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Abstract—System identification is an essential first step in
robotic control. Here we focus on the calibration of kinematic
sensors, such as joint angle potentiometers, tendon/actuator
extension sensors and motion capture markers, on complex
humanoid robots.

Manual calibration with protractors and rulers does not
scale to complex humanoids like the ones studied here. Classic
automatic approaches cross-calibrate multiple sensor systems on
the same robot by exploiting their redundancy. However, these
approaches make the strong assumption that the observed joint
angles are functions of the sensor measurements plus observation
noise. This assumption is too restrictive on modern humanoids
where linear actuators and tendons span multiple joints.

Here we formulate the calibration problem as a Bayesian
inference process on a generative model where hidden joint-
angles generate sensor observations. A novel alternating opti-
mization approach is developed to simultaneously track space-
time joint angles and calibrate parameters (STAC). Explicit
estimation of joint angles makes it possible to calibrate sensors
that otherwise cannot be handled by classical approaches, such as
tendons wrapping on complicated surfaces and spanning multiple
joints. We evaluate STAC to calibrate joint potentiometer, tendon
length sensor and motion capture marker positions, on a 38-
DoF humanoid robot with 24 optical markers, and a 24 DoF
tendon driven hand with 12 markers. We show that STAC can
be applied to problems that cannot be handled with classical
approaches. In addition we show that for simpler problems STAC
is more robust than classical approaches and other probabilistic
approaches such as the Extended Kalman Filter.

I. INTRODUCTION

System identification (ID) is an essential first step in robotic

control, and can be divided into kinematic and dynamic system

identification. Dynamic ID deals with quantities which emerge

when there is movement, like moments-of-inertia and friction

coefficients. Kinematic ID deals with parameters which are

relevant even when the velocity is zero, i.e. geometric prop-

erties. For example, a pick-and-place robot with an inaccurate

kinematics model will do a poor job, regardless of how

slow it moves. In this paper, we focus on kinematic ID,

including calibrating joint angle and cylinder extension sensors

which are typically measured by potentiometers, magnetic or

optical encoders. Some of these sensors are directly mounted

on the joints; others are connected through a transmission

mechanism, such as cranks, cables, tendons or gears. These

mechanisms while useful, may change their dynamic range,

linearity, and even accuracy of the sensors, all of which

essentially contribute additional parameters to be identified.

Manual calibration approaches usually rely on ground-

truth joint angle measurements using protractors, and the

corresponding joint angle sensor readings. Regression models

are then used to learn a function that maps sensor reading

into joint angle estimates. We found this approach to be

inaccurate and inefficient when applied to complex robot

platforms. Accurate measurements are hard to obtain with a

protractor, our robot’s arms are covered with tubes and their

surface is uneven; making it difficult to align a protractor to

a joint. Empirically, measurement precision can be as bad

as 5 degrees. The approach is also very time-consuming

especially on a large number of joints. One of the humanoid

platforms studied in this paper has 38 joints and many of them

come with non-linear transmission mechanisms which require

multiple measurements over different angles to fully identify

the underlying parameters. Furthermore, calibration values can

change after each repair or intensive use. The development of

a fully automatic calibration system is necessary to keep the

robot fully functional.

More sophisticated kinematic ID approaches cross-calibrate

multiple sensor systems on the same robot by exploiting their

redundancy [3]. For example, consider a robot with poten-

tiometers measuring joint angle and motion capture markers

attached to some of the bodies. Assuming both sensors are

calibrated, one can infer the pose of the robot using either

system, thus the redundancy. However, before the calibration,

neither of the systems is accurate. Both come with unknown

parameters: the gain and bias for potentiometer and the

positions of the markers. To calibrate these parameters, one

first collects synchronized measurement from both sensors for

multiple frames, and then tries to find the optimal values, such

that the two sensor systems agree with each other.

However current kinematic ID approaches assume that the

observed joint angles are a function of the sensor measurement

plus some observation noise. This assumption raises two

issues: First, the assumption would only work for simple one-

joint-to-one-sensor sensor types as in Fig. 3abc. Pose sensor

measurement on modern humanoids may depend on multiple

joint angles. For example, modern dexterous hands are driven

by tendons where the length of a tendon is a linear function

of multiple joint angles (Fig. 3e). For hydraulic or pneumatic

systems, it is common to apply linear actuators to multiple

DoF joints such as the 2-DoF rotational gimbal as in Fig. 3d

and the Stewart platform [2]. In these cases, it is generally

not trivial to write joint angle as a function of the sensor

measurement. More importantly, in some cases the noise-free

mapping between sensors and joint angles may be a multi-

valued function. In this work, we formulate the relationship

between sensors and joint angles as a Bayesian generative
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model in which sensor measurements are noisy observations

generated from joint angles. This contrasts with the classical

regression-based approach in which the joint angles are treated

as noisy observations generated by noiseless sensor readings.

This approach lets us calibrate robots in which the relationship

between joint angles and sensors is very complex and cases

in which the observed angles are not a single-valued function

of the sensor readings.

II. MULTI-SENSOR PARAMETER AND JOINT ANGLE

ESTIMATION

Consider a tree-structured robot of n-joints with a known

(skeletal) kinematics model, including link lengths, joint posi-

tions and types. The robot is equipped with different types of

pose sensors which measure some quantities as parameterized

functions of one or more joint angles and derived quantities,

such as body positions or orientations. The goal is to identify

these (fixed) sensor parameters from multiple synchronized

measurements from the multiple sensors.

A. Classical Methods

The past decades have seen the development of kinematic

calibration methods that do not require ground truth knowl-

edge of joint angles [3]. Let the forward kinematics function

h of a robot arm be as follows

x̂ = h(q, θ) (1)

where x̂ is the end-effector pose, q ∈ Rn are the joint angles

and θ are parameters to be identified including potentiometer

gains θgain and biases θbias. Typically, potentiometer readings

are linear functions of the joint angles,

qj = θgain,j · pj + θbias,j (2)

where pj is the reading from the corresponding potentiometer.

Therefore we can rewrite the (1) as

x̂ = h(θgain,jpj + θbias,j , θ) = h(pj , θ). (3)

Under this framework the system ID problem can be formu-

lated as a non-linear regression problem. Given a sufficient

number synchronized measurement of (xt, pt), the goal is to

find a parameter vector θ that minimizes a sum of squared

errors cost function

L(θ;x1:T , p1:T ) =

T∑

t=1

||x̂t − xt||
2
2 =

T∑

t=1

||h(pt, θ)− xt||
2
2.

(4)

Note that explicit estimation of joint angle q is unneces-

sary. Such formulation is convenient. However regression

approaches rely on the assumption that the observed joint

angles q are a function of the sensor readings plus some ob-

servation noise. This assumption is often violated in complex,

biologically-inspired humanoid robots.
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Fig. 1. The graphical model of the (a) classical approach (b) our approach.
Joint angles q and sensor parameters θ are hidden and sensor measurements
v are observed (shaded).

B. Generative Model

While regression models assume that joint angles are a

function of sensor readings, here we use the much weaker

assumption that sensor reading are a function of joint angles.

Figure 1 illustrates the probabilistic graphical models corre-

sponding to the classical regression based approach and to the

approach we propose (STAC). On the top row, each unshaded

node qt represents the hidden joint angles in snapshot t while

on the left column, each unshaded node θi represents unknown

parameters of sensor i. In the middle, the observed sensor

measurements are organized into the array of shaded nodes,

where the rows are measurements from the same sensor and

columns are measurements in the same snapshot. The measure-

ment from sensor i in snapshot t is then denoted as vit. The

left panel (a) shows the model for classical regression based

approach. Joint angles q1:T are generated from potentiometer

reading v11:T and parameters θ1 as shown in dashed arrows.

For STAC on right panel (b), we re-assign these arrows that

all the sensor measurement (whether it is from potentiometer

or not) are generated from joint angles and sensor parameters.

Standard graphical model machinery can be used to com-

pute the negative log likelihood function used by STAC

LL(q1:T ,θ) = −
M∑

m=1

T∑

t=1

log p(vmt |qt; θ
m). (5)

where v represents sensor observations, θ represents kinematic

parameters and q1:T represents joint angles.

C. Alternating Descent Optimization

The standard maximum likelihood approach to estimate θ
is to directly minimize LL(q, θ). However, direct optimization

over all the parameters and joint angles is difficult due to large

number of parameters. Consider a 38-DoF humanoid with 2

parameters for each joint and a collection of 100 snapshots

would easily amount to 3876 parameters!
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We found that the optimization process could be greatly

accelerated by using an approach that alternated between

two phases: a p-phase that estimates sensor parameters while

keeping joint angle fixed and a q-phase that estimates joint

angles using the updated sensor parameters. The optimization

in each phase can be further divided into multiple simpler and

parallelizable sub-problems taking advantage of the special

structure of the graphical model. The idea is justified by the

following two key observations:

• joint angles qt’s of different time frames are conditionally

independent from each other when θi’s are known;

• on the other hand, the parameter θi’s of different sensors

are conditionally independent from each other when joint

angles are known.

Using this property we can re-write the maximum likelihood

problem as

min
θ,q1:T

M∑

m=1

T∑

t=1

log p(vmt |qt; θ
m)

=
∑

m

min
θm

(
T∑

t=1

min
qt

log p(vmt |qt; θ
m)

)

. (6)

Notice that the maximization subproblems inside the sum-

mations can be optimized independently. In many cases, the

subproblems solving each qi or θi are simple enough to have

closed-form solutions. Even when numerical optimization is

necessary, these subproblems can be optimized in parallel over

multiple processors.

D. Sensor Observation Noise Model

Typically, sensor measurement is assumed to be contami-

nated by additive zero-mean σ2
v variance Gaussian noise,

P (vmt |qt; θ) = N
(
v|v̂m(qt; θ), σ

2
v

)
. (7)

Then, the maximum likelihood problem is equivalent to a least

squares problem. In other words, the likelihood function can

be written as

LL(q,θ) =
1

2
r(θ, q)T r(θ, q) +

TM

2
log 2π (8)

where the residual vector is

r(θ, q) =








r(θ, q1)
r(θ, q2)

...

r(θ, qT )







, r(θ, qt) =

1

σv








v1t − v̂1t (θ, qt)
v2t − v̂2t (θ, qt)

...

vMt − v̂Mt (θ, qt)







.

(9)

Here we put the variance σv at sensor level as the same type of

sensor typically share similar noise variance. One can certainly

use a per-sensor variance option when necessary. There are off-

the-shelf tools solving non-linear least squares problem, such

as Gauss-Newton or Levenberg-Marquardt approaches.

Mocap Origin

marker  m

baselink
(Robot Origin)

joint 1

joint 2

x̂m

dm

Li
nk

1

Link2

x̂b
m

Fig. 2. markers on kinematics chain

III. CASE STUDY: CALIBRATING JOINT/TENDON

POTENTIOMETER AGAINST MOTION CAPTURE

Motion capture systems, are becoming standard measuring

tools in robotic labs for various control and identification tasks

[1], [5], [6]. In this section, we study the case of using motion

capture system to calibrate other sensors.

There are two type of pose sensors on the robot: rotary

potentiometers for 1-DoF rotary joints and linear potentiome-

ters for 2-DoF Gimbal joints. To identify the potentiometer

parameters, we attach M motion capture markers to some

links of the robot as auxiliary sensors. In total, the sensor

parameters to be identified are potentiometer gains and bias,

the translation and rotation of motion capture coordinate frame

from the robot baselink frame and the marker positions on the

links, or

θ =
[
θgain θbias R T0 d1:M

]
. (10)

Next, we describe how the observations of the various types

of sensors are generated and how to solve for the parameters

analytically in the “p-phase”. For notational clarity, we further

split the observation variable v : {x, p} into x for motion

capture markers and p for potentiometers.

A. Motion Capture Markers

Figure 2 shows the spatial relationship of a marker m and

the parent link (link 2) it is attached to. Let dm be the unknown

marker local position in the parent link frame. Then the marker

position in the robot (baselink) frame is,

x̂b
m(dm, qt) = hr(qt)dm + hp(qt), (11)

where h(·) is the forward kinematics function that calculates

the position (hp) and orientation (hr) of the parent link, to

transform dm into the baselink frame.

The motion capture system measures 3-dimensional position

of the markers xm,t ∈ R
3,m = 1, 2, . . . ,M in the motion

capture frame. We denote the transformation from baselink-

to motion-capture-frame by rotation matrix R ∈ R
3×3 and

translation T0 ∈ R
3. Then the prediction of marker position

in the motion capture frame is

x̂m(R, T0, dm, qt) = Rx̂b
m(dm, qt) + T0. (12)
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Fig. 3. Exemplar joint types where qj are generalized joint an-
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During the “p-phase” of alternating descent, we solve for the

parameters R, T0, dm while fixing the joint angles q1:T . The

transformation parameters (R, T0), which affect all markers at

all times, can be solved for using Procrustes analysis of rigid

body motion problem [7]: First we calculate the center of the

markers in each coordinate system,

x̄b =
1

MT

M∑

m=1

T∑

t=1

x̂b
m,t, x̄ =

1

MT

M∑

m=1

T∑

t=1

xm,t. (13)

Next, the rotation matrix can be obtained through singular-

value-decomposition of the “covariance matrix”,

∑

m,t

(x̂b
m,t − x̄b)(xm,t − x̄)T

SVD

= UΣV T . (14)

Then,

R = sign(det(Σ))V UT (15)

T0 = x̄−Rx̄b (16)

Finally, the local position of the markers in the corresponding

link can be identified by taking the average of observed marker

position in the link coordinate (12) :

d̄m =
1

T

T∑

t=1

hr(qt)
−1
(
R−1(xm,t − T0)− hp(qt)

)

︸ ︷︷ ︸

x
b
m,t

(17)

B. Potentiometers

There are several popular types of potentiometer mountings

as shown in Fig.3. Although potentiometers are typically

linear in the rotation angle or linear in the displacement, the

transmission mechanism can be either linear or non-linear.

For linear (fixed gearing or direct driving) transmission,

such as a hinge joint with one rotary potentiometer (Fig.3a) or

a sliding joint with a linear potentiometer (Fig.3b), the output

voltage p̂ is linear in the joint angle.

p̂(θ, q) = θgainq + θbias (18)

C. Tendons

Tendons are force transmission mechanism connecting two

links. The length of a tendon can be used to determine the

joint angles between the two links. Classical regression based

approaches cannot handle this case because typically there

are many joint angle combinations that yield the same tendon

length i.e., the mapping from tendon lengths to joint angles is

not a single-valued function. Figure 3e shows the tendon used

in an anthropomorphic tendon-driven finger. Another type of

tendon setup uses linear actuators/sensors on 2-DoF rotation

joints. As it is not easy to attach rotary potentiometers on the

2DoF Gimbal structure, two linear potentiometers are attached

across the two links on distinct pairs of points (Fig.3d) to

measure the joint angles. The anchor points are available from

the CAD model. For convenience, the measured voltage and

calculated length of these potentiometers are referred to as

p1, p2 and L1, L2 while the corresponding joint angles are q1
and q2. The predicted measurement is then

p̂1(θ, q) = θgainL1(q1, q2) + θbias (19)

p̂2(θ, q) = θgainL2(q1, q2) + θbias, (20)

Note that it is easy to calculate L(·) from q as part of the

analytical forward kinematics routine but inferring q from L
would require numerical inverse kinematics.

When solving for the potentiometer parameter given the

joint angle qt and the measured voltage pt at snapshot t,
whether the transmission is linear or nonlinear, the equations

(18)-(20) are always linear in θgain and θbias, and thus can be

estimated using linear least squares methods.

D. Space-Time Joint Angles

Once the sensor parameters are updated, we turn to the

“q-phase”: optimizing for the joint angles. The goal is to

maximize the log-likelihood,

q∗t = max
qt

∑

m ||x̂mt − xmt||
2
2

σ2
x

+

∑

j ||p̂jt − pjt||
2
2

σ2
p

. (21)

All we need is the Jacobian:

∂p̂j(θ, qt)

∂qt
=

{

θgain rotary pots.

θgain
∂L(qt)
∂qt

linear pots.
(22)

∂x̂m(θ, qt)

∂qt
=

∂hm(qt; dm)

∂qt
, (23)
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Fig. 4. Extended Kalman Filter for simultaneous calibration and tracking.
The variance (shaded band) of parameter shrinks more data is seen.

where both
∂L(qt)
∂qt

and ∂hm

∂qt
are standard kinematics Jacobian

available in almost every kinematics packages such as [8].

E. Dynamic Variance Adjustment

Distinct types of sensors produce residual of different

dynamics range so the variances σ2
v : {σ2

x, σ
2
p} have to be

adjusted to the right scale. We initialize these parameter to

the corresponding sensors’ dynamic range and re-estimate the

variance in each iteration based on the residuals.

IV. RELATED WORK

We compare our formulation to two related approaches here

and present the experimental comparison in the next Section.

A. Kalman Filter for Tracking and Calibration

The Extended Kalman filter (EKF) is an algorithm for

tracking the state of a system with known dynamics and

observation function from a noisy time series of observations.

It has been applied to human skeleton tracking and kinematics

identification [9]. Figure 4 gives an example how the EKF can

be used to solve our tracking and calibration problem.

In this method, the state space consists of both joint angles

qt and parameters θt. Since the control sequence applied to the

robot is assumed unknown, the dynamics equation contains

only a drift term w with large variance Σq for time-varying

joint angles and zero-variance for fixed parameters,
[
θt+1

qt+1

]

=

[
θt
qt

]

+ w, w ∼ N (0,

[
0

Σq

]

) (24)

The observation function is same as what we use in STAC,

see Sec.III. For both potentiometers p̂ and motion capture

markers x̂ with observation noise z

vt = [p̂(θt, qt); x̂(θt, qt)] (25)

vt+1 = vt + z, z ∼ N (0, σ2
v). (26)

The EKF updates require linearization vt around current state

which needs the Jacobian

∂vt
∂(θt, qt)

=

[
∂p̂
∂θt

∂p̂
∂qt

∂x̂
∂θt

∂x̂
∂qt

]

(27)

The derivatives with respect to q are in (22) and (23) and

those with respect to θ are also analytical. In practice, because

the linearized observation function is only valid at a local

neighborhood around the current state, the EKF is prone to

divergence without proper seeding of initial state.

Even with proper starting seed, once EKF loses track of

the target due to observation noise at time t, the estimation

will typically remain off after t. This is one of the major

difference between STAC and EKF: while EKF tracks the

parameters and space-time joint-angles sequentially in time,

STAC jointly optimizes for them across time. Therefore, an

erroneous estimate at one time frame would not propagate as

in EKF. We will compare the robustness of EKF to STAC

under various seeding and observation noise in Sec.VI-B.

B. Classical Regression-Based Approaches

Classical approaches (Sec. II-A) can be seen as a special

case of STAC with zero joint potentiometer sensor noise σp =
0. In this way, the potentiometer term in the likelihood function

(21) approaches infinity, effectively making it a constraint.

Then the overall least squares problem can be simplified as

maxθ,d
∑

t maxqt
∑

m ||x̂mt(θ, qt)− xmt||
2
2/σ

2
x

subject to p̂jt(θ, qt) = pjt
(28)

If the constraints are all about simple one-joint-to-one-

potentiometer, such that the joint angles can be inferred from

measurement analytically, we can re-write the constraints as

qj = qj(pj , θj). Plugging qj into the objective function in

place of qj(·), we obtain

max
θ,d

∑

t

∑

m

||x̂mt(q(p̂t,θ))− xmt||
2
2, (29)

which is identical to (4)

V. EXPERIMENT SETUP

We performed experiments on a complex pneumatics-based

humanoid robot [10] named “Diego San” as well as a dexter-

ous tendon-driven hand [4].

A. Humanoid

Figure 5(c) shows a picture of Diego San. It is a pneumatic

humanoid with body parts proportional to that of a 1-year old

human body. Among 38 joints, 4 are 2-DoF Gimbal joints

(as in Fig. 3(d)) with two linear potentiometers measuring the

length of the two pneumatic cylinders (e.g., neck, Fig. 5(a));
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Fig. 5. Diego San – the humanoid robot used in this study.

the rest of the joints are hinge type (as in Fig. 3(a)) with gear

transmitted rotary potentiometers (e.g., elbow, Fig. 5(b)).

We attached 24 markers to every other link counting from

the baselink taking advantage of the fact that the rotation

axes of adjacent joints are mostly non-parallel. In this way,

we were able to perform full-body sensor calibration without

putting markers to every link. During motion capture, the robot

was driven by a simple PID controller to move the joints

randomly. Both marker positions and potentiometer readings

were captured synchronously at 100Hz for 250 seconds. The

traces are visualized in Fig.5(d).

The kinematic model was extracted from the CAD file pro-

vided by the manufacturer (Kokoro Robotics), which includes

link lengths, joint locations and orientations. The baselink of

the robot is the waist, which was hung from a stable crane.

Therefore we could safely assume that the transformation

between the robot baselink and motion capture coordinate

systems was constant.

B. Tendon Driven Hand

The dexterous hand by Shadow Robot is a human sized hand

with 24 joints [4] (Fig.7(c)). The joints are actuated by pairs

of tendons with the pneumatic pistons mounted at the fore-

arm. Each joint has a Hall-effect joint angle sensor and the

tendon lengths are also measured at the pistons. The tendon

lengths are functions of one or more joint angles depending

on the anchor points.

VI. SIMULATION-BASED EXPERIMENTS

To evaluate how precise our methods can recover the

unknown parameters, we started with a set of random ground-

truth parameters internally, and then generated simulated noisy

sensor observations.

A. Selection of Optimization Algorithms for q-phase

Here we explore different strategies for optimizing the joint

angles in q-phase. The simulation experiments were performed

using synthesized 200 random joint angles and corresponding

noisy observations from the Hand robot model. The initial

seeding parameters and joint angles are all zero except for the

rotation matrix which is set to the identity.

LM-batch: To start, we optimize for the joint angles until

convergence and then solve for sensor parameters until con-

vergence. This gives the Levenberg-Marquardt method enough

steps to find the right step size. However, we observed that

allowing full LM convergence tended to drive the optimization

process into local minima before the sensor parameters had a

chance to settle into the correct region.

LM-iter: In addition, we observed that after few alterna-

tions, LM converged in less than 5 iterations without much

progress on the objective value. To address this problem we

tested a second approach in which we alternated between joint

angles and sensor parameters after each LM step iteration.

BFGS: In addition to LM we also evaluated another popular

optimization algorithm, BFGS. When computing the gradient

∂LL/∂q, we first optimize for the parameters until conver-

gence.

Figure 6(a) and 6(b) show the negative likelihood of the ob-

jective function and mean-relative-error between the estimated

parameters and ground truth parameters. We use relative error

because the range of different parameters is quite different.

It is observed that BFGS performs best immediately fol-

lowed by LM-iter. LM-Batch converged slower and the param-

eter actually diverged in the first 10 iterations but recovered

later.

B. STAC vs Kalman Filter - Resistance to Noise

We analyzed the sensitivity of the different algorithms to

the quality of seeding parameter as well as observation noise.

Typically the seeding parameters are from manual calibration.

While precise manual calibration is time-consuming, rough

eyeballing measurement is generally enough to get the algo-

rithm to converge to the correct local minimum.
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Fig. 6. Performance comparison of optimization algorithms in “q-phase”

We first synthesized smooth random robot movement traces

for 500 time steps within the nominal joint limits. Next we

added various amount of Gaussian noise to both seeding

parameter and the simulated sensor readings (3d markers and

generalized potentiometers).

Then the data was fed to both STAC and EKF to evaluate

how well they tracked the joint angles and parameters over

time. The seeding and observation noise σv in EKF and in

STAC were set to match the injected noise.

Note that for EKF, the initial state consists of both initial

parameter and joint angle for the first frame. We set EKF

initial joint angle q0 to ground truth as it diverges immediately

otherwise. On the other hand, STAC required seeding for both

parameter and the entire joint angle trajectory. We therefore

initialized every frame to the first frame given to EKF.

The performance evaluation was separated into two parts:

the accuracy of estimated parameter and space-time joint

angles. Figure 7 plots the number of diverged variables as

gray level images. Divergence is quantified by thresholding

the distance between the estimated and ground truth variable.

With regard to estimation of sensor parameters we found that

EKF’s performance is quite robust to the presence of sensor

noise but it is very sensitive to noise in the seeding parameter

values. STAC was much more robust than EKF to noise in the

seeding parameter values but slightly more sensitive than EKF

when large amount of sensor noise was present. With regard to

the tracking of joint angles, STAC greatly outperformed EKF.
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vation noise. The first column is the seeding parameter error for comparison.

(a) initial pos (b) calibrated (c) ground truth

Fig. 8. Hand robot: marker positions before/after calibration

VII. EXPERIMENTS WITH PHYSICAL ROBOTS

We evaluated the models learned by STAC using two

different robots (Diego San and the tendon driven dexterous

hand). The evaluation criteria were based on the precision of

the estimated marker positions, and the ability to fit novel data.

A. Identified Marker Position

As we saw in the previous section, STAC is quite robust

to errors in the parameter initialization. In both robots, we

initialized the marker positions to the origin of the link it

is attached to. Typically, the origin of a link is on the joint

connection to its parent link. Fig.9(a) and Fig.8(a) shows the

initial position.

With Diego San we used manual calibration of joint angles

as seed values while for the dexterous hand we simply

initialized all the parameter to zero. After optimization, we

compared the estimated marker position to the pictures of

the robots side-by-side in Fig. 8(b) and Fig.9(b) The close

correspondence again verified that our calibration procedure

worked properly.
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Fig. 9. Diego San Humanoid: marker positions before/after calibration

TABLE I
HAND: CROSS SENSOR PREDICTION ON NOVEL DATA. (MAE)

Sensor Set 3D Marker(m) Joint (rad) Tendon (m)

Joint(manual) 0.0201 0.2610 0.0022

Marker (stac) (0.0026) 0.1384 0.0014
Joint (stac) 0.0119 (0.0020) 0.0010

Tendon (stac) 0.0077 0.0895 (0.0007)

Joint+Tendon (stac) 0.0095 (0.0164) (0.0009)
Joint+Tendon+Marker (stac) (0.0023) (0.0313) (0.0009)

B. Cross-Sensor Prediction on Novel Data

As ground truth parameters of to-be-calibrated robots are

unknown, we employee a training/testing data approach to

evaluate model accuracy. The collected traces were split into

training and testing sets. First we estimated system parameters

from the training set and then use these parameter to predict

values of one type of sensor in the test set given other sensor

readings. We report the mean absolute error in Tbl. I and

Tbl. II. The prediction is obtained by first running the joint

optimization algorithm given the selected subset of sensors

(left column), and then use the obtained joint angles to infer

the target sensor value (column header). For example, the

first column “3D-marker” reports the mean distance between

predicted and measured marker positions given individual

or combination of other redundant sensors. The values in

parentheses predict the same type of sensors, which can be

seen as fitness of the model to the data.

For the hand robot (Tbl. I), the movement of a joint is

observed by all three types of sensors simultaneously. In fact, it

is possible to predict joint angle given only one type of sensor.

Comparing to the manual calibration done by manufacturer,

STAC reduced the error by half in all sensor types. For Diego

San (Tbl. II), we performed a very coarse manual calibration

for joint/tendon potentiometer gains and biases. We did not

calibrate the markers. Comparing to manual calibration, STAC

TABLE II
HUMANOID: CROSS SENSOR PREDICTION ON NOVEL DATA (MAE).

Sensor Set Marker(m) Joint Pot(volt) Tendon (m)

Joint+Tendon(manual) 0.0836 0.0000 0.9707
Joint+Tendon(stac) 0.0114 (0.0012) (0.0028)

Joint+Tendon (stac-σp = 0 ) 0.0199 (0.0000) (0.0035)

reduced marker error 7.3-fold when using joint/tendon sensors

to infer joint angles.

The last row in Tbl. II reports the performance when the

parameters are trained with the classical transparent joint-

angle approach (see Sec. IV-B) assuming noise free joint angle

sensor (σp = 0). The performance is worse than STAC.

VIII. DISCUSSION

We proposed an efficient approach “STAC”, that jointly

estimates sensor parameters as well as joint angles from

multiple redundant sensors. Contrary to previous approaches,

STAC can handle complex biologically inspired configurations

in which the mapping from sensors to joint angles is one

to many (i.e. not a function). This allows STAC to handle a

much wider range of sensors than classical methods, like linear

length sensors linking multiple joints. With the aid of multiple

markers, our approach converges with little or no initialization.

The algorithm was evaluated on complex 38-joint humanoid

robot as well as a 24-joint tendon-driven hand – with very

good results.
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