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Abstract

Machine Reading: from Wikipedia to the Web

Fei Wu

Chair of the Supervisory Committee:
Professor Daniel S. Weld

Computer Science and Engineering

Berners-Lee’s compelling vision of a Semantic Web is hindered by a chicken-egg problem,

which can be best solved via machine reading — automatically extracting information from

natural-language texts to make them accessible to software agents. We argue bootstrap-

ping is the best way to build such a system. We choose Wikipedia as an initial data source,

because it is comprehensive, high-quality, and contains enough collaboratively-created struc-

ture to launch a self-supervised bootstrapping process. We have developed three systems

that realize our vision:

• KYLIN, which applies Wikipedia heuristic of matching sentences with infoboxes to

create training examples for learning relation-specific extractors.

• KOG, which automatically generates Wikipedia Infobox Ontology by integrating evi-

dence from heterogeneous resources via joint inference using Markov Logic Networks.

• WOE, which uses Wikipedia heuristic to create matching sentence set as done in

KYLIN, but it abstracts these examples to relation-independent training data to learn

an unlexicalized open extractor.

The results of our experiments show that these automatically learned systems can render

much of Wikipedia into high-quality semantic data, which provides a solid base to bootstrap

toward the general Web.
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Chapter 1

INTRODUCTION

While compelling in the long term, Berners-Lee’s vision of the Semantic Web [19] is

developing slowly. Researchers have argued that the relative difficulty of authoring struc-

tured data is a primary cause [56]. A chicken-and-egg problem results: if there was more

structured data available, people would develop applications; but without compelling ap-

plications, it is not worth people’s time to structure their data. In order to break this

deadlock, a bootstrapping method is needed — some method of automatically structuring

a large amount of existing data.

The ideal vision is a machine reading system which autonomously extracts information

from the Web. The system should strive to satisfy the following desiderata [89]:

High quality: the system should extract information with high accuracy;

Large scale: the system should acquire knowledge at Web-scale and be open to arbitrary

domains, genres, and languages;

Maximal autonomy: the system should incur minimal human effort;

Total recall: the system should harvest both head and long tail textual knowledge.

These desiderata raise many intriguing and challenging research questions. The vast

majority of information extraction work uses supervised learning of relation-specific exam-

ples. While these methods can achieve high precision and recall, they require too much

human effort to scale. Instead, unsupervised or self-supervised techniques should be con-

sidered. Several systems of this form have been proposed, e.g. mulder [66], AskMSR [24],

knowitall [51], TextRunner [14], and NELL [29], showing some signs of early success.

The insight underlying these systems stems from the huge redundancy of knowledge on

the Web — many things worth extracting are stated many times, in different ways and on
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disparate Web pages. As a result, complex linguistic processing is unnecessary, because one

of the occurrences is likely written in a form which can be correctly extracted with simple

methods. Furthermore, the Web’s statistical properties, as calculated by a search engine,

are a powerful tool for extraction [36, 47, 49]. Unfortunately, many of the things published

on the Web are incorrect (e.g. “Elvis killed John Kennedy”), and the increasing linguistic

sophistication of link spam poses a growing challenge to these methods.

We propose a very different approach to massive information extraction. Instead of

using the whole Web, we start from a single site: en.wikipedia.org, and use this as a first

bootstrapping step to enable subsequent extraction from the Web as a whole.

1.1 Why Wikipedia

Focusing on Wikipedia largely solves the problem of inaccurate source data, but introduces

new challenges. For example, redundancy is very greatly reduced — there is one single

article for each unique concept in Wikipedia and much information is stated only once. This

apparently increases the need for deep syntactic analysis. On the other hand, Wikipedia

has several attributes that make it ideal for machine reading:

• Wikipedia gives all important concepts their own unique identifier — the URI of a

definitional page. The first reference to such a concept typically includes a link which

can be used for disambiguation. As a result, homonyms are much less of a problem

than in unstructured text.

• Infoboxes are tabular summaries of an object’s key attributes. Figure 1.1 shows a

sample infobox from the article on “Beijing”, which is generated using the template

of the “Settlement” class. We model an infobox class as a relation schema C (e.g.

Settlement) with a set of attributes A(C) = {C.ai(e.g.Settlement.population)}.

• A list page shows a collection of instances for a class. For example, the “List of cities

in China” page contains cities like “Beijing” and “Shanghai”. We model a list page

as a instance set for a class I(C) = {ei|ei ∈ C}, where ei is an entity contained in the

list page for class C.
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• A Wikipedia article usually contains a category section, which provides membership

information for the article’s primary entity. For example, the categories for “Beijing”

include “Capitals in Asia” and “Host cities of the Summer Olympic Games”. We

model the categories as a set of types for the entity T (e) = {ti|e ∈ ti}, where ti is a

category tag in the article for e.

• A redirection page redirects a pointer for one term to another article (e.g., “Peking”

is redirected to “Beijing”). We model all redirection pages to the same entity e as a

synonym set Sr(e) = {ei|ei ∼ e}, where ei is redirected to e.

• A disambiguation page provides alternative meanings for one term. For example, the

disambiguation page about “Jaguar” contains explanations for both the large cat and

the luxury car. We abstract all disambiguation pages mentioning the same entity e

into another kind of synonym set Sd(e) = {ei|ei ∼ e}, where ei is a disambiguation

page containing a pointer to e.

• With over 3.3 million articles1, Wikipedia is appropriately sized — big enough to

provide a sufficient dataset, yet enough smaller than the full Web that a hundred-

node cluster is unnecessary for corpus processing.

Using these special semantics in Wikipedia, we develop three systems to perform ma-

chine reading tasks: KYLIN, which exploits Wikipedia infoboxes to automatically create

training examples to learn relation-specific extractors; KOG, which automatically gener-

ates Wikipedia Infobox Ontology by integrating heterogeneous evidence via joint inference

using Markov Logic Networks; WOE, which learns unlexicalized open extractors by first

matching Wikipedia infoboxes with sentences, then abstracting the matched sentences to

relation-independent training examples. We also propose techniques to generalize these sys-

tems for bootstrapping toward the general Web. The following sections provide a summary

of the main work of this dissertation.

1As measured in May 2010 for the English version of Wikipedia.
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{{Infobox Settlement 
|official_name  = B ij ng 
|other_name  = 
|native_name  =  
|settlement_type = [[Municipality of  

China|Municipality  
|image_skyline = SA Temple of Heaven.jpg 
|image_caption  = The [[Temple of  

Heaven]], a symbol of Beijing 
|citylogo_size   = 
|image_map              = China-Beijing.png 
|mapsize       = 275px 
|map_caption            = Location within China 
|subdivision_type       = Country 
|subdivision_name     = [[People's Republic of  

China]] 
|subdivision_type1 = [[Political divisions of  

China#County level|County-
level&nbsp;divisions]] 

|subdivision_name1      = 18 
|subdivision_type2  = [[Political divisions of  

China#Township 
level|Township&nbsp;divisions]] 

|subdivision_name2      = 273 
|leader_title           =[[Communist Party of  

China|CPC]] Beijing    
|leader_name  =[[Liu Qi (Communist)|Liu Qi]]  

Committee Secretary 
|leader_title1          =  [[Mayor]] 
|leader_name1           =[[Wang Qishan]] 
|established_title      = Settled  
|established_date       = ca. 473 BC 
… 
}} 

Figure 1.1: Sample Wikipedia infobox and the attribute / value data used to generate it.

1.2 KYLIN: Relation-Specific Information Extraction Using Wikipedia

Our KYLIN system [108], introduced in Chapter 2, uses Wikipedia infoboxes to automati-

cally create training examples to learn relation-specific extractors. For each attribute value

in an infobox, KYLIN seeks a unique sentence in the article to match the attribute value.

In this way, KYLIN automatically creates millions of training examples for thousands of

relations. It then learns two classifiers to predict whether an article belongs to a target

class (e.g. Settlement), and whether a sentence describes a target relation (e.g. Settle-
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Figure 1.2: KYLIN achieves roughly comparable performance with human editors. For the
“U.S. County” class it does even better. The individual points correspond to the perfor-
mance of Wikipedia users’ manual edition.

ment.population). It also learns conditional random fields (CRF) extractors to crop the

detailed attribute values out of sentences.

Our experiments show that KYLIN’s precision ranges from mid-70s to high-90s percent,

depending on the attribute type and infobox class. Figure 1.2 shows its P/R curves on four

sample infobox classes. We can see that KYLIN achieves roughly comparable performance

with human editors; in one case, the “U.S. County” class, it does even better.

As far as we know, KYLIN is the first system that autonomously transfers knowledge

from random editors’ effort of collaboratively editing Wikipedia to learn extractors for

thousands of relations. The Wikipedia heuristic of matching infoboxes with sentences to

automatically label training examples is especially novel, enabling us to develop large-scale

self-supervised learning systems. This heuristic can be further generalized to matching arbi-

trary structured KB with documents, as shown in [78, 107], where more KB (like Freebase,
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DBpedia and IMDB) are used to match Web documents for generating labeled training

examples to learn extractors. Similar approaches were also used in [17, 55], where biblio-

graphic KB, like DBLP, are used to match research paper citation records in Web documents

to generate labeled training examples. However, the bibliography domain only involves a

few relations like author, title, venue, and year, and the research paper citation strings

are semi-structured. In contrast, KYLIN aims to handle thousands of relations and totally

unstructured texts.

1.3 KOG: Automatic Wikipedia Infobox Ontology Generation

In order to effectively exploit extracted data, the tuples must be organized using a clean

and consistent ontology. Unfortunately, while Wikipedia has a category system for articles,

the facility is noisy, redundant, incomplete, inconsistent and of very limited value for our

purposes. Better taxonomies exist, of course, such as WordNet [1], but these don’t have

the rich attribute structure found in Wikipedia. To address this challenge, we built KOG,

a system described in Chapter 3 that automatically builds a rich ontology by combining

Wikipedia infoboxes with WordNet. KOG treats each infobox template as a class, and the

slots of the template as attributes. It then performs three tasks. First, it cleans the infobox

schemata by detecting duplicate classes and attributes, pruning ill-defined ones, recover-

ing terse names (e.g., from “ABL” to “Australian Baseball League”), and inferring type

information of attributes. Secondly, it predicts subsumption relationships between infobox

classes. KOG computes six different kinds of features, some metric and some Boolean,

and applies both support-vector machines (SVM) and Markov Logic Networks (MLNs) for

ISA-relationship classification. The MLNs model is especially novel, simultaneously con-

structing a subsumption lattice and a mapping to WordNet using joint inference. The result

for subsumption detection is shown in Figure 1.3, demonstrating the superiority of the joint

inference approach. Finally, KOG maps attributes between related classes with estimated

precision of 94% and recall of 87%, allowing property inheritance.

We demonstrate how the resulting ontology may be used to enhance Wikipedia in many

ways, such as advanced query processing for Wikipedia facts, facetted browsing, automated

infobox edits and template generation. It can benefit many other applications, such as
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Figure 1.3: Subsumption detection via joint inference using MLNs is superior than applying
a SVM model.

improving extractors with shrinkage, as we show in Chapter 4.

1.4 Moving Down the Long Tail

KYLIN works extremely well for popular infobox classes where users have previously created

sufficient infoboxes to train an effective extractor model. For example, in the “U.S. County”

class KYLIN has 97.3% precision with 95.9% recall. Unfortunately, however, many classes

(e.g. “Irish Newspaper”) contain only a small number of infobox-containing articles. For

classes sitting on this long tail, KYLIN can’t get enough training data — hence its extraction

performance is often unsatisfactory for these classes.

Furthermore, even when KYLIN does learn an effective extractor there are numerous

cases where Wikipedia has an article on a topic, but the article simply doesn’t have much

information to be extracted. Indeed, another long-tailed distribution governs the length of

articles in Wikipedia; more than 40%Wikipedia articles are marked as stub pages, indicating

that much-needed information is missing.
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To meet the total recall desiderata of machine reading, we must confront the prob-

lems entailed by these long-tailed distributions in order to create a comprehensive semantic

knowledge base summarizing the topics in Wikipedia. We must train extractors to operate

on sparsely populated infobox classes and we must resort to other information sources if a

Wikipedia article is superficial.

In Chapter 4 we describe three novel approaches for helping conquer the long-tailed

challenges. First, we apply shrinkage [73, 102] when training an extractor of an instance-

sparse infobox class by aggregating data from its parent and children classes. For example,

knowing that performer ISA person, and performer.location=person.birth place, we can use

values from person.birth place to help train an extractor for performer.location. We use the

ontology learned by KOG to provide the subsumption hierarchy. This shrinkage technique

improves recall by a factor of between 0.57 and 4.6. Secondly, we map the contents of known

Wikipedia infobox data to TextRunner, a state-of-the-art open information extraction sys-

tem [15]. This enables KYLIN to clean and augment its training dataset. When applied in

conjunction with shrinkage, this retraining technique improves recall by a factor of between

1.4 and 5.9. Finally, when it is unable to extract necessary information from a Wikipedia

page, we enable KYLIN to retrieve relevant sentences from the greater Web for extraction.

Our techniques work best in concert. Together, they improve recall by a factor of 1.89

to 8.42 while maintaining or increasing precision. Figure 1.4 shows the effects of applying

these techniques to the “performer” class. In addition to showing the great cumulative

effect of these techniques, we analyze several variations of each method, exposing important

engineering tradeoffs.

1.5 WOE: Open Information Extraction Using Wikipedia

KYLIN can automatically learn thousands of extractors for the relations defined inWikipedia

infoboxes. However, compared with an unbounded number of relations embedded in Web

documents, this is still very limited. We build WOE, a system introduced in Chapter 5

that learns an open information extractor using Wikipedia. Specifically, WOE generates

relation-specific training examples by matching infobox attribute values to corresponding

sentences (as done in KYLIN), but WOE abstracts these examples to relation-independent
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Figure 1.4: Combining KYLIN’s extractions from Wikipedia and the Web yields a sub-
stantial improvement in recall without compromising precision. Already, shrinkage and
retraining improved recall over the original KYLIN system, here the baseline, but the com-
bination of extractions from Wikipedia and the Web, shrink-retrain-Web, performs even
better.

training data to learn an unlexicalized extractor, akin to that of TextRunner. WOE can

operate in two modes: when restricted to shallow features like part-of-speech (POS) tags,

it learns a second-order linear chain CRF extractor and runs as quickly as Textrunner —

0.022 seconds per sentence in average; but when set to use parse features, it learns a pattern

classifier based on shortest-dependency-path features whose precision and recall rise even

higher. However, this performance improvement comes at the cost of speed: it takes 0.679

seconds to process one sentence — 30X times slower.

When restricted to shallow features, WOE yields an F-measure between 0.447 and 0.471

(i.e. between 9% and 23% greater than that of TextRunner) on three corpora; when set

to use parse features, WOE achieves an F-measure between 0.572 and 0.650 (i.e. between

51% and 70% higher than that of TextRunner). Figure 1.5 shows the P/R curves of
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Figure 1.5: WOEpos performs better than TextRunner, especially on precision. WOEparse

dramatically improves performance, especially on recall.

different extractors on a randomly sampled Web corpus with 300 sentences. Our extensive

experiments uncover two sources of WOE’s strong performance: the Wikipedia heuristic is

responsible for the bulk of WOE’s improved accuracy; dependency-parse features are highly

informative when performing unlexicalized extraction, which is a different conclusion from

previous evidence in [63].

1.6 Contributions

This dissertation embodies several important contributions:

• We propose bootstrapping from Wikipedia towards Web-scale machine reading and

identify some unique challenges (lack of redundancy) and opportunities (unique iden-

tifiers, user-supplied training data, lists, categories, etc.) of this approach. We also

identify additional issues resulting from Wikipedia’s growth through decentralized au-

thoring (e.g., inconsistency, schema drift, etc.). This high-level analysis should benefit
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future work on Wikipedia and similar collaborative knowledge repositories.

• We show that matching structured records in a KB (e.g. Wikipedia infoboxes) with

unstructured text (e.g. Wikipedia articles) can automatically label a large amount

of training examples, which enable us to develop large-scale self-supervised learning

systems. The matching process is surprisingly hard and we apply several heuristics to

ensure high-quality labeled examples.

• We develop three systems (KYLIN, KOG andWOE) usingWikipedia via self-supervised

learning. Collaboratively authored data is rife with noise and incompleteness. We

identify robust learning methods which can cope in this environment. The results

in our experiments show that focusing on Wikipedia enables us to learn high perfor-

mance machine reading systems, which provides a solid base to bootstrap toward the

general Web.

• We demonstrate that parser-based features are highly informative when performing

unlexicalized extraction, which is a different conclusion from previous work in [63],

where they assumed the presence of lexical features.

In the following chapters, we present each of our systems in more details. These projects

make substantial steps toward addressing the challenges of machine reading. They also

point to interesting future work involving extensions to each system as well as new overall

approaches.
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Chapter 2

KYLIN: RELATION-SPECIFIC INFORMATION EXTRACTION
USING WIKIPEDIA

We are motivated by a vision of self-supervised machine reading — a system which can

autonomously distill and organize semantic data from natural-language texts on the World

Wide Web. Such a system could be useful for next-generation information retrieval, ques-

tion answering and much more. Autonomy is crucial, since the scale of available knowledge

is vast. We share this vision with a number of other projects, such as Snowball [9], Know-

ItAll [51], Mulder [66], AskMSR [24], TextRunner [14], and NELL [29]. The insight

underlying these systems stems from the huge redundancy of knowledge on the Web —

many things worth extracting are stated many times, in different ways and on disparate

Web pages. As a result, complex linguistic processing is unnecessary, because one of the

occurrences is likely written in a form which can be correctly extracted with simple meth-

ods. Furthermore, the Web’s statistical properties, as calculated by a search engine, are

a powerful tool for extraction [36, 47, 49]. Unfortunately, many of the things published

on the Web are incorrect (e.g. “Elvis killed John Kennedy”), and the increasing linguistic

sophistication of link spam poses a growing challenge to these methods.

We propose a very different approach to massive information extraction. Instead of using

the whole Web, we argue that Wikipedia is an important focus to start from. If we can

render much of Wikipedia into semantic form, it will be much easier to bootstrap toward

the Web from that base.

Focusing on Wikipedia largely solves the problem of inaccurate source data, but in-

troduces new challenges. For example, redundancy is very greatly reduced. On the other

hand, Wikipedia has several attributes (unique identifiers, user-supplied training data, lists,

categories, etc.) that make it ideal for machine reading. We develop the KYLIN system

which performs relation-specific IE using Wikipedia.
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{{Infobox Settlement 
|official_name  = B ij ng 
|other_name  = 
|native_name  =  
|settlement_type = [[Municipality of  

China|Municipality  
|image_skyline = SA Temple of Heaven.jpg 
|image_caption  = The [[Temple of  

Heaven]], a symbol of Beijing 
|citylogo_size   = 
|image_map              = China-Beijing.png 
|mapsize       = 275px 
|map_caption            = Location within China 
|subdivision_type       = Country 
|subdivision_name     = [[People's Republic of  

China]] 
|subdivision_type1 = [[Political divisions of  

China#County level|County-
level&nbsp;divisions]] 

|subdivision_name1      = 18 
|subdivision_type2  = [[Political divisions of  

China#Township 
level|Township&nbsp;divisions]] 

|subdivision_name2      = 273 
|leader_title           =[[Communist Party of  

China|CPC]] Beijing    
|leader_name  =[[Liu Qi (Communist)|Liu Qi]]  

Committee Secretary 
|leader_title1          =  [[Mayor]] 
|leader_name1           =[[Wang Qishan]] 
|established_title      = Settled  
|established_date       = ca. 473 BC 
… 
}} 

Figure 2.1: Sample Wikipedia infobox and the attribute / value data used to generate it.

2.1 Motivation Application: Infobox Completion

The motivation application behind KYLIN is automatic infobox completion. ManyWikipedia

articles include infoboxes, a concise, tabular summary of the subject’s attributes. Figure 2.1

shows a sample infobox from the article on “Beijing”. We model an infobox class as a relation

schema C (e.g. Settlement) with a set of attributesA(C) = {C.ai(e.g.Settlement.population)}.

Because of their relational nature, infoboxes may be easily converted to semantic form

as shown by Auer and Lehmann’s DBpedia [12]. Furthermore, for each class of objects,
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Figure 2.2: Architecture of KYLIN.

infoboxes and their templates implicitly define the most important and representative at-

tributes; hence, infoboxes are valuable ontological resources. KYLIN automatically con-

structs and completes infoboxes with information distilled from unstructured Wikipedia

articles. The basic idea is to use existing infoboxes as a source of training data with which

to learn extractors for gathering more data. As shown in Figure 2.2, KYLIN has three main

components: preprocessor, classifier, and extractor.

The preprocessor performs several functions. First, it selects and refines infobox schemata,

choosing relevant attributes. Secondly, the preprocessor generates a dataset for training ma-

chine learners.

KYLIN trains two types of classifiers. The first type predicts whether a given Wikipedia

article belongs to certain class C. The second type of classifier predicts whether a given

sentence contains the value of a given attribute C.ai. If there are C classes, KYLIN auto-

matically learns 2C different classifiers.

KYLIN learns one extractor for each C.ai (per attribute per class), which identifies and

clips out the necessary attribute value for C.ai from a given sentence s. Each extractor is

a conditional random fields (CRF) model. Training data are taken from existing infoboxes

as dictated by the predictions of the classifiers.

We explain the operation and performance of these components in the next section. But

first we discuss the nature of the existing Wikipedia infoboxes and why they are harder to

use for training than might be expected.
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Figure 2.3: Usage percentage for attributes of the “U.S. County” infobox template shows
that many attributes are used very rarely.

2.1.1 Challenges for Infobox Completion

While infoboxes contain much valuable information, they suffer from several challenging

problems:

Incompleteness: Since infobox and article text are kept separate in Wikipedia, existing

infoboxes are manually created when human authors create or edit an article — a tedious

and time-consuming process. As a result, many articles have no infoboxes and the majority

of infoboxes which do exist are incomplete. Still there in many classes, there is plenty of

data for training.

Inconsistency: The manual creation process is noisy, causing contradictions between

the article text and the infobox summary. For example, when we manually checked a

random sample of 50 infoboxes in the “U.S. County” class, we found that 16% contained

one or more errors1. We suspect that many of the errors are introduced when an author

updates an article with a revised attribute value (e.g. population) and neglects to change

both the text and the infobox — another effect of keeping infobox and text separate.

1Unless noted otherwise, all statistics in this chapter are taken from the 02/06/2007 snapshot of
Wikipedia’s English language version.
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Schema Drift: Since users are free to create or modify infobox templates, and since they

typically create an article by copying parts (e.g. the infobox template) from a similar article,

the infobox schema for a class of articles tends to evolve during the course of authoring.

This leads to several problems: schema duplication, attribute duplication, and sparseness.

As an example of schema duplication, note that four different templates: “U.S. County”

(1428), “US County” (574),“Counties”(50) and “County” (19) are used to describe the same

type of object. Similarly, multiple tags denote the same semantic attribute. For example,

“Census Yr”, “Census Estimate Yr”, “Census Est.” and “Census Year” all mean the same

thing. Furthermore, many attributes are used very rarely. Figure 2.3 shows the percent

usage for the attributes of the “U.S. County” infobox template; only 29% of the attributes

are used by 30% or more of the articles, and only 46% of the attributes are used by at least

15% of the articles.

Typefree System: The design of Wikipedia is deliberately low-tech, to facilitate human

generation of content, and infoboxes are no exception. In particular, there is no type system

for infobox attributes. For example, the infobox for “King County, Washington” has a tuple

binding the attribute “land area” to equal “2126 square miles” and another tuple defining

“land area km” to be “5506 square km” despite the fact that one can be easily derived from

another. Clearly this simple approach bloats the schema and increases inconsistency; the

similarity between these related attributes also increases the complexity of extraction.

Irregular Lists: List pages, which link to large numbers of similar articles, are a

potential source of valuable type information. Unfortunately, because they are designed

for human consumption, automated processing is difficult. For example, some list pages

separate information in items, while others use tables with different schemas. Sometimes,

lists are nested in an irregular, hierarchical manner, which greatly complicates extraction.

For example, the “List of cities, towns, and villages in the United States” has an item called

“Places in Florida”, which in turn contains “List of counties in Florida.”

Flattened Categories: While Wikipedia’s category tag system seems promising as a

source of ontological structure, it is so flat and quirky that utility is low. Furthermore,

many tags are purely administrative, e.g. “Articles to be merged since March 2007.”
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2.2 KYLIN: Relation-Specific Information Extraction

KYLIN uses existing infoboxes as a source of training data to learn extractors for distilling

information from Wikipedia articles. The input to KYLIN is the raw Wikipedia corpus, and

the output is a collection of extractors for a broad set of relations found in Wikipedia in-

foboxes. Figure 2.4 shows the compact pseudocode for KYLIN. We discuss each component

of KYLIN in more details in the following sections.

2.2.1 Preprocessor

The preprocessor is responsible for creating a training suite that can be used to learn

extraction code for creating infoboxes. The input to the preprocessor is the raw Wikipedia

corpus; the outputs include a cleaned attribute set {C.ai} for each infobox class C, and a

matching sentence set for each C.ai, which can be used as training dataset to train classifiers

and extractors by the subsequent modules. The preprocessor performs two tasks: schema

refinement and training dataset construction.

Schema Refinement: The previous section explained how collaborative authoring

leads to infobox schema drift, resulting in the problems of schema duplication, attribute

duplication and sparsity. Thus, a necessary prerequisite for generating good infoboxes for

a given class is determining a uniform target schema.

This can be viewed as an instance of the difficult problem of schema matching [45].

Clearly, many sophisticated techniques can be brought to bear, but we adopt a simple

statistical approach for our prototype. KYLIN scans the Wikipedia corpus and selects all

infobox classes that are used frequently enough (e.g., by more than 5 instance articles).

For each selected infobox class, KYLIN retrieves all instance articles containing the class,

catalogs all attributes mentioned and selects the most common. Our current implementation

restricts attention to attributes used in at least 15% of the articles, which yields plenty of

training data.

Constructing Training Datasets: Next, the preprocessor constructs training datasets

for use when learning classifiers and extractors. KYLIN iterates through the articles. For

each article with an infobox mentioning one or more target attributes, KYLIN segments the
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KYLIN (Wikipedia Corpus): 
1. Preprocess Corpus: 

1.1 Refine Infobox Shemata: 
IB = {} 
For each infobox class C 

    If C is used by few instance articles 
   Continue 

A(C) = {} 
    For each attribute C.ai of C 
    If C.ai is used by a large portion of instance articles of C 
    Add C.ai to A(C) 
    Add <C, A(C)> to IB 
1.2 Construct Training Dataset by Matching Infoboxes with Sentences: 

TD = {} 
For each <C, A(C)> in IB 
 Get all instance articles of C: D(C) = {d|d contains C } 
 For each d in D(C) 

For each C.ai which has an attribute value in d’s infobox 
   s = matching sentence in d that mentions the attribute value of C.ai 
            Add <C, C.ai, s> to TD    

2. Learn Classifiers: 
2.1 Train Document Classifier: 
  CLd = {} 

For each C 
   Learn a document classifier CLd(C) based on list pages and category tags 

Add CLd(C) to CLd 
2.2 Train Sentence Classifier: 
  CLs = {} 
  For each C 
   Learn a multi-class Maximum Entropy sentence classifier CLs(C) based on TD 
   Add CLs(C) to CLs 

3. Learn Extractors: 
EX = {} 
For each C.ai 
  Learn a CRF extractor EX(C.ai) based on TD and add it to EX 

Return IB, CLd, CLs, EX 

Figure 2.4: The KYLIN system matches Wikipedia infboxes with sentences to create train-
ing examples, and learns a broad set of relation-specific extractors.
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document into sentences, using the OpenNLP library [2]. Then, for each target attribute,

KYLIN tries to find a unique, corresponding sentence in the article. The resulting labelled

sentences form positive training examples for each attribute. Other sentences form negative

training examples.

Our current implementation uses several heuristics to match sentences to attributes. If

an attribute’s value is composed of several sub-values (e.g. “hub cities”), KYLIN splits

them and processes each sub-value as follows:

1. For each internal hyperlink in the article and the infobox attributes, find its unique

primary URI in Wikipedia (through a redirect page if necessary). For example, both

“USA” and “United States of America” will be redirected to “United States”. Replace

the anchor text of the hyperlink with this identifier.

2. If the attribute value is mentioned by exactly one sentence in the article, use that

sentence and the matching token as a training example.

3. If the value is mentioned by several sentences, KYLIN determines what percentage of

the tokens in the attribute’s name are in each sentence. If the sentence matching the

highest percentage of tokens has at least 60% of these keywords, then it is selected

as a positive training example. For example, if the current attribute is “TotalArea:

123”, then KYLIN might select the sentence “It has a total area of 123 square kms”,

because “123” and the tokens “total” and “area” are all contained in the sentence.

Unfortunately, there are several difficulties preventing us from getting a perfect training

dataset. First, OpenNLP’s sentence detector is imperfect. Second, the article may not

even have a sentence which corresponds to an infobox attribute value. Third, we require

exact value-matching between attribute values in the sentence and infobox. While this

strict heuristic ensures precision, it substantially lowers recall. The values given in many

are incomplete or written differently than in the infobox. Together, these factors conspire

to produce a rather incomplete dataset.2 Fortunately, we are still able to train our learning

algorithms effectively.

2Alternatively, one can view our heuristics as explicitly preferring incompleteness over noise — a logical
consequence of our choice of high precision extraction over high-recall.
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2.2.2 Classifier

The inputs to the classifier module include the training dataset created by the preprocessor,

and list pages and category tags in Wikipedia; the outputs are two types of classifiers —

for each class of article being processed, a heuristic document classifier is used to recognize

members of the class, a multi-class Maximum Entropy sentence classifier is trained in order

to predict whether a given sentence is likely to contain certain attributes’ values.

Document Classifier: To accomplish autonomous infobox generation, KYLIN must

first locate candidate articles for a given class — a familiar document classification problem.

Wikipedia’s manually-generated list pages, which gather concepts with similar properties,

and category tags are highly informative features for this task. For example, the “List of

U.S. counties in alphabetical order” points to 3099 items; furthermore, 68% of those items

have additionally been tagged as “county” or “counties.” Eventually, we will use lists and

tags as features in a Naive Bayes, Maximum Entropy or SVM classifier, but as an initial

baseline we used a simple, heuristic approach. First, KYLIN locates all list pages whose

titles contain infobox class keywords. Second, KYLIN iterates through each page, retrieving

the corresponding articles but ignoring tables. If the category tags of the retrieved article

also contains infobox class keywords, KYLIN classifies the article as a member of the class.

As shown in Section 2.3.1, our baseline document classifier achieves very high precision

(98.5%) and reasonable recall (68.8%).

Sentence Classifier: It proves useful for KYLIN to be able to predict which attribute

values, if any, are contained in a given sentence. This can be seen as a multi-class, multi-

label, text classification problem. To learn these classifiers, KYLIN uses the training set

produced by the preprocessor (Section 2.2.1). For features, we seek a domain-independent

set which is fast to compute; our current implementation uses the sentence’s tokens and

their part of speech (POS) tags as features.

For our classifier, we employed a Maximum Entropy model [81] as implemented in Mal-

let [74], which predicts attribute labels in a probabilistic way — suitable for multi-class

and multi-label classifications.3 To decrease the impact of a noisy and incomplete training

3We also experimented with a Naive Bayes model, but its performance was slightly worse.
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dataset, we employed bagging [23] rather than boosting [76] as recommended by [82].

2.2.3 Extractor

The input to the extractor module is the training dataset created by the preprocessor, and

the output is a set of extractors — one for each infobox attribute C.ai. Extracting attribute

values from a sentence may be viewed as a sequential data-labeling problem. We use the

features shown in Table 2.1. Conditional random fields (CRFs) [67] are a natural choice

given their leading performance on this task; we use the Mallet [74] implementation. We

were confronted with two interesting choices in extractor design, and both concerned the

role of the sentence classifier. We also discuss the issue of multiple extractions.

Training Methodology: Recall that when producing training data for extractor-

learning, the preprocessor uses a strict pairing model. Since this may cause numerous

sentences to be incorrectly labelled as negative examples, KYLIN uses the sentence classi-

fier to relabel some of the training data as follows. All sentences which were assigned to be

negative training examples by the preprocessor are sent through the sentence classifier; if

the classifier disagrees with the preprocessor (i.e., it labels them positive), then they are

eliminated from the training set for this attribute. Experiments in Section 2.3.3 show that

this small adjustment greatly improves the performance of the learned CRF extractor.

KYLIN trains a different CRF extractor for each attribute, rather than training a single

master extractor that clips all attributes. We chose this architecture largely for simplicity

— by keeping each attribute’s extractor independent, we ensure that the complexity does

not multiply.

Classifier’s Role in Extraction: We considered two different ways to combine the

sentence classifier and extractor for infobox generation. The first is an intuitive pipeline

mode where the sentence classifier selects the sentences which should be sent to the CRF

extractor. We expected that this approach would decrease the number of false positives

with a potential loss in recall. The second architecture treats the classifier’s prediction as

a CRF feature, but applies the extractor to all sentences. We expected better recall at

the expense of speed. The experiments of Section 2.3.3 shows that our expectations were
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Feature Description Example

First token of sentence Hello world

In first half of sentence Hello world

In second half of sentence Hello world

Start with capital Hawaii

Start with capital, end with period Mr.

Single capital A

All capital, end with period CORP.

Contains at least one digit AB3

Made up of two digits 99

Made up of four digits 1999

Contains a dollar sign 20$

Contains an underline symbol km square

Contains an percentage symbol 20%

Stop word the; a; of

Purely numeric 1929

Number type 1932; 1,234; 5.6

Part of Speech tag

Token itself

NP chunking tag

String normalization:

capital to “A”, lowercase to “a”,

digit to “1”, others to “0” TF − 1 =⇒ AA01

Part of anchor text Machine Learning

Beginning of anchor text Machine Learning

Previous tokens (window size 5)

Following tokens (window size 5)

Previous token anchored Machine Learning

Next token anchored Machine Learning

Table 2.1: Feature sets used by the CRF extractor
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fulfilled, but the pipeline’s boost to precision was higher than expected, creating a more

effective architecture.

Multiple Extractions: Sometimes the extractor finds multiple values for a single

attribute. This often happens as a mistake (e.g. because of an extractor error or redundant

text in the article) but can also happen when the attribute is not functional (e.g. a band

likely has several members). KYLIN distinguishes the cases by seeing if multiple values are

found in the attribute’s training set. If so, the set of extractions is returned as the final

result. Otherwise, KYLIN returns the single value with the highest confidence.

2.3 Experiments

To avoid overloading the Wikipedia server, we downloaded the 2007.02.06 data for testing.

We selected four popular classes: U.S. county, airline, actor, and university. Each was

among the top 100 classes in terms of infobox usage. We address four questions:

• What are the precision and recall of the document classifier?

• What are the precision and recall of the infobox attribute extractor and how does it

compare to the performance of human users?

• Is the precision of the extractor improved by pruning the set of training data with the

sentence classifier? What is the cost in terms of recall?

• Should one use the sentence classifier as a serial pipeline filter preceding the extractor

or simply make the classifier’s output available as a feature for the extractor’s use?

2.3.1 Document Classifier

We use sampling plus human labelling to estimate the precision and recall of the classifiers.

We measure the precision of a class’ classifier by taking a random sample of 50 pages which

were predicted to be of that class and manually checking their accuracy. Table 2.2 lists the

estimated precision for our four classes. On average, the classifiers achieve 98.5% precision.
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County Airline Actor University

Predicted 3302 2764 6984 4309

Precision (%) 100 100 100 94

Table 2.2: Estimated precision of the document classifier.

To estimate recall, we introduce some notation, saying that an article is tagged with

a class if it has had an infobox of that type manually created by a human author. We

use the set of tagged pages as a sample from the universal set and count how many of

them are identified by the classifier. Table 2.3 shows the detailed results, but averaging

uniformly over the four classes yields an average recall of 68.8%. This is quite good for our

baseline implementation, and it seems likely that a machine-learning approach could result

in substantially higher recall.

County Airline Actor University

Tagged 1245 791 3819 4025

Recall (%) 98.1 85.3 41.3 50.3

Table 2.3: Estimated recall of the document classifier

Note that there are some potential biases which might potentially affect our estimates

of precision and recall. First, as mentioned in Section 2.1.1, some list pages are challenging

to exploit, and list page formatting varies a lot between different classes. Second, articles

with user-added infobox classes tend to be on more popular topics, and these may have

a greater chance to be included in list pages. This could lead to minor overestimation of

KYLIN recall. But we believe that these factors are small, and our estimates of precision

and recall are accurate.
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Figure 2.5: KYLIN achieves roughly comparable performance with human editors. For the
“U.S. County” class it does even better. The individual points correspond to the perfor-
mance of Wikipedia users’ manual edition.

2.3.2 Extractor Performance

In order to be useful as an autonomous system, KYLIN must be able to extract attribute

values with very high precision. High recall is also good, but of less importance. Since our

CRF extractor outputs a confidence score for its extraction, we can modulate the confidence

threshold to control the precision/recall tradeoff as shown in Figure 2.5.

Interestingly, the precision/recall curves are extremely flat, which means the precision is

rather stable w.r.t the variation of recall. In practice, KYLIN is able to automatically tune

the confidence threshold based on training data provided by the preprocessor for various

precision/recall requirements. In order to reduce the need for human fact checking, one can

set a high threshold (e.g. 0.99), boosting precision. A lower threshold (e.g. 0.3) extends

recall substantially, at only a small cost in precision.

In our next experiment, we use a fixed threshold of 0.6, which achieves both reason-
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able precision and recall for all classes. We now ask how KYLIN compares against strong

competition: human authors. For each class, we randomly selected 50 articles with existing

infobox templates. By manually extracting all attributes mentioned in the articles, we could

check the performance of both the human authors and of KYLIN. The results are shown in

Table 2.4. We were proud to see that KYLIN performs better on the “U.S. County” domain,

mainly because its numeric attributes are relatively easy to extract. In this domain, KYLIN

was able to successfully recover a number of values which had been neglected by humans.

For the “Actor” and “Airline” domains, KYLIN performed slightly worse than people. And

in the “University” domain, KYLIN performed rather badly, because of implicit references

and the type of flexible language used in those articles. For example, KYLIN extracted

“Dwight D. Eisenhower” as the president of “Columbia University” from the following sen-

tence.

• Former U.S. President Dwight D. Eisenhower served as President of the University.

Unfortunately, this is incorrect, because Eisenhower was a former president (indicated

somewhere else in the article) and thus the incorrect value for the current president.

Implicit expressions also lead to challenging extractions. For example, the article on

“Binghamton University” individually describes the number of undergraduate and graduate

students in each college and school. In order to correctly extract the total number of

students, KYLIN would need to reason about disjoint sets and perform arithmetic, which

is beyond the abilities of most textual entailment systems [42, 70], let alone one that scale

to a Wikipedia-sized corpus.

2.3.3 Using the Sentence Classifier with the Attribute Extractor

Recall that KYLIN uses the sentence classifier to prune some of the negative training exam-

ples generated by the preprocessor before training the extractor. We also explored two ways

of connecting the sentence classifier to the extractor: as a pipeline (where only sentences

satisfying the classifier are sent to the extractor) or by feeding the extractor every sentence,

but letting it use the classifier’s output as a feature. In this experiment, we consider four

possible configurations:
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Figure 2.6: Using classifier to refine the training dataset helps to improve KYLIN’s perfor-
mance especially in terms of robustness and recall. The pipeline structure helps to improve
precision at a modest cost of recall. The cross points correspond to Wikipedia users’ manual
edition.
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People System

Class Pre.(%) Rec.(%) Pre.(%) Rec.(%)

County 97.6 65.9 97.3 95.9

Airline 92.3 86.7 87.2 63.7

Actor 94.2 70.1 88.0 68.2

University 97.6 90.5 73.9 60.5

Table 2.4: Relative performance of people and KYLIN on infobox attribute extraction.

• Relabel, Pipeline — uses the classifier’s results to relabel the training dataset for the

extractor and uses a pipeline architecture.

• Relabel, #Pipeline — also uses the classifier’s results to relabel the training dataset

for the extractor, but doesn’t use a pipeline (instead it provides the classifier’s output

to the CRF extractor).

• #Relabel, Pipeline — training examples are not relabelled, but the pipelined archi-

tecture is used.

• #Relabel, #Pipeline — training examples are not relabelled and a pipeline is eschewed

(the classifier’s output is fed directly to the extractor).

Figure 2.6 shows the detailed results. In most cases the “Relabel, Pipeline” policy

achieves the best performance. We draw the following observations:

• Noise and incompleteness within the training dataset provided by the Preprocessor

makes the CRF extractor unstable, and hampers its performance (especially recall)

in most cases.

• By using classifier to refine the training dataset, many false negative training examples

are pruned; this helps to enhance the CRF extractor’s performance, especially in terms

of robustness and recall.
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• The pipeline architecture improves precision in most cases by reducing the risk of false

positive extractions on irrelevant sentences. But since fewer sentences are even given

to the extractor, recall suffers.

2.4 Related Work

We group related work into several categories: bootstrapping the semantic web, unsuper-

vised and self-supervised information extraction, extraction from Wikipedia, and related

Wikipedia-based systems.

Bootstrapping the Semantic Web: Revere [56] aims to cross the chasm between struc-

tured and unstructured data by providing a platform to facilitate the authoring, querying

and sharing of data. It relies on human effort to gain semantic data, while our KYLIN

is fully autonomous. DeepMiner [110] bootstraps domain ontologies for semantic web ser-

vices from source web sites. It extracts concepts and instances from semi-structured data

over source interface and data pages, while KYLIN handles both semi-structured and un-

structured data in Wikipedia. The SemTag and Seeker [44] systems perform automated

semantic tagging of large corpora. They use the TAP knowledge base [94] as the standard

ontology, and use it to match instances on the Web. In contrast, KYLIN doesn’t assume

any particular ontology, and tries to extract all desired semantic data within Wikipedia.

Unsupervised and Self-Supervised Information Extraction: Since the Web is large

and highly heterogeneous, unsupervised and self-supervised learning is necessary for scaling.

Several systems of this form have been proposed. mulder [66] and AskMSR [24, 49] use

the Web to answer questions, exploiting the fact that most important facts are stated

multiple times in different ways, which licenses the use of simple syntactic processing.

knowitall [51] uses search engines to compute statistical properties enabling extraction.

nell [29] continuously learns many classifiers at once from primarily unlabeled data, cou-

pling the learning of these classifiers in order to improve accuracy. Bunescu and Mooney

use search engines to construct positive and negative sample sentences based on a few seeds

for a given relation, and train a SVM extractor using string kernels, extending the MIL

framework [27]. Each of these systems relies heavily on the Web’s information redundancy.
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However, unlike the Web, Wikipedia has little redundancy — there is only one article

for each unique concept in Wikipedia. Instead of utilizing redundancy, KYLIN exploits

Wikipedia’s unique structure and the presence of user-tagged data to train machine learn-

ers. Mintz et al. [78] uses Freebase to provide distant supervision for relation extraction.

They applied a similar heuristic by matching Freebase tuples with unstructured sentences

(Wikipedia articles in their experiments) to create features for learning relation extractors.

A similar approach is applied in [107] where more KB besides Freebase (like DBpedia, and

IMDB) and a larger corpus are used to match sentences. Using outside KB to match ar-

bitrary sentences instead of matching Wikipedia infobox within corresponding articles will

potentially increase the size of matched sentences at a cost of accuracy. Similar approaches

were also used in [17, 55], where bibliographic KB, like DBLP, are used to match research

paper citation records in Web documents to generate labeled training examples. However,

the bibliography domain only involves a few relations like author, title, venue, and year,

and the research paper citation strings are semi-structured. In contrast, KYLIN deals with

thousands of relations and totally unstructured texts.

Information Extraction from Wikipedia: Several other systems have addressed in-

formation extraction from Wikipedia. Nakayama et al. [79] parse selected Wikipedia sen-

tences and perform extraction over the phrase structure trees based on several handcrafted

patterns. Auer and Lehmann developed the DBpedia [12] system which extracts informa-

tion from existing infoboxes within articles and encapsulate them in a semantic form for

query. In contrast, KYLIN populates infoboxes with new attribute values. Suchanek et

al. describe the Yago system [103] which extends WordNet using facts extracted from

Wikipedia’s category tags. But in contrast to KYLIN, which can learn to extract values

for any attribute, Yago only extracts values for a limited number of predefined relations.

Nguyen et al. proposed to extract relations from Wikipedia by exploiting syntactic and

semantic information [80]. Their work is the most similar with ours in the sense of stepping

towards autonomously semantifying both semi-structured and unstructured data. However,

there are still several obvious distinctions. First, their system only classifies whether a

sentence is related to some attribute, while KYLIN also extracts the particular attribute
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value within the sentences. Second, they only care about the relationship-typed attributes

between concepts (i.e. objects having their own identifying pages), while KYLIN tries to

extract all important attributes. Third, their system targets a limited number of predefined

attributes, while KYLIN can dynamically refine infobox templates for different domains.

Recently Hoffmann et al. introduced several dynamic lexicon features created from Web

lists to help train extractors for Wikipedia infobox relations [61]. They shew that these

features dramatically improved extractors’ performance, especially for sparsely-populated

classes.

Other Wikipedia-Related Systems: Völkel et al. proposed an extension to be inte-

grated with Wikipedia, which allows the typing of links between articles and the specifi-

cation of typed data inside the articles in an easy-to-use manner [104]. Though a great

step towards semantifying Wikipedia, it still relies on manual labelling by human users.

Gabrilovich et al. used Wikipedia to enhance text categorization [53], and later proposed a

semantic-relatedness metric using Wikipedia-based explicit semantic analysis [54]. Ponzetto

et al. derived a large scale taxonomy containing subsumption relations based on the category

system in Wikipedia [87]. Adafre et al. tried to discover missing links in Wikipedia by first

computing a cluster of highly similar pages around a target page, then identifying candidate

links from those similar pages [5]. Milne et al. implemented a new search engine interface

called Koru, which harnesses Wikipedia to provide domain-independent, knowledge-based

information retrieval [77]. Adler and Alfaro proposed a reputation system for Wikipedia

which checks whether users’ edits are preserved by subsequent authors [7]. DeRose et al.

proposed a Cwiki approach to combine both machine and human’s contributions to build

community portals such as Wikipedia [43]. Dakka and Cucerzan trained a classifier to label

Wikipedia pages with standard named entity tags [38].

2.5 Conclusion

This chapter described KYLIN, a relation-specific information extraction system trained

using Wikipedia. Since KYLIN uses self-supervised learning, which is bootstrapped on exis-

ting user-contributed data, it requires little or no human guidance. We identify some unique



32

challenges (lack of redundancy) and opportunities (unique identifiers, user-supplied training

data, lists, categories, etc.) of this approach. We also identify additional issues resulting

from Wikipedia’s growth through decentralized authoring (e.g., inconsistency, schema drift,

etc.). This high-level analysis should benefit future work on Wikipedia and similar collab-

orative knowledge repositories. KYLIN uses the Wikipedia heuristic of matching infoboxes

with sentences to automatically label training examples to learn relation extractors, and

achieves performance which is roughly comparable with that of human editors. In one case,

KYLIN does even better.

Although our objective is the automatic extraction of structured data from natural-

language text on Wikipedia and eventually the whole Web, our investigation has uncovered

some lessons that directly benefit Wikipedia and similar collaborative knowledge reposito-

ries. Specifically, Wikipedia could greatly improve consistency if it were augmented with a

software robot (perhaps based on KYLIN) which functioned as an automatic fact-checker.

When an article was created or edited, this agent could: 1) suggest new entries for an

associated infobox; 2) Detect inconsistencies between the text and infobox attributes; 3)

note schema inconsistencies in infoboxes and suggest attribute names which have been used

previously.
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Chapter 3

KOG: WIKIPEDIA INFOBOX ONTOLOGY GENERATION

The vision of a Semantic Web will only be realized when there is a much greater volume

of structured data available to power advanced applications. We argue that Wikipedia, one

of the world’s most popular Websites1, is a logical source for extraction, since it is both

comprehensive and high-quality. Indeed, collaborative editing by myriad users has already

resulted in the creation of infoboxes for numerous articles. DBpedia [11] has aggregated this

infobox data, yielding over 15 million pieces of information.

Furthermore, one may use this infobox data to bootstrap a process for generating ad-

ditional structured data from Wikipedia. For example, our autonomous KYLIN trained

machine-learning algorithms on the infobox data, yielding extractors which can accurately2

generate infoboxes for articles which don’t yet have them. We estimate that this approach

can add over 10 million additional facts to those already incorporated into DBpedia. By

running the learned extractors on a wider range of Web text and validating with statistical

tests (as pioneered in the KnowItAll system [51]), one could gather even more structured

data.

In order to effectively exploit extracted data, however, the triples must be organized using

a clean and consistent ontology. Unfortunately, while Wikipedia has a category system for

articles, the facility is noisy, redundant, incomplete, inconsistent and of very limited value

for our purposes. Better taxonomies exist, of course, such as WordNet [1], but these don’t

have the rich attribute structure found in Wikipedia.

1Ranked 8th in December 2009 according to comScore World Metrix

2KYLIN’s precision ranges from mid-70s to high-90s percent, depending on the attribute type and infobox
class.
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3.1 KOG: Generating the Wikipedia Ontology

This chapter presents the Kylin Ontology Generator (KOG), an autonomous system that

builds a rich ontology by combining Wikipedia infoboxes with WordNet using statistical-

relational machine learning. Each infobox template is treated as a class, and the slots of

the template are considered as attributes. Applying a Markov Logic Networks (MLNs)

model [93], KOG uses joint inference to predict subsumption relationships between infobox

classes while simultaneously mapping the classes to WordNet nodes. KOG also maps at-

tributes between related classes, allowing property inheritance.

3.1.1 Why an Ontology is Important

We aim to create an ontology which includes the following components:

• Classes: types of objects which are semantically distant;

• Instances: instances or objects belong to each class;

• Attributes: a rich schema listing a comprehensive set of informative attributes for

each class. The type information for attributes should also be included;

• ISA hierarchy: a well-defined ISA hierarchy over classes;

• Attribute mappings: mappings of semantically equivalent attributes between par-

ent/child classes in the ISA hierarchy.

Figure 3.1 shows a fragment of one such ontology. While researchers have manually

created ontologies, such as [35], this is laborious and requires continual maintenance. We

seek automatic ontology construction, which has the potential to better scale as corpora (e.g.

Wikipedia in our case) evolve over time. Situating extracted facts in one such ontology has

several benefits:

Advanced Query Capability: One of the main advantages of extracting structured

data from Wikipedia’s raw text is the ability to go beyond keyword queries and ask SQL-like
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Figure 3.1: A fragment of the ontology created by KOG, which includes an ISA hierarchy
over classes, an instance set for each class, an attribute list for each class, and the attribute
mappings between parent/child classes.

questions such as “What scientists born before 1920 won the Nobel prize?” An ontology

can greatly increase the recall of such queries by supporting transitivity and other types of

inference (as we show in section 3.6 later). For example, without recognizing that particle

physicist is a subclass of physicist which is itself a subclass of scientist, a Wikipedia question-

answering system would fail to return “Arthur Compton” in response to the question above.

In many cases the attributes of different Wikipedia infobox classes are mismatched, for ex-

ample one infobox class might have a “birth place” attribute while another has “cityofbirth”

— matching corresponding attributes for subclasses is clearly essential for high recall.

Improving Extractors with Shrinkage: As long as an infobox class has many in-

stances (articles), KYLIN has sufficient training data to learn an accurate extractor. Unfor-

tunately, long-tail distributions mean that most infobox classes don’t have many instances.

When learning an extractor for such a sparsely-populated class, C, one may apply the shrink-

age technique that uses instances of the parent and children of C, appropriately weighted,

as additional training examples. We discuss this in more details in Section 4.1.

Faceted Browsing: When referring to Wikipedia, readers use a mixture of search and

browsing. A clear taxonomy and aligned attributes enable faceted browsing, a powerful and

popular way to investigate sets of articles [111].
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Verifying Extracted Tuples: The type constraints on the arguments of an attribute

(relation), i.e. selectional preferences, encode the set of admissible argument values. For

example, locations are likely to appear as the objects of the “headquarter” attribute and

companies or organizations are likely to be the subjects. By checking whether the arguments

of extracted tuples have valid types, we can filter those incorrect extractions.

Semiautomatic Generation of New Templates: Today, Wikipedia infobox tem-

plates are designed manually with an error-prone “copy and edit” process. By displaying

infobox classes in the context of a clean taxonomy, duplication and schema drift could be

minimized. Base templates could be automatically suggested by inheriting attributes from

the class’ parent. Furthermore, by applying the extractors which Kylin learned for the par-

ent class’ attributes, one could automatically populate instances of the new infobox with

candidate attribute values for human validation.

Infobox Migration: AsWikipedia evolves, authors are constantly reclassifying articles,

which entails an error-prone conversion of articles from one infobox class to another. For

example, our analysis of five Wikipedia dump “snapshots” between 9/25/06 and 7/16/07

shows an average of 3200 conversions per month; this number will only grow as Wikipedia

continues to grow. An editing tool that exploited KOG’s automatically-derived schema

mappings might greatly speed this process, while reducing errors.

3.2 Kylin Ontology Generator

The KOG system creates a rich ontology3 by combining evidence from Wikipedia infoboxes

and WordNet. As shown in Figure 3.2, KOG is comprised of three modules: the schema

cleaner, subsumption detector, and schema mapper.

The schema cleaner performs several functions. First, it merges duplicate classes and

attributes. Second, it renames uncommon class and attribute names, such as from “ABL” to

“Australian Baseball League”. Third, it prunes rarely-used classes and attributes. Finally,

it infers the type signature of each attribute.

The subsumption detector identifies subsumption relationships between infobox classes,

3Available at http://ai.cs.washington.edu/www/media/downloadable/media/WikipediaInfoboxOntology-
byKOG.zip
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Figure 3.2: Architecture of KOG.

as illustrated in Figure 3.3. We model this as a binary classification problem: given a

pair of classes, like “Performer” and “Person”, KOG predicts whether the ISA relationship

holds in between. We apply both the Support Vector Machine (SVM) and Markov Logic

Netowrks (MLNs) models using wide range of different features: TF/IDF-style similarity,

the WordNet mapping, Wikipedia category tags, Web query statistics, and the edit history

of the individual articles.

The schema mapper builds attribute mappings between parent/child pairs in the sub-

sumption hierarchy, as illustrated in Figure 3.4. Wikipedia’s edit history is essential to this

process.

Section 3.6 reports on several alternative designs for these modules. Our experiments

show that a joint inference approach, which simultaneously predicts the ISA relationship,

while mapping classes to WordNet, achieves the best performance. The next three sections

provide details for each module.
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Figure 3.3: The subsumption detector identifies ISA relationships between infobox classes.

Figure 3.4: The schema mapper builds attribute mappings between parent/child class pair
in the subsumption hierarchy.

3.3 Schema Cleaning

As described in Section 2.1.1, the free authoring style in Wikipedia results in a very noisy

infobox schemata with duplicate classes and attributes, sparse instantiation, obscure class

names, and untyped attributes. Besides filtering rare classes and attributes as done in

KYLIN (Section 2.2.1), KOG performs three more tasks when cleaning infobox schemata:

identifying duplicate classes and attributes, assigning meaningful class names, and inferring

attribute types. Figure 3.5 shows the compact pseudocode of this process.
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Schema Cleaning in KOG (Wikipedia Corpus): 
IB = {} 
1.Recognize Duplicate Schemata: 

For each class C 
If (C’s template page is not redirected to another class’s template page && 

  C has the largest number of instance articles in classes of the same canonical forms) 
 A(C) = {C.ai} 
 For each attribute C.ai in A(C) 

If C.ai and C.aj are semantically equivalent based on edit history  
     Delete C.ai from A(C) 
  Add <C, A(C)> to IB 

2. Ignore Rare Classes and Attributes: 
For each class C in IB 

If C has few instance articles 
  Delete <C, A(C)> from IB 
 Else 

 For each attribute C.ai in A(C) 
If C.ai is used by a small portion of instance articles of C 
 Delete C.ai from A(C) 

3. Assign Meaningful Names: 
 For each class C in IB 
  If C has obscure name 
   Rename C using case boundary information, spell checking, aggregated category  
              tags and Wikipedia article names. 
  For each C.ai in A(C) 
   If C.ai has obscure name 
    Rename C.ai using similar heuristics as in the previous step. 
4. Infer Attribute Types 
 For each <C, A(C)> in IB 
  For each C.ai in A(C) 
   Infer the type of C.ai using YAGO and DBpedia mappings to WordNet based on  

  the set of attribute values for C.ai from instance articles of C 
Return IB 

Figure 3.5: KOG cleans infobox schemata by identifying duplicate classes and attributes,
ignoring rare classes and attributes, assigning meaningful names, and inferring attribute
types.
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3.3.1 Recognizing Duplicate Schemata

One challenge stems from the need to group distinct but nearly-identical schemata. In the

case of Wikipedia, users are free to modify infobox templates allowing schema evolution

during the course of authoring and causing the problem of class/attribute duplication. For

example, four different templates: “U.S. County” (1428), “US County” (574), “Counties”

(50), and “County” (19), were used to describe the same class in the 2/06/07 snapshot of

Wikipedia. Similarly, multiple tags are used to denote the same semantic attributes (e.g.,

“Census Yr”, “Census Estimate Yr”, “Census Est.” and “Census Year”).

Schema matching has been extensively studied in the data-management community, and

the resulting techniques apply directly to the task of duplicate detection [46, 71]. In the case

of Wikipedia, however, the task is facilitated by additional features from the collaborative

authoring process: redirection pages and the edit history.

Wikipedia uses redirection pages to map synonyms to a single article. For example,

“Peking” is redirected to “Beijing”. By checking all redirection pages, KOG notes when

one infobox template redirects to another.

Next, KOG converts class names to a canonical form: parentheses are replaced with “of”

(e.g., “highschool (american)” to “highschool of american”). Underscores, “ ”, are replaced

with a space and digits are discarded (e.g., “musical artist 2” to “musical artist”4). Finally,

all tokens are converted to lowercase. Classes mapping to the same canonical form are

considered to be duplicates.

Conveniently, Wikipedia records a full edit history of changes to the site; KOG exploits

this information to locate duplicate attributes within each class. Specifically, we define

transfer frequency, fE(a → b), as the number of times authors have renamed a to b. For

example, if authors have renamed one attribute C.ai (e.g. “Person.birthPlace”) to another

C.aj (e.g. “Person.hometown”) more times than a threshold (e.g. 5) then this suggests

that they likely denote the same semantics and could be treated as duplicates. Similarly,

if two attributes, C1.ai and C1.aj , never have values filled simultaneously, and they have

4Sometimes authors add digits to names to indicate a minor difference. Inspection suggests that the
variants should be merged when creating a general purpose ontology.
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Figure 3.6: The number of article instances per infobox class is similar to a Zipf distribution.

been both transferred to the same attribute of another class C2.ak, this edit pattern also

indicates duplication. KOG combines these edit-history features with the evidence from

canonical forms to render its final match.

3.3.2 Ignoring Rare Classes and Attributes

Another consequence of free authoring is schema sparseness — many classes and attributes

are used rarely, leading to a long-tailed distribution. For example, Figure 3.6 shows the

number of Wikipedia article instances (log scale) per infobox class. Of the 1935 classes,

25% have fewer than 5 instances and 11% have only one. The case is even worse for

infobox-class attributes — only 46% of attributes are used by at least 15% of the instances

in their class.

We observed that rare infobox classes and attributes often indicate non-representative

uses (e.g., the “mayor” attribute for “U.S. County”), or result from noisy data — As a

first step, KOG eliminates them from processing. Currently, KOG uses simple statistics for

pruning, as done in KYLIN — infobox classes with fewer than 5 articles are ignored. For

each class, we keep only those attributes used by more than 15% of instance articles. In the

future, we plan more sophisticated methods for dealing with rare items.
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3.3.3 Assigning Meaningful Names

In Wikipedia a number of infobox classes have obscure or terse names, such as “ABL,”

mentioned earlier, and “pref gr,” which denotes “prefectures of Greece.” Even humans may

find it difficult to discern the underlying meaning, yet without an intuitive name a class has

limited value.

KOG detects which names may need renaming by identifying those which are missing

(even after stemming) from a dictionary, WordNet in our case. If any token from a class

name fails to match a WordNet node, KOG passes the name to the four-step procedure

described below. If this procedure succeeds at any step, it terminates and returns the

recovered full name.

Step 1: Split the name using case boundary information. For example, “horseRacers”

would be split into “horse Racers.”

Step 2: Use spell checking (i.e., the statistically-based GoogleSpellSuggestion function)

to find transmutations, e.g. correcting “hungerstriker” to “hunger striker.”

Step 3: Collect the category tags of all instance articles within the class, and pick

the most frequent k (2 in our case) tags. If the abbreviated form of one tag matches the

class name, the tag is treated as the recovered name. Otherwise, the most frequent tag is

returned. With the “ABL” class, for example, “Australian Baseball Team” and “Australian

Baseball League” are the two most frequent tags, and “Australian Baseball League” would

be returned.

Step 4: Query Wikipedia to see if there is an article corresponding to the given class.

If it is a redirected page and the title has a good form (as measured heuristically), such as

“Video Game” redirected from “cvg”, KOG uses the title for the new class name. Otherwise,

it uses the definition phrase in the first sentence of the article as the final result. For example,

for the “amphoe” class, there is an “Amphoe” article whose first sentence reads “An amphoe

is the second level administrative subdivision of Thailand,” and so KOG uses “second level

administrative subdivision of Thailand” as the class name.

These four heuristics may also be used to rename obscurely named attributes, such

as “yrcom,” (year of commission). In addition, KOG uses Wikipedia’s edit history to
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see if people have manually renamed the attribute in some instances of the class. For

example, “stat pop” can be renamed “population estimation,” because users have made

some transfers between these two attributes.

3.3.4 Inferring Attribute Types

Even though infobox classes have associated schemata, there is no type system for attribute

values. Indeed, since infoboxes are intended solely to provide convenient visual summaries

for human readers, there is no guarantee that users are consistent with datatypes. Yet

inspection shows that most attributes do have an implicit type (e.g. “spouse” has type

“person”), and if types could be inferred, they would greatly facilitate extraction, fact

checking, integration, etc.

KOG infers attribute types from the corresponding set of values, using the following

five-step procedure:

Step 1: Let c be an infobox class with attribute a. For example, amight be the “spouse”

attribute of the “person” class. KOG generates the set of possible values of a, and finds

the corresponding Wikipedia objects, Vc,a; note not every value will have corresponding

Wikipedia article.

Step 2: Create a partial function ω : Vc,a → Nw from value objects to WordNet

nodes by combining two preexisting partial mappings. The first source, “DBpediaMap,” is

DBpedia’s [11] manually created mapping from 287,676 articles to corresponding WordNet

nodes. If DBpediaMap does not have an image for v ∈ Vc,a, then KOG uses “YagoMap,”

an automatically-created mapping, which links a greater number, 1,227,023, of Wikipedia

articles to WordNet nodes [103].

Step 3: Consider the set of WordNet nodes {n : there exist at least t distinct v ∈ Vc,a

such that ω(v) = n} for some threshold, t (we use t = 10). If there are at least 2 nodes

in this set, KOG considers the two which are mapped by the most values in Vc,a and finds

their relationship in WordNet. If the relationship is alternative, sibling, or parent/child,

KOG returns their least common parent synset as the final type for the given attribute. For

example, if the two most frequent nodes are “physicist” and “mathematician”, then KOG
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would choose type “scientist,” because it is the direct parent of those two siblings. If no

relationship is found, KOG sets the type equal to the synset of the most frequent node.

Step 4: If no WordNet node is mapped by at least t values in Vc,a, KOG creates a

larger set of values, V , by adding the values of a similar class, c� which also has attribute a.

For example, Wikipedia entities from “Person.Spouse” and “Actor.Spouse” would be put

together to compute the accumulated frequency. The most frequent WordNet node would

be returned as the type of the target attribute.

Step 5: If Step 4 also fails, KOG analyzes the edit history to find the most related

attribute, which has the highest number of transfers with the target attribute. The type of

this most-related attribute is then returned as the type of a.

KOG can also generate a type signature for a complete infobox class. Indeed, this is

easy after the class has been mapped to a WordNet node, which is described in the next

section.

3.4 Subsumption Detection

Detecting subsumption relations, i.e. that one class ISA subset of another, is the most

important challenge for KOG. Figure 3.7 shows the compact pseudocode of KOG’s sub-

sumption detection module. We model this task as a binary classification problem and use

machine learning to solve it. Thus, the two key questions are: 1) which features to use, and

2) which machine learning algorithm to apply. In fact, we implemented two very different

learning frameworks: SVMs and a joint inference approach based on Markov logic. The

next subsection defines the features: a mixture of similarity metrics and Boolean functions.

Section 3.6 shows that our joint inference approach performs substantially better.

3.4.1 Features for Classification

KOG uses six kinds of features, some metric and some Boolean.

Similarity Measures: Class similarity is an indication of subsumption, though not a

sufficient condition. KOG uses four different similarity metrics.

Attribute Set Similarity: KOG models a class as the set of its attributes, compresses

each set into a bag of words, and computes the TF/IDF similarity score between the bags.
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Subsumption Detection in KOG (cleaned infobox schemata IB, WordNet WN): 
SD = {} 
1.Create Feature Set: 

For each pair of classes <Ci, Cj> in IB 
  Create six kinds of features (metric or Boolean) 
   Encode features to MLNs formulas 
2. Apply MLNs Model to Jointly Infer: 
 Whether “Ci ISA Cj” for each pair of <Ci, Cj>; add cases of “(Ci ISA Cj)=true” to SD 
 Whether “Ci maps to Ni in WN”; add cases of “(Ci mapTo Ni)=true” to SD 
3. Construct ISA Tree 
 Topological Sorting over {(Ci ISA Cj)=true} 
 For each “(Ci ISA Cj)=true” in SD 
  If Cj is not the closest ancestor of Ci in the sorted sequence 
   Delete “(Ci ISA Cj)=true” 
Return SD 

Figure 3.7: KOG simultaneously predicts the ISA relationship between infobox classes and
maps classes to WordNet nodes via joint inference using Markov Logic Networks.

First Sentence Set Similarity: For each class, KOG creates a bag of words by taking

the first sentences of each instance of the class. Once again, the TF/IDF score between the

bags defines the class similarity.

Category Set Similarity: The bags are created from the category tags attached to the

class instances.

Undirected Transfer Frequency: This similarity score is computed from Wikipedia’s edit

history. If c and c� denote two classes, define their undirected transfer frequency as fE(c ↔

c�) = fE(c → c�) + fE(c� → c). We normalize this frequency to [0, 1.0].

Class-Name String Inclusion: Inspired by [105], we say that the feature isaFT(c,d,Contain)

holds iff: 1) the name of d is a substring of c’s name, and 2) the two names have the same

head (as determined by the Stanford Parser [3]). For example, the feature holds for c =

“English public school” and d = “public school,” since both have “school” as head.

Category Tags: Many infobox classes have their own Wikipedia pages, and sometimes

a special type of category, “XXX infobox templates,” is used to tag those pages. We say

that the feature isaFT(c,d,HasCategory) holds if class c has a special category tag called
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“�name of d� infobox templates.”

For example, the page for the “volleyball player” class has a category tag called “athlete

infobox templates,” and there exists another class named “athlete,” so isaFT(“volleyball

player”, “atheletes”, HasCategory). This feature is strongly linked to subsumption (e.g.,

“volleyball player” ISA “athlete,” but nothing is guaranteed. For example, both “athlete”

and “Olympic” classes have the category tag “Sports infobox templates”, but neither of

them ISA sports.

Edit History: The edit patterns from Wikipedia’s evolution contain useful information

— intuitively, when changing the type of an instance, an author is more likely to specialize

than generalize. We define the degree of class c as the number of classes transferring with

c. Given a pair of classes c and d, KOG checks: 1) whether fE(c ↔ d) is high enough (e.g,

bigger than 5 in our case); 2) Whether the degree of d is much bigger than that of c (e.g.

more than twice as big). If both conditions are true, we say the feature isaFT(c,d,EditH)

holds — weak evidence for “c ISA d”.

Hearst Patterns: Following [51, 58], KOG queries Google to collect type information

about class names using patterns such as “NP0, like NP1” and “NP0 such as NP1”, which

often match phrases such as “. . . scientists such as phsyicists, chemists, and geologists.” We

say isaFT(c,d,HPattern) holds if the Google hit number for HPattern(c,d) is big enough(e.g.

200 in our case) while very small for HPattern(d,c)(e.g. less than 10 in our case).

WordNet Mapping: By computing a mapping from infobox classes to WordNet con-

cept nodes, KOG gains useful features for predicting subsumption. For example, if both c

and d have perfectly corresponding nodes in WordNet and one WordNet node subsumes the

other (say isaFT(c,d,isaWN)), then this is likely to be highly predictive for a learner. Since

computing the mapping to WordNet is involved, we describe it in the next subsection.

3.4.2 Computing the WordNet Mapping

In this section we explain how KOG generates two mappings between infobox classes and

WordNet nodes: ω(c) returns a node whose name closely matches the name of c, while

ϕ(c) denotes the node which most frequently characterizes the instances of c according to
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Yago [103]. Based on these two mappings, KOG seeks the closest semantic match �(c)

for each class c in WordNet (e.g., “scientist” class should map to the “scientist” node

instead of the “person” node), and outputs one of the seven mapping types characterizing

different degrees of match; in descending order of strength we have: LongName, LongHead,

ShortNameAfterYago, ShortHeadAfterYago, HeadYago, ShortName, and ShortHead. The

following steps are tried in order until one succeeds.

Step 1: If class c’s name (after cleaning) has more than one token, and has an exact

match in WordNet, ω(c), then ω(c) is output as the closest semantic match �(c) with

mapping type LongName. This kind of mapping is very reliable — a random sample of 50

cases showed perfect precision.

Step 2: KOG uses the Stanford Parser to locate the head of c’s name and returns the

WordNet node which matches the longest substring of that head, ω(c). For example, “beach

volleyball player,” is matched to “volleyball player” in WordNet, instead of “player.” If the

matched head has more than one token, then ω(c) is returned with type LongHead; a sample

shows that it is also very reliable.

Step 3: If neither of the previous techniques work, KOG looks for a consensus mapping

amongst articles which instantiate the class, much as it did when determining an attribute’s

type in Section 3.3.4. However, instead of using both the DBpediaMap and YagoMap to

define the mapping, as done previously, KOG just uses YagoMap, saving the higher-quality,

manually-generated DBpediaMap to use as training data for the learner. Let Ic denote the

instances of infobox class c; for all o ∈ Ic let ϕ(o) be the WordNet node defined by Yago.

Let ϕ(c) be the most common node in ϕ(Ic). If c’s head is a single token, and has a matched

node ω(c) in WordNet, KOG checks the relationship between ω(c) and ϕ(c) in WordNet. If

ω(c) is a child or alternative of ϕ(c) and the head is the class name itself (i.e., c’s name is a

single token), KOG returns ω(c) with type ShortNameAfterYago; otherwise, KOG returns

ω(c) with type ShortHeadAfterYago. If no relationship is found between ω(c) and ϕ(c),

KOG returns ϕ(c) with type HeadYago. If no ϕ(c) is found, KOG returns ω(c) with type of

either ShortName or ShortHead, depending on whether c is single token. As in Yago [103],

we select the most frequent sense of the mapped node in WordNet, which turns out to work

well in most cases.
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To finally determine whether �(c) is returning a good mapping, KOG encodes its map-

ping type as a Boolean feature: mapType(c,t), where t denotes one of the seven types (e.g.,

LongName). A support vector machine (SVM) is learned using DBpediaMap as a train-

ing set (We used the LIBSVM implementation [4]). In this way, the SVM learns relative

confidences for each mapping type and outputs a score for the WordNet mappings. This

score can be used to easily control the precision / recall tradeoff. Furthermore, the score

could also identify potentially incorrect mappings for further verification (whether manual

or automatic).

Now, when given two classes c and d, KOG can check whether �(c) subsumes �(d) in

WordNet. If so, KOG constructs the feature, isaFT(c,d,isaWN), which is likely to be highly

predictive for the subsumption classifier described next.

We close by noting that, in addition to being a useful feature for the subsumption

classifier, the WordNet mapping has other important benefits. For example, each node

in WordNet has an associated set of synonyms which can be used for query expansion

during query processing over the infobox knowledge base. For example, consider a query

about ballplayers born in a given year. Even though there is no “ballplayer” class in

Wikipedia, WordNet knows that “ballplayer” and “baseball player” are synonyms and so a

query processing system can operate on records of the “baseball player” class. Additionally,

associating the attributes from a Wikipedia schema (as well as a long list of class instances)

with a WordNet node may also provides substantial benefit to WordNet users as well.

3.4.3 Max-Margin Classification

One might think that there would be no need to learn a second classifier for subsumption,

once KOG has learned the mapping from infobox classes to WordNet, but in practice the

WordNet mapping is not 100% correct, so the other features improve both precision and

recall. But even if the first SVM classifier could learn a correct mapping to WordNet,

it would be insufficient. For example, “television actor” and “actor” are both correctly

mapped to the WordNet node “person,” but this mapping is incapable of predicting that

“actor” subsumes “television actor.” Instead, KOG treats the mapping as just another
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feature and learns the subsumption relation using all available information.

KOG uses the “DBpediaMap” to constructs the training dataset (details in section 3.6.2)

to train a SVM classifier for subsumption. By automatically weighing the relative impor-

tance of all features, KOG finds an optimal hyperplane for classifying subsumption. With

a confidence threshold of 0.5, the SVM achieves an average precision of 97.2% at a recall of

88.6%, which is quite good.

3.4.4 Classification via Joint Inference

While the SVM’s performance is quite good, there is still space to improve. First, the SVM

classfier predicts ISA between each pair of classes sequentially and separately. This local

search ignores evidence which is potentially crucial. For example, if “c ISA d” and “d ISA

e”, it is likely that “c ISA e”, even if no strong features observed for the pair of c and e.

Secondly, the SVM classifiers separate the WordNet mapping and ISA classification as

input and output, so that the crosstalk between these two parts is blocked. In reality,

however, these two problems are strongly intermixed and evidence from either side can

help to resolve the uncertainty of the other side. For example, given that class c and d have

correct mappings to WordNet and “�(c) ISA �(d)”, it is likely that “c ISA d”; on the other

hand, if “c ISA d” but the retrieved mappings �(c) and �(d) have no ISA relationship in

WordNet, then it is clear that something is wrong — but the SVM won’t recognize the

problem.

In contrast, a relational-learning model capable of joint inference can exploit this global

information. To see if this would lead to greater performance, we applied the Markov Logic

Networks(MLN) model. By addressing ISA classification and WordNet mapping jointly, our

MLN model achieves substantially better performance for both tasks. Section 3.6 provides

detailed experiments, but we note that with a confidence threshold of 0.5, our MLN model

eliminated 43% of the residual error while simultaneously increasing recall from 88.6% to

92.5%.

Before describing our MLN classifier in more detail, we provide background on Markov

Logic Networks.
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Markov Logic Networks

A first-order knowledge base can be seen as a set of hard constraints on the set of possible

worlds: if a world violates even one formula, it has zero probability. The basic idea of MLNs

is to soften these constraints: when a world violates one formula in the KB it is deemed less

probable, but not impossible. The fewer formulas a world violates, the more probable it is.

Each formula has an associated weight that reflects how strong a constraint it is: the higher

the weight, the greater the difference in log probability between a world that satisfies the

formula and one that does not, other things being equal.

(From Richardson & Domingos [93]) A Markov Logic Network L is a set of pairs (Fi, wi),

where Fi is a formula in first-order logic and wi is a real number. Together with a finite set

of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each predicate appearing

in L. The value of the node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The

value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight

of the feature is the wi associated with Fi in L.

Thus, there is an edge between two nodes of ML,C if and only if the corresponding

ground predicates appear together in at least one grounding of one formula in L. An MLN

can be viewed as a template for constructing Markov networks. The probability distribution

over possible worlds x specified by the ground Markov network ML,C is given by

P (X = x) =
1

Z

�

i

φi(x{i}) (3.1)

where Z is the normalization factor, φi(x{i}) is the potential function defined on the ith

clique which is related to a grounding of formula Fi, and x{i} is the discrete variable vector

in the clique. Usually, it is represented as follows,

φi(x{i}) =






ewi Fi(x{i}) = True

1 Fi(x{i}) = False
(3.2)
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In this way, we can represent the probability as follows,

P (X = x) =
1

Z
exp

�
�

i

wini(x)

�

(3.3)

where ni(x) is the number of true groundings of Fi in x.

Using MLNs to Classify Subsumption

KOG uses the open source Alchemy system [65] to implement its MLN classifier. As

described in Section 3.4.1, two predicates are used to represent features: mapType(c,t) and

isaFT(c1,c2,f). Two query predicates isa(c1, c2) and map(c) are used to express the uncer-

tainty of ISA classification and WordNet mapping, respectively. After learning, Alchemy

computes the probabilities of these predicates.

We use three kinds of logical formulas to guide KOG’s learning. The first represents the

loose connection between WordNet mappings and the corresponding types. For example,

mapType(c, LongName) ⇔ map(c)

which means “Class c has a long class name and exactly matches a node in WordNet if

and only if this mapping is correct.”5 Remember that Alchemy will learn the best prob-

abilistic weight for this and the other rules. By using a metavariable, “+t,” instead of

the constant LongName, we direct Alchemy to learn weights for all possible indications:

mapType(c,+t) ⇔ map(c).

The second class of formulas encode the intuition that 1) ISA is transitive, and 2) features

such as isaFT(c1,c2,Contain) are likely correlated with subsumption:

isa(c1, c2) ∧ isa(c2, c3) ⇒ isa(c1, c3)

isaFT (c1, c2,+f) ⇔ isa(c1, c2)

The final formulas encode the connection between the WordNet mapping and ISA clas-

sification:

isaFT (c1, c2, isaWN) ∧map(c1) ∧map(c2) ⇒ isa(c1, c2)

5In fact, Alchemy converts the bidirectional implication into two separate clauses, one for each direction;
this allows it to learn different weights for each direction.
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which means “if c1 and c2 both have correct WordNet mappings and the mapped nodes are

ISA in WordNet, then c1 ISA c2.”

Two other formulas complete the intuition:

isaFT (c1, c2, isaWN) ∧ isa(c1, c2) ⇒ map(c1) ∧map(c2)

map(c1) ∧map(c2) ∧ isa(c1, c2) ⇒ isaFT (c1, c2, isaWN)

Discriminative learning is used to determine the weights of formulas [99], and MC-SAT

is used for inference [88]. Experimental results show that this joint inference approach

improves the precision of both ISA classification and WordNet mapping.

3.4.5 ISA Tree Construction

The SVM and MLNs classifiers perform subsumption detection for all pairs of infobox

classes. A class might be predicted as a subset of both its parent and grandparent classes.

For example, “actor” is classified as subsuming both “performer” and “person”. We apply

a topological sorting over the classification results to build a tree structured taxonomy,

where each class is only attached to its closest parent. Specifically, we build a directed

graph < V,E >, where each infobox class is a vertex in V , and E is the set of predicted

subsumption. We perform a topological sorting over the graph to get a liner ordering of its

nodes in which each node comes before all nodes to which it has outbound edges. In the

final taxonomy, a class node is only attached to its closest parent based on the ordering.

For example, “actor” is attached to “performer”, which itself is attached to “person”.

3.5 Schema Mapping

To support property heritance, KOG identifies corresponding attributes between parent

and child classes in the ISA hierarchy. Figure 3.8 shows the compact pseudocode for this

process. Schema mapping is a well-studied database problem, which seeks to identify cor-

responding attributes among different relational schemata [46, 71]. With KOG, we take a

simple approach which exploits the structure of Wikipedia, relying on the edit history and

string similarity comparison to find attribute mappings.
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Schema Mapping in KOG (parent class C1, child class C2): 
SM = {} 
For each pair of <C1.ai, C2.aj> 
 If C1.ai and C2.aj are semantically equivalent based on edit history
  Add <C1.ai ~ C2.aj> to SM 
 Else if the names of C1.ai and C2.aj are similar enough 
  Add <C1.ai ~ C2.aj> to SM 
Return SM 

Figure 3.8: KOG identifies corresponding attributes between parent and child classes based
on Wikipedia’s edit history and string similarity comparison.

Let c and d denote two classes, typically a parent/child pair from the subsumption lattice

constructed in the previous section. KOG considers different pairs of attributes, looking for

a match by checking the following conditions in turn:

Step 1: If the undirected transfer frequency between two attributes c.a and d.b is high

enough (fE(c.a ↔ d.b) ≥ 5 in our case), KOG matches them.

Step 2: If data is sparse, KOG considers attribute names independent of class, looking

at the edit history of all classes with attributes named a and b. For example, it treats

“actor.spouse” and “person.spouse” both as “spouse,” and “person.wife” and “musician

artist.wife” both as “wife,” and computes the sum of fE(a ↔ b) between all possible pairs

of attributes (a, b). If an attribute c.a wasn’t mapped in Step 1 and fE(a ↔ b) is over

threshold in this aggregate fashion, then KOG maps c.a to d.b.

Step 3: If the previous steps fail, KOG uses the lexical, string comparison method, like

that of Section 3.3.1.

Once mapping is complete, KOG iterates over all attributes, collecting every correspond-

ing attribute into a bag of alternative names. For example, the “birth place” attribute of

“person” is given the following alternative names: birthplace, place of birth, place birth,

location, origin, cityofbirth, born.” This naming information is helpful for query expansion

and for other tasks (e.g., query suggestion, information integration, etc.)

Since KOG has already estimated a type signature for each attribute, it uses this to
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double-check whether the attribute mapping is consistent. Those which fail to match are

tagged for subsequent verification and correction, which could be manual or automatic. In

the future, we intend to add the attribute mapping phase, with type consistency, into our

joint inference approach.

3.6 Experiments

To investigate KOG’s performance, we downloaded the English version of Wikipedia for

five dates between 09/25/2006 and 07/16/2007. We evaluate ontology refinement on the

07/16/2007 snapshot; previous versions are used to compute edit-history information. There

are many measurements for taxonomy creation. We choose the most general criteria of

precision and recall.

3.6.1 Schema Cleaning

This section addresses three questions:

• How does KOG recognize duplicate schemata?

• How does KOG assign meaningful names?

• What is the precision for attribute type inference?

Recognizing Duplicate Schemata

Our data set contained 1934 infobox templates. By following redirected pages, KOG

found 205 duplicates; checking canonical forms identified another 57. A manual check

yielded an estimate of 100% precision. To estimate recall, we randomly selected 50 classes

and found 9 duplicates by manual checking. KOG successfully identified 7 of them, which

leads to an estimated recall of 78%. Since KOG also prunes classes containing less than 5

instance articles, 1269 infobox classes are selected.

For attributes, KOG found 5365 duplicates — about 4 per class. We randomly selected

10 classes and manually identified 25 true duplications. On this set KOG predicted 23

duplicates of which 20 of them were correct. This leads to an estimated precision of 87%,
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Heuristic Precision(%) Recall(%) F-Measure(%)

CaseCheck 97.0 10.1 18.2

GoogleSpell 91.7 6.9 12.9

Category 86.7 61.3 71.8

WikiQuery 90.0 5.7 10.7

All 88.4 84.0 86.1

Table 3.1: Performance of assigning meaning full class names.

and estimated recall of 79%. Since KOG ignores attributes which are used by less than 15%

instance articles, 18406 attributes (out of 40161) survived cleaning.

Assigning Meaningful Names

By referring to WordNet, KOG selected 318 out of 1269 infoboxes for name recovery.

KOG found names for 302 of these candidates and manual checking rated 267 of them

to be correct. This is quite encouraging, because many class names are extremely hard

to interpret — even for human beings. For example, KOG correctly renamed “wfys” to

be “youth festivals” and renamed “nycs” to “New York City Subway.” Table 3.1 shows

the detailed contribution of each heuristic, where “All” means the combination of every

heuristic, as described in section 3.3.1.

For attributes, we randomly selected 50 classes which contain a total of 654 attributes.

By referring to WordNet, KOG identified 153 candidates, and it reassigned names to 122 of

them; 102 of the new names were correct. This leads to an estimated precision of 84% and

recall of 67%. We note that KOG didn’t perform as well here as it did when renaming class

names. One explanation may be that less attention is paid by humans to attribute names,

and this provides a weaker signal for KOG to exploit.

Inferring Attribute Types

In order to check the performance of type inference, we randomly picked 20 infobox

classes, which had a total of 329 attributes. KOG predicted a type for 282 of these and

186 predictions were correct. This leads to an estimated precision of 66% with a recall of
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57%. These results are acceptable given the problem difficulty and lack of labeled training

data, but we anticipate that by incorporating the techniques introduced by the REALM

model [48], KOG could do substantially better.

3.6.2 ISA Classification

We now focus on three additional questions:

• What are the precision and recall of subsumption detection?

• How does KOG identify incorrect WordNet mappings?

• What is the benefit (if any) of joint inference?

First, however, we describe how KOG automatically derive a training dataset based on

open Web resources.

Training dataset construction

Recall that “DBpediaMap” contains manually-created mapping from 287,676 articles

to their corresponding WordNet nodes; the articles come from 266 of the infobox classes.

KOG uses this data to construct the pseudo-training dataset for subsumption detection6.

We call it “pseudo” because it is constructed indirectly, as follows. For each class covered by

“DBpediaMap”, we first select the most frequent aggregated label over its instance articles.

Then we decide whether this is a NameMap or HeadMap: if the label exactly matches the

class name or one of its alternative terms in WordNet, we call it a NameMap; otherwise

call it a HeadMap. Besides “DBpediaMap”, two other mappings types are also added to

the pseudo dataset due to their high precision: one is LongName and another LongHead.

In this way, we get a dataset of 406 classes with pseudo-labelled WordNet mappings. Then

KOG produces positive and negative ISA pairs by following the hyponym tree in WordNet:

• Suppose both class c and d have NameMap �(c) and �(d). If �(c) ISA �(d), KOG

labels “c ISA d”. Otherwise, “c NOT ISA d”;

6Other datasets, like the automatically compiled “YagoMap” or “Category Ontology” from [87], can also
serve for this purpose.
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Figure 3.9: Subsumption detection via joint inference using MLNs is superior than applying
a SVM model.

• Suppose class c has HeadMap �(c) and class d has NameMap �(d). If �(c) ISA

�(d)”, or �(c) is an alternative term of �(d), we label “c ISA d”.

In this way, KOG gets 205 positive and 358 negative ISA pairs for training7.

Results

To better understand the source of performance at subsumption classification, we also

implemented a simplified MLN classifier; it uses exactly the same features as the SVM clas-

sifier (without the formulas for crosstalk between WordNet mapping and ISA classification).

For clarity, we call the simplified model “MLN,” and the fully-functional one “MLN+.” We

test each model’s performance with 5-fold cross validation on the pseudo-labelled dataset.

Each run is performed on a Linux platform with a 2.4GHz CPU and 4G memory. In aver-

age, it takes about 0.05 minutes to train the SVM classifier and 0.2 minutes to test; for the

7This benchmark dataset is available at: http://ai.cs.washington.edu/www/media/downloadable/media/ISA-
PseudoManual-KOG.zip
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Figure 3.10: ISA classification with confidence threshold set as 0.5.

“MLN+” model, it takes about 6.1 minutes to train (with about 45K grounded predicates

and 91K grounded clauses) and 0.6 minutes to test.

Figure 3.9 shows the precision/recall curves for subsumption classification. All three

models perform well. We suspect most people are willing to trade away recall for higher

precision. In this sense, both MLN models perform better than the SVM classifier, and

MLN+ is the best by further extending the recall. To have a close look, we set the confi-

dence threshold at 0.5, and compared three models’ performance in Figure 3.10. The SVM

classifier achieves an excellent precision of 97.2% and recall of 88.6%. The MLN model

drops precision to 96.8% but has better recall at 92.1%. And MLN+ wins on both counts,

extending precision to 98.8% (eliminating residual error by 43%) and recall to 92.5%. Since

the only difference between the two MLNs are the formulas inducing joint inference, it is

clear that this is responsible.

As we mentioned before, the WordNet mapping is useful in its own right. To check

how joint inference affects this task, we again implemented a simplified MLN and compared

the performance of three models. Figure 3.11 shows that both MLN models achieve a big
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Figure 3.11: WordNet mapping via joint inference using MLNs achieves better performance
than applying a SVM model.

improvement over the SVM classifier.The MLN+ model has overall better performance than

MLN, especially at high recall. This improvement stems from MLN+’s ability to identifying

incorrect WordNet mappings, as shown in Figure 3.12. This ability may translate into

an effective mixed-initiative interface, since the MLN+ model will be able to drive active

learning, asking humans to correct examples which it knows are incorrect.

3.6.3 Schema Mapping

This section evaluates the precision and recall of KOG’s schema mapping capability. In par-

ticular, we are interested in the ability to accurately map corresponding attributes between

parent and child schemata. To perform the evaluation, we took a random sample of 10 ISA

class pairs from the constructed subsumption lattice8. Manual checking revealed a total of

8Available at: http://ai.cs.washington.edu/www/media/downloadable/media/schemaMappingEvaluation gold-
standard.zip
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Figure 3.12: MLNs are more effective than SVM for detecting incorrect WordNet mappings.

91 true mappings. KOG made 84 predictions and 79 of them were correct. This leads to

an estimated precision of 94% and recall of 87%. There are two main causes for incorrect

mappings: first, some ambiguous attributes are invented for flexible visualization purpose.

For example, “free” and “free label” are widely used by users to define attributes. This

ambiguity misleads KOG to link several attributes to these free attributes. Secondly, the

string-similarity heuristic also produces errors occasionally. For example, “road.direction a”

is mapped to “route.direction b” since only one character is different. In the future we hope

to incorporate recently-developed schema-mapping techniques from the database commu-

nity in order to boost precision and recall.

3.6.4 Sample Application

The main motivation for KOG was the hope that the resulting ontology would support

advanced queries over data extracted from Wikipedia and the Web. As preliminary confir-

mation of this, we did a case study to check its support for query over Wikipedia infoboxes.
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It turns out KOG helps to extend the recall in many cases. For example, given a query like:

• “Which performing artists were born in Chicago?”

Without the refined ontology, one would likely return zero results, because there is no

“performing artist” infobox in the current Wikipedia. However, with KOG we know “per-

former” is an alternative of “performing artist” and its “location” attribute has “born”

as an alias. As a result, the answer “Michael Ian Black” would be successfully retrieved

from an infobox. Furthermore, by following the ISA tree, we know “actor” and “comedian”

are children of “performer”, and their attributes “birthplace”, “birth place”, “cityofbirth”,

“place of birth”, “origin” are duplicates, all mapping to the “location” attribute of “per-

former.” This expansion allows the return of 162 additional answers from “actor” and one

additional answer from the “comedian” class.

3.7 Related Work

Ontology Construction Based on Wikipedia: Suchanek et al. built the Yago system

by unifying WordNet and Wikipedia, where leaf category tags are mapped to WordNet

nodes with rule-based and heuristic methods [103]. Strube et al. derived a large scale

taxonomy based on the Wikipedia category system by applying several heuristics to identify

the ISA relationships among category tags [87]. In contrast with this work, we focus on

combining Wikipedia infoboxes with WordNet, and trained a sophisticated MLN model to

jointly infer the WordNet mapping and ISA classification. In some sense, their work and

ours are complementary to each other: they achieve greater coverage with category tags,

and we provide detailed schemata together with attribute mappings.

Herbelot et al. extracted ontological relationships from Wikipedia’s biological texts,

based on a semantic representation derived from the RMRS parser [60]. In contrast,

KOG constructs a broad, general-purpose ontology. Hepp et al. propose to use standard

Wiki technology as an ontology-engineering workbench and show an application of treating

Wikipedia entries as ontology elements [59]. We are also motivated by the special struc-

tures (e.g., infoboxes) in Wikipedia, and try to address more advanced problems, such as

subsumption extraction and schema mapping.
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Learning Relations from Heterogenous Evidence: Cimiano et al. trained an SVM

classifier to predict taxonomic relations between terms by considering features from multiple

and heterogeneous sources of evidence [34]. For KOG, we also used SVM classifiers to handle

diverse features from heterogenous evidences. Furthermore, we also applied an MLN model,

showing the benefit of joint inference: by using a single MLN classifier, KOG creates the

WordNet mapping and ISA classification simultaneously — getting better performance on

both tasks.

Snow et al.’s work [100] is closer to ours in the sense of handling uncertainty from

semantic relationships and WordNet mappings all together over heterogenous evidence.

However there are several important differences. First, they use local search to incrementally

add one new relation in each step, greedily maximizing the one-step increase in likelihood.

This hill-climing model risks slipping into a local maximum, with no ability to jump to

a globally better solution. In contrast, we use a MLN model to jointly infer the value of

all relations, more likely finding the optimal solution. Second, Snow et al. assume that

each item of evidence is independent of all others given the taxonomy, and depends on the

taxonomy only by way of the corresponding relation. In contrast, our MLN model doesn’t

make any independence assumption during inference.

Schema Matching: Several of the problems addressed by KOG may be seen as instances

of the schema-matching problem: recognizing duplicate schemata, finding duplicate at-

tributes, and matching the attributes of one schema with those of a subsuming class. Many

researchers have investigated this general problem, especially those in the database and

IR communities. For example, Doan et al. developed a solution combining several types

of machine learning [46]. Madhavan et al. proposed a corpus-based matching approach

which leverages a large set of schemata and mappings in a particular domain to improve

robustness of matching algorithms [71]. He and Chang proposed a statistical schema map-

ping framework across Web query interfaces by integrating large numbers of data sources

on the Internet [57]. Bilke and Naumann exploit the existence of duplicates within data

sets to perform automatic attribute mappings [20]. We would like to incorporate these

approaches into KOG, but to date have implemented a simpler, heuristic approach which
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exploits Wikipedia-specific structure to yield acceptable performance.

General Ontology Construction: The most widely used method for automatic ontology

extraction is by lexico-syntactic pattern analysis. This is first proposed by Marti Hearst

to acquire hyponyms from large text corpora [58], and later followed by many successful

systems, such as KnowItAll [51] and PANKOW [31, 32]. Cafarella et al. propsed the

TGen system to discover schemas from the unstructured assertions harvested from the

Web [28]. Another general way to learn ontology is clustering concept hierarchies as in [33].

Poon and Domingos developed the OntoUSP system that automatically induces ontology

from dependency-parsed texts via hierarchical clustering [91]. Linguistic approaches are also

applied, such as OntoLearn [105] and TextToOnto [96]. All these methods mainly focus on

unstructured texts, while we fully exploited the rich (semi)structured information available

on the Web, such as infoboxes in Wikipedia, to help ontology construction. These two

methods can benefit each other by either improving precision or extending coverage.

3.8 Conclusion

Wikipedia is developing as the authoritative store of human knowledge. Recently, the com-

bined efforts of human volunteers have extracted numerous facts from Wikipedia, storing

them as machine-readable object-attribute-value triples in Wikipedia infoboxes. Further-

more, machine-learning systems, such as our KYLIN, can use these infoboxes as training

data, and then accurately extract even more triples from Wikipedia’s natural-language text.

This huge repository of structured data could enable next-generation question answering

systems which allow SQL-like queries over Wikipedia data, faceted browsing, and other ca-

pabilities. However, in order to realize the full power of this information, it must be situated

in a cleanly-structured ontology.

This chapter makes a step in this direction, presenting KOG, an autonomous system for

generating Wikipedia’s ontology. We cast the problem of ontology creation as a machine

learning problem and present a novel solution based on joint inference implemented using

Markov Logic Networks. The resulting ontology contains subsumption relations and schema

mappings between infobox classes; additionally, it maps these classes to WordNet.
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Chapter 4

MOVING DOWN THE LONG TAIL

In Chapter 2, we presented KYLIN— a self-supervised system for information extraction

from Wikipedia. KYLIN looks for sets of pages with similar infoboxes, determines common

attributes for each class, creates training examples, learns extractors, and runs them on

each page — creating new infoboxes and completing others.

KYLIN works extremely well for popular infobox classes where users have previously

created sufficient infoboxes to train an effective extractor model. For example, in the “U.S.

County” class KYLIN has 97.3% precision with 95.9% recall. Unfortunately, however, many

classes (e.g. “Irish Newspaper”) contain only a small number of infobox-containing articles.

As shown in Figure 4.1, 1442 of 1756 (82%) classes have fewer than 100 instances, and 42%

have 10 or fewer instances1. For classes sitting on this long tail, KYLIN can’t get enough

training data — hence its extraction performance is often unsatisfactory for these classes.

Furthermore, even when KYLIN does learn an effective extractor there are numerous

cases where Wikipedia has an article on a topic, but the article simply doesn’t have much

information to be extracted. Indeed, another long-tailed distribution governs the length

of articles in Wikipedia; among the 1.8 million pages, many are short articles and almost

800,000 (44.2%) are marked as stub pages, indicating that much-needed information is

missing.

An ideal machine reading system should conquer both head and long tail textual knowl-

edge. In order to create a comprehensive semantic knowledge base summarizing the topics

in Wikipedia, we must confront the problems entailed by these long-tailed distributions. We

must train extractors to operate on sparsely populated infobox classes and we must resort

to other information sources if a Wikipedia article is superficial.

1Unless noted otherwise, all statistics in this chapter are taken from the 07/16/2007 snapshot of
Wikipedia’s English language version.
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Figure 4.1: The number of article instances per infobox class has a long-tailed distribution.

In this chapter we describe three novel approaches for improving recall of KYLIN’s

information extraction on Wikipedia.

• By applying shrinkage [73, 102] over an automatically-learned subsumption taxonomy,

we allow KYLIN to substantially improve the recall of its extractors for sparsely

populated infobox classes.

• By mapping the contents of known Wikipedia infobox data to TextRunner, a state-

of-the-art open information extraction system [15], we enable KYLIN to clean and

augment its training dataset. When applied in conjunction with shrinkage, this re-

training technique improves recall by a factor of between 1.4 and 5.9, depending on

class.

• When it is unable to extract necessary information from a Wikipedia page, we en-

able KYLIN to retrieve relevant sentences from the greater Web. As long as tight

filtering is applied to non-Wikipedia sources, recall can be still further improved while

maintaining high precision.

Our techniques work best in concert. Together, they improve recall by a factor of 1.89

to 8.42 while maintaining or increasing precision. The area under the precision-recall curve

increases by a factor of between 1.91 to 8.71, depending on class. In addition to showing the
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great cumulative effect of these techniques, we analyze several variations of each method,

exposing important engineering tradeoffs. We describe each technique in the next sections.

4.1 Shrinkage

Although KYLIN performs well when it can find enough training data, it flounders on

sparsely populated infobox classes — the majority of cases. Our first attempt to improve

KYLIN’s performance uses shrinkage, a general statistical technique for improving estima-

tors in the case of limited training data [102]. McCallum et al. applied this technique for

text classification in a hierarchy classes by smoothing parameter estimate of a data-sparse

child with its parent to get more robust estimates [73].

Similarly, we use shrinkage when training an extractor of an instance-sparse infobox

class by aggregating data from its parent and children classes. For example, knowing

that performer ISA person, and performer.loc=person.birth plc, we can use values from

person.birth plc to help train an extractor for performer.loc. The trick is automatically

generating a good subsumption hierarchy which relates attributes between parent and child

classes. Fortunately, the ontology produced by our KOG system (described in Chapter 3)

perfectly meets this requirement.

Given a sparse target infobox class C, KYLIN’s shrinkage module searchs upwards and

downwards through the KOG ontology to aggregate training data from related classes. The

two crucial questions are: 1) How far should one traverse the tree? 2) What should be

the relative weight of examples in the related class compared to those in C? For the first

question, we search to a uniform distance, l, outward from C. In answer to the second

question, we evaluate several alternative weighting schemes in Section 4.1.1. The overall

shrinkage procedure is as follows:

1. Given a class C, query KOG to collect the related class set: SC = {Ci|path(C,Ci) ≤ l},

where l is the preset threshold for path length. Currently KYLIN only searches strict

parent/child paths without considering siblings. Take the “Performer” class as an

example: its parent “Person” and children “Actor” and “Comedian” could be included

in SC .
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2. For each attribute C.a (e.g. “Performer.birthplace”) of C:

(a) Query KOG for the mapped attribute Ci.aj (e.g. “Person.cityofbirth”) for each

Ci ∈ SC .

(b) Assign weight wij to the training data from Ci.aj and aggregate them in the

training dataset for C.a. Note that wij may be a function of the target attribute

a, the related class Ci, and Ci’s mapped attribute aj .

3. Train the CRF extractors for C based on the aggregated training dataset.

4.1.1 Shrinkage Experiments

This section addresses two questions:

• Does shrinkage over the KOG ontology help KYLIN to learn extractors for sparse

classes? What if the target class is not sparse?

• What is the best strategy for computing the training weights, wij?

To answer these questions we used the 07/16/2007 snapshot of en.wikipedia.org

as a source dataset. We tested on four classes, namely “Irish Newspaper” (which had

20 infobox-contained instance articles), “performer” (44), “baseball stadium” (163), and

“writer” (2213). These classes represent various degrees of “sparsity” in order to provide

better understanding of how shrinkage helps in different cases. For the “Irish Newspaper”

and “performer” classes, we manually labeled all the instances to compute precision and

recall values. Particularly, we count the ground-truth as the attribute values contained in the

articles —meaning a 100 percent recall is getting every attribute value which is present in the

article. For the “baseball stadium” and “writer” classes, we manually labeled 40 randomly-

selected instances from each. All the following experiments use 4-cross-validations.

After schema cleaning, KOG identified 1269 infobox classes and mapped them to the

WordNet lattice (82115 synsets). We found that although the whole ontology is quite dense,

the current number of Wikipedia infoboxes is relatively small and most pathes through the
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Target class Parent Children

Irish Newspaper(20) Newspaper(1559) –

Performer(44) Person(1201) Actor(8738)

Comedian(106)

Baseball stadium(163) Stadium(1642) –

Writer(2213) Person(1201) Sci-fi writer(36)

Table 4.1: Parent/children classes for shrinkage.

taxonomy cover three or fewer infobox classes, which diminishes the effect of path-length

threshold l. Table 4.1 shows the detailed parent/children classes for each testing case. In

the following, we mainly focus on testing weighting strategies.

We considered three strategies to determine the weights wij for aggregated data from

parent/child classes:

Uniform: wij = 1, which weights all training samples equally.

Size Adjusted: wij = min{1, k
|D(C)|+1}, where k (10 in our experiments) is the design

parameter, and |D(C)| is the number of instance articles contained in C. The intuition is

that the bigger D(C) is, the less shrinkage should rely on other classes.

Precision Directed: wij = pij , where pij is the extraction precision when applying Ci’s ex-

tractor on the appropriate sentences from C-class articles and comparing them with existing

infobox values.

Even with limited parent/children classes for smoothing, all forms of shrinkage im-

prove extraction performance. Figure 4.2 shows the precision/recall curves for our different

weighting strategies. We draw several conclusions:

First, with shrinkage, KYLIN learns better extractors, especially in terms of recall. For

those very sparse classes such as “performer” and “Irish Newspaper”, the recall improvement

is dramatic: 57% and 460% respectively; and the area under the precision and recall curve

improves 62% and 1420% respectively.
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Figure 4.2: Regardless of the weighting scheme, extractors trained with KOG-enabled
shrinkage outperforms the KYLIN baseline — especially on the sparse “Irish Newspaper,”
“Performer” and “Baseball Stadium” classes where recall is dramatically improved. In the
two sparsest classes, precision is also markedly improved.
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Second, we expected precision-directed shrinkage to outperform the other methods of

weighting, since it automatically adapt to different degrees of similarity between the targent

and related classes. However, the three weighting strategies turn out to perform compar-

atively on the infobox classes used for testing. The most likely reason is that to achieve

total autonomy KYLIN estimates the precision, pij , of an extractor by comparing the val-

ues which it extracts to those entered manually in existing infoboxes. It turns out that in

many cases Wikipedia editors use different expressions to describe attribute values in the

infoboxes than they do in the article text. Naturally, this makes the accurate estimation of

pij extremely difficult. This, in turn, biases the quality of weighting. In the future, we hope

to investigate more sophisticated weighting methods.

Finally, Shrinkage also helps the quality of extraction in popular classes (e.g., for “writer”),

though the improvement is quite modest. This is encouraging, since “writer” already had

over two thousand training examples.

4.2 Retraining

Our experiments show that shrinkage enables KYLIN to find extra data within Wikipedia

to help train extractors for sparse classes. A complementary idea is the notion of harvest-

ing additional training data even from the outside Web? Leveraging information outside

Wikipedia, could dramaticaly improve KYLIN’s recall. To see why, we note that the word-

ing of texts from the greater Web are more diverse than the relatively strict expressions

used in many places in Wikipeidia.2 Training on a wider variety of sentences would improve

the robustness of KYLIN’s extractors, which would potentially improve the recall.

The trick here is determining how to automatically identify relevant sentences given

the sea of Web data. For this purpose, KYLIN utilizes TextRunner, an open information

extraction system [15], which extracts semantic relations {r|r = �obj1, predicate, obj2�} from

a crawl of about 500 million Web pages. Importantly for our purposes, Textrunner’s crawl

includes the top ten pages returned by Google when queried on the title of every Wikipedia

article. In the next subsection, we explain the details of our retraining process; then we

2It is possible that Wikipedia’s inbred style stems from a pattern where one article is copied and modified
to form another. A general desire for stylistic consistency is another explanation.
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follow with an experimental evaluation.

4.2.1 Using TextRunner for Retraining

Recall that eachWikipedia infobox implicitly defines a set of triples {t|t = �subject, attribute, value�}

where the subject corresponds to the entity which is the article’s title. These triples have

the same underlying schema as the semantic relations extracted by TextRunner and this

allows us to generate new training data.

The retrainer iterates through each infobox class C and again through each attribute,

C.a, of that class collecting a set of triples from existing infoboxes: T = {t|t.attribute = C.a}.3

The retrainer next iterates through T , issuing TextRunner queries to get a set of potential

matches R(C.a) = {r|∃t : r.obj1 = t.subject, r.obj2 = t.value}, together with the corre-

sponding sentences which were used by TextRunner for extraction. The KYLIN retrainer

uses this mapped set R(C.a) to augment and clean the training data set for C’s extractors

in two ways: by providing additional positive examples for the learner, and by eliminating

false negative examples which were mistakenly generated by KYLIN from the Wikipedia

data.

ADDING POSITIVE EXAMPLES:Unfortunately, TextRunner’s raw mappings, R(C.a),

are too noisy to be used as positive training examples. There are two causes for the noise.

The most obvious cause is the imperfect precision of TextRunner’s extractor. But false

positive examples can also be generated when there are multiple interpretations for a query.

Consider the TextRunner query �r.obj1 = A, r.predicate =?, r.obj2 = B�, where A is a per-

son and B is his birthplace. Since many people die in the same place that they were born,

TextRunner may well return the sentence “Bob died in Seattle.” which would be a poor

training example for birthplace.

Since false positives could greatly impair training, the KYLIN retrainer morphologically

clusters the predicates which are returned by TextRunner (e.g., “is married to” and “was

3We note that another way of generating the set, T , would be to collect baseline KYLIN extractions for C.a
instead of using existing infoboxes. This would lead to a cotraining approach rather than simple retraining.
One could iterate the process of getting more training date from TextRunner with improvements to the
KYLIN extractor [21].
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married to” are grouped). We discard any predicate that is returned in response to a query

about more than one infobox attribute. Only the k most common remaining predicates are

then used for positive training examples; in our experiments we set k = 1 to ensure high

precision.

FILTERING FALSE NEGATIVE EXAMPLES:As explained in Section 2.2.3, KYLIN

considers a sentence to be a negative example unless it is known to be positive or the sentence

classifier labels it as potentially positive. This approach eliminates many false negatives,

but some remain. A natural idea is to remove a sentence from the set of negative examples if

it contains the word denoting the relation itself. Unfortunately, this technique is ineffective

if based soley on Wikipedia content. To see why, consider the “Person.spouse” attribute

which denotes the “marriage” relation —because the word “spouse” seldom appears in nat-

ural sentences, few false negatives are excluded. But by using TextRunner, we can better

identify the phrases (predicates) which are harbingers of the relation in question. The most

common are used to eliminate negative examples.

By adding new positive examples and excluding sentences which might be false negatives,

retraining generates an improved training set. The next subsection shows the benefits of

this approach.

4.2.2 Retraining Experiments

This section answers two questions:

• Does retraining improve KYLIN’s extractors?

• Do the benefits from retraining combine synergistically with those from shrinkage?

Before addressing those questions we experimented with different retraining alternatives

(e.g., just adding positive examples and just filtering negatives). While both approaches

improved extractor performance, the combination worked best, so the combined method

was used in the subsequent study.
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We evaluate retraining in two different cases. In the first case, we use nothing but the

target class’ infobox data to prime TextRunner for training data. In the second case, we

first used uniform-weight shrinkage to create a training set which was then used to query

TextRunner. Figure 4.3 shows the results of these methods on four testing classes.
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Figure 4.3: Used in isolation, retraining enables a modest but marked improvement in
recall. And combining retraining with shrinkage yields substantially improved extractors
with improvements to precision as well as recall.

We note that in most cases retraining improves the performance, in both precision and

recall. When compared with shrinkage, retraining provides less benefit for sparse classes
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but helps more on the popular class “writer.” This makes sense because without many

tuples to use for querying TextRunner, retraining has little effect. We suspect that full

cotraining would be more effective on sparse classes when shrinkage was unavailable. Finally,

we observe that the combination of shrinkage and retraining is synergistic, always leading

to the biggest improvement. Particularly, on the two sparsest classes “Irish Newspaper”

and “performer”, it substantially improved recall by 590% and 73.3% respectively, with

remarkable improvement in precision as well; and the areas under the precision and recall

curve improve 1816% and 66% respectively.

4.3 Extracting from the Web
4

While shrinkage and retraining improve the quality of KYLIN’s extractors, the lack of

redundancy of Wikipedia’s content makes it increasingly difficult to extract additional in-

formation. Facts that are stated using uncommon or ambiguous sentence structures hide

from the extractors.
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Figure 4.4: When applying KYLIN to Web pages, improvements due to shrinkage and
retraining become even more apparent.

4Work in this subsection is done under collaboration with Raphael Hoffmann.
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In order to retrieve facts which can’t be extracted from Wikipedia, we would like to

exploit another corpus, in particular the general Web. On the surface, the idea is simple:

train extractors on Wikipedia articles and then apply them to relevant Web pages. An

obvious benefit of this approach is the ability to find new facts which are not contained in

Wikipedia at all.

The challenge for this approach — as one might expect — is maintaining high precision.

Since the extractors have been trained on a very selective corpus, they are unlikely to dis-

criminate irrelevant information. For example, a KYLIN extractor for a person’s birthdate

has been trained on a set of pages all of which have as their primary subject that person’s

life. Such extractors become inaccurate when applied to a page which compares the lives of

several people — even if the person in question is one of those mentioned.

To ensure extraction quality, it is thus crucial to carefully select and weight content that

is to be processed by KYLIN’s extractors. In our work, we view this as an information

retrieval problem, which KYLIN’s web extraction module solves in the following steps: It

generates a set of queries and utilizes a general Web search engine, namely Google, to

identify a set of pages which are likely to contain the desired information. The top-k pages

are then downloaded, and the text on each page is split into sentences, which are processed

by KYLIN. Each extraction is then weighted using a combination of factors.

CHOOSING SEARCH ENGINE QUERIES: The first important step is to ensure

that the search engine returns a set of highly relevant pages. A simple approach is to

use the article title as a query. For example, let us assume that we are interested in

finding the birth date of Andrew Murray, a writer. The corresponding Wikipedia page is

titled ‘Andrew Murray (minister)’. The information in parentheses is used in Wikipedia to

resolve ambiguities, but we remove it to increase recall. To improve result relevance, we

place quotes around the remaing string, here ‘‘andrew murray’’.

Although such a query might retrieve many pages about Murray, it is possible that

none among the top contains the person’s birth date which we might be interested in. We

therefore run several more restrictive queries which not only limit results to pages containing

the article title, but that also include other keywords to better target the search.
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One such query is the quoted article title followed by the attribute name, as in ‘‘andrew

murray’’ birth date. While this increases the chance that a returned page contains the

desired information, it also greatly reduces recall, because the terms ‘birth date’ might not

actually appear on a relevant page. For example, consider the sentence ‘Andrew Murray

was born in 1828.”.

Such predicates which are indicative of attributes, like ‘was born in’ for the birth date,

we have computed already, as described in section 4.2. We generate an appropriate query

for each predicate, which combines the quoted title as well as the predicate, as in ‘‘andrew

murray’’ was born in. The combined results of all queries (title only, title and attribute

name, as well as title and any attribute predicate) are retrieved for further processing.

WEIGHING EXTRACTIONS: Pages which do not contain the preprocessed article

title, here ‘Andrew Murray’, are discarded. Then, using an HTML parser, formatting

commands and scripts are removed, and sentences are identified in the remaining text.

Since most sentences are still irrelevant, running KYLIN’s extractors on these directly

would result in many false positives. Recall that unlike Wikipedia’s articles, web pages

often compare multiple related concepts, and so we would like to capture the likeliness that

a sentence or extraction is relevant to the concept in question. A variety of features may

be indicative of content relevance, but we focused on two in particular:

• The number of sentences δs between the current sentence and the closest sentence

containing the (preprocessed) title of the article.

• The rank of the page δr on Google’s results lists returned in response to our queries.

Each retrieved sentence is then sent to KYLIN for extraction, and for each extraction a

combined score is computed. This score takes into account both factors δs and δr as well

as the confidence δc reported by KYLIN’s extractors; it is obtained in the following way:

First, each of the three parameters δs, δr, δc is normalized by applying a linear mapping

into the intervals [αs, 1], [αr, 1], and [αc, 1] respectively, where 1 corresponds to the optimal

value and αs, αr, and αc are user-defined parameters. With δ∗s , δ
∗
r , and δ∗c denoting the

normalized weights, the combined score is then obtained as scoreweb := δ∗s ∗ δ∗r ∗ δ∗c .
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COMBINING WIKIPEDIA AND WEB EXTRACTIONS: Our final question is:

how can we combine extraction results from Wikipedia and the Web? Despite our efforts

in identifying relevant Web pages and weighting sentences, it is likely that extractions from

Wikipedia will be more precise. After all, in Wikipedia we can be sure that a given page is

highly relevant, is of high quality, and has a more consistent structure, for which KYLIN’s

extractors have been particularly trained. Yet, KYLIN may err on Wikipedia too, especially

when the extractors confidence score is low.

A straight-forward combination of the extractors is to always return the extraction with

highest score, as measured in terms of confidence for extractions from Wikipedia and the

weighted combination scoreweb for extractions from the Web.

To be able to balance the weight of one extractor versus the other, we adjust the score

of extractions from the web to 1− (1− scoreweb)λ, where λ is a new parameter.

4.3.1 Web Experiments

In this section we would like to answer two questions:

• Which factors are important in scoring extractions from the Web?

• When combining extractions from Wikipedia and the Web, can recall be significantly

improved at an acceptable precision?

In previous sections, we computed recall as the proportion of facts contained in the

infoboxes that our system was able to automatically extract from the text. In this section,

however, we are also interested in how many new facts KYLIN can extract from the Web,

and so we change our definition of recall: we assume that there exists some correct value

for each attribute contained in the infobox template of an article and set recall to be the

proportion of correct attribute values relative to all attributes. Note that this is a very

conservative estimate, since there may not always exist an appropriate value. For example,

there exists no death date for a writer who has not died yet.

For all experiments, we queried Google for the top-100 pages containing the article title,

and the top-10 pages containing the article title and the attribute name or any associated
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Figure 4.5: When applying KYLIN to Web pages, the CRF extractor’s confidence is a
poor choice for scoring competing extractions of the same attribute. Giving priority to
extractions from pages ranked higher by Google, and resolving ties by extractor confidence,
improves results considerably. ‘Sentence Dis’ which similarly gives priority to extractions
from sentences which are closer to the next occurrence of the Wikipedia article title on a
web page, improves further, and is only outperformed by a weighted combination of the
other three factors.
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Figure 4.6: Combining KYLIN’s extractions from Wikipedia and the Web yields a sub-
stantial improvement in recall without compromising precision. Already, shrink-retrain
improved recall over the original KYLIN system, here the baseline, but the combination of
extractions from Wikipedia and the Web, shrink-retrain-Web, performs even better.
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predicate. Each new extraction — for which no ground truth existed in Wikipedia — was

manually verified for correctness by visiting the source page.

In our first series of experiments, we used Shrink-Retrain — the best extractors trained

on Wikipedia — and applied different scoring functions to select the best extraction for an

attribute. Figure 4.5 shows our results: The CRF extractor’s reported confidence performed

poorly in isolation. Giving priority to extractions from pages at a higher position in Google’s

returned result lists and resolving ties by confidence, yielded a substantial improvement.

Similarly, we tried giving priority to extractions which were fewer sentences apart from

the occurrence of the Wikipedia article title on a page, again resolving ties by extractor

confidence. The large improvements in precision and recall (as highlighted in the figure

4.5) show that much of the returned text is irrelevant, but can be re-weighted using simple

heuristics. Finally, we were interested if a weighted combination of these factors would lead

to synergies. We set αs = .1, αr = .7, αc = .9, so that each factor was roughly weighted by

our observed improvement (results were not sensitive to minor variations). On all datasets,

performance was comparable or better than the best factor taken in isolation.

In our second series of experiments, we combined extractions from Wikipedia and the

Web. In both cases, we applied the Shrink-Retrain extractor, but scored extractions from

the Web using the weighted factor combination with λ = .4. The results, shown in Figure

4.6, show large improvements in recall at higher precision for the Baseball Stadium (38%)

and Writer (42%) datasets, and at moderately reduced precision for the Irish Newspaper

and Performer datasets. The area under the curve was substantially expanded in all cases,

ranging from 15% to 58%. Compared to the original baseline system, the area has expanded

between 91% and 1771%.

In the future, we would like to automatically optimize the parameters αs, αr, αc, λ

based on comparing the extractions with values in the infobox.

4.4 Related Work

In the preceding sections we have discussed how our work relates to past work on shrinkage

and cotraining. In this section, we discuss the broader context of previous work on un-

supervised information extraction, and approaches for exploiting ontologies in information
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extraction.

Unsupervised and Self-Supervised Information Extraction: Unsupervised and self-

supervised learning is necessary for Web-scale IE. Patwardhan and Riloff proposed a decou-

pled information extraction system by first creating a self-trained relevant sentence classifier

to identify relevant regions, and using a semantic affinity measure to automatically learn

domain-relevant extraction patterns [85]. KYLIN uses the similar idea of decoupling when

applying extractors to the general Web. Differently, KYLIN uses IR-based techniques to

select relevant sentences and trains a CRF model for extractions. For more discussion on

unsupervised and self-supervised IE, please refer to Section 2.4 (Related Work).

Ontology-Driven Information Extraction: There have been a lot of work on lever-

aging ontology for information extraction. The SemTag and Seeker [44] systems perform

automated semantic tagging of large corpora. They use the TAP knowledge base [94] as the

standard ontology, and match it with instances on the Web. PANKOW [32] queries Google

with ontology-based Hearst patterns to annotate named entities in documents. Matuszek et

al. uses Cyc to specify Web searches to identify and verify common senses candidates [72].

The similar idea is utilized in OntoSyphon [75] where ontology combined with search engines

are used to identify semantic instances and relations. In contrast, KYLIN automatically

constructs the Wikipedia infobox ontology and uses it to help training CRF extractors by

shrinkage.

4.5 Conclusion

KYLIN has demonstrated the ability to perform self-supervised information extraction from

Wikipedia. While KYLIN achieved high precision and reasonable recall when infobox classes

had a large number of instances, most classes (i.e., 82%) can provide fewer than 100 training

examples for these classes, where KYLIN’s performance is unacceptable.

This chapter describes three powerful methods for increasing recall in sparsely populated

classes: shrinkage, retraining, and supplementing Wikipedia extractions with those from

the Web. Our experiments show that each of these methods is effective individually. We
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evaluate design tradeoffs within each method. Most importantly, we show that in concert,

these methods constitute a huge improvement to KYLIN’s performance (Figure 4.6):

• Precision is modestly improved in most classes, with larger gains if sparsity is extreme

(e.g., “Irish Newspaper”).

• Recall sees extraordinary improvement with gains from 0.06% to 0.49% (a factor of

8.4) in extremely sparse classes such as “Irish Newspaper.” Even though the “Writer”

class is populated with over 2000 infoboxes, its recall improves from 18% to 32% (a

factor of 1.77) at equivalent levels of precision.

• Calculating the area under the precision / recall curve also demonstrates substantial

improvement, with an improvement factor of 8.71, 2.02, 1.91, and 1.93 for “Irish

Newspaper,” “Performer,” “Baseball Stadium,” and “Writer,” respectively.

Despite this success, much remains to be done. We hope to devise a better weighting

scheme for shrinkage by comparing the KL divergence between the target and mapped

classes. We wish to extend our retraining technique to full cotraining. There are several

ways to better integrate extraction of Web content with that of Wikipedia, ranging from

improved Google querying policies to DIRT-style analysis of extraction patterns [68].
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Chapter 5

WOE: OPEN INFORMATION EXTRACTION USING WIKIPEDIA

The problem of information-extraction (IE), generating relational data from natural-

language text, has received increasing attention in recent years. The vast majority of IE work

uses supervised learning of relation-specific examples. For example, the WebKB project [37]

used labeled examples of the courses-taught-by relation to induce rules for identifying

additional instances of the relation. While these methods can achieve high precision and

recall, they are limited by the availability of training data. In Chapter 2 we developed the

KYLIN system which matches Wikipedia infoboxes with sentences to automatically label a

few million training examples for learning a broad set of relation-specific extractors. KYLIN

achieves a big step toward machine reading on the Web. However, it is limited by the scope

of relations defined in Wikipedia infoboxes, and is incapable of handling an unbounded

number of relations embedded in Web documents.

An alternative paradigm, Open IE, pioneered by the TextRunner system [14] and

“preemptive IE” in [98], aims to handle an unbounded number of relations and run quickly

enough to process Web-scale corpora. Domain independence is achieved by extracting the

relation name as well as its two arguments. Most open IE systems use self-supervised

learning, in which automatic heuristics generate labeled data for training the extractor. For

example, TextRunner uses a small set of hand-written rules to heuristically label training

examples from sentences in the Penn Treebank.

This chapter presents WOE (Wikipedia-Based Open Extractor), the first system that

autonomously transfers knowledge from random editors’ effort of collaboratively editing

Wikipedia, to train an open information extractor. Specifically, WOE generates relation-

specific training examples by matching infobox attribute values to corresponding sentences

(as done in KYLIN and Luchs [61]), but WOE abstracts these examples to relation-independent

training data to learn an unlexicalized extractor, akin to that of TextRunner. WOE can
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operate in two modes: when restricted to shallow features like part-of-speech (POS) tags, it

learns a second-order linear chain CRF extractor and runs as quickly as Textrunner —

0.022 seconds per sentence in average; but when set to use parse features, it learns a pattern

classifier based on shortest-dependency-path features whose precision and recall rise even

higher. However, this performance improvement comes at the cost of speed: it takes 0.679

seconds to process one sentence — 30X times slower.

5.1 Open Information Extraction

In order to extract the widely-varying type of information on the Web, attention has recently

turned to the broader goal of what Etzioni et al. call open information extraction [14, 52]

— the task of scalably extracting information to fill an unbounded number of relational

schemata, whose structure is unknown in advance. Open IE is distinguished from traditional

methods on three dimensions [52]:

• Input: Traditional, supervised approaches require a set of labeled training data in

addition to the corpus for extraction; open IE uses domain-independent methods

instead.

• Target Schema: In traditional IE, the target relation is specified in advance; open

IE automatically discovers the relations of interest.

• Computational Complexity: The runtime of traditional methods is O(D ∗ R),

where D denotes the number of documents in the corpus and R denotes the number

of relations; in contrast, scalability to the Web demands that open IE scale linearly

in D.

In this work we focus on learning an open extractor to render a document, d, into a

set of triples, {�arg1, rel, arg2�}, where the args are noun phrases and rel is a textual

fragment indicating an implicit, semantic relation between the two noun phrases. The

extractor should produce one triple for every relation stated explicitly in the text, but

is not required to infer implicit facts. It is subjective to evaluate the correctness of an



85

extracted triple. Taking the sentence “Joe received a PhD degree in CS” for example,

�Joe, received, a PhD degree in CS� and �Joe, received a PhD degree in, CS� are two poten-

tial extractions. Although more users might prefer �Joe, received, a PhD degree in CS� as a

better triple, it’s arguable that �Joe, received a PhD degree in, CS� is also a reasonable one.

In our experiment, we use Amazon Mechanical Turk to verify the correct tuples from test

sentences to reduce the labeling bias. In this work, we assume that all relational instances

are stated within a single sentence. Note the difference between open IE and the traditional

approaches (e.g., as in WebKB), where the task is to decide whether some pre-defined

relation holds between (two) arguments in the sentence.

We develop the WOE system to learn an open extractor without direct supervision,

i.e. without annotated training examples or hand-crafted patterns. The input to WOE is

Wikipedia1. As output, WOE produces an unlexicalized and relation-independent open

extractor, which generalizes beyond Wikipedia, handling other corpora such as the general

Web. We describe the components and operations of WOE in the following section.

5.2 Wikipedia-Based Open Information Extraction

The key idea underlying WOE is the automatic construction of training examples by heuris-

tically matching Wikipedia infobox values and corresponding text, as done in KYLIN; these

examples are then abstracted and used to generate an unlexicalized, relation-independent

(open) extractor. As shown in Figure 5.1, WOE has three main components: preprocessor,

matcher, and learner. We describe each module in more details in the following sections.

5.2.1 Preprocessor

The preprocessor converts the raw Wikipedia text into a sequence of sentences, attaches

NLP annotations, and builds synonym sets for key entities. Figure 5.2 shows the compact

pseudocode. The resulting data is fed to the matcher, described in Section 5.2.2, which

generates the training set.

1We also use DBpedia [12] as a collection of conveniently parsed Wikipedia infoboxes
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Figure 5.1: Architecture of WOE.

Sentence Splitting: The preprocessor first renders each Wikipedia article into HTML,

then splits the article into sentences using OpenNLP, as done in KYLIN.

NLP Annotation: As we discuss fully in Section 5.3 (Experiments), we consider several

variations of our system; one version, WOEparse, uses parser-based features, while another,

WOEpos, uses shallow features like POS tags, which may be more quickly computed. De-

pending on which version is being trained, the preprocessor uses OpenNLP to supply POS

tags and NP-chunk annotations — or uses the Stanford Parser to create a dependency parse.

When parsing, we force the hyperlinked anchor texts to be a single token by connecting the

words with an underscore; this transformation improves parsing performance in many cases.

Compiling Synonyms: As a final step, the preprocessor builds sets of synonyms to help

the matcher find sentences that correspond to infobox relations. This is useful because

Wikipedia editors frequently use multiple names for an entity; for example, in the article

titled “University of Washington” the token “UW” is widely used to refer the university.

Additionally, attribute values are often described differently within the infobox than they

are in surrounding text. Without knowledge of these synonyms, it is impossible to construct

good matches. Following [79, 108], the preprocessor uses Wikipedia redirection pages and

backward links to automatically construct synonym sets. Redirection pages are a natural

choice, because they explicitly encode synonyms; for example, “USA” is redirected to the

article on the “United States.” Backward links for a Wikipedia entity such as the “Mas-
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Preprocessor in WOE (Wikipedia Corpus): 
SENTS = {} 
1.Sentence Splitting: 

For each Wikipedia article d 
  Split d into sentences with OpenNLP to get the sentence set SENT(d)={si|si in d}  
  Add <d, SENT(d)> to SENTS 

2. NLP Annotation: 
For each si in each SENT(d) 

  Annotate si with NLP tags (POS, NP-chunk, Parsing), denoting as NLP(si) 
  Update SENT(d) to SENT(d)={<si, NLP(si)>|si in d} 
3. Synonyms Compiling: 
 SR={}, SB={} 
 For each primary entity e in Wikipedia 
  Get synonyms of e based on redirection pages: Sr(e)={ei|ei ~ e} 
  Get synonyms of e based on backward-links: Sb(e)={ei|ei ~ e} 
  Add Sr(e) to SR, add Sb(e) to SB 
Return SENTS, SR, SB 

Figure 5.2: WOE’s preprocessor converts the raw Wikipedia text into a sequence of sen-
tences, attaches NLP annotations, and builds synonym sets for key entities.

sachusetts Institute of Technology” are hyperlinks pointing to this entity from other articles;

the anchor text of such links (e.g., “MIT”) forms another source of synonyms.

5.2.2 Matcher

The matcher constructs a set of training examples for the learner component by heuristically

matching Wikipedia infoboxes with sentences, as done in KYLIN (Section 2.2.1). However,

since an open extractor should be able to crop both arg1 and arg2 from sentences, the

matcher needs to identify both primary entities (arg1) and attribute values (arg2, as done

in KYLIN) in sentences. Figure 5.3 shows the compact pseudocode of the matcher.

Matching Primary Entities: In order to match shorthand terms like “MIT” with more

complete names, the matcher uses an ordered set of heuristics like those of [80, 108]:

1. Full match: strings matching the full name of the entity are selected.
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Matcher in WOE (annotated Wikipedia article <d, SENT(d)>): 
TD = {} 
1.Match Primary Entity: 

For each sentence si in d 
  If successfully locate the substring arg1 denoting the primary entity of d  
   Add <si, arg1> to TD 

2. Match Sentence: 
For each infobox attribute C.ai in d 

  If successfully locate a unique si mentioning the attribute value of C.ai in d 
   Denote the attribute value in si as arg2 

   Update <si, arg1> to <si, arg1, arg2> in TD 
 Delete all <si, arg1> in TD 
Return TD 

Figure 5.3: WOE’s matcher constructs a set of training examples by heuristically identifying
both primary entities and infobox attribute values in sentences.

2. Synonym set match: strings appearing in the entity’s synonym set are selected.

3. Partial match: strings matching a prefix or suffix of the entity’s name are selected. If

the full name contains punctuation, only a prefix is allowed. For example, “Amherst”

matches “Amherst, Mass,” but “Mass” does not.

4. Patterns of “the <type>”: The matcher first identifies the type of the entity (e.g.,

“city” for “Ithaca”), then instantiates the pattern to create the string “the city.” Since

the first sentence of most Wikipedia articles is stylized (e.g. “The city of Ithaca sits

. . . ”), a few patterns suffice to extract most entity types.

5. The most frequent pronoun: The matcher assumes that the article’s most frequent

pronoun denotes the primary entity, e.g., “he” for the page on “Albert Einstein.” This

heuristic is dropped when “it” is most common, because the word is used in too many

other ways.
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When there are multiple matches to the primary entity in a sentence, the matcher picks

the one which is closest to the matched attribute value in the parser dependency graph.

Matching Sentences: The matcher seeks a unique sentence to match the attribute value

as done in KYLIN. To produce the best training set, the matcher performs three more

filterings than KYLIN. First, it skips the attribute completely when multiple sentences

mention the value or its synonym. Second, it rejects the sentence if the subject and/or

attribute value are not heads of the noun phrases containing them. Third, it discards the

sentence if the subject and the attribute value do not appear in the same clause (or in

parent/child clauses) in the parse tree.

Since Wikipedia’s Wikimarkup language is semantically ambiguous, parsing infoboxes

is surprisingly complex. Fortunately, DBpedia [12] provides a cleaned set of infoboxes from

1,027,744 articles. The matcher uses this data for attribute values, generating a training

dataset with a total of 301,962 labeled sentences.

5.2.3 Learning Extractors

We learn two kinds of extractors, one (WOEparse) using features from dependency-parse

trees and the other (WOEpos) limited to shallow features like POS tags. WOEparse uses a

pattern learner to classify whether the shortest dependency path between two noun phrases

indicates a semantic relation. In contrast, WOEpos (like TextRunner) trains a conditional

random fields (CRF) model to output certain text between noun phrases when the text

denotes such a relation. Neither extractor uses individual words or lexical information for

features. Figure 5.4 shows the compact pseudocode of the learner in WOE.

Extraction with Parser Features

Despite some evidence that parser-based features have limited utility in IE [63], we hoped

dependency paths would improve precision on long sentences.

Shortest Dependency Path as Relation: Unless otherwise noted, WOE uses the Stan-

ford Parser to create dependencies in the “collapsedDependency” format. Dependencies in-

volving prepositions, conjuncts as well as information about the referent of relative clauses
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Learner in WOE (training dataset from Matcher TD): 
For each <si, arg1, arg2> in TD 
 Get the corePath (shortest dependency path) between arg1 and arg2 in si 
 Update <si, arg1, arg2> to <si, arg1, arg2, corePath> 
1. WOEparse - Extractor Based on Parser Features: 
 DBp = {} 

For each <si, arg1, arg2, corePath> in TD 
  Convert corePath to generalized-corePath, p 
  fp++ 
  Add/Update <p, fp> in DBp 
 Build a pattern classifier WOEparse

 based on DBp 

2. WOEpos - Extractor Based on Shallow Features: 
For each <si, arg1, arg2, corePath> in TD 

  Convert corePath to expandPath 
  Denote the tokens in expandPath as rel 
  Update <si, arg1, arg2, corePath> to <si, arg1, arg2, corePath, rel>  
 Learn a CRF extractor WOEpos

 based on {<si, arg1, arg2, corePath, rel>} 
Return WOEparse, WOEpos 

Figure 5.4: WOElearns two kinds of extractors based on parser features and shallow features,
respectively.

are collapsed to get direct dependencies between content words. As noted in [41], this

collapsed format often yields simplified patterns which are useful for relation extraction.

Consider the sentence:

Dan was not born in Berkeley.

The Stanford Parser dependencies are:

nsubjpass(born-4, Dan-1)

auxpass(born-4, was-2)

neg(born-4, not-3)

prep in(born-4, Berkeley-6)

where each atomic formula represents a binary dependence from dependent token to the

governor token.
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These dependencies form a directed graph, �V,E�, where each token is a vertex in V ,

and E is the set of dependencies. For any pair of tokens, such as “Dan” and “Berkeley”,

we use the shortest connecting path to represent the possible relation between them:

Dan
−−−−−−−−−→
nsubjpass born

←−−−−−−
prep in Berkeley

We call such a path a corePath. While we will see that corePaths are useful for indicating

when a relation exists between tokens, they don’t necessarily capture the semantics of that

relation. For example, the path shown above doesn’t indicate the existence of negation!

In order to capture the meaning of the relation, the learner augments the corePath into a

tree by adding all adverbial and adjectival modifiers as well as dependencies like “neg” and

“auxpass”. We call the result an expandPath as shown below:

WOE traverses the expandPath with respect to the token orders in the original sentence

when outputting the final expression of rel.

Building a Database of Patterns: For each of the 301,962 sentences selected and an-

notated by the matcher, the learner generates a corePath between the tokens denoting

the subject and the infobox attribute value. Since we are interested in eventually extract-

ing “subject, relation, object” triples, the learner rejects corePaths that don’t start with

subject-like dependencies, such as nsubj, nsubjpass, partmod and rcmod. This leads to a

collection of 259,046 corePaths.

To combat data sparsity and improve learning performance, the learner further gener-

alizes the corePaths in this set to create a smaller set of generalized-corePaths. The idea

is to eliminate distinctions which are irrelevant for recognizing (domain-independent) re-

lations. Lexical words in corePaths are replaced with their POS tags. Further, all Noun

POS tags and “PRP” are abstracted to “N”, all Verb POS tags to “V”, all Adverb POS

tags to “RB” and all Adjective POS tags to “J”. The preposition dependencies such as

“prep in” are generalized to “prep”. Take the corePath “Dan
−−−−−−−−−→
nsubjpass born

←−−−−−−
prep in



92

Berkeley” for example, its generalized-corePath is “N
−−−−−−−−−→
nsubjpass V ←−−−−prep N”. We call

such a generalized-corePath an extraction pattern. In total, WOE builds a database (named

DBp
2) of 15,333 distinct patterns and each pattern p is associated with a frequency — the

number of matching sentences containing p. Figure 5.5 shows the logarithmic frequencies

of the patterns. Specifically, 185 patterns have fp ≥ 100 and 1929 patterns have fp ≥ 5.

Table 5.1 shows the top 20 extraction patterns.
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Figure 5.5: The frequency of extraction patterns has a long-tailed distribution.

Learning a Pattern Classifier: Given the large number of patterns in DBp, we assume

few valid open extraction patterns are left behind. The learner builds a simple pattern clas-

sifier, named WOEparse, which checks whether the generalized-corePath from a test triple

is present in DBp, and computes the normalized logarithmic frequency as the probability3:

w(p) =
max(log(fp)− log(fmin), 0)

log(fmax)− log(fmin)
(5.1)

2Available at: http://ai.cs.washington.edu/www/media/downloadable/media/patternDB-WOE.zip

3How to learn a more sophisticated weighting function is left as a future topic.
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Pattern Frequency

N
−−−→
nsubj V ←−−prep N 50259

N
−−−→
nsubj N ←−−prep N 32846

N
−−−−−−−→
nsubjpass V ←−−prep N 29112

N
−−−→
nsubj N 24199

N
−−−→
nsubj V

←−−
dobj N ←−−prep N 18569

N
−−−→
nsubj N

←−−−−
rcmod V ←−−prep N 18124

N
−−−→
nsubj N ←−−prep N ←−−prep N 12316

N
−−−→
nsubj V

←−−
dobj N 11203

N
−−−−−−−→
nsubjpass V ←−−−agent N 9588

N
−−−→
nsubj N

←−−−−−
partmod V ←−−prep N 7480

N
−−−→
nsubj V ←−−prep N ←−−prep N 7160

N
−−−−−−−→
nsubjpass V ←−−prep N ←−−prep N 5008

N
−−−→
nsubj V

←−−−−−−
conj and V ←−−prep N 3119

N
−−−→
nsubj N

←−−−−−
partmod V ←−−−agent N 2868

N
−−−→
nsubj V ←−−prep N

←−−−−−−
conj and N 2840

N
−−−→
nsubj V ←−−−−ccomp V ←−−prep N 2696

N
−−−→
nsubj V ←−−−−xcomp V ←−−prep N 2663

N
−−−−−−−→
nsubjpass V

←−−−−−−
conj and V ←−−prep N 2464

N
−−−−−−−→
nsubjpass V

←−−
dobj N 2317

Table 5.1: Top 20 extraction patterns constructed by WOE using Wikipedia.
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where fmax (50,259 in this work) is the maximal frequency of pattern in DBp, and fmin

(set 1 in this work) is the controlling threshold that determines the minimal frequency

of a valid pattern. Note we do not use negative examples when computing weights for

patterns in equation 5.1. We suspect that adding a penalty to w(p) based on how often p

appears in negative examples might result in a better weighting function. However, it is

very difficult to automatically label negative examples for a pattern p ∈ DBp. Take the

sentence “Tom was born in Boston in 1980; he was sent to Seattle in WA” for example. If

“Boston” is matched with Tom’s “birthPlace” attribute in the infobox, WOE can confidently

label �Tom,was born in, Boston� as a positive example for the pattern “N
−−−−−−−−−→
nsubjpass V

←−−−−prep N”; however, for other tuples of the same pattern, like �Tom,was sent to, Seattle�

and �Tom,was sent in,WA�, it is hard for WOE to decide whether they are positive or

negative examples.

Given a test sentence, like the previous one “Dan was not born in Berkeley”, WOEparse

first identifies Dan as arg1 and Berkeley as arg2 based on NP-chunking. It then com-

putes the corePath “Dan
−−−−−−−−−→
nsubjpass born

←−−−−−−
prep in Berkeley” and abstracts to p=“N

−−−−−−−−−→
nsubjpass V ←−−−−prep N”. It then queries DBp to retrieve the frequency fp = 29112 and

assigns a probability of 0.95. Finally, WOEparse traverses the triple’s expandPath to out-

put the final expression �Dam,was not born in, Berkeley�. As shown in the experiments

on three corpora, WOEparse achieves an F-measure which is between 51% to 70% greater

than TextRunner’s.

Extraction with Shallow Features

WOEparse has a dramatic performance improvement over TextRunner. However, the

improvement comes at the cost of speed — TextRunner runs about 30X faster by elim-

inating the need for parsing. Since high speed can be crucial when processing Web-scale

corpora, we additionally learn a CRF extractor WOEpos based on shallow features like

POS-tags. In both cases, however, we generate training data from Wikipedia by matching

sentences with infoboxes, while TextRunner used a small set of hand-written rules to

label training examples from the Penn Treebank.
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We use the same matching sentence set behind DBp to generate positive examples for

WOEpos. Specifically, for each matching sentence, we label the subject and infobox attribute

value as arg1 and arg2 to serve as the ends of a linear CRF chain. Tokens involved in the

expandPath are labeled as rel. Negative examples are generated from random noun-phrase

pairs in other sentences when the generalized-CorePaths between the NP pairs are not in

DBp. In total, we generated 170,493 positive and 77,381 negative examples for training

WOEpos in our experiment.

WOEpos uses the same learning algorithm and selection of features as TextRunner: a

second-order CRF chain model is trained with the Mallet package [74]. WOEpos’s features

include POS-tags, regular expressions (e.g., for detecting capitalization, punctuation, etc..),

and conjunctions of features occurring in adjacent positions within six words to the left and

to the right of the current word.

As shown in the experiments, WOEpos achieves an improved F-measure over Tex-

tRunner between 9% to 23% on three corpora, and this is mainly due to the increase on

precision.

5.3 Experiments

We created three test datasets4 by randomly selecting 300 sentences from each of the fol-

lowing corpora: WSJ from Penn Treebank, Wikipedia, and the general Web. Each sentence

was examined by two people to label all reasonable triples. These candidate triples are

mixed with pseudo-negative ones and submitted to Amazon Mechanical Turk for verifica-

tion. Each triple was examined by 5 Turkers. We mark a triple’s final label as positive

when more than 3 Turkers marked them as positive.

5.3.1 Overall Performance Analysis

In this section, we compare the overall performance of WOEparse, WOEpos and TextRun-

ner (shared by the Turing Center at the University of Washington). In particular, we

answer the following questions:

4Available at: http://ai.cs.washington.edu/www/media/downloadable/media/300Sent-benchmark-
WOE.zip
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• How do these systems perform against each other?

• How does performance vary w.r.t. sentence length?

• How does extraction speed vary w.r.t. sentence length?

Overall Performance Comparison

The detailed P/R curves are shown in Figure 5.7. To have a close look, for each corpus,

we randomly divided the 300 sentences into 5 groups and compared the best F-measures of

three systems in Figure 5.6 and Table 5.2. We can see that:
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Figure 5.6: WOEposachieves an F-measure, which is between 9% and 23% better than Tex-

tRunner’s. WOEparseachieves an improvement between 51% and 70% over TextRunner.
The error bar indicates one standard deviation.

• WOEpos is better than TextRunner, especially on precision. This is due to better

training data from Wikipedia via self-supervision. Section 5.3.2 discusses this in more

detail.

• WOEparse achieves the best performance, especially on recall. This is because the

parser features help to handle complicated and long-distance relations in difficult
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Figure 5.7: WOEpos performs better than TextRunner, especially on precision.
WOEparse dramatically improves performance, especially on recall.
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Corpus Extractor Precision Recall F-measure

WSJ

WOEparse 0.723 0.587 0.647

WOEpos 0.648 0.352 0.453

TextRunner 0.583 0.327 0.419

Web

WOEparse 0.728 0.590 0.650

WOEpos 0.619 0.385 0.471

TextRunner 0.497 0.309 0.380

WP

WOEparse 0.746 0.465 0.572

WOEpos 0.771 0.315 0.447

TextRunner 0.652 0.265 0.376

Table 5.2: Extractors’ performance comparison on three corpora.

sentences. In particular, WOEparse outputs 2.1 triples per sentence on average, while

WOEpos outputs 1.7 and TextRunner outputs 1.5.

The extraction errors by WOEparse can be categorized into four classes. We illustrate

them with the WSJ corpus. In total, WOEparse made 85 incorrect extractions on WSJ,

and they were caused by: 1) Incorrect arg1 and/or arg2 from NP-Chunking (18.6%); 2) A

erroneous dependency parse from Stanford Parser (11.9%); 3) Inaccurate meaning (27.1%)

— for example, �she, isNominatedBy, PresidentBush� is wrongly extracted from the sen-

tence “If she is nominated by President Bush ...”5; 4) A pattern inapplicable for the test

sentence (42.4%).

Recall that WOE automatically labeled 301,962 sentences for training open extractors

by matching infobox attribute values with Wikipedia articles. We randomly selected 200

matching sentences and found 167 (83.5%) of them were correctly annotated. The errors

can be classified into three categories: 1) the attribute value is mentioned in the sentence,

but for a different relation than the target one (13%) — for example, “England” is wrongly

5These kind of errors might be excluded by monitoring whether sentences contain words such as ‘if,’
‘suspect,’ ‘doubt,’ etc.. We leave this as a topic for the future.
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Corpus Pattern Num of Extractions Precision Pattern Rank in DBp

WSJ

N
−−−→
nsubj V

←−−
dobj N 200 0.86 8

N
−−−→
nsubj N 48 0.71 4

N
−−−→
nsubj V ←−−prep N 47 0.68 1

N
−−−−−−−→
nsubjpass V ←−−prep N 33 0.82 3

N
−−−→
nsubj V ←−−−−ccomp V

←−−
dobj N 32 0.03 85

N
←−−−−−
partmod V ←−−prep N 18 0.61 22

N
−−−→
nsubj V ←−−−−xcomp V

←−−
dobj N 15 0.47 31

N
−−−→
nsubj V

←−−−−−−
conj and V

←−−
dobj N 14 0.93 40

N
←−−−−−
partmod V ←−−−agent N 13 0.77 69

N
−−−→
nsubj V ←−−−−ccomp V ←−−prep N 12 0.08 16

WP

N
−−−→
nsubj V

←−−
dobj N 151 0.85 8

N
−−−→
nsubj V ←−−prep N 86 0.87 1

N
−−−→
nsubj N 77 0.84 4

N
−−−−−−−→
nsubjpass V ←−−prep N 60 0.87 3

N
←−−−−−
partmod V ←−−prep N 29 0.72 22

N
−−−−−−−→
nsubjpass V ←−−−agent N 22 1.00 9

N
−−−→
nsubj V ←−−−−xcomp V

←−−
dobj N 14 0.64 31

N
−−−→
nsubj V

←−−−−−−
conj and V

←−−
dobj N 13 0.77 40

N
←−−−−−
partmod V ←−−−agent N 12 0.75 69

N
←−−−−−
partmod V

←−−
dobj N 11 0.36 67

Web

N
−−−→
nsubj V

←−−
dobj N 143 0.73 8

N
−−−→
nsubj V ←−−prep N 51 0.71 1

N
−−−→
nsubj N 39 0.79 4

N
−−−−−−−→
nsubjpass V ←−−prep N 16 0.94 3

N
−−−→
nsubj V

←−−−−−−
conj and V

←−−
dobj N 13 0.77 40

N
−−−→
nsubj V

←−−
dobj N

←−−−−−−
conj and N 12 0.92 38

N
−−−→
nsubj V ←−−−−xcomp V

←−−
dobj N 11 0.64 31

N
←−−−−−
partmod V ←−−prep N 11 0.45 22

N
−−−→
nsubj V ←−−−−ccomp V

←−−
dobj N 11 0.18 85

N
−−−→
nsubj V ←−−prep N

←−−−−−−
conj and N 7 0.86 15

Table 5.3: Top 10 patterns that have the most extractions for each corpus, showing that
patterns with higher frequencies tend to have more extractions with higher precision.
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Figure 5.8: Although the top frequent patterns capture most extractions, the less frequent
ones are helpful to further increase the recall.

annotated as the “birthplace” for “Greg Lincoln” in the sentence “He represented England

at Under-20 level.”6; 2) the infobox record is wrong (1.5%) — for example, “1936” is

wrongly set as the “birthplace” attribute in the infobox for “Doug” by an editor, which

in turn leads to the wrong matching sentence “Doug Kershaw, born January 24, 1936,

.....”; 3) arg1 is wrongly annotated (2%) — for example, “the band” is incorrectly labeled

as arg1 of the “starring” relation for the sentence “It starred the band: Singer Tony...”.

If we are going to learn relation-specific extractors, these wrongly matched sentences will

definitely hurt the extractors’ performance. However, for learning relation-independent

open extractors, some of these errors happen to be fine — especially those from the first

two categories. Take the previous sample sentence “He represented England at Under-20

level.” for example. Although “England” is not the “birthplace” of “Greg Lincoln” in

6Sometimes this kind of error is tricky to classify. For example, “Eagle” is marked as the “currentTeam”
for “Tom” in the sentence “Tom was traded to Eagle in 1998.”; however, it is unclear whether he is still
playing there. We took a strict policy which considers such cases to be wrong matches.
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this sentence , �He, represented,England� is still a prefect instance for inducing general

extraction patterns for open extractors.

As described in Section 5.2.3, WOE builds a database DBp with 15,333 distinct patterns

based on those 301,962 matching sentences. To have a closer look at these patterns’ effects

on distilling facts from sentences, we gradually increased the number of allowed patterns

in the decreasing order of frequency, and computed the precison/recall/f-measure at each

point. The result on the WSJ corpus7 is in Figure 5.8, showing that although the top

frequent patterns capture most extractions, the less frequent ones are helpful to further

increase the recall. Table 5.3 shows the patterns that have the most extractions for each

corpus. We can see that patterns with higher frequencies tend to have more extractions

with higher precision.

We also tested the effect of relaxing some sentence matching heuristics when building the

pattern database DBp. Although this will increase the number of patterns in DBp (e.g.,

from 15,333 patterns to 29,858 patterns after allowing multiple sentences to match one

infobox attribute value and imposing no requirement for args to be heads of NP-chunks),

it has little effect on WOE’s extraction performance. Most likely, this is because most

additional patterns via relaxing the sentence matching heuristics sit on the long tail of the

pattern distribution. There is little change to the distribution of the top few thousand

patterns on the head, which largely determine WOE’s performance.

Note WOEparse is worse than WOEpos in the low recall region. This is mainly due to

parsing errors (especially on long-distance dependencies), which misleads WOEparse to ex-

tract false high-confidence triples. WOEpos won’t suffer from such parsing errors. Therefore

it has better precision on high-confidence extractions.

We noticed that TextRunner has a dip point in the low recall region. There are two

typical errors responsible for this. A sample error of the first type is �Source, sold, the company�

extracted from the sentence “Sources said he sold the company 2 weeks ago”, where “Sources”

is wrongly treated as the subject of the object clause. A sample error of the second type

is �this year,will star in, the new movie� extracted from the sentence “Coming up this year,

7Results on the Web and Wikipedia corpora are similar.
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Extractor Precision Recall F-measure

WOEparse 0.920 0.398 0.555

WOEpos 0.882 0.394 0.544

TextRunner 0.879 0.397 0.547

Table 5.4: All extractors are comparable to each other, and achieve hight precisions and
decent recalls on the 500SENT set when only counting the concrete triples that contain
preset arguments of certain target relations.

Long will star in the new movie.”, where “this year” is wrongly treated as part of a com-

pound subject. Taking the WSJ corpus for example, at the dip point with recall=0.002 and

precision=0.08, these two types of errors account for 70% of all errors.

Note that we measure TextRunner’s precision & recall differently than in [14, 16].

Specifically, we compute the precision & recall based on all extractions, while Banko et al.

counted only concrete triples where arg1 is a proper noun and arg2 is a proper noun or date

(they also required the frequency of rel to be over a threshold in many cases). To have

a closer comparison with TextRunner on concrete extractions, we also tested extractors’

performance on the 500SENT set from [16]. Each sentence in this dataset describes one of

the four target relations (acquisition, invention, hometown, and award) and a pair of proper

nouns (arg1 and arg2 of the relation) are marked. We ran each extractor on this dataset

and only counted the extractions which have the marked proper noun pairs as arg1 and

arg2. We labeled the rel by ourselves given they are not provided in the original 500SENT

dataset. The comparisons of three extractors are in Table 5.4, showing that: 1) the three

extractors are comparable to each other on this dataset; 2) when arg1 and arg2 are preset,

all extractors achieve high precisions and decent recalls. Note again that unlike the previous

experiments where we measure true precision & recall based on all extractions, the numbers

here are measured only based on those concrete triples that contain two preset arguments of

certain target relations. We note that the performance of TextRunner is slightly different

than that reported in [16], mostly likely due to some difference in labeling rel in sentences.

Extraction Performance vs. Sentence Length
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Figure 5.9: WOEparse’s F-measure decreases more slowly with sentence length than
WOEpos and TextRunner, due to its better handling of difficult sentences using parser
features.

We tested how extractors’ performance varies with sentence length; the results are shown

in Figure 5.9. TextRunner and WOEpos have good performance on short sentences, but

their performance deteriorates quickly as sentences get longer. This is because long sentences

tend to have complicated and long-distance relations which are difficult for shallow features

to capture. In contrast, WOEparse’s performance decreases more slowly w.r.t. sentence

length. This is mainly because parser features are more useful for handling difficult sentences

and they help WOEparse to maintain a good recall with only moderate loss of precision.

Extraction Speed vs. Sentence Length

We also tested the extraction speed of different extractors. We used Java for implement-

ing the extractors, and tested on a Linux platform with a 2.4GHz CPU and 4G memory.

On average, it takes WOEparse 0.679 seconds to process a sentence. For TextRunner and

WOEpos, it only takes 0.022 seconds — 30X times faster. The detailed extraction speed

vs. sentence length is in Figure 5.10, showing that TextRunner and WOEpos’s extraction

time grows approximately linearly with sentence length, while WOEparse’s extraction time
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Figure 5.10: TextRunner and WOEpos’s running time seems to grow linearly with sen-
tence length, while WOEparse’s time grows quadratically.

grows quadratically (R2 = 0.935) due to its reliance on parsing.

5.3.2 Self-Supervision with Wikipedia Results in Better Training Data

In this section, we consider how the process of matching Wikipedia infobox values to cor-

responding sentences results in better training data than the hand-written rules used by

TextRunner.

To compare with TextRunner, we tested four different ways to generate training ex-

amples from Wikipedia for learning a CRF extractor. Specifically, positive and/or negative

examples are selected by TextRunner’s hand-written rules (tr for short), by WOE’s heuris-

tic of matching sentences with infoboxes (w for short), or randomly (r for short). We use

crf+h1−h2 to denote a particular approach, where “+” means positive samples, “-” means

negative samples, and hi ∈ {tr,w, r}.

In particular, “+w” results in 170,493 positive examples based on the matching sentence

set8 and “−w” results in 77,381 negative examples. All extractors are trained using about

the same number of positive and negative examples. In contrast, TextRunner was trained

8This number is smaller than the total number of corePaths (259,046) because we require arg1 to appear
before arg2 in a sentence — as specified by TextRunner.
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with 91,687 positive examples and 96,795 negative examples generated from theWSJ dataset

in Penn Treebank. The CRF extractors are trained using the same learning algorithm and

feature selection as TextRunner. The detailed P/R curves are in Figure 5.11, showing

that using WOE heuristics to label positive examples gives the biggest performance boost.

crf+tr−tr (trained using TextRunner’s heuristics) is slightly worse than TextRunner.

Most likely, this is because TextRunner’s heuristics rely on parse trees to label training

examples, and the Stanford parse on Wikipedia is less accurate than the gold parse on WSJ.

We redid the comparison experiment by enforcing all extractors to be trained using the

exact same number of positive (91,687) and negative (96,795) examples as TextRunner.

The new P/R curves are in Figure 5.12, showing the same conclusions as before. WOEpos

has a slightly worse performance due to less training examples.

5.3.3 Design Desiderata of WOEparse

There are two interesting design choices in WOEparse:

• whether to require arg1 to appear before arg2 (denoted as 1≺2) in the sentence;

• whether to allow corePaths to contain prepositional phrase (PP) attachments (denoted

as PPa);

We tested how these choices affect the extraction performance; the results are shown in

Figure 5.13. We can see that filtering PP attachments (PPa) gives a large precision boost

with a noticeable loss in recall; enforcing a lexical ordering of relation arguments (1≺2)

yields a smaller improvement in precision with small loss in recall. Take the WSJ corpus

for example: setting 1≺2 and PPa achieves a precision of 0.748 (with recall of 0.556). By

changing 1≺2 to 1∼2, the precision decreases to 0.730 (with recall of 0.591). By changing

PPa to PPa and keeping 1≺2, the precision decreases to 0.580 (with recall of 0.662) — in

particular, if we use gold parse, the precision decreases to 0.613 (with recall of 0.664). We

set 1≺2 and PPa as default in WOEparse as a logical consequence of our preference for high

precision over high recall.
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Figure 5.11: Matching sentences with Wikipedia infoboxes results in better training data
than the hand-written rules used by TextRunner.



107

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec
is
io
n

P/R Curve on WSJ

CRF+w−w=WOEpos
CRF+w−tr
CRF+w−r
CRF+tr−tr
TextRunner

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec
is
io
n

P/R Curve on Web

CRF+w−w=WOEpos
CRF+w−tr
CRF+w−r
CRF+tr−tr
TextRunner

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec
is
io
n

P/R Curve on Wikipedia

CRF+w−w=WOEpos
CRF+w−tr
CRF+w−r
CRF+tr−tr
TextRunner

Figure 5.12: Although WOEpos’s performance decreases a bit due to less training examples
than in Figure 5.11, it still shows that matching sentences with Wikipedia infoboxes results
in better training data than the hand-written rules used by TextRunner.
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Figure 5.13: Filtering prepositional phrase attachments (PPa) shows a strong boost to
precision, and we see a smaller boost from enforcing a lexical ordering of relation arguments
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5.3.4 Different Parsing Options

We also tested how different parsing might effect WOEparse’s performance. We used three

parsing options on the WSJ dataset: Stanford parsing, CJ50 parsing [30], and the gold

parses from the Penn Treebank. The Stanford Parser is used to derive dependencies from

CJ50 and gold parse trees. Figure 5.14 shows the detailed P/R curves. We can see that

although today’s statistical parsers make errors, they have negligible effect on the accuracy

of WOE.
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Figure 5.14: Although today’s statistical parsers make errors, they have negligible effect on
the accuracy of WOE compared to operation on gold standard, human-annotated data.

5.3.5 Trade Recall for Precision via Filters

As mentioned in Section 5.3.1 that Banko et al. applied two filters when computing the

precision & recall for TextRunner [14]:

• Concreteness: a concrete tuple, �arg1, rel, arg2�, has arg1 as a proper noun and

arg2 as a proper noun or date. Regular expressions and POS tags are used to identify

concrete tuples.
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• Distributional constraints: the following distributional constraints are imposed

on the entire set of tuples: we discard tuples in which rel occurs with fewer than n

distinct facts in the entire extraction set; rel must be observed with at least e1 unique

arg1 and e2 unique arg2.

One can image applying these filters to trade recall for precision for any open extractor.

We tested their effects on the three corpora. Specifically, we ran TextRunner, WOEparse,

and WOEposover the whole Wikipedia corpus for computing the distributional constraints.

We set n = 50, e1 = 50, and e2 = 20 following the recommendations in [13]. The detailed

experimental results are in Table 5.5 when setting 0.5 as the confidence threshold. We can

see that the “distribution” filter improves precision with modest loss of recall in most cases;

the “concreteness” filter improves precision with big loss of recall on the Wikipedia and Web

corpora, but hurts all extractors’ precisions on the WSJ corpus; when combined together,

these two filters improve precision in all cases except for TextRunner on the WSJ corpus.

Given “distribution” filter’s promising performance of improving precision with modest

loss of recall, we further tested how different distributional constraints’ thresholds might

affect extractors’ performance. Specifically, we set two of the three thresholds as 0 (e.g.,

e1 = 0, and e2 = 0), varied the third threshold from 0 to 50 (e.g., n = 0, ..., 50), and

computed the precision and recall at each point. Figure 5.15 shows the results for WOEparse

on the WSJ corpus. We can see that there is a jump in precision when increasing the

distributional constraint threshold from 0 to a small number for n, e1, or e2; afterwards,

the curves become very flat. Also, the results are very similar for n, e1, and e2 because they

are tightly co-related — if a rel has a large number of unique facts, it also tends to have a

large number of unique arg1 and arg2.

5.3.6 Open vs. Traditional IE

We are also interested in comparing open extractors with traditional ones (like our KYLIN

described in Chapter 2). However, since open IE extracts arbitrary relations from sentences

while traditional IE only outputs target relations, designing the comparison metric is sub-

jective. In our case, we created a test dataset by sampling 50 Wikipedia sentences for five
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Corpus Extractor Filters # of Tuples Pre. Rec. F-mea.

WSJ

WOEparse

None 510 0.689 0.56 0.618

Distribution 337 0.82 0.44 0.573

Concrete 15 0.6 0.014 0.028

Concrete+Distribution 7 0.857 0.01 0.019

WOEpos

None 453 0.507 0.366 0.425

Distribution 352 0.518 0.291 0.373

Concrete 11 0.455 0.008 0.016

Concrete+Distribution 4 0.75 0.005 0.009

TextRunner

None 396 0.521 0.329 0.404

Distribution 293 0.567 0.264 0.36

Concrete 8 0.5 0.006 0.013

Concrete+Distribution 4 0.5 0.003 0.006

Web

WOEparse

None 352 0.713 0.574 0.636

Distribution 247 0.745 0.421 0.538

Concrete 3 0.667 0.005 0.009

Concrete+Distribution 0 1.0 0.0 0.0

WOEpos

None 287 0.585 0.384 0.464

Distribution 212 0.571 0.277 0.373

Concrete 3 0.667 0.005 0.009

Concrete+Distribution 2 1.0 0.005 0.009

TextRunner

None 285 0.46 0.3 0.363

Distribution 202 0.505 0.233 0.319

Concrete 3 0.667 0.005 0.009

Concrete+Distribution 2 1.0 0.005 0.009

WP

WOEparse

None 607 0.736 0.458 0.564

Distribution 482 0.829 0.41 0.548

Concrete 45 0.756 0.035 0.066

Concrete+Distribution 28 0.893 0.026 0.05

WOEpos

None 467 0.678 0.325 0.439

Distribution 400 0.699 0.287 0.407

Concrete 37 0.649 0.025 0.047

Concrete+Distribution 26 0.808 0.021 0.042

TextRunner

None 413 0.624 0.265 0.372

Distribution 332 0.694 0.236 0.352

Concrete 29 0.759 0.022 0.044

Concrete+Distribution 22 0.818 0.018 0.036

Table 5.5: The “distribution” filter improves precision with modest loss of recall in most
cases; the “concreteness” filter improves precision with big loss of recall on the Wikipedia
and Web corpora, however, it hurts all extractors’ precisions on the WSJ corpus; when
combined together, they improve precision in all cases except for TextRunner on the
WSJ corpus.
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Figure 5.15: There is a jump in precision when increasing the distributional constraint from
0 to a small threshold for n, e1, or e2; afterwards, the curves become very flat.

relations (person.birthPlace, person.spouse, university.establishment, university.nickname,

and county.water square mile) — 10 sentences per relation9. We ran KYLIN, WOEparse,

WOEpos, and TextRunner over the sentences and computed F-measures only based on

the tuples related to the target relations. Specifically, all tuples from KYLIN were counted;

for open extractors, a tuple �arg1, rel, arg2� is counted iff rel expresses a target relation

(e.g., “was married to” for person.spouse), or arg2 matches the value for the target relation

(e.g., “Boston” for person.birthPlace in the sentence “Dan was born in Bonston”). Table 5.6

shows the detailed performance of each extractor on this dataset. Based on this preliminary

9Available at http://ai.cs.washington.edu/www/media/downloadable/media/50SENT.zip
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experiment, we can see that both WOEpos and TextRunner perform worse than KYLIN

on this 5-relation test dataset; WOEparse has higher recall but lower precision than KYLIN

and achieves a better F-measure. We note this result is a little different than that in [16]

where the reported precisions of traditional extractors were lower (about 70%). Most likely,

there are two reasons for this: 1) we labeled ground-truth tuples differently than Banko

et al. did in [16]; 2) our test dataset is constructed using Wikipedia and all sentences are

positive examples, which help KYLIN to achieve high precisions. In the future, we plan

to do more experiments to explore the relationships between open and traditional IE and

study how to combine them together for a hybrid and better extractor.

5.4 Related Work

Open or Traditional Information Extraction: Most existing work on IE is relation-

specific. Occurrence-statistical models [8, 69], graphical models [86, 90], and kernel-based

methods [25] have been studied. Snow et al. [101] utilize WordNet to learn dependency path

patterns for extracting the hypernym relation from text. Some seed-based frameworks are

proposed for open-domain extraction [39, 40, 84]. These works focus on identifying general

relations such as class attributes, while open IE aims to extract relation instances from

given sentences. Another seed-based system StatSnowball [114] can perform both relation-

specific and open IE by iteratively generating weighted extraction patterns. Different from

WOE, StatSnowball only employs shallow features and uses L1-normalization to weight

patterns. Shinyama and Sekine proposed the “preemptive IE” framework to avoid relation-

specificity [98]. They first group documents based on pairwise vector-space clustering, then

apply an additional clustering to group entities based on documents clusters. The two clus-

tering steps make it difficult to meet the scalability requirement necessary to process the

Web. Bollegala et al. proposed a two-step procedure for relation extraction [22]. They

first generate entity pairs and shallow lexical-syntactic patterns for the pairs from a given

text corpus. Then a sequential co-clustering is performed to find clusters for entity pairs

and lexical-syntactic patterns iteratively. In contrast, WOE uses generalized parse features

to induce patterns for open extraction. Alan Akbik et al. [10] annotated 10,000 sentences

parsed with LinkGrammar and selected 46 general linkpaths as patterns for relation extrac-
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Relation Extractor Precision Recall F-measure

person.birthPlace

WOEparse 0.667 0.4 0.5

WOEpos 1.0 0.3 0.462

TextRunner 0.75 0.3 0.429

KYLIN 1.0 0.5 0.667

person.spouse

WOEparse 0.889 0.8 0.842

WOEpos 0.625 0.5 0.556

TextRunner 0.714 0.5 0.588

KYLIN 0.8 0.4 0.533

university.establishment

WOEparse 1.0 0.7 0.824

WOEpos 1.0 0.0 0.0

TextRunner 0.5 0.1 0.167

KYLIN 1.0 0.4 0.571

university.nickname

WOEparse 0.857 0.6 0.706

WOEpos 0.833 0.5 0.625

TextRunner 1.0 0.3 0.462

KYLIN 1.0 0.3 0.462

county.water sq mi

WOEparse 0.667 0.6 0.632

WOEpos 0.214 0.3 0.25

TextRunner 0.273 0.3 0.286

KYLIN 1.0 0.8 0.889

Average

WOEparse 0.816 0.62 0.701

WOEpos 0.735 0.32 0.378

TextRunner 0.647 0.3 0.386

KYLIN 0.96 0.48 0.624

Table 5.6: On a 5-relation test set built using Wikipedia, both WOEpos and TextRunner

perform worse than KYLIN; WOEparse has higher recall and lower precision than KYLIN,
and achieves a better F-measure than KYLIN.
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tion. In contrast, WOE learns 15,333 general patterns based on an automatically annotated

set of 301,962 Wikipedia sentences. The KNext system [50] performs open knowledge ex-

traction via significant heuristics. Its output is knowledge represented as logical statements

instead of information represented as segmented text fragments.

Unsupervised and Self-Supervised Information Extraction: Some IE systems learn

relation-specific extractors without direct supervision, i.e. without labeled training exam-

ples. Our KYLIN system (Chapter 2) is one such example, which automatically creates

training dataset via self-supervision using Wikipedia infoboxes, and learns extractors for a

broad set of relations. For more discussion on such types of unsupervised or self-supervised

IE systems, please refer to Section 2.4 (Related Work).

Shallow or Deep Parsing: Shallow features, like POS tags, enable fast extraction over

large-scale corpora [40, 14]. Deep features are derived from parse trees with the hope

of training better extractors [26, 112, 113, 106]. Jiang and Zhai [63] did a systematic

exploration of the feature space for relation extraction on the ACE corpus. Their results

showed limited advantage of parser features over shallow features for IE. However, our

results imply that abstracted dependency path features are highly informative for open

IE. There might be several reasons for the different observations. First, Jiang and Zhai’s

results are tested for traditional IE where local lexicalized tokens might contain sufficient

information to trigger a correct classification. The situation is different when features are

completely unlexicalized in open IE. Second, as they noted, many relations defined in the

ACE corpus are short-range relations which are easier for shallow features to capture. In

practical corpora like the general Web, many sentences contain complicated long-distance

relations. As we have shown experimentally, parser features are more powerful in handling

such cases.

5.5 Conclusion

This chapter introduces WOE, a new approach to open IE that uses self-supervised learning

over unlexicalized features, based on a heuristic match between Wikipedia infoboxes and

corresponding text. WOE can run in two modes: a CRF extractor (WOEpos) trained with



116

shallow features like POS tags; a pattern classfier (WOEparse) learned from dependency

path patterns. WOEposruns at the same speed asTextRunner, and achieves an F-measure

between 0.447 and 0.471 (i.e., between 9% and 23% greater than that of TextRunner)

on three corpora; WOEparse achieves an F-measure between 0.572 and 0.650 (i.e., between

51% and 70% higher than that of TextRunner), but runs about 30X times slower due to

the time required for parsing.

Our experiments uncovered two sources of WOE’s strong performance: 1) the Wikipedia

heuristic is responsible for the bulk of WOE’s improved accuracy, but 2) dependency-parse

features are highly informative when performing unlexicalized extraction. We note that this

second conclusion disagrees with the findings in [63].
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This dissertation has described the challenges associated with machine reading, which

we summarize in Section 6.1 below. We argue bootstrapping from Wikipedia is the best

way to solve this problem and presented three working systems: KYLIN, KOG, and WOE.

These projects make substantial steps toward addressing the challenges of machine reading.

They also point to interesting future work involving extensions to each system as well as

new overall approaches, as we discuss in Section 6.2.

6.1 Contributions

The vast majority of information is embedded in natural-language texts on the Web. The

goal of machine reading is to automatically distill the information from texts and make them

accessible to software agents. In Chapter 1 we discussed four design desiderata for an ideal

machine reading system. We now briefly examine them before discussing the contributions

made by three different systems that embody these criteria.

First, the system should extract information with high accuracy so that subsequent

systems can build high-performance applications on top of that. Second, theWeb is huge and

heterogeneous; there are billions of informative Web documents and they can be arbitrary

domains, genres, and languages. Therefore the system should perform large-scale knowledge

acquisition from the Web. Third, since the scale of available knowledge is vast, the system

should achieve maximal autonomy. Finally, in order to create a comprehensive semantic

knowledge base summarizing topics on the Web, the system should conquer both head and

tail textural knowledge.

These desiderata motivated the development of our systems. We discuss their contribu-

tions in the following sections.
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6.1.1 KYLIN Contributions

KYLIN is a relation-specific information extraction system trained using Wikipedia. Since

KYLIN uses self-supervised learning, which is bootstrapped on existing user-contributed

data, it requires little or no human guidance. We make the following contributions:

• We propose bootstrapping the Semantic Web by mining Wikipedia and we identify

some unique challenges (lack of redundancy) and opportunities (unique identifiers,

user-supplied training data, lists, categories, etc.) of this approach. We also identify

additional issues resulting from Wikipedia’s growth through decentralized authoring

(e.g., inconsistency, schema drift, etc.). This high-level analysis should benefit future

work on Wikipedia and similar collaborative knowledge repositories.

• We describe a system for automatically generating attribute/value pairs summarizing

an article’s properties. Based on self-supervised learning, KYLIN achieves perfor-

mance which is roughly comparable with that of human editors. In one case, KYLIN

does even better.

• Collaboratively authored data is rife with noise and incompleteness. We identify ro-

bust learning methods which can cope in this environment. Extensive experiments

demonstrate the performance of our system and characterize some of the crucial archi-

tectural choices (e.g., the optimal ordering of heuristics, the utility of classifier-based

training data refinement, a pipelined architecture for attribute extraction).

• By applying shrinkage over an automatically-learned subsumption taxonomy, we allow

KYLIN to substantially improve the recall of its extractors for sparse infobox classes.

• By mapping the contents of known Wikipedia infobox data to TextRunner, a state-

of-the-art open information extraction system [15], we enable KYLIN to clean and

augment its training dataset. When applied in conjunction with shrinkage, this re-

training technique improves recall by a factor of between 1.4 and 5.9, depending on

class. It also helps KYLIN to better adapt to the Web corpus and enables KYLIN to
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retrieve relevant sentences from the greater Web when it is unable to extract necessary

information from a Wikipedia page.

6.1.2 KOG Contributions

KOG automatically generates the Wikipedia Infobox Ontology by combining evidence from

heterogeneous resources via joint inference. It embodies several contributions:

• We address the problem of ontology generation and identify the aspects of theWikipedia

data source which facilitate (as well as those which hinder) the refinement process.

We codify a set of heuristics which allow these properties to be converted into features

for input to machine learning algorithms.

• We cast the problem of subsumption detection as a machine learning problem and

solve it using both support-vector machines (SVMs) and Markov Logic Networks

(MLNs). The MLNs model is especially novel, simultaneously constructing a sub-

sumption lattice and a mapping to WordNet using joint inference. Our experiments

demonstrate the superiority of the joint inference approach and evaluate other aspects

of our system.

• Using these techniques, we build a rich ontology which integrates and extends the infor-

mation provided by both Wikipedia and WordNet; it incorporates both subsumption

information, an integrated set of attributes, and attribute mappings between parent

and child classes in the subsumption hierarchy.

• We demonstrate how the resulting ontology may be used to enhance Wikipedia in

many ways, such as advanced query processing for Wikipedia facts, facetted browsing,

automated infobox edits and template generation. Furthermore, we believe that the

ontology can benefit many other applications, such as information extraction, schema

mapping, and information integration.
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6.1.3 WOE Contributions

WOE is the first system that autonomously transfers knowledge from random editors’ effort

of collaboratively editing Wikipedia, to train an open information extractor. We make the

following contributions:

• We present WOE, a new approach to open IE that uses Wikipedia for self-supervised

learning of unlexicalized extractors. WOE achieves an F-measure between 0.572 and

0.650 on three corpora, which is between 51% and 70% higher than that of the state-

of-the-art open IE system TextRunner.

• Using the same learning algorithm and features as TextRunner, we compare four

different ways to generate positive and negative training examples with TextRun-

ner’s method, concluding that our Wikipedia heuristic is responsible for the bulk of

WOE’s improved accuracy.

• The biggest win arises from using parser features. Previous work [63] concluded

that parser-based features are unnecessary for information extraction, but that work

assumed the presence of lexical features. We show that abstract dependency paths

are a highly informative feature when performing unlexicalized extraction.

6.2 Future Work

Although the three systems presented in this dissertation have made substantial contribu-

tions, each has remaining weaknesses that can be further improved. Also, the experience

gained through working with these systems suggests several overall new directions.

6.2.1 KYLIN

For an initial prototype, KYLIN performs quite well. But there are numerous directions for

improvement. Many of KYLIN’s components are simple baseline implementations, because

we wished an end-to-end system. We wish to apply learning to the problem of document



121

classification, consider more sophisticated ways of combining heuristics (e.g., stacked met-

alearning), test on more cases, make the result public (e.g., as a Firefox extension), and

other improvements. In the longer term, we will investigate the following directions:

• Improving Extractor Learning: There are several ways to improve KYLIN’s

extractors. Hoffmann et al. introduced several dynamic lexicon features created from

Web lists to help train extractors for Wikipedia infobox relations [61]. They show

that these features dramatically improved extractors’ performance. Another poten-

tially useful feature set are deep parsing features. For simplicity, current KYLIN

trains individual extractor for each relation separately. A better solution is to jointly

learn multiple extractors. For example, “birthDate” and “birthPlace” attributes often

appear together, and information about one attribute can help to better identity the

other.

• Exploiting Other Data Sources: Some sources besides Wikipedia, such as Free-

base, could be used to create an additional training dataset via self-supervision. For

example, Mintz et al. consider all sentences containing both the subject and object of

a Freebase record as matching sentences [78]. This will enlarge the training dataset

while potentially increasing the level of noise. We have tried to run KYLIN on selected

Web pages to retrieve information when it is unable to extract necessary information

from a Wikipedia article, but more much needs to be done along this direction.

• Information Verification: Besides automatic information extraction, KYLIN should

also be able to verify the correctness of the extracted information so that inconsistency

can be correctly resolved. An intuitive way is utilizing outside Web knowledge such

as Google indices.

• Topic Discovery: As the largest collaborative encyclopedia, Wikipedia should ex-

tend its coverage as much as possible. But as Wikipedia grows, it is getting harder

and harder for users to identify missing or incomplete articles. KYLIN should be able
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to identify these topics, and facilitate users’ editing (for example, pointing users to

useful information sources outside Wikipedia).

6.2.2 KOG

KOG achieves satisfying performance on Wikipedia Infobox Ontology generation. In the

future we intend to use the ontology to develop an improved query interface for Wikipedia

and the Web. Combining KYLIN with KOG is an obvious first step. We also anticipate

an inference scheme which combines multiple facts to answer a broader range of questions.

There are also several ways to improve KOG itself, including improved word sense disam-

biguation and extending our joint-inference approach to include schema mapping. In the

longer term, the following are three important directions for future work:

• Class and Relation Invention: The classes and relations in KOG’s ontology

are confined by those defined in existing Wikipedia infoboxes. However, the Web

contains a much broader set of topics that keep evolving as well. Therefore it is

crucial for KOG to include a set of concept- and relation-induction mechanisms. Most

work has studied concept and relation invention in isolation [18, 83]. We suspect a

joint inference framework, such as SNE in [64] and OntoUSP in [91], is superior.

• Selectional Preference: Selectional preferences encode the set of admissible ar-

gument values for a relation. An ontology with probabilistic selectional preference

has the potential to improve the performance of a wide range of NLP tasks such as

information extraction, semantic role labeling and word-sense disambiguation. Ritter

et al. applied the LinkLDA model to automatically compute selectional preferences

based on a corpus of extracted triples by TextRunner [95]. A similar approach,

like Labeled-LDA [92], could be applied by KOG, given the semantic tags of some

arguments and relations are known according to Wikipedia infobox templates.

• Ontology Alignment and Integration: Multiple ontologies on the same domain

are likely to present concepts in a variety of ways (e.g., “substance” in one ontology is

the same as “drug” in another), and at different levels of detail (e.g., IMDB has more
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details on movies than those included in Wikipedia infoboxes). KOG should be able

to align and integrate these ontologies to create a consistent and richer representation.

This also provides a chance for these ontologies to correct errors made by the others.

One possible solution is to maintain a single giant back-bone ontology, and keeps

merging newly discovered ontolgoies into it; another way out is to create probabilistic

mappings between multiple ontologies. It is unclear which approach might be better.

6.2.3 WOE

In the future, we plan to run WOE over the billion document CMU ClueWeb09 corpus to

compile a giant knowledge base for distribution to the NLP community. We also wish to

combine WOEparse with WOEpos (e.g., with voting) to produce a system which maximizes

precision at low recall. In the longer term, there are several interesting future work for

WOE:

• Combining Lexicalized and Open Extraction: WOE only uses unlexicalized

features when learning open extractors. We are also interested in merging lexicalized

and open extraction methods; the use of some domain-specific lexical features might

help to improve WOE’s practical performance, but the best way to do this is unclear.

• N-ary Relation Extraction: As most IE systems, WOE focuses on extracting

facts in triple format (i.e. �subject, predicate, object�) from natural-language texts.

However, besides “subject” and “object”, many facts involve more arguments such

as time and location. WOE should be able to perform n-ary relation extraction to

maintain the intact information.

• Semantifying Extracted Tuples: The extracted tuples by WOE needs further

semantifying to become more useful to other applications. These include integration

with a Web-scale named-entity recognizer, developing the ability to co-refer underspec-

ified entities (e.g. �he, founded,Microsoft� refers to “Bill Gates”), disambiguating

vague entity mentions (e.g., does �Tom, likes, jaguar� refer to the car or the animal?),
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and normalizing the semantics of predicates (e.g., �Dan,was born in, Boston� means

the “birthPlace” relation).

6.2.4 Overall New Directions

The work in this dissertation also suggests some interesting directions that are not directly

tied to the three systems:

• Multi-lingual Extraction: We have focused on extracting information from texts

in English. However, an ideal machine reading system should cover arbitrary lan-

guages. The rapid globalization of Wikipedia is generating a parallel, multi-lingual

corpus of unprecedented scale, where pages for the same topic in many different lan-

guages are explicitly linked to each other. This characteristic makes Wikipedia a

fantastic source for multi-lingual information extraction. Adar et al. proposed the

Ziggurat system which automatically complete infoboxes by leveraging information

among articles in different languages [6], but much more can be done.

• Textual Inference: We assume that all target information is stated explicitly

within a single sentence, but many facts are implicitly embedded across multiple

sentences. To harvest such kind of information, textural inference is necessary. A

typical example is shown by Schoenmackers et al. in [97]: few sentences stating

directly that “Kale prevents osteoporosis.”; a system, like their HOLMES, must infer

from multiple sentences, such as “Kale contains calcium.” and “Calcium prevents

osteoporosis.”, to get this fact.

• Human Computing: We tried to achieve total autonomy when developing KYLIN,

KOG, and WOE. Although these systems have satisfying performance, their preci-

sions are not high enough for some practical applications. For example, although

KYLIN’s average precision of mid-80s percent is considered success, it is unacceptable

in Wikipedia. One effective way to fill the gap is exploiting human computing —

relying on human effort to verify / correct results output by machines. We tested

this idea in [62] where users are presented with KYLIN’s extractions for verification.



125

The experiments shew that the benefits are mutual: KYLIN greatly facilitates users’

editing, and users’ input and feedback help KYLIN to learn better extractors. There

are many more opportunities along this direction. For example, how to apply active

learning to maximize the utility of human effort? what’s the best strategy to use

human computing service like Amazon Mechanical Turk? All of these are interesting

and challenging questions.

6.3 Parting Thoughts

The World Wide Web contains virtually unlimited amount of information embedded in

natural-language texts. As the long-standing goal of AI and NLP, machine reading aims

to automatically distill the information from texts and make them accessible to software

agents. In this dissertation, we develop three systems (KYLIN, KOG, and WOE), which

demonstrate the promise of bootstrapping fromWikipedia towards addressing the challenges

of Web-scale machine reading and reveals exciting directions for future works.
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Appendix A

DATA FOR DISTRIBUTION

The following datasets are available at the following site:

http://ai.cs.washington.edu/projects/intelligent-wikipedia.

• The “pseudo-manually” labeled dataset for testing KOG’s subsumption detection per-

formance. It contains:

– Mappings from 406 infobox classes to WordNet nodes based on DBpedia

– Positive and negative examples of subsumption relations

• The “schema-mapping” test set for KOG, which contains 10 pairs of parent/child

classes with labeled attribute mappings in between.

• The Wikipedia Infobox Ontology created by KOG based on the July 2007 English

version of Wikipedia. It contains:

– Infobox Schemata: cleaned infobox classes and attributes

– ISA Tree: ISA tree spanning the infobox classes

– Schema Mapping: attribute mappings between parent/child classes

• The three test datasets for WOE, which are created by randomly selecting 300 sen-

tences from each of the following corpora: WSJ from Penn Treebank, Wikipedia, and

the general Web. For each sentence, ground-truth triples (with variations for arg1,

arg2 and rel) are labeled.

• The 50SENT set, which is created by sampling 50Wikipedia sentences for five relations

(person.birthPlace, person.spouse, university.establishment, university.nickname, and
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county.water square mile) — 10 sentences per relation. Each sentences is annotated

with a name/value pair for certain target relation.

• The extraction pattern database DBp constructed by WOE. Each pattern is associ-

ated with a frequency value.


