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Abstract

Our KNOWITALL system aims to automate the tedious
process of extracting large collections of facts (e.g.,
names of scientists or politicians) from the Web in an
autonomous, domain-independent, and scalable man-
ner. In its first major run, KNOWITALL extracted over
50,000 facts with high precision, but suggested a chal-
lenge: How can we improve KNOWITALL ’s recall and
extraction rate without sacrificing precision?
This paper presents three distinct ways to address this
challenge and evaluates their performance.Rule Learn-
ing learns domain-specific extraction rules.Subclass
Extractionautomatically identifies sub-classes in order
to boost recall.List Extractionlocates lists of class in-
stances, learns a “wrapper” for each list, and extracts
elements of each list. Since each method bootstraps
from KNOWITALL ’s domain-independent methods, no
hand-labeled training examples are required. Experi-
ments show the relative coverage of each method and
demonstrate their synergy. In concert, our methods
gave KNOWITALL a 4-fold to 19-fold increase in re-
call, while maintaining high precision, and discovered
10,300 cities missing from the Tipster Gazetteer.

1. Introduction and Motivation
Collecting a large body of information by searching the Web
can be a tedious, manual process. Consider, for example,
compiling a list of the astronauts who have reached earth’s
orbit, or of the cities in the world,etc.Unless you find the
“right” document(s), you are reduced to an error-prone, one-
fact-at-a-time, piecemeal search. To address the problem
of accumulating large collections of facts, we have con-
structed KNOWITALL , a domain-independent system that
extracts information from the Web in an automated, open-
ended manner.

KNOWITALL introduces a novel, generate-and-test archi-
tecture that extracts information in two stages. First, KNOW-
ITALL utilizes a set of eight domain-independent extraction
patterns togeneratecandidate facts (cf. (Hearst 1992)). For
example, the generic pattern “NP1 such as NPList2” in-
dicates that the head of each simple noun phrase (NP) in
NPList2 is an member of the class named in NP1. By in-
stantiating the pattern for classCity , KNOWITALL extracts
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three candidate cities from the sentence: “We provide tours
to cities such as Paris, London, and Berlin.”

Next, extending (Turney 2001), KNOWITALL automat-
ically tests the plausibility of the candidate facts it ex-
tracts usingpointwise mutual information(PMI) statistics
computed by treating the Web as a massive corpus of
text. KNOWITALL leverages existing Web search engines
to compute these statistics efficiently. Based on these PMI
statistics, KNOWITALL associates a probability with ev-
ery fact it extracts, enabling it to automatically manage the
tradeoff between precision and recall.1

In its first major run, KNOWITALL extracted over 50,000
facts regarding cities, states, countries, actors, and films (Et-
zioni et al. 2004). This initial run revealed that, while
KNOWITALL is capable of autonomously extracting high-
quality information from the Web, it faces several chal-
lenges. In this paper we focus on one key challenge:

How can we improveKNOWITALL ’s recall and extrac-
tion rate so that it extracts substantially more members
of large classes such as cities and films while maintain-
ing high precision?

We describe and compare three distinct methods added to
KNOWITALL in order to improve its recall:

• Rule Learning (RL): learns domain-specific rules and
validates the accuracy of instances they extract.

• Subclass Extraction (SE):automatically identifies sub-
classes in order to facilitate extraction. For example, in or-
der to identify more scientists, it may be helpful to deter-
mine subclasses of scientists (e.g., physicists, geologists,
etc.) and look for instances of these subclasses.

• List Extraction (LE): locates lists of class instances,
learns a “wrapper” for each list, and uses the wrapper to
extract list elements.

All of the methods dispense with hand-labeled training ex-
amples by bootstrapping from the information extracted by
KNOWITALL ’s domain-independent patterns. We evaluate
each method experimentally, demonstrate their synergy, and
compare with the baseline KNOWITALL system described
in (Etzioniet al. 2004). Our main contributions are:

1Since we cannot compute “true recall” on the Web, the paper
uses the term “recall” to refer to the size of the set of facts extracted.



1. We introduce, implement, and evaluate three methods for
improving the recall and extraction rate of a Web infor-
mation extraction system. While our implementation is
embedded in KNOWITALL , the lessons learned are quite
general.

2. We show that LE is frequently the most powerful gener-
ator of candidate extractions, and that its extraction rate
is two orders of magnitude faster than that of the other
methods. However, LE’s precision improves dramatically
when combined with KNOWITALL ’s PMI statistics.

3. We demonstrate, with experiments in three domains, that
our methods, when used in concert, can increase KNOW-
ITALL ’s recall by 4-fold to 19-fold over the baseline
KNOWITALL system described in (Etzioniet al. 2004).

The remainder of this paper is organized as follows. The
paper begins with an overview of KNOWITALL and a com-
parison with earlier work. Sections 4 to 6 describe our three
methods, and Section 7 reports on our experimental results.
We conclude with directions for future work in Section 8.

2. Overview of KnowItAll
KNOWITALL is an autonomous, domain-independent sys-
tem that extracts facts, concepts, and relationships from the
Web (Etzioniet al. 2004). The only domain-specific input
to KNOWITALL is a set of classes and relations that consti-
tute its focus. KNOWITALL is also given a set of generic
extraction patterns (e.g., Figure 1), but these are domain in-
dependent. In this paper we concentrate on KNOWITALL ’s
ability to extract instances of classes from the Web.

KNOWITALL begins with a bootstrap learning phase
where it automatically instantiates its set of generic extrac-
tion patterns into class-specific extraction rules for each of
the classes in itsfocus. KNOWITALL uses these rules to find
a set of seed instances and uses the seeds to estimate con-
ditional probabilities that are used by its Assessor module.
After this bootstrap phase, the Extractor module begins to
extract candidate instances from the Web, and the Assessor
assigns a probability to each candidate. At each cycle of
this main loop, KNOWITALL re-allocates system resources
to favor the most productive classes, and to avoid seeking
more instances of “exhausted” classes (e.g., continents). We
elaborate on KNOWITALL ’s main modules below.

Extractor: The Extractor automatically instantiates ex-
traction patterns (e.g., Figure 1) for each focus class. Some

NP1 "such as" NPList2
& head(NP1)= plural(Class1)
& properNoun(head(each(NPList2)))

=> instanceOf(Class1, head(each(NPList2)))
keywords: "plural(Class1) such as"

Figure 1: This generic extraction pattern can be instan-
tiated automatically with the (pluralized) class name to
create a domain-specific extraction rule. For example, if
Class1 is set to “City” then the rule spawns the search
engine query “cities such as”, downloads the Web pages,
and extracts every proper noun immediately following
that phrase as a potential city.

of our domain-independent patterns were adapted from the
hyponym patterns of (Hearst 1992), while others were de-
veloped independently. Though this paper focuses on unary
predicates, our rules extract N-ary predicates as well. The
Extractor uses the Brill tagger (Brill 1994) to assign part-of-
speech tags and identifies noun phrases with regular expres-
sions based on the part-of-speech tags. Rules that look for
proper names also include an orthographic constraint that
tests capitalization.

Search Engine Interface: KNOWITALL automatically
formulates queries based on its extraction rules. Each rule
has an associated search query composed of the rule’s key-
words. For example, if the pattern in Figure 1 was instantiate
for the classCity , it would lead KNOWITALL to 1) issue
the search-engine query “cities such as”, 2) download in par-
allel all pages named in the engine’s results, and 3) apply the
Extractor to the appropriate sentences on each downloaded
page. For robustness and scalability KNOWITALL queries
multiple different search engines.

Etzioni (Etzioni 1996) introduced the metaphor of anIn-
formation Food Chainwhere search engines are herbivores
“grazing” on the web and intelligent agents areinformation
carnivoresthat consume output from various herbivores. In
terms of this metaphor, KNOWITALL is an information car-
nivore that consumes the output of existing search engines.
Since it would be inappropriate for KNOWITALL to over-
load these search engines, we limit the number of queries
KNOWITALL issues per minute, which has become the ma-
jor bottleneck for KNOWITALL . In order to overcome this
bottleneck, We are in the process of incorporating an in-
stance of the Nutch open-source search engine into KNOW-
ITALL . Since our Web index will be roughly two orders
of magnitude smaller than those of commercial engines,
KNOWITALL will continue to depend on external search en-
gines for some queries. Thus, we are transforming KNOW-
ITALL from a carnivore to aninformation omnivore.

Assessor: KNOWITALL uses statistics computed by
querying search engines to assess the likelihood that the Ex-
tractor’s conjectures are correct. Specifically, the Assessor
uses a form ofpointwise mutual information(PMI) between
words and phrases that is estimated from Web search engine
hit counts in a manner similar to Turney’s PMI-IR algorithm
(Turney 2001). The Assessor computes the PMI between
each extracted instance and multiple,automatically gener-
ated discriminator phrasesassociated with the class (such
as “city of” for the classCity ).2 For example, in order to
estimate the likelihood that “Liege” is the name of a city, the
Assessor might check to see if there is a high PMI between
“Liege” and phrases such as “city of.”

More formally, letI be an instance andD be a discrimi-
nator phrase. We compute the PMI score as follows:

PMI(I,D) =
|Hits(D + I)|

|Hits(I)|
(1)

The PMI score is the number of hits for a query that com-

2We use class names and the keywords of extraction rules to
automatically generate these discriminator phrases; they can also
be derived from rules learned using RL techniques (Section 4).



bines the discriminator and instance, divided by the hits for
the instance alone. This can be viewed as the probability that
(D + I) will be found on a Web page that containsI. Note
that the number of search engine queries necessary to com-
pute the PMI for a particular instanceI is the number of dis-
criminators plus one additional query to computeHits(I).

These mutual information statistics are treated as features
that are input to aNaive Bayes Classifier(NBC). In a stan-
dard NBC, if a candidate fact is more likely to be true than
false, it is classified as true. However, since we wish to be
able to trade precision against recall, we record the numeric
probability values computed by the NBC for each extracted
fact. By raising the probability threshold required for a fact
to be deemed true, we increase precision and decrease recall;
lowering the threshold has the opposite effect.

Since the NBC is notorious for producing polarized prob-
ability estimates that are close to zero or to one, the es-
timated probabilities are often inaccurate. However, as
(Domingos & Pazzani 1997) points out, the classifier is sur-
prisingly effective because it only needs to make an ordinal
judgment (which class is more likely) to classify instances
correctly. Similarly, our formula produces a reasonableor-
deringon the likelihood of extracted facts for a given class.
This ordering is sufficient for KNOWITALL to implement
the desired precision/recall tradeoff.

Each of this paper’s new methods (Sections 4–6) reuse the
KNOWITALL assessor to considerable benefit.

3. Previous Work
KNOWITALL ’s most distinctive feature is its adaptation
of (Turney 2001)’s PMI-IR algorithm to assess the proba-
bility that extractions are correct. Another system that uses
hit counts for validation is the question answering system
of (Magnini, Negri, & Tanev 2002), although their technique
of getting hit counts for a specially constructedvalidation
patternis restricted to question-answer pairs.

KNOWITALL is also distinguished from many Infor-
mation Extraction (IE) systems by its novel approach to
bootstrap learning. Unlike IE systems that use super-
vised learning techniques such ashidden Markov models
(HMMs) (Freitag & McCallum 1999), rule learning (Soder-
land 1999), or Conditional Random Fields (McCallum
2003), KNOWITALL does not require manually tagged train-
ing sentences. OtherbootstrapIE systems such as (Riloff
& Jones 1999; Agichtein & Gravano 2000; Brin 1998) still
require a set of domain-specific seed instances as input,
then alternately learn rules from seeds, and further seeds
from rules. Instead, KNOWITALL begins with a domain-
independent set ofgeneric extraction patternsfrom which it
induces a set of seed instances. KNOWITALL ’s use of PMI
validation helps overcomes the problem of maintaining high
precision, which has plagued previous bootstrap IE systems.

KNOWITALL is able to use weaker input than previous
IE systems because it relies on the scale and redundancy of
the Web for an ample supply of simple sentences. This no-
tion of redundancy-based extractionwas introduced in Mul-
der (Kwok, Etzioni, & Weld 2001) and further articulated in
AskMSR (Bankoet al. 2002). Of course, many previous

IE systems have extracted more complex relational informa-
tion than KNOWITALL . We believe that KNOWITALL will
be effective in extractingN -ry relations, but we have yet to
demonstrate this experimentally.

Several previous projects have automated the collection of
information from the Web with some success. Information
extraction systems such as Google’s Froogle, Whizbang’s
Flipdog, and Elion, collected large bodies of facts but only
in carefully circumscribed domains (e.g., job postings), and
only after extensive domain-specific hand tuning. KNOW-
ITALL is both highly automated and domain independent.
In fairness, though, KNOWITALL ’s redundancy-based ex-
traction task is easier than Froogle and Flipdog’s task of ex-
tracting “rare” facts each of which only appears on a single
Web page.

KNOWITALL was inspired, in part, by the WebKB
project (Cravenet al. 2000). However, the two projects rely
on very different architectures and learning techniques. For
example, WebKB relies on supervised learning methods that
take as input hand-labeled hypertext regions to classify Web
pages, whereas KNOWITALL employs unsupervised learn-
ing methods that extract facts by using search engines to
home in on easy-to-understand sentences scattered through-
out the Web.

The next three sections discuss our newly added methods
for enhancing KNOWITALL ’s recall.

4. Rule Learning (RL)
While generic extraction patterns perform well in the base-
line KNOWITALL system, many of the best extraction rules
for a domain do not match a generic pattern. For example,
“the film <film> starring” and “headquartered in<city>”
are rules with high precision and coverage for the classes
Film andCity . Arming KNOWITALL with a set of such
domain-specific rules could significantly increase the num-
ber of sentences from which it can extract facts. This section
describes our method for learning domain-specific rules.

Our rule learning algorithm starts with a set of seed in-
stances generated automatically by KNOWITALL ’s boot-
strapping phase. We issue search engine queries for each
seed instance,i, and for each page returned by the search
engine we record acontext string—the substring including
thek words beforei, <class-name>, and thek words after
i surrounding each instance in the returned documents (in
our experiments, we setk = 4). The ‘best’ substrings of the
‘best’ context strings are converted into extraction rules and
added to KNOWITALL .

For our purposes, ‘best’ means “able to extract new class
instances with high precision.” The reason is primarily ef-
ficiency; we want to minimize the number of rules we exe-
cute per unique extraction, and also minimize the number of
times we execute the KNOWITALL Assessor on false facts.
Precision is also important for another reason – while the
KNOWITALL Assessor can eliminate the majority of false
positives, the presence of a large number of low precision
rules can still degrade the quality of the system’s output. Es-
timating rule quality is difficult for several reasons: 1) we
have no labeled negative examples, 2) good extraction rules



Rule Correct Precision
Extractions

the cities of<city> 5215 0.80
headquartered in<city> 4837 0.79
for the city of<city> 3138 0.79
in the movie<film> 1841 0.61
<film> the movie starring 957 0.64
movie review of<film> 860 0.64
and physicist<scientist> 89 0.61
physicist<scientist>, 87 0.59
<scientist>, a British scientist 77 0.65

Table 1:Three of the most productive rules for each class,
along with the number of correct extractions produced
by each rule, and the rule’s overall precision (before as-
sessment).

are quite rare3 3) many of the most precise rules have low
recall, and vice versa. We address these challenges with two
heuristics:

H1: We prefer substrings that appear in multiple context
strings across different seeds. By banning all substrings that
matched only a single seed,96% of the potential rules are
eliminated. In experiments with the classCity , H1 was
found to improve extraction rate substantially, increasing the
average number of unique cities extracted by a factor of five.

H2: We wish to penalize substrings whose rules would
have many false positives, but have no labeled negative in-
stances. Instead, we exploit the fact that KNOWITALL learns
rules for multiple semantic categories at once, and define the
positive examples of one class to be negative examples for
all other classes.4 After obtaining context strings for ex-
amples from each class, we estimate the precision of each
potential rule using a Laplace correction:

EstimatedPrecision =
c + k

c + n + m

wherec is the number times the rule matched a seed in the
target class,n is the number of times it matched known
members of other classes, andk

m is the prior estimate of a
rule’s precision, obtained by testing a sample of the learned
rules’ extractions using the KNOWITALL Assessor. On ex-
periments with the classCity , ranking rules by H2 further
increased the average number of unique instances extracted
(by 63% over H1) and significantly improved average preci-
sion (from 0.32 to 0.58).

As a final step, we take the 200 rules that satisfy H1 and
are ranked most highly by H2 and subject them to more de-
tailed analysis, applying each to 100 Web pages and testing
their precision with the KNOWITALL Assessor. Examples
of the most productive rules for each class are shown in Ta-
ble 1 along with the number of unique correct extractions
and precision (before assessment) of each rule.

3In theCity class, for example, we found that only 2% of the
potential rules had a precision of at least 0.5 and non-trivial recall.

4This proved useful in practice, even though it was sometimes
fooled by an instance that is positive for both classes, such as the
movie (and city) “Chicago”.

RL is similar to the methods of (Lin, Yangarber, & Gr-
ishman 2003) (indeed, they discovered a heuristic similar to
H2 and experimentally showed that it increases precision),
but there are several differences: 1) They use manually-
specified seeds, whereas RL uses seeds generated automati-
cally by KnowItAll’s bootstrapping phase 2) In their assess-
ment process, Linet al. apply their rules to their entire cor-
pus — which is impossible at Web scale 3) They have no
mechanism similar to KNOWITALL ’s PMI assessment.

(Riloff & Jones 1999) also extract instances of large se-
mantic classes usingbootstrap learning, but they use a dif-
ferent heuristic for rule quality and test on a much smaller
corpus (again applying their rules to the entire corpus). Like
our work, (Ravichandran & Hovy 2002) uses Web search
engines to find patterns surrounding seed values. However,
their goal is to supportquestion answering, for which a train-
ing set of question and answer pairs is known. This is easier
than our task, because they can measure a rule’s precision
on seed questions by checking the correspondence between
the extracted answers and the answers given by the seed.

Snowball (Agichtein & Gravano 2000) and DIPRE (Brin
1998) use bootstrap learning to alternately learn extraction
rules and seeds to generate further rules. In contrast with
KNOWITALL , they lack a domain-independent method to
validate the accuracy of extracted information. In addition,
Snowball relies on a domain-specific named-entity tagger to
identified company names and locations. Finally, DIPRE
requires manual editing after each bootstrapping cycle.

5. Subclass Extraction (SE)
SE identifies subclasses of the class of interest, and feeds the
subclasses to the Extractor. For example, if KNOWITALL
is extracting instances of the classScientist and learns
that physicists, chemists, and geologists are scientists then
it can instantiate its generic extraction patterns with each of
the learned subclasses (e.g., “physicists such as . . . ”,etc.)
to increase the set of candidate scientists extracted. Indeed,
while a great many scientists are mentioned on the Internet
in some form, only a fraction are referred to as “scientists”.
By sequentially instantiating the generic patterns with sub-
classes like the ones in Table 3, SE enables KNOWITALL to
identify over 2,500 scientists, more than ten times the num-
ber found by the baseline (Figure 4).

Extracting subclasses mirrors the extraction of class in-
stances, and can be achieved by a recursive application of the
instantiated extraction rules in KNOWITALL ’s main loop,
but the rules need to distinguish between instances and sub-
classes of a class. Rules for extracting instances contain a
proper noun test (using a part-of-speech tagger and a capi-
talization test). In order to extract subclasses, the rules are
modified to check that the extracted noun is acommonnoun
(i.e.not capitalized).

The SE Assessor ranks the candidate subclasses in order
of probability. First, the Assessor checks whether a sub-
class is a hyponym of the class in WordNet. This test is not
sufficient because on average40% of the correct subclasses
discovered by SE were absent from WordNet and, in some
cases, the class itself could be absent from WordNet. Sec-
ond, the Assessor checks the morphology of the candidate



Pattern Extraction
C1{“, ”} ‘such as’ CN isA(CN, C1)
‘such’ C1 ‘as’ CN isA(CN, C1)
CN {“, ”} ‘and other’C1 isA(CN, C1)
CN {“, ”} ‘or other’ C1 isA(CN, C1)
C1{“, ”} ‘including’ CN isA(CN, C1)
C1{“, ”} ‘especially’ CN isA(CN, C1)
C1 ‘and’ CN isA(CN, superclass(C1))
C1 {“,” } C2{“, ”} ‘and’ CN isA(CN, superclass(C1))

Table 2:Sample Rules for Subclass Extraction. CN refers
to common noun,i.e. one that is not capitalized.

subclass name, since some subclass names are formed by
attaching a prefix to the name of the class (e.g., “microbi-
ologist” is a subclass of “biologist”). If either test holds,
then the Assessor assigns the subclass a probability that is
close to one. 61% of SE’s bona fide subclasses were con-
firmed using the above tests. Finally, remaining candidates
are evaluated using a variant of KNOWITALL ’s standard As-
sessor. Because an incorrect subclass choice can result in
the extraction of hundreds or thousands of incorrect class
instances (e.g., one of SE’s candidate subclasses forSci-
entist is ‘Doctor’), only candidates whose assessed prob-
ability exceeds 0.85 are selected by SE.

Just as the generic extraction rules for instances have lim-
ited recall, their counterparts for extracting subclasses gen-
erate a limited set of subclasses. Moreover, even those that
are generated may have low co-occurrence with the super-
class name or the discriminators. Thus, subclass extraction
faces the same recall problem as instances extraction. In
order to improve subclass recall, we add another extraction-
and-verification step. After a set of subclasses for the given
class is obtained by SE, high-recall enumeration rules (the
last two rules in Table 2) are seeded with subclasses, which
are judged very likely to be correct by KNOWITALL ’s As-
sessor, and then used to extract additional subclass candi-
dates. For instance, given the sentence “Biologists, physi-
cists and chemists have convened at this inter-disciplinary
conference.”, such rules identify “chemists” as possible sib-
ling of “biologists” and “physicists”.

SE is similar in flavor to work on acquiring domain-
specific lexicons and ontologies from corpora by (Phillips
& Riloff 2002; Maedche & Staab 2001; Sombatsrisomboon,
Matsuo, & Ishizuka 2003) and others. SE’s main distin-
guishing features are its use of domain-independent extrac-
tion patterns and of PMI-IR to assess its extractions.

6. List Extraction (LE)
All of the techniques we have discussed thus far extract in-
formation from natural language sentences, but the Web also
contains numerous regularly-formatted lists that enumerate
many of the elements of a class. Examples include lists of
cities with airport codes, lists of movies with show times,
and lists of researchers with their home pages. LE exploits
this structure in three stages: 1) finding such lists, 2) ex-
tracting list elements, and 3) assessing the accuracy of the
resulting extracted instances.

biologist zoologist
astronomer meteorologist
mathematician economist
geologist sociologist
chemist oceanographer
anthropologist pharmacist
psychologist climatologist
paleontologist neuropsychologist
engineer microbiologist

Table 3:Subclasses of Scientist found by SE.

In order to find good lists, LE (like SE and RL) uses
the high-probability instances extracted by baseline KNOW-
ITALL as seeds. LE selects a random subset ofk of these in-
stances as keywords for a search engine query, and it down-
loads the documents corresponding to the engine’s results.
This process is repeated 5000–10,000 times with different
random subsets. Space precludes discussion of our experi-
ments varyingk, but decreasingk led LE to increase recall
at the cost of reduced precision; in Section 7 we usek = 4.

In each downloaded document, LE searches for a
regularly-formatted list that includes these keywords. This is
done by a light-weight wrapper induction algorithm similar
to the HLRT algorithm of (Kushmerick, Weld, & Doorenbos
1997), but there are several differences: 1) our algorithm ex-
ploits the HTML parse tree5, and would not generalize well
to unstructured text, 2) instead of learning from a fully la-
beled training set or via an oracle with well-defined accu-
racy, our training is done online from only a few positive
instances, 3) Kushmerick’s goal is to generate a wrapper for
use on a future document stream, but in contrast we generate
one or more wrappers per page, discard them after a single
use, and return the extracted instances. This extraction pro-
cess is fast — including network time, it usually takes less
than a second to process a document.

After extracting instances from the pages returned in re-
sponse to a thousand randomly composed queries, the final
challenge is to assess the probability of each extracted in-
stance. Intuitively, the more lists that contain a particular
instance, the more likely such an instance is to be an actual
member of the class. Similarly, the more valid instances are
in a list, the higher the list accuracy. This reasoning sug-
gests an iterative assessment algorithm, since intuitively an
instance’s likelihood is higher if it is inn accurate lists than
n with low accuracy. We implemented several approaches
to assessment: 1) treat list membership as a feature and use
a Naive Bayesian classifier (trained on KNOWITALL base-
line’s seeds) to determine accuracy of an instance, 2) model
each list as a uniform distribution, perform EM to determine
the probability that a randomly-drawn element of a list is
a class member, and then use naive Bayes to compute the
probability of each instance, 3) simply sort the instances ac-
cording to the number of lists in which they appear. To our

5LE 1) parses the document and converts to a DOM tree
(www.w3.org/DOM ), 2) selects subtrees containing positive ex-
amples, 3) computes the greatest common prefixes and suffixes of
these examples, and 4) finally chooses header and tail strings to
limit extraction to good subtrees.



surprise, method 3 outperformed methods 1 and 2, and so we
used it in all results marked LE. Our final method (“LE+A”)
applies KNOWITALL ’s Assessor to rank the raw LE results.
While “LE+A” requires many more search-engine queries
than LE methods 1–3, Section 7 shows LE+A performs has
much higher recall than LE without assessment.

The bulk of past work on wrapper induction requires man-
ually labeled training examples from each Web site in order
to build a wrapper; in contrast, LE learns thousands of wrap-
pers on the fly. LE can be viewed as extending the method
of (Doorenbos, Etzioni, & Weld 1997), which queried online
stores with known product names and looked for regularities
in the resulting pages in order to build e-commerce wrap-
pers, applying it to a different task. LE can also be viewed
as a specialization of the list extraction method described
in (Cohen, Hurst, & Jensen 2002).Google Sets, whose al-
gorithm is unpublished, also generates lists of related items,
but LE’s recall is much higher. Finally, LE is distinct from
work on the problem of table extraction from unstructured
text, which focuses on segmenting columns, finding cells,
and differentiating between data and labels.

7. Experimental Results
We conducted a series of experiments to evaluate the effec-
tiveness of Subclass Extraction (SE), Rule Learning (RL),
and List Extraction (LE) in increasing the recall of the base-
line KNOWITALL system on three classesCity , Scien-
tist , Film . We used the Google API as our search en-
gine. Each of the methods tested associates a probability
with each extracted instance. We estimated the number of
correct instances extracted by manually tagging samples of
the instances grouped by probability, and computedpreci-
sion as the proportion of correct instances at or above a
given probability. In the case ofCity , we also automati-
cally marked instances as correct when they appeared in the
Tipster Gazetteer.

Figures 2, 3, and 4 compare the number of extractions at
precision 0.90 for the baseline system (B), the baseline com-
bined with each method (RL, SE, LE), and the baseline com-
bined with a variant of LE whose extractions were sorted
based on probabilities assigned by the Assessor (LE+A)6.
We chose 0.90 precision as representative of high quality
extraction, but our relative results were largely unchanged
when we varied the precision from 0.8 to 0.95. The bars
labeled “All” show the results of a composite method that
returns the union of instances extracted by B, RL, SE, and
LE+A.

In each bar, the instances extracted by the baseline (B) ex-
clusively are the white portion, and those extracted by both a
new method and the baseline are shown in gray. Since each
method begins by running the baseline system, the combined
height of the white and gray portions is exactly that of the
B bar in each Figure. Finally, instances extracted by one of
this paper’s methods butnot by the baseline are in black.

6For each method we continued searching for new extractions
until the signal-to-noise (STN) ratio fell below 0.30, where STN is
defined as the number extractions with probability over .90 divided
by extractions with probability under .10.
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Figure 2:Instances of City at precision .90.
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Figure 3:Instances of Film at precision .90.

Thus, the black portion shows the “added value” of our new
methods over the baseline system described in (Etzioniet
al. 2004).

In the City class we see that each of the methods re-
sulted in some improvement over the baseline, but the meth-
ods were dominated by LE+A, which resulted in a 5.5-fold
improvement, and found virtually all the extractions found
by other methods. We see very similar results for the class
Film (Figure 3), but different behavior for the classSci-
entist (Figure 4). In the case ofScientist , SE’s
ability to extract subclasses made it the dominant method,
though both RL and LE found useful extractions that SE did
not. We believe that SE is particularly powerful for general,
naturally decomposable classes such asPlant , Animal ,
or Machine where text usually refers to their named sub-
classes (e.g., Flower, Mammal, Computer ).7

While our methods clearly enhance KNOWITALL ’s recall,
what impact do they have on its extraction rate? Search en-
gine queries (with a “courtesy wait” between queries) are
the system’s main bottleneck. Thus, we measure extraction
rate by the number of unique instances extracted per search
engine query. We focus onuniqueextractions because each

7To use the psychological terminology of (Roschet al. 1976),
we conjecture that text on the Web refers to instances as elements
of “basic level” categories such asFlower much more frequently
than as elements of superordinate ones such asPlant .
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Figure 4:Instances of Scientist at precision .90.

Method Queries Extraction Rate
B 182,576 0.138
RL 194,564 0.125
SE 98,272 0.124
LE 23,400 12.3
LE+A 1,748,118 0.164
All 1,888,325 0.148

Table 4: The number of queries issued by the different
methods, and the extraction rate as measured by the
number of unique extractions per query.

of our methods extracts “popular” instances multiple times.
Table 4 shows that LE+A enhancement to recall comes at a
cost. In contrast, LE’s extraction rate is two orders of mag-
nitude better than any of the other methods.

While each of the methods tested have numerous param-
eters that influence their performance, we ran our experi-
ments using the best parameter settings we could find for
each method. While the exact results will vary with different
settings, or classes, we are confident that our main observa-
tions — the massive increase in recall due to our methods in
concert, and the phenomenal increase in extraction rate due
to LE — will be borne out by additional studies.

8. Conclusions & Future Work
In conclusion, ourrule learning (RL), subclass extraction
(SE), andlist extraction(LE) techniques greatly improve on
the baseline recall of (Etzioniet al. 2004)’s KNOWITALL
system, while maintaining precision and improving extrac-
tion rate. KNOWITALL ’s running time increases linearly
with the size and number of web pages it examines; KNOW-
ITALL ’s computational complexity remains linear after the
addition of RL, SE, and LE. In practice, the main param-
eter that impacts KNOWITALL ’s performance is the rate at
which it can issue search-engine queries. To increase this
rate, we are incorporating a copy of the Nutch open source
search engine into KNOWITALL .

Overall, LE combined with PMI assessment gave the
greatest improvement, but SE extracted the most newSci-
entists . Although KNOWITALL is still “young”, it sug-
gests futuristic possibilities for systems that scale up Infor-

mation Extraction (IE), new kinds of search engines based
on massive Web-based IE, and the automatic accumula-
tion of large collections of facts to support knowledge-
based AI systems. There are numerous directions for fu-
ture work including, notably, further investigation of EM
and related co-training techniques (Blum & Mitchell 1998;
Nigamet al. 2000) to improve the assessment of extracted
instances, and the generalization of our results to the extrac-
tion of N-ary predicates.
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