}) \Downarrow \ Mds_{1,0} \Downarrow \ Nds_{1,0} \Downarrow \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{1,0} \rightarrow \ Mds{1,0} \cdot Nds_{0,0} + \ Mds_{1,1} \cdot Nds_{1,0})</td>
<td>(M_{1,2}) \Downarrow \ Mds_{1,0} \Downarrow \ Nds_{1,0} \Downarrow \</td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{1,0} \rightarrow \ Mds{1,0} \cdot Nds_{0,0} + \ Mds_{1,1} \cdot Nds_{1,0})</td>
<td>(N_{3,0}) \Downarrow \ Nds_{1,0} \Downarrow \</td>
</tr>
<tr>
<td>thread_1,1</td>
<td>(M_{1,1}) \Downarrow \ Mds_{1,1} \Downarrow \ Nds_{1,1} \Downarrow \</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{1,1} \rightarrow \ Mds{1,0} \cdot Nds_{0,1} + \ Mds_{1,1} \cdot Nds_{1,1})</td>
<td>(M_{1,3}) \Downarrow \ Mds_{1,1} \Downarrow \ Nds_{1,1} \Downarrow \</td>
</tr>
<tr>
<td></td>
<td>(P\text{Value}{1,1} \rightarrow \ Mds{1,0} \cdot Nds_{0,1} + \ Mds_{1,1} \cdot Nds_{1,1})</td>
<td>(N_{3,1}) \Downarrow \ Nds_{1,1} \Downarrow \</td>
</tr>
</tbody>
</table>
Shared memory allows each value to be accessed by multiple threads
Barrier Synchronization

- Synchronize all threads in a block
 - __syncthreads()

- All threads in the same block must reach the __syncthreads() before any of the them can move on

- Best used to coordinate the phased execution tiled algorithms
 - To ensure that all elements of a tile are loaded at the beginning of a phase
 - To ensure that all elements of a tile are consumed at the end of a phase
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Module 4.4 - Memory and Data Locality
Tiled Matrix Multiplication Kernel
Objective

- To learn to write a tiled matrix-multiplication kernel
 - Loading and using tiles for matrix multiplication
 - Barrier synchronization, shared memory
 - Resource Considerations
 - Assume that Width is a multiple of tile size for simplicity
Loading Input Tile 0 of M (Phase 0)

- Have each thread load an M element and an N element at the same relative position as its P element.

```c
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
```

2D indexing for accessing Tile 0:

- `M[Row][tx]`
- `N[ty][Col]`
Loading Input Tile 0 of N (Phase 0)

- Have each thread load an M element and an N element at the same relative position as its P element.

```c
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
```

2D indexing for accessing Tile 0:

- `M[Row][tx]`
- `N[ty][Col]`
Loading Input Tile 1 of M (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE_WIDTH*WIDTH + ty][Col]
Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1* TILE_WIDTH + tx]
N[1* TILE_WIDTH + ty][Col]
M and N are dynamically allocated - use 1D indexing

\[
M[\text{Row}][p*\text{TILE_WIDTH}\text{+tx}]
\]

\[
N[\text{Row}\text{_Width}\text{+ p_TILE_WIDTH}\text{+ tx}]
\]

\[
N[p_TILE_WIDTH\text{+ty}][\text{Col}]
\]

\[
N[(p_TILE_WIDTH\text{+ty})\text{_Width}\text{+ Col}]
\]

where \(p \) is the sequence number of the current phase
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < Width/TILE_WIDTH; ++p) {
    // Collaborative loading of M and N tiles into shared memory
    ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
    ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
    __syncthreads();

    for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
    __synchthreads();
}
P[Row*Width+Col] = Pvalue;
}
```
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
    __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
    __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

    int bx = blockIdx.x;  int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;

    // Loop over the M and N tiles required to compute the P element
    for (int p = 0; p < Width/TILE_WIDTH; ++p) {
        // Collaborative loading of M and N tiles into shared memory
        ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
        ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
        __syncthreads();

        for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
        __synchthreads();
    }
    P[Row*Width+Col] = Pvalue;
}
```
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
    __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
    __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

    int bx = blockIdx.x;  int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;

    // Loop over the M and N tiles required to compute the P element
    for (int p = 0; p < Width/TILE_WIDTH; ++p) {
        // Collaborative loading of M and N tiles into shared memory
        ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
        ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
        __syncthreads();

        for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
        __syncthreads();
    }
    P[Row*Width+Col] = Pvalue;
}
```
Tile (Thread Block) Size Considerations

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads

- For 16, in each phase, each block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for each memory load)

- For 32, in each phase, each block performs 2*1024 = 2048 float loads from global memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for each memory load)
Shared Memory and Threading

- For an SM with 16KB shared memory
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - For 16KB shared memory, one can potentially have up to 8 thread blocks executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared memory usage per thread block, allowing 2 thread blocks active at the same time
 - However, the thread count limitation of 1536 threads per SM in current generation GPUs will reduce the number of blocks per SM to one!
- Each __syncthread() can reduce the number of active threads for a block
 - More thread blocks can be advantageous
Tiling Granularity

In each phase, a thread loads 2 values, then performs BLOCK_WIDTH multiplications and BLOCK_WIDTH additions.

\[2 \times \text{BLOCK_WIDTH} \text{ FLOPS} / 2 \text{ global memory reads} = \text{BLOCK_WIDTH} \text{ FLOPS} / \text{global memory read} \]
In each phase, a thread loads 1 value, then performs BLOCK_WIDTH/2 multiplications and BLOCK_WIDTH/2 additions.

\[\text{BLOCK_WIDTH FLOPS} / 1 \text{ global memory read} \Rightarrow \text{BLOCK_WIDTH FLOPS} / \text{global memory read} \]
An alternative tiled multiplication kernel

```cpp
__global__ void MatrixMulKernel2(float* M, float* N, float* P, int Width) {
    __shared__ float ds_M[BLOCK_WIDTH][BLOCK_WIDTH/2];
    __shared__ float ds_N[BLOCK_WIDTH/2][BLOCK_WIDTH];

    int bx = blockIdx.x;  int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;

    // Loop over the M and N tiles required to compute the P element
    for (int p = 0; p < 2*Width/BLOCK_WIDTH; ++p) {
        // Collaborative loading of M and N tiles into shared memory
        if ( tx < BLOCK_WIDTH/2 ) {
            ds_M[ty][tx] = M[Row*Width + p*BLOCK_WIDTH/2+tx];
        } else {
            ds_N[tx - BLOCK_WIDTH/2][ty] = N[ (p*BLOCK_WIDTH/2+(tx-BLOCK_WIDTH/2))*Width + bx * blockDim.x + ty ];
        }
        __syncthreads();

        for (int i = 0; i < BLOCK_WIDTH/2; ++i) Pvalue += ds_M[ty][i] * ds_N[i][tx];
        __syncthreads();
    }
    P[Row*Width+Col] = Pvalue;
}
```
Tiling Granularity

In each phase, there are \(2 \times \text{BLOCK_WIDTH} \times \text{BLOCK_WIDTH}/4 = \text{BLOCK_WIDTH} \times \text{BLOCK_WIDTH}/2\) values to load.

However, we have \(\text{BLOCK_WIDTH} \times \text{BLOCK_WIDTH}\) threads, so half of the threads will be idle.

The idle threads still have to wait for memory reads.
Another “tiled” multiplication kernel

```c
__global__ void MatrixMulKernel3(float* M, float* N, float* P, int Width) {
    __shared__ float ds_M[BLOCK_WIDTH];
    __shared__ float ds_N[BLOCK_WIDTH];

    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;

    // Loop over the M and N tiles required to compute the P element
    for (int p = 0; p < Width; ++p) {
        // Collaborative loading of M and N tiles into shared memory
        if (tx == 0) {
            ds_M[ty] = M[Row*Width + k];
        } else {
            ds_N[ty] = N[p * Width + bx * blockDim.x + ty];
        }
        __syncthreads();

        Pvalue += ds_M[ty] * ds_N[tx];
        __syncthreads();
    }

    P[Row*Width+Col] = Pvalue;
}
```
Another “tiled” multiplication kernel

```c
__global__ void MatrixMulKernel3(float* M, float* N, float* P, int Width) {  
    __shared__ float ds_M[BLOCK_WIDTH];  
    __shared__ float ds_N[BLOCK_WIDTH];

    int bx = blockIdx.x;  int by = blockIdx.y;  
    int tx = threadIdx.x; int ty = threadIdx.y;  

    // Collaborative loading of M and N tiles into shared memory
    if ( tx == 0 ) {  
        ds_M[ty] = M[Row*Width + k];
    } else {  
        ds_N[ty] = N[p * Width + bx * blockDim.x + ty];
    }
    __syncthreads();

    Pvalue += ds_M[ty] * ds_N[tx];  
    __syncthreads();
}

P[Row*Width+Col] = Pvalue;
```
Performance Analysis

Matrices are 2048 x 2048

Tiles are 16 x 16

Running on a GTX 980

Max theoretical throughput is 4,616 GFLOPS

This kernel achieves 500 - 600 GFLOPS
Performance Analysis

Matrices are 2048 x 2048

Tiles are 16 x 16

Running on a GTX 980

Max theoretical throughput is 4,616 GFLOPS

This kernel achieves 500 - 600 GFLOPS
Performance Analysis

Matrices are 2048 x 2048

Tiles are 16 x 16

Running on a GTX 980

Max theoretical throughput is 4,616 GFLOPS

This kernel achieves 300 - 400 GFLOPS
Performance Analysis

Matrices are 2048 x 2048

Tiles are 16 x 16

Running on a GTX 980

Max theoretical throughput is 4,616 GFLOPS

This kernel achieves 300 - 400 GFLOPS
Performance Analysis

Matrices are 2048 x 2048

Tiles are 16 x 16

Running on a GTX 980

Max theoretical throughput is 4,616 GFLOPS

Max theoretical memory throughput is ~50 GFlops / s

A kernel without tiling achieves 200-300 GFLOPs
Performance Analysis

Matrices are 2048 x 2048

Tiles are 16 x 16

Running on a Maxwell Titan X

Max theoretical throughput is 6,144 GFLOPS

This kernel achieves ~900 GFLOPS
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.
Module 4.5 - Memory and Data Locality
Handling Arbitrary Matrix Sizes in Tiled Algorithms
Objective

- To learn to handle arbitrary matrix sizes in tiled matrix multiplication
 - Boundary condition checking
 - Regularizing tile contents
 - Rectangular matrices
Handling Matrix of Arbitrary Size

• The tiled matrix multiplication kernel we presented so far can handle only square matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)
 • However, real applications need to handle arbitrary sized matrices.
 • One could pad (add elements to) the rows and columns into multiples of the tile size, but would have significant space and data transfer time overhead.
• We will take a different approach.
Phase 1 Loads for Block (0,0) for a 3x3 Example

Threads (1,0) and (1,1) need special treatment in loading N tile

Threads (0,1) and (1,1) need special treatment in loading M tile
Phase 1 Use for Block (0,0) (iteration 0)
Phase 1 Use for Block (0,0) (iteration 1)

<table>
<thead>
<tr>
<th></th>
<th>N_{0,0}</th>
<th>N_{0,1}</th>
<th>N_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{1,0}</td>
<td>N_{1,1}</td>
<td>N_{1,2}</td>
<td></td>
</tr>
<tr>
<td>N_{2,0}</td>
<td>N_{2,1}</td>
<td>N_{2,2}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M_{0,0}</th>
<th>M_{0,1}</th>
<th>M_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{1,0}</td>
<td>M_{1,1}</td>
<td>M_{1,2}</td>
<td></td>
</tr>
<tr>
<td>M_{2,0}</td>
<td>M_{2,1}</td>
<td>M_{2,2}</td>
<td></td>
</tr>
</tbody>
</table>

All Threads need special treatment. None of them should introduce invalidate contributions to their P elements.
Phase 0 Loads for Block (1,1) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading N tile

Threads (1,0) and (1,1) need special treatment in loading M tile
Major Cases in Toy Example

- Threads that do not calculate valid P elements but still need to participate in loading the input tiles
 - Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but need to participate in loading tile element N[1,2]

- Threads that calculate valid P elements may attempt to load non-existing input elements when loading input tiles
 - Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but attempts to load non-existing N[3,0]
A “Simple” Solution

- When a thread is to load any input element, test if it is in the valid index range
 - If valid, proceed to load
 - Else, do not load, just write a 0

- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element

- The condition tested for loading input elements is different from the test for calculating output P element
 - A thread that does not calculate valid P element can still participate in loading input tile elements
Phase 1 Use for Block (0,0) (iteration 1)

<table>
<thead>
<tr>
<th></th>
<th>N₀,₀</th>
<th>N₀,₁</th>
<th>N₀,₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₁,₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₁,₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₁,₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M₀,₀</th>
<th>M₀,₁</th>
<th>M₀,₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁,₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₁,₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₁,₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M₂,₀</th>
<th>M₂,₁</th>
<th>M₂,₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N₂,₀</th>
<th>N₂,₁</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P₀,₀</th>
<th>P₀,₁</th>
<th>P₀,₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁,₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁,₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁,₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P₂,₀</th>
<th>P₂,₁</th>
<th>P₂,₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shared Memory
Boundary Condition for Input M Tile

- Each thread loads
 - $M[Row][p*\text{TILE}_\text{WIDTH}+tx]$
 - $M[Row*\text{Width} + p*\text{TILE}_\text{WIDTH}+tx]$

- Need to test
 - $(\text{Row} < \text{Width}) \&\& (p*\text{TILE}_\text{WIDTH}+tx < \text{Width})$
 - If true, load M element
 - Else, load 0
Boundary Condition for Input N Tile

- Each thread loads
 - \(N[p\times\text{TILE_WIDTH}+ty][\text{Col}] \)
 - \(N[(p\times\text{TILE_WIDTH}+ty)\times\text{Width}+\text{Col}] \)
- Need to test
 - \((p\times\text{TILE_WIDTH}+ty < \text{Width}) \land (\text{Col} < \text{Width}) \)
 - If true, load N element
 - Else, load 0
Loading Elements – with boundary check

```c
for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {
    if(Row < Width && t * TILE_WIDTH+tx < Width) {
        ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
    } else {
        ds_M[ty][tx] = 0.0;
    }
}
if (p*TILE_WIDTH+ty < Width && Col < Width) {
    ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
} else {
    ds_N[ty][tx] = 0.0;
}
__syncthreads();
```
Inner Product – Before and After

++ if (Row < Width && Col < Width) {
 for (int i = 0; i < TILE_WIDTH; ++i) {
 Pvalue += ds_M[ty][i] * ds_N[i][tx];
 }
 __syncthreads();
} /* end of outer for loop */
++ if (Row < Width && Col < Width)
P[Row*Width + Col] = Pvalue;
} /* end of kernel */
Some Important Points

- For each thread the conditions are different for
 - Loading M element
 - Loading N element
 - Calculating and storing output elements
- The effect of control divergence should be small for large matrices
Handling General Rectangular Matrices

– In general, the matrix multiplication is defined in terms of rectangular matrices
 – A \(j \times k \) M matrix multiplied with a \(k \times l \) N matrix results in a \(j \times l \) P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general rectangular matrices
 – The Width argument is replaced by three arguments: \(j, k, l \)
 – When Width is used to refer to the height of M or height of P, replace it with \(j \)
 – When Width is used to refer to the width of M or height of N, replace it with \(k \)
 – When Width is used to refer to the width of N or width of P, replace it with \(l \)
The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the [Creative Commons Attribution-NonCommercial 4.0 International License](https://creativecommons.org/licenses/by-nc/4.0/).