
Canaries in the Network

Danyang Zhuo, Qiao Zhang, Xin Yang, Vincent Liu†

University of Washington, University of Pennsylvania†

{danyangz, qiao, yx1992, vincent}@cs.washington.edu

ABSTRACT
Updating a large network deployment is a dangerous process.
Regardless of whether the operation is a switch BGP config-
uration change or a network-wide SDN controller upgrade,
misconfigurations and bugs can potentially cause network
outages and downtime for critical cloud services. Many cloud
applications have adopted a useful strategy that networks have
tried to emulate: phased rollouts, in which a small fraction of
users are redirected to the updated version while most users
continue unassailed. Unfortunately, this analogy is fundamen-
tally flawed. This paper explores the limits of phased rollouts
in networks and shows when and why they can fail. We also
go on to propose two preliminary designs for approximating
the benefits of phased rollouts. Although preliminary, we
argue that our designs can achieve a useful level of isolation
between a ‘known correct’ and ‘new’ control plane.

1. INTRODUCTION
In any large, complex system, nothing is riskier than change.

Change in the form of new hardware, software, and config-
urations can introduce untested code or trigger latent bugs.
This was true three decades ago when Jim Gray published
one of the first papers with failure statistics from a produc-
tion system1, and by many accounts, it is even more true of
the large-scale networks found at the center of today’s cloud
service providers [4, 9, 12].

Part of what makes this problem difficult is the fact that
these networks, by their very nature, are connected—a change
in one part of the network can necessitate changes elsewhere.
For instance, when a data center operator adds/removes an
IP prefix from a rack of servers, the network may need to
130% of failures were of new hardware/software, 29% were due to
system administration (e.g., config changes, maintenance, etc.).

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from per-
missions@acm.org.

HotNets-XV, November 9–10, 2016, Atlanta, Georgia, USA.
© 2016 ACM. ISBN 978-1-4503-4661-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3005745.3005767

distribute new BGP updates to the rest of the network to en-
sure that the new prefix is routable. If she mistakenly added a
prefix that is too large, a great deal of traffic can be incorrectly
diverted to the rack. If the routing updates trigged latent bugs
in the BGP implementation, the entire network can go down.

More generally, control plane bugs and misconfigurations
can be triggered by either operator intervention or the arrival
of previously-untested inputs (e.g., a routing update). Errors
can lead to bad switch configurations that either drop or
redirect packets. Redirected packets can, in turn, negatively
impact other switches effectively performing a Denial-of-
Service (DoS) attack.

While these types of errors may seem trivial to check for,
but the reality is that the size and complexity of these systems
make them inevitable [2, 3, 15, 17]. This is despite exten-
sive testing [10, 31] and verification [8, 14, 20, 21, 26] of new
software, hardware, and configurations. As we move toward
more complex routing policies and logically-centralized con-
trol planes like the ones envisioned by Software-Defined
Networking (SDN), the problem becomes even more difficult
because the SDN platform and control applications have a
great deal of control over the network and can be a single
point of failure.

Rather than trying to prevent mistakes, we ask a different
question: how can we do a better job of rolling out changes
safely? Many large-scale applications accomplish a similar
objective through phased rollouts in which a small fraction of
users are redirected to an updated version of the software, and
the rest of the population is incrementally added to the set.
Using this technique, the updated version is strongly isolated:
infrastructure that was not chosen as part of the rollout never
interacts with infrastructure that was. Is there an analogue in
networks? Such a mechanism would allow operators to roll
out new switch configurations or SDN control software to
a fraction of the network with a guarantee that the effect is
completely isolated from the rest of the network.

We make the observation that, in general, such a mecha-
nism is impossible—the connected nature of networks means
that, outside of duplicating the entire deployment, networks
cannot have the degree of isolation enjoyed by phased applica-
tion rollouts. This is true for networks with in-network control
planes (e.g., BGP) and is also true for those with logically-

36

http://dx.doi.org/10.1145/3005745.3005767

centralized control planes (e.g., OpenFlow [28]/ONIX [22]).
Our primary contribution is to identify several different

levels of canary isolation and discuss their application to com-
puter networks. As part of this, we introduce two approaches
to approximating a phased rollout for data center networks.
In both approaches, the underlying objective is to divide the
network into a ‘known correct’ and a ‘new’ partition such
that (1) the old partition’s operation does not need to rely on
the correct behavior of the new one, and (2) the partitioning
can be adjusted dynamically. This type of flexible isolation
allows operators to limit the impact of network control plane
bugs and misconfigurations. For both, we briefly outline how
they can be implemented using readily available hardware
features and protocols. We leave a more detailed exposition
and analysis to future work.

2. BACKGROUND AND MOTIVATION
We begin our discussion by framing the types of errors

that can result from changing a network deployment. This
will lead into our discussion of the extensive steps network
operators take to harden their networks against such changes
and why these efforts cannot provide strong isolation.

At a conceptual level, networks are divided into two logical
components:

• The data plane is responsible for forwarding packets from
each switches’ ingress ports to the target egress port. This
involves a series of simple packet processing steps and
table lookups based on local forwarding state.

• The control plane is then responsible for populating the
forwarding state using computed routes. For a distributed
control plane protocol like BGP, switches do this by dis-
seminating reachability information across the network
and iteratively computing the best path. For a centralized
control plane protocol like OpenFlow, a logically central-
ized controller does this by gathering the topology of the
network and computing the proper path for each flow.

In practice, errors can and do manifest in both of these com-
ponents. For example, in the data plane, an unexpected/under-
tested packet format can cause the processing switch to crash
entirely (this type of bug is often used in DoS attacks [1]). In
the control plane, problems can result from human error as
well as subtle bugs in the underlying switch.

In this paper, we focus on the latter component as the con-
trol plane tends to change much more frequently than the data
plane. In this context, there are generally two types of events
that can trigger network changes. The first is status modifi-
cations (e.g., hardware failures/recoveries and congestion),
which change the control plane’s view of the network. The
second is operator intervention, in which an operator manu-
ally (or through a tool) changes the control plane software, its
configuration, or its view of the network. In both cases, the
state and/or configuration of directly affected switches will
change. These state/configuration changes may trigger other
changes throughout the network through routing updates, etc.

Figure 1: Rollout plan for a control plane change.
Operators first simulate and verify the new soft-
ware/configuration. They then deploy the changes on a
separate testbed. If the previous two tests are successful,
operators will start to do a partial deployment followed
by a full deployment.

Our threat model considers cases where these network
changes result in dropped or diverted packets. Diverted pack-
ets can potentially congest other parts of the network, effec-
tively performing a resource-exhaustion attack. Note that we
only consider drop/diversion errors that operators can easily
detect, and we assume they can be found in a reasonable
amount of time after deployment.

Operators use a wide variety of techniques to prevent and
mitigate problems; however, to make our discussion con-
crete, we focus on the typical deployment process of data
center configuration changes in a large cloud provider; when
it comes to control plane changes, these operators are among
the most strict due to the speed at which their networks grow
and the large monetary penalty of downtime. Generally speak-
ing, these data center networks are structured as a multilevel
tree with racks of servers at the leaves of the tree (see Fig-
ure 4a). Their control plane disseminates routes in these large
deployments through BGP, SDN, or a combination of both.

2.1 Phased Rollouts in a Typical Network
Reconfigurations and updates are inevitable in production

networks and can range from adding a new route to updating
the SDN control software that manages the entire network. A
typical deployment flow is visually depicted in Figure 1.

Simulation and Verification. Before any potential update or
configuration change touches any hardware, it can first be
checked independently. At a minimum, this involves man-
ual inspection and peer reviews of the resulting configura-
tions/code. Other techniques used at this stage include soft-
ware emulation of the resulting network and automatic val-
idation of the new configurations to ensure properties like
reachability and loop-freeness. While these approaches do
prevent many errors, they also have their limitations. In partic-
ular, they make assumptions about the underlying operation
of the network and therefore cannot catch all subtle errors
that appear in practice.

Testbed The next step in checking a potential change to the
network is to deploy the change on a separate testbed. Given
the cost of a full data center, testbeds generally emulate an
exceedingly small subset of the full network—perhaps only a
few racks of servers. As such, the testbed cannot fully test a
new network change as it does not replicate the same topology
and often does not replicate the same workload.

Incremental Deployment The final step is to slowly roll

37

out the change to the production network over the course
of several hours to weeks. Operators start by deploying the
change to a small subset of the network before pushing it
to additional subsets and then to the entire data center. The
granularity of deployment sets is typically either a single rack
or some subtree of the data center topology. Because of the
hierarchical fashion in which data centers are designed, if a
problem arises in a single rack or subtree, it can sometimes
be contained within that subset.

Problems in this phase are the most problematic as they
affect production traffic. They can occur because of latent
issues in the incremental rollout code itself [2] or as a re-
sult of corner cases that only manifest in a true production
environment.

2.2 Why Strong Isolation Is Impossible
The issue with current incremental deployment plans is

twofold. First, there are many cases where problems do not
manifest until they are deployed to production. Aside from
building a duplicate network, this limitation is fundamen-
tal. Second, negative effects that do arise during the phased
rollout have the potential to spread to the entire network.

Ideally, operators would be able to isolate network changes
using two partitions: a ‘known-correct’ partition and a ‘new’
partition. The old partition should not, in any way, depend on
the correct operation of the new partition so that failures in
the latter will not spread to the rest of the network. Practically
speaking, this means that the two partitions would not share
any control plane state or routing information.

Previous work has suggested that, aside from duplicating
the entire network, it is impossible to guarantee useful global
properties like connectivity and load balancing without global
information [6, 7, 24]. We formalize these claims below.

2.2.1 Model
As mentioned above, we model a phased deployment by ex-

tending the traditional single data/control plane model of the
network to allow for multiple control planes (e.g, a ‘known
correct’ control plane and a ‘new’ control plane).

Each control plane controls a set of physical devices; sets
may overlap with each other or be entirely disjoint. To denote
which switches a given control plane controls, we define a
function, control(c), that takes a control plane as input and
outputs the set of switches that it controls. Said differently, if
switch d is controlled by c, then d ∈ control(c).

Each control plane may also communicate with a set of
other control planes to disseminate routing information. The
set of control planes with which c communicates is comm(c).
These control planes can be buggy or misconfigured. When
that occurs, it can arbitrarily and recursively affect any device
in control(c) or control plane in comm(c). The error recursion
is similar to the model assumed by taint checking [13].

2.2.2 Impossibility of Isolation
Ideally, a phased rollout would provide three properties:

Figure 2: Key subgraph where the three properties do
not simultaneously hold. The network is separated into
two partitions (blue, red). Dotted black lines denote an
arbitrary path. Solid black lines are similar, but must not
include v1 or v2. The red arc is the partition boundary. (3)
connectivity does not hold for a flow from s to d because
(a) and (b) are indistinguishable from the perspective of
the blue partition.

1. Partitioned control: There are multiple control planes and
all are isolated, i.e., for every control plane c, comm(c) =
∅ and control(c) 6=∅.

2. Physical isolation: Switches are controlled by exactly one
control plane.

3. Connectivity: If there exists a path between two end hosts,
there exists a route between them.

The first two properties ensure strong isolation between
control planes. Failures in any control plane can affect the
switches in control(c), but will not spread any further. The
third property ensures that the network fulfills its purpose.

Our proof takes the following approach. We first identify a
simple subgraph and partitioning scheme that cannot satisfy
all three properties simultaneously. Any network that contains
this subgraph will suffer from the same problem. Figure 2
shows the subgraph, which borrows its basic structure from a
one used in [7]. In Section 2.2.3, we go one step further and
show that this subgraph is relatively common in current data
center topologies.2 We start by defining the operation of a
routing algorithm on a partitioned network.

DEFINITION 1. A routing algorithm, R, is a function that
takes (1) a node v, (2) the control plane c that contains v, and
(3) the destination d. Its output is an edge on node v. R fails
if there exists a path from s to d, but we cannot reach d by
recursively calling R starting from s.

We also need to define the sufficient condition to determine
whether a graph contains a sub-structure as in Figure 2. We
call a graph “suitable” when it contains the base structure.

DEFINITION 2. A graph G is a suitable graph if, for some
source s and some destination d ∈ control(c):
• s /∈ control(c) and ∃v1,v2 ∈ control(c) s.t. v1 6= v2 6= d.
• s has a path to v1 and v2 that does not cross any switch

controlled by c. In other words, v1 and v2 are ingresses.
2We note that some graphs allow for both strong isolation and
connectivity (e.g., a strict, single-rooted tree). However, we show
that most topologies found in practice do not have this property.

38

Figure 3: Our key subgraph can be found in any useful
partitioning of a Clos network (the most common class of
modern data center topology). This diagram shows one
example partitioning with colored nodes, and annotates
the key subgraph within it.

• v1 has a path to d that does not include v2 and vice versa.
Both paths are fully controlled by c.

We can prove (3) connectivity cannot hold on such a graph.

THEOREM 1. If G is suitable, for all routing algorithms
A, we can fail a set of links L, so that A fails on the resulting
graph G′ = G−L.

PROOF. By contradiction. Because G is suitable, we can
find c,s,v1,v2,d that match the definition of a suitable graph.
Fail all other paths between v1/v2 and d except the two re-
quired above (i.e., the path from v1 to d that does not include
v2 and the path from v2 to d that does not include v1). s and
d are still connected via at least 2 paths.

Consider any algorithm A that can successfully route from
s to d. Let P be A’s chosen path. Without loss of generality,
assume P goes through v1. Fail the link immediately after v1
in P. Because the extra failure is not noticed by any node /∈ c,
A will continue to route packets to v1. Therefore, the route
produced by A fails even if an alternative path exists from s
to d (the one going through v2).

2.2.3 Application to Today’s Data Centers
The previous section identifies a simple subgraph whose

presence in a network topology makes achieving all three
of partitioned control, physical isolation, and connectivity
impossible. The existence of this subgraph depends on both
the network’s topology and how we choose to partition it.
What we show in this section is that for one common data
center topology (the Clos network), any useful partitioning
exhibits the subgraph. ‘Useful’, in this case, implies resilience
to two things: (1) control plane errors such that a single
control plane bug cannot take out the entire network and
(2) hardware failures such that, regardless of the size of the
network, two failures cannot cause the failure of the routing
protocol. We sketch the proof here and leave a more formal
treatment for future work.

Consider Figure 3, which depicts a Clos topology like the
ones used in most of today’s data centers. The bottom level of
switches are the Top-of-Rack (ToR) switches, which serve as
servers’ gateways into the network. These are connected into
small subtrees by a second level of switches, which are in
turn connected together via the root switches. We can prove
several things about the partitioning.

First, assuming ToRs have at least two different uplinks,
any partition that includes a ToR must include two of its par-
ents. This follows from the requirement that the partitioning
be resilient to hardware failures. To see why this is true, con-
sider a given ToR’s partition. If it is connected to at most one
of its parents, and its link to that parent fails, an additional
failures can cause the routing protocol to fail.

Second, there exists two ToRs that are in different partitions.
Imagine the negation—a design where all ToRs are in the
same partition. If that partition fails, the entire network will
go down—a violation of the need to be resilient to control
plane failures.

Given the above two properties, we can prove that the
subgraph exists. Let s and d be ToRs in different partitions.
It can be shown that, in an sufficiently-large Clos network,
s has a path to each of d’s two parents in c such that those
paths are node-disjoint. As s and d’s parents are in different
partitions, there must be an ingress into c on each of the
two node-disjoint paths. These two ingress nodes, v1 and v2
satisfy v1 6= v2 6= d. Since the paths are node-disjoint, we also
know that v1 is not on v2’s path to d and vice versa. Thus, the
Clos network is a suitable graph.

3. DESIGN
The previous section argues that if we want partitioned

control in a network, we cannot simultaneously have physical
isolation and connectivity. In this section, we outline two
preliminary proposals that explore how we might relax each
of these requirements in order to enable an approximation of
an isolated, phased rollout for networks:
• Physical partitioning: The first proposal prioritizes physi-

cal isolation by dividing the network into two disjoint sets
of switches—each independently controlled by a different
controller.

• Logical partitioning: The second proposal allows for dif-
ferent controllers to manage the same physical switch in
order to achieve useful global properties like connectiv-
ity. Instead, we logically isolate the two controllers by
implementing simple checks at each switch.

3.1 Physical Partitioning
In physical partitioning, we separate the network into mul-

tiple node-disjoint regions, each managed by an independent
control plane. Within a region, paths are discovered and com-
puted just as they are today. Across region boundaries, we
disallow the transmission of all control plane packets, though
we continue to allow data packets and low-level failure detec-
tion protocols like Bidirectional Forwarding Detection (BFD).
Instead, operators manually include adjacency information
into the BGP configurations or SDN controllers using knowl-
edge of the topology. Violations of this inter-region control
message boundary can be checked for at the border switches.

A natural partitioning for today’s multi-rooted data center
topologies is to assign each subtree of the network its own
region and to divide the root switches into these regions as

39

Figure 4: Rerouting with and without physical partitions.
(a) is a traditional design. Blue arrows depict an example
flow’s path through the network. When the link under
the red ‘x’ fails, the control plane will switch to use the
orange path. (b) shows the same process in a network
that is physically partitioned into red and blue regions.
Here, the red region must fix the route independently.

well. Figure 4b shows an example of such a split where each
cluster is a separate region. Other partitionings exist3, but we
choose this one because it creates the largest partitions such
that any partition-level control plane failure will only take
down a cluster-worth of servers/capacity.

Physical partitioning trivially satisfies physical isolation
because the control planes never have access to other regions
of the network. However, because we do not filter data pack-
ets, it is possible for regions to DoS one another. Moreover,
this approach cannot guarantee any global properties like con-
nectivity or balanced load. The primary challenge is therefore
to be able to approximate these properties without leaking
information from one region to another.

Approximating global properties. Consider a traditional
SDN-based data center network. The controller will gather
the statuses of all switches and links in the system and com-
pute the best routes for the network. For the topology in Fig-
ure 4, one of the routes might be the blue path in Figure 4a.
If a link fails, the controller will detect this and compute
replacement routes (e.g., the orange path in Figure 4a).

In a physically partitioned deployment like the one in Fig-
ure 4b, the same process is not possible as the blue partition
has no knowledge of the failure in the red partition. Instead,
the blue partition must recover from the link failure with-
out any outside help. Changes in the either partition’s load
balancing decisions are similarly challenging.

Our solution is to allow the blue partition to continue send-
ing as usual and have the red partition compensate for mis-
routing using extra bandwidth and path dilation. For instance,
in Figure 4b the red partition corrects for the blue partition’s
stale information by using the orange path to locally reroute
packets around the failure. Essentially, red needs to be able to
take any packet from the blue region at any blue/red border
switch and deliver it (with best effort) to the correct desti-
nation. Previous work has shown that in modern data center
topologies, the amount of path dilation for this type of local
rerouting policy can be made small [24]. In a more general

3We leave a deeper exploration of optimal topologies and partition-
ings to future work.

Figure 5: An example of logical partitioning. Both con-
trollers (red, blue) control a slice of every switch. Traffic
is assigned to a single partition and forwarded based on
that partition’s routing table entries.

network, partitions would need to be chosen with care to
ensure sufficient redundancy within a region.

Rolling out changes. To roll out a new control plane update,
operators would update one region at a time, providing suffi-
cient time to monitor the network after each change. Because
physical partitioning guarantees that bad regions can only
affect the traffic that is explicitly forwarded to them, regions
can, in principle, be updated in an arbitrary order without
expanding the risk of catastrophic errors; however, other rea-
sons may necessitate certain orders. For example, consider an
address migration, where an operator wishes to move an IP
prefix from one cluster to another. She may with to update the
destination cluster first so that diverted traffic can be handled
immediately rather than updating some other cluster.

3.2 Logical Partitioning
The second proposal gives up physical isolation in favor

of more power and flexibility in the control plane. In this
proposal, we partition every switch in the network into two or
more logical switches, where each logical switch is controlled
by a different control plane. The end hosts or the edge of the
network assign each flow to one of the control planes. Thus,
every control plane operates on a ‘slice’ of the entire topology
and can therefore operate exactly as they do today—at least
in terms of routing and load balancing logic. At the same
time, the different control planes operate side-by-side on the
same hardware and topology.

With this approach, ensuring the third property, connectiv-
ity, is fairly straightforward. For each slice, the corresponding
control plane can guarantee exactly the same properties as it
does today. As we explain later, we can also protect against
DoS attacks from other control planes. The tradeoff is that we
do not have physical isolation—switches are shared amongst
all control planes and so they can affect one another. For some
types of errors (e.g., those that crash the underlying ASIC),
failures triggered by one control plane can affect others. The
primary challenge is thus to isolate each control plane in as
many ways as possible.

Approximating physical isolation. Though logical partition-
ing cannot provide the ‘air gap’ between different control
planes given by physical isolation, it can provide many of the
benefits. We acknowledge that not all configuration options
can be isolated in this fashion as modern switches were not
designed for strong isolation. For instance, combining several

40

physical ports into a single link aggregation group (LAG) will
affect all traffic over those ports; our solution cannot protect
against misconfigurations here, but we anticipate that switch
virtualization could be a feature in future hardware. In this
section, we look at three ways we can isolate different control
planes on a single network switch.

The first is forwarding isolation in which packets should
only ever utilize a single slice’s routing tables—the presence
or absence of other slices’ entries should have no effect. We
can implement this on current hardware using a technique
like VLANs (or MPLS or partitioned IP address spaces),
which allows operators to divide the network into several
virtual networks. Packets can be tagged to use the routing
table entries of a specific VLAN, thereby providing a tool to
separate the operation of different slices.

The second form of isolation is routing table isolation
where each control plane should only be able to modify a
subset of the routing table. For this, we can again build on
existing mechanisms. In Section 2.1, we explained that many
network operators have simple verification procedures for
new configurations. We propose to add a check on any con-
figuration to ensure that it only operates on its own VLAN
(or MPLS label or IP prefix) and that it does not occupy too
much of each switch’s routing table. It is possible for this
check itself to be buggy, but it does have the advantage that
it is simple and static as opposed to the more complex steps
required to ensure correctness in current networks.

The last requirement is load isolation. As every physi-
cal switch is shared between multiple control plane compo-
nents, each control plane must also share all of its bandwidth.
A naive design of a logical partitioning could allow for a
network-wide resource exhaustion attack. On the other hand,
assigning static bandwidth allocation to each partition does
not allow for efficient use of the network. Our solution is to
use weighted fair queuing mechanisms available in most data
center switches to balance traffic from different slices [32].
When a switch is congested, slices cannot take more than their
fair share of the bandwidth. When a switch is not congested,
all slices can efficiently use all of the available bandwidth.

Rolling out changes. Unlike the physical partitioning scheme,
operators here roll out changes to the entire network, but
only to a new slice. The untested slice starts with a very low
amount of traffic and correspondingly low priority in the
weighted fair queue. For instance, the operator could initially
divert 1% of all data center traffic to the new slice. After a
period of monitoring, she could change the amount to 5%,
and so on.4

4. COMPARISON
Both physical and logical partitioning have their limitations.

At a course granularity, the choice comes down to a trade-
off between isolation and performance. Physical isolation
ensures that, as long as the static checks at the border of
4Changing priorities might not be atomic, but we anticipate changes
to come in small increments, which minimizes unfairness.

each region hold, control plane errors cannot spread to other
regions. On the other hand, there are routing policies that are
not implementable with physically isolated control planes.
In some cases, this may lead to loss of connectivity even
when a physical path exists. Logical partitioning makes the
opposite trade-off and gives control planes an unadulterated
view of the network, provided changes do not affect shared
configuration options on the switches. When those options
must be changed, a non-protected upgrade is necessary. In
addition, latent configuration errors and bugs in the switch
implementation can still take out multiple slices at once.

5. RELATED WORK
Our work builds on a great deal of prior work, particularly

in the realm of software-defined networks. In addition to
the extensive literature on preventing and tolerating single-
controller SDN failures [10, 11, 19, 22, 31], there are several
other relevant directions.

Network upgrades with a single control plane. Upgrades
and configuration changes create many challenges for net-
work operators. Most of the work in this space focuses on
ensuring policy consistency/safety/low congestion level for
transient states [23, 25, 27, 30, 33] or decreasing the duration
of network update [18, 34]. Our work is complementary as
we focus on minimizing impact of faulty controller during
upgrade on a multi-controller network.

Partition tolerance. An orthogonal line of work has looked
at tolerating partitions in a software-defined network [5, 29].
We, on the other hand, wish to create them. As such, our
work focuses on a much weaker model: we show even if
the partitions are known ahead of time and are part of the
design, it is not possible to achieve connectivity for current
topologies.

DCN virtualization. DCN virtualization [16, 32] is a recent
push to build virtual data planes and topologies on top of an
underlying physical network. Some of these are also designed
to enforce bandwidth caps in order to provide performance
isolation. However, the primary purpose of network virtual-
ization is to allow different control plane configurations to
coexist. Our goal is instead to isolate their failures for the
purpose of enabling phased rollouts.

6. CONCLUSION
We presented two approaches for providing phased roll-

outs in networks. In many ways, it is more difficult to safely
roll out a new network configuration compared to the same
operation on a cloud application. In fact, aside from building
entirely separate networks, it is impossible to achieve a simi-
lar degree of isolation while still maintaining desirable global
properties like connectivity. Our solutions therefore explore
how to approximate phased rollout isolation in networks and
the tradeoffs required in order to do so. An additional benefit
of our designs is that both of them can be implemented on
current hardware.

41

7. REFERENCES
[1] Cisco NX-OS Software Malformed DHCPv4 Packet Denial of

Service Vulnerability. https://quickview.cloudapps.cisco.com/
quickview/bug/CSCuq39250.

[2] Google Compute Engine Incident 16007.
https://status.cloud.google.com/incident/compute/16007.

[3] Summary of the October 22, 2012 AWS Service Event in the
US-East Region. https://aws.amazon.com/message/680342/.

[4] What’s Behind Network Downtime? .
http://www-05.ibm.com/uk/juniper/pdf/200249.pdf.

[5] A. Akella and A. Krishnamurthy. A highly available software
defined fabric. In HotNets, 2014.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI, 2010.

[7] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed Congestion-aware
Load Balancing for Datacenters. In SIGCOMM, 2014.

[8] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic
Foundations for Networks. In POPL, 2014.

[9] K. Behr, G. Kim, and G. Spafford. The Visible Ops Handbook.
Information Technology Process Institute, 2005.

[10] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford.
A NICE Way to Test Openflow Applications. In NSDI, 2012.

[11] B. Chandrasekaran and T. Benson. Tolerating SDN
Application Failures with LegoSDN. In HotNets, 2014.

[12] R. J. Colville and G. Spafford. Top seven considerations for
configuration management for virtual and cloud
infrastructures. Technical Report G00208328, Gartner, Inc.,
Stamford, Connecticut, October 2010.

[13] D. E. Denning. A Lattice Model of Secure Information Flow.
CACM, 1976.

[14] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A General
Approach to Network Configuration Analysis. In NSDI, 2015.

[15] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and
A. Vahdat. Evolve or die: High-availability design principles
drawn from googles network infrastructure. In SIGCOMM,
pages 58–72, 2016.

[16] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In
CoNEXT, 2010.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: Experience with a
Globally-deployed Software Defined Wan. In SIGCOMM,
2013.

[18] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic
scheduling of network updates. In SIGCOMM, 2014.

[19] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana:
Controller Fault-tolerance in Software-defined Networking. In
SOSR, 2015.

[20] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey.
Veriflow: Verifying network-wide invariants in real time. In
NSDI, 2013.

[21] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and
R. Clark. Kinetic: Verifiable Dynamic Network Control. In
NSDI, 2015.

[22] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In OSDI, 2010.

[23] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: Updating Data Center Networks with Zero
Loss. In SIGCOMM, 2013.

[24] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10:
A Fault-tolerant Engineered Network. In NSDI, 2013.

[25] R. Mahajan and R. Wattenhofer. On Consistent Updates in
Software Defined Networks. In HotNets, 2013.

[26] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,
and S. T. King. Debugging the data plane with anteater. In
SIGCOMM, 2011.

[27] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient
Synthesis of Network Updates. In PLDI, 2015.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM CCR,
2008.

[29] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker.
CAP for Networks. In HotSDN, 2013.

[30] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for Network Update. In SIGCOMM,
2012.

[31] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya,
K. Zarifis, and S. Shenker. Troubleshooting Blackbox SDN
Control Software with Minimal Causal Sequences. In
SIGCOMM, 2014.

[32] R. Sherwood, G. Gibb, K. kiong Yap, M. Casado,
N. Mckeown, and G. Parulkar. FlowVisor: A Network
Virtualization Layer. Technical report, 2009.

[33] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford.
HotSwap: Correct and Efficient Controller Upgrades for
Software-defined Networks. In HotSDN, 2013.

[34] S. Vissicchio and L. Cittadini. FLIP the (Flow) Table: Fast
LIghtweight Policy-preserving SDN Updates. In INFOCOM,
2016.

42

https://quickview.cloudapps.cisco.com/quickview/bug/CSCuq39250
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuq39250
https://status.cloud.google.com/incident/compute/16007
https://aws.amazon.com/message/680342/
http://www-05.ibm.com/uk/juniper/pdf/200249.pdf

	Introduction
	Background and Motivation
	Phased Rollouts in a Typical Network
	Why Strong Isolation Is Impossible
	Model
	Impossibility of Isolation
	Application to Today's Data Centers

	Design
	Physical Partitioning
	Logical Partitioning

	Comparison
	Related Work
	Conclusion
	References

