1

Appears in Proc. IJCAI 2007, Hyderabad, India.

When is Temporal Planning Really Temporal?

William Cushing and Subbarao Kambhampati

Dept. of Comp. Sci. and Eng.
Arizona State University
Tempe, AZ 85281

Abstract

While even STRIPS planners must search for plans
of unbounded length, temporal planners must also
cope with the fact that actions may start at any
point in time. Most temporal planners cope with
this challenge by restricting action start times to
a small set ofdecision epochsbecause this en-
ables search to be carried out state-spaceand
leverages powerful state-based reachability heuris-
tics, originally developed for classical planning.
Indeed, decision-epoch planners won the Interna-
tional Planning Competition’s Temporal Planning
Track in 2002, 2004 and 2006.

However, decision-epoch planners have a largely
unrecognized weakness: they are incomplete. In
order to characterize the cause of incompleteness,
we identify the notion ofrequired concurrency
which separategxpressive temporal action lan-
guagesfrom simpleones. We show that decision-
epoch planners are only complete for languages in
the simpler class, and we prove that the simple class
is ‘equivalent’ to STRIPS! Surprisingly, no prob-
lems with required concurrency have been included
in the planning competitions. We conclude by de-
signing a complete state-space temporal planning
algorithm, which we hope will be able to achieve
high performance by leveraging the heuristics that
power decision epoch planners.

Introduction

Mausam and Daniel S. Weld
Dept. of Comp. Sci. and Eng.
University of Washington
Seattle, WA 98195

This architecture is appealing, because it is both conceptually
simple and facilitates usage of powerful reachability heuris-
tics, first developed for classical plannifBpnetet al,, 1997;
Hoffmann and Nebel, 2001; Nguyest al, 2001; Helmert,
2004. Indeed, SGPlan, which won the International Plan-
ning Competition’s Temporal Planning Track in both 2004
and 2006, is such a progression planner.

There is an important technical hurdle that these tempo-
ral state-space planners need to overcome: each action could
start at any of an infinite number of time points. Most of these
planners avoid this infinite branching factor by a (seemingly)
clever idea: restricting the possible start-time of actions to a
small set of special time points, calldécision epochsUn-
fortunately, the popularity of this approach belies an impor-
tant weakness — decision epoch plannersrazempletefor
many planning problems requiring concurrefigfausam and
Weld, 2008.

Seen in juxtaposition with their phenomenal success in the
planning competitions, this incompleteness of decision epoch
planners raises two troubling issues:

1. Are the benchmarks in the planning competition captur-
ing the essential aspects of temporal planning?

2. Is it possible to make decision epoch planners complete
while retaining their efficiency advantages?

In pursuit of the first question, we focused on characteriz-
ing what makes temporal planning really temporal — i.e. dif-
ferent from classical planning in a fundamental way. This
leads us to the notion akquired concurrencythe ability
of a language to encode problems for whathsolutions are
concurrent. This notion naturally divides the space of tem-

Although researchers have investigated a variety of architegaoral languages into those that can require concurreray-(
tures for temporal planning (e.g., plan-space: ZENf@n-  porally expressiveand those that canndefmporally simplg
berthy and Weld, 1994 VHPOP [Younes and Simmons, What is more, we show that the temporally simple languages
2003; extended planning graph: TGESmith and Weld, are only barely different from classical, non-temporal, lan-
1999, LPG [Gerevini and Serina, 2002reduction to lin- guages. This simple class, unfortunately, is the only class for
ear programming: LPGR.ong and Fox, 2008 and others), which decision epoch planners are complete.

the most popular current approach is progression (or regres- In pursuit of the second question, we show that the incom-
sion) search through an extended state space (e.g., §2¢°A pleteness of decision epoch planners is fundamental: anchor-
and Kambhampati, 2003TP4[Haslum and Geffner, 2001 ing actions to absolute times appears doomed. This leaves
TALPlan [Kvarnstromet al, 2004, TLPlan [Bacchus and the temporal planning enterprise in the unenviable position
Ady, 2001, and SGPlar[Chenet al, 2004) in which a  of having one class of planners (decision epoch) that are
search node is represented by a world-state augmented wifast but incomplete in fundamental ways, and another class
the set of currently executing actions and their starting timesof planners (e.g., partial order ones such as Zeno and VH-


rao
Text Box
Appears in Proc. IJCAI 2007, Hyderabad, India.


POP) that are complete but often unacceptably slow. For- Anaction A, is given by a beginning transitiobegin (A),
tunately, we find a way to leverage the advantages of botlan ending transitiorend(A), an over-all conditiorn(A), and
approaches: a temporally lifted state-space planning alga positive, rational, duratiord (A).

rithm called TEMPO. TEMPO uses the advantage of lift- - .
ing (representing action start times with real-valued variableQ€finition 2 (Plans) A plan P = {sy,s3,s3,..., 0}, IS

and reasoning about constraints) from partial order planner& S€t Of Steps, where eagftep s, is given by an action,
while still maintaining the advantage of logical state informa- dction(s), and a positive, rational, starting timgs). The

tion (which allows the exploitation of powerful reachability makespawf P equals

heuristics). The rest of the paper elaborates our findings. §(P) = max(t(s) + 6(action(s))) — min(¢(s))
seEP seP
2 Temporal Action Languages A rational model of time provides arbitrary precision with-

Many different modeling languages have been proposed foput Real complications.

planning with durative actions, and we are interested irbefinitionS Problems) A proble _

. : X ; mP = (A1IG), con-
their relative expressiveness. T_he TGP IangL[eSJ_ Bith and sists of a segt of actiongd() F;n initial modeI(Q) and>a goal
Weld, 1999, for example, requires that an action’s precon- .. dition Q) ' '

ditions hold all during its execution, whilebpL 2.1.3 al-
lows more modeling flexibility. We study various restric- Definition 4 (States) A (temporal)state N, is given by a
tions of PDDL 2.1.3, characterized by thémesat which  model, state(N), a time,¢(/N), and a plan,agenda(N),
preconditions and effects may be ‘placed’ within an action.recording the actions which have not yet finished (and when
Our notation uses superscripts to describe constraints on prtiey started).

conditions, and subscripts to denote constraints on effects:
Lbrecondiionsis the template. The annotations are:

effects

A precise formulation of plasimulationis long and unnec-
essary for this paper; see the definitionrafoL 2.1.3[Fox

s “at-start” and Long, 200B Roughly, the steps of a planP? =
“at-end” {s1,...,8n}, are converted into a transition sequence, i.e., a
o: ‘“over-all” (over the entire duration) classical plan. Simulating’ is then given by applying the

For exampleL¢ . is a language where every action pre- trlans[tlo:wst, Itn quueT(:t?’ sf'[grltlnghfrort]; trt1e |n|_tt|_al model (a
condition must hold over all of its execution and effects may.C assical state). imutation fails when the transition sequence
occur at start or at enpoL 2.1.3 does not define. or allow, is not _executabl_e, S|mulat|0_n also fall_s if any of the over-all
effects over an interval of timas is only used as an annota- c0nditions are violated. In either cagéjs notexecutable

is asolutionwhen the goal condition is true in the model that

tion on preconditions, {esults after simulation
Many other lan f r I incl - : . .
any other language features could be included as poss Plans can beescheduled one plan is a rescheduling of

ble restrictions to analyze; however, most end up being less

interesting than one might expect. For example, deadlineé"mmher when the only differences are the dispatch times of

- : - Steps. Lets’ = delay(s,d) be the result of delaying a step
exogenous events (timed literals), conditional effects, param by d units of time: £(s') — (s) + d (and action(s') —

eters (non-ground structures), preconditions required at intef- > - ;) 3

mediate points/intervals inside an action, or effects occurring/¢/0"())- Stl_mllarlly, 53, _7del3yl(P’ d) C'ZS the r‘j;’u't ?_{ de-

at arbitrary metric points (as in ZENO) can all be compiledi@YiNg an entire plan:P’ = {delay(s,d) : s € P}. Has-
tening steps or plans is the result of applying negative de-

into L$:2:¢ [Smith, 2003; Foet al,, 2004. In particular, an .
analys’ies of justL?:2:¢ is simultaneously an indirect analysis lay. A steps hasslack d in an executable pla® when

of these syntactically richer languages. Naturally these comt \ 15} U {delay(s, —t)} is also an executable plan for every
pilations can have dramatic performance penalties if carrie Elue_ oft betlwe(?nlo &:(Td' Ar.;step without Slackllslilcklessh
out in practice; the purpose of such compilations is to eas8<EWISe, a plan islacklessvhen every step is slackless, that
the burden of analysis and proof. Of course, we also exclud® the plan is “left-shifted".
some interesting language features (for the sake of simplichefinition 5 (Completeness)A planner iscompletewith re-
ity), for example, metric resources and continuous change. spect to an action languagg, if for all problems expressible

. — in L, the planner is guaranteed to find a solution if one ex-
2.1 Basic Definitions ists. A planner isoptimal with respect to languagé and
Space precludes a detailed specification of action semanticspst functiory, if for all solvable problems expressible in
thus, we merely paraphrase some of the relevant aspects thfe planner is guaranteed to find a solution minimizingA
theppDL 2.1.3 semantics for durative actidfx and Long,  planner ismakespan optimaf it is optimal with makespan
2003. as the cost function.

Definition 1 (Actions) A modelis a total function mapping 5 o Required Concurrency
fluents to values and@nditionis a partial function mapping )

fluents to values. Aansitionis given by two conditions: its We now come to one of the key insights of this paper. In
preconditions, and its effects. some cases it is handy to execute actions concurrently; for

example, it may lead to shorter makespan. But in other cases,
'pDDL 2.1.3 denotes level 3 of PDDL2[[Fox and Long, 2008  concurrency is essential at a very deep level.



P

P
.

§ Gl/\jQ Gl/\Q 0 GlA1G2 R “RANG GlAjGZ
=19 Q R
s
G,AaP GyAP G, G, G G,
@Ls (b)Lg (©Lse (dL3e (@)Le

Figure 1:Preconditions are shown above actions at the time point enforced; effects are depicted below. Action durations are shown in square
brackets. §), (b), and €): The first three problems demonstrate thatL;, andL, . are temporally expressive, respectively. In the first two
problems, every solution must have bothand B begin before either can end. Ig){every solution must havB contain the end ofi. (d):

Modeling resources can easily lead to required concurrency. In this exampleyides temporary access to a resouRcavhich B utilizes

to achieve the goale]: B must start in the middle o, when nothing else is happening, to achieve makespan optimality.

Definition 6 (Required Concurrency) Let precondition of an action holds over its entire duration, the
P={s1,...,s,} be a plan. A step,s € P, is con- preconditions ofuction(s) hold immediately prior to apply-
current when there is some other step/ € P, so ing its effects, i.e., in the final model d? \ {s}. Therefore
that either t(s) < t(s') < t(s) + d(action(s)) or P’ = (P\ {s}) U{delay(s,d(action(s)))} is an executable
t(s") < t(s) < t(s') + d(action(s’)). A plan isconcurrent rescheduling ofP. The final models in simulations @t and
when any step is concurrent, otherwise the plaseiguential P’ are identical, since both result from applyiagtion(s)

A solvable planning problem hasquired concurrencywhen  to the same model. By induction on the number of concur-
all solutions are concurrent. rent steps (note thd®’ has fewer concurrent steps), there is a

To make this concrete, consider the plan in Figure 1(d)"€Scheduling of” into a sequential solutiort)
The literals above the action denote its preconditions and be- Theorem 1 is interesting, because a large number of
low denote effects. Starting witlf and R false, assumingt ~ €mporal planners (TGP, TH#Haslum and Geffner, 2001
and B are the only actions, the problem of achieviighas ~HSP [Haslum, 2008 TLPlan[Bacchus and Ady, 2001and
required concurrency. That is, both of the sequential plans ( CPTIVidal and Geffner, 200B have restricted themselves to

beforeB or vice versa) fail to be executable, let alone achievghe TGP representation, which is now shown to be so simple
G. that essential temporal phenomena cannot be modeled! Note,

L . , ) for example, that the common motif of temporary resource
Definition 7 (Temporally Simple / Expressive) An ~ action ijlization (Figure 1¢)) cannot be encoded in these represen-
languageL, istemporally expressivié L can encode a prob-  tatjons. Yet some of these planners did extremely well in the
lem with required concurrency; otherwis is temporally |55t three International Planning Competitions. The reality:
simple the majority of the problems in the Temporal Track do not
require concurrency!

0 : . Note that the proof of Theorem 1 demonstrates a signifi-

Theorem 1 L7 is temporally simple (and so is the TGP rep- canyly stronger result than the theorem itself; not only does

resentatior). every problem inL° have sequential solutions, but there is

Proof: We will prove thatL? is temporally simple by show- in fact a sequential rescheduling of every concurrent solu-

ing that every concurrent solution of every problem in thetion. This idea can be applied in reverse: problems in tempo-

language can be rescheduled into a sequential solution. rally simple languages can be optimally solved using classical
Fix a concurrent solution?, of a problentP = (A, I,G).  techniques.

Without loss of generality, assume the step which ends last,

says € P, is a concurrent step.Since actions have effects Theorem 2 Let P be a planning problem in a temporally

only at end, the model that holds after simulating alPof{s} ~ Simple subset ofpDL 2.1.3 and let?’ be a correspond-

is identical to the model that holds immediately before applying STRIPS problem where durations are ignored and every

ing the effects ofaction(s) when simulatingP. Since every ~ action is collapsed into a single transition.

Yo _ ) _ There is a linear-time computable bijection between the
Actions execute over closed intervalsinbL 2.1.3, so actions  g|ackless solutions ¢® and the solutions dP’.

with overlapping endpoints are executing concurrently — at an in-

stantaneous momentin time. _ _ In particular, with the appropriate heuristics, optimal so-
*While the TGP representation is temporally simple, there is noytions to 2 can be found by solving®’ instead. That
perfect correspondence to any strict subsetmbL 2.1.3, because is, STRIPS and temporally simple languages are essentially

they have slightly different semantics and hence different mme)%quivalent; though we do not delve into the details, one can

rules.Lc is extremely close, however. show this correspondence in a formal manner using Nebel's
“If not, consider the problem®’ = (A,I,5) andP” = P 9

(A, S, G) whereS is the model that holds after simulating justpast —

all the concurrent steps @?; the suffix of P is a sequential solution 5This transformation is performed by MIPS, LPG, and SGPlan:
to the latter problem, and the argument gives a sequential reschedidee those planners for detdilgdelkamp, 2003; Gerevini and Serina,
ing of the prefix ofP solving the former problem. 2002; Cheret al,, 2004.

2.3 Temporally Simple Languages



framework of expressive pow@ebel, 2000.5

Proof: We give a linear-time procedure for mapping solutions 0(“\\“ Lo~ PDDL2.1/3:
of the STRIPS problem to slackless solutions, which is the,‘eﬁ\Q s'\ﬂe """"
bijection of the theorem. However, we omit showing that the Q(es
inverse is a linear-time computable total function on slackles: ‘tﬂ’ oo Soe
solutions. We also omit proof for any case besitligsthe L™ L~ Lg’g Lz’z Lg'g
same basic technique (PERT scheduling) can be applied, wil Y
minor modifications, to every other case.

Consider some solution @', P’ = Ay, As, ..., A,. As-
sociate with every literal,f=v, the time at which it was 50,86 50 ;se joe R
achieved,r(f=v), initially 0 if v is the initial value off, LOLLY®  L® Lo L% Lieiloeilse

and -1 otherwise. Find the earliest dispatch time of edgh
7(A;), by the following procedure initializing 7(A;) to e
andi to 1:

1. For all(f=v) € effects(A;), if v # argmaz,, 7(f=v")
setr(f=v) = 7(4;) + 6(A;)

2. Set T(A(Zzl) )}: E ?A?aX(EXJ;:U)(A ({}:)v) € oA

precond(A;11) U {T(A;) +6(4;) — 6(Ai \\ IR\
3. Increment, loop untili > n Ls Le e %‘“\Q
ThenP = {s; : action(s;) = A; andt(s;) = 7(4;)} is a

Figure 2: The taxonomy of temporal languages and their ex-
pressiveness; those outlined by dotted lines are discussed in
the text.

What is surprising is that there is a different technique to
exploit allowing effects at multiple times, one that does not
even require any preconditions at all.

slackless rescheduling &, preserving the order of the ends
of actions, starting each action only after all of its precon-
ditions have been achieved. In particul#t,is a slackless
solution.O

2.4 Temporally Expressive Languages

We have already seen one langudgg,, which can express
problems with required concurrency (Figure))( Of course,
the full languagepDDL 2.1.3, is also a temporally expressive Proof (of Theorems 3, 4, and 5)We prove that.?, L¢, and
language. It is no surprise that by adding at-start effects té.; . are temporally expressive by demonstrating problems in
L2 one can represent required concurrency, but it is interesgach language that require concurrency. See Figaje (b,
ing to note that merely shrinking the time that preconditionsand €), respectively
must hold to at-start (i.e. the langualg® also increases ex-
pressiveness. In fact? is a particularly special temporally 2.5 Temporal Gap
expressive language in that it exemplifies one of three fundarigure 2 places the languages under discussion in the context
mental kinds of dependencies that allow modeling requiredf a lattice of the PDDL sub-languages, and shows the divide
concurrency. between temporally expressive and simple. We have already
shown that 2, our approximation to TGP, is temporally sim-
ple. Surprisingly, the simple syntactic criteria mporal
The dual ofL, L¢, is an odd language — all preconditions gapis a powerful tool for classifying languages as temporally
must follow effects. Nonetheless, the language is interestingxpressive or temporally simple.
bgcause itis also one of the three minimal temporally expres- Roughly, an action has temporal gap when there is no sin-
sive languages. gle time point in the action’s duration when all preconditions
and effects hold together (which is easy to check via a simple
] o ] scan of the action’s definition). A language permits temporal
It is not surprising that adding at-start effects (to a lan-gap if actions in the language could potentially have tempo-
guage allowing at-end effects) allows modeling required conra| gap, otherwise a language forbids temporal gap. We show
currency, because there is an obvious technique to exploit that a language is temporally simple if and only if it forbids
facility: make a precondition of some action available onlytemporal gap. This makes intuitive sense since without a tem-
during the execution of another action. Figure)li¢ a good  poral gap, the duration of an action becomes a secondary at-
example. tribute such as cost of the actién.

Theorem 5 L, . is temporally expressive.

Theorem 3 L is temporally expressive.

Theorem 4 L¢ is temporally expressive.

®The basic idea is to compile the scheduling into the planning  ®This understanding of temporal expressiveness in terms of tem-
problem. poral gap is reminiscent of the “unique main sub-action restric-

"Technically, one must taketo be some positive value by the tion” [Yang, 1990 used in HTN schemas to make handling of task
requirements oPDDL 2.1.3. In a temporally simple language with- interactions easy. The resemblance is more than coincidental, given
out a non-zero separation requirement (such as TGP) one can takéhat temporal actions decompose into transitions in much the same

as O instead. way as HTNs specify expansions (see Section 2.1).



Definition 8 A before-conditionis a precondition which is 3 Decision Epoch Planning

required to hold at or before at least one of the action's ef-1he jntroduction showed that most temporal planners, no-
fect;. Likewise, aafter-conditionis a precondlthn which is tably those dominating the recent IPC Temporal Tracks, use
required to hold at or after at least one of the action’s effects. {he decision epoch (DE) architecture. In this section, we look
A gap between two temporal intervals, non-intersectingin detail at this method, exposing a disconcerting weakness:
and not meeting each other, is the interval between thenhcompleteness for temporally expressive action languages.
(so that the union of all three is a single interval). An ac- SAPA [Do and Kambhampati, 2003 TLPlan [Bacchus
t!on hastemppral _gapf the_:re is a gap between its precondi- gnd Ady, 2001, TP4, and HSP[Haslum and Geffner, 2001
tions/effects, i.e., if there is among others, are all decision-epoch based planners. Rather
a gap between a before-condition and an effect, or than consider each in isolation, we abstract the essential el-
ements of their search space by definirgp. The defining
attribute ofbePis search in the space of temporal states. The
central attribute of a temporal statd;, is the world state,
Actions without temporal gap have aitical point the  state(N). Indeed, the world state information is responsible
(unique) time at which all the effects occur. for the success and popularity DEP, because it enables the
i computation of state-based reachability heuristics developed
Theorem 6 A sub-language oPDDL 2.1.3 is temporally  for classical, non-temporal, planning.
simple if and only if it forbids temporal gap. We defineDEP's search space by showing how temporal
states are refined; there are two ways of generating children:

a gap between an after-condition and an effect, or
a gap between two effects.

Proof: We begin by showing that forbidding temporal gap is

necessary for a language to be temporally simple. Fattening: Given a temporal statéy, we generate a child,
Languages permitting a gap between a before-conditiov 4, for every action,A € A. Intuitively, N4 represents an
and an effect, a gap between an after-condition and an effecittempt to start executing; thus, N4 differs from N only
or a gap between effects are super-languagés’ot, or by adding a new step, to agenda(N 4) with action(s) = A
L, ., respectively. By Theorems 3, 4, and 5, such languageandi(s) = ¢(N).
are temporally expressive. Therefore temporally simple lan- . , . )
guages require that, for every action, all before-conditions Advancing Time: We generate a single childcpocr., by
hold just before any effect is asserted, all after-conditionsSimulating forwarq in time just past the next transition in the
hold just after any effect is asserted, and that all effects ar89eNdaNepoch=simulate(N, d +€), whered=min {t : s €
asserted at the same time. That is, a temporally simple largenda(N) and(i=t(s) or t=t(s) + d(action(s))) andt >
guage must forbid temporal gap. t(N)}-

For the reverse direction, i._e., '_[he interesting dire_ction, We Our definition emphasizes simplicity over efficiency. We
show that any language forbidding temporal gap is ttmporely on simulate to check action executability; inconsistent
rally simple, by demonstrating that slackless solutions to anYemporal states are pruned. Obviously, a practical implemen-
problem can be rescheduled into sequential solutions, a gefstion would check these as soon as possible.
erallgat|on of the proof of.Theorem 1. Fix some slackless The key property obEPis the selection of decision epochs,
solution to some problem in a language forbidding temporajn,t is, the rule for advancing time. In order foEPto branch
gap. over action selection at a given time point, time must have ad-

Consider the sequence of critical points in the slackless sazanced to that point. Since time always advances just past the
lution, along with the models that hold between them, i.e.earliest transition in the agendsep can only choose to start
My, c1, My, ca,. .., My 1, cn, My, Where thec; are critical — an action when some other action has just ended, or just be-
points and thél/; are models. Itis trivial to insert an arbitrary gun. Converselypep is unable to generate solutions where
amount of delay between each critical point, lengthening thehe beginning of an action does not coincide with some tran-
period of time over which each model holds, without alteringsition. Forcing this kind of behavior is surprisingly easy.

them, by rescheduling steps. For example, multiplying each ., 7 epis incomplete for temporally expressive lan-
dispatch time by the maximum duration of an action achieve

a sequential rescheduling preserving the sequence. For ea%HageS' i o

critical pointc;, all of that action’s before-conditions hold in Proof: It suffices to show thabepis incomplete forl 7, L,
M;_; and all of its after-conditions hold in/;, because the andL, . to show thatbep is incomplete for all temporally
original plan is executable. Since those models are unalteregipressive languages, by Theorem 6 (see Figure 2).

in the sequential rescheduling, the rescheduling is also exe- Figure 1€) gives al, , example which stumpsepP—
cutable, and thus a solutiof. achieving the goal requires startifiin the middle ofA, but

Coming back to the space of languages, we have athere are no decision epochs available in that intervap

ready noted that several popular temporal planners (e.g. TGPan Solve the problems in Figurea)@nd b), but not minor
TP4, HSP, TLPlan, CPT) restrict their attention to tempo- modifications of these problems. For example, alterintp
rally simple languages, which are essentially equivalent igleleteGo, in (a), forcesB to start where there are no decision
STRIPS. The next section shows that most of the planner8Pochs X

which claim to address temporally expressive languages, areheorem 8 DEP is complete for temporally simple sub-
actually incomplete in the face of required concurrency. languages oPDDL 2.1.3 but not makespan optimal.



Proof: Figure 1€) presents an example of makespan sub-

optimality; bEP would find the serial solution, but not the AE |
optimal (concurrent) plan shown. Completeness follows triv- Ra R RarCa1G
ially from Theorem 2: temporally simple languages have se-
guential solutions, andepr includes every sequential plan in R TRAG
its search space (consider advancing time whenever possible). * R o
4 Generalized Decision Epoch Planning Ge A1G,

As the example of Figure &f shows,DEP does not consider

enough decision epochs. Specifically, it makes the mistakepigure 3:pep+ can not find a plan to achiev&, A G, A G...

assumption that every action will begin immediately after . o )

some other action has begun or ended. In F|guo¢' h@w_ _exeCUte within. Similar exampl_es demonstrate thawk+ is

ever, actionB has toend (not begin) afterd ends. Thus, itis incomplete for all other expressive languages. o

natural to wonder if one could develop a complete DE plan- Furthermore, arbitrarily complex examples of chaining

ner by exploiting this intuition. In short, the answer is “No.” may be constructed; for example, split each action in Figure 3

but the reason why the effort fails is instructive, so we preseninto a million pieces. That is, trying to fiREP+ by consid-

the DEP+ algorithm below. ering a denser set of decision epochs, or using some kind of
We generalizenEP to DEP+ by considering both begin- lookahead, is a losing proposition.

ning and ending an action at the current decision epoch. This DEP+ doesimprove onDEP, but, in just one way:

yvould invplye altering the pastin the' case of gnding an actionrneorem 10 DEP+ is makespan optimal for temporally sim-

if the deC|s_|on epoch were not_s_uff|C|entIy far in the future; to ple sub-languages @fooL 2.1.3

address this, we take our decision epochs as the current time )

plus the maximum duration of any action in the problem. LetProof (Sketch): In a temporally simple language, by Theo-

A be the maximum duration, i.e) = max ¢4 6(A). rem 6, every action has a critical point where all effects occur.
This raises a second issue: norma”y one would start thBe.St“Ct Chlld.-generatlon SO that the critical point of the action

search at time 0, however, this would leave out the possibilitfpeing added is always further in the future than the current de-

of starting actions between 0 arxl We take the expedient Cision epoch. Then every critical point eventually becomes a

of starting the search at timeA, and continue to rely on decision epoch. One can show that taking every critical point

simulate to prune inconsistent temporal states, e.g., trying t2s & decision epoch is sufficient to allow the generation of

start an action before time 0. In particular, the first decisiorevery slackless solutior

epoch is at time 0, and attempting to end an action at the

current decision epoch is not successful until the actionwould  Temporally Lifted Progression Planning

begin at or after time 8. The key observation about decision-epoch planning is that de-

Fattening: For every actiond, we create two children cisions aboutvhento execute actions are made very eagerly

of N. N is analogous taV, in DEP— we commit to — before all the decisions abowthatto execute are made.
starting actionA by adding a step to agenda(N?%) with DEP attempts to create tight plans by starting actions only
action(s)=A andt(s)=t(N%) + A. at those times where events are already happening. Unfor-

The latter, N5, the essential difference fromep, differs ~ tunately, for temporally expressive languages, this translates
from N only in thatagenda(N¢ ) contains a new step, with ~ into the following two erroneous assumptions:
action(s)=A andt(s)=t(N§) + A — §(A). *1 Every action will start immediately after some other ac-

Advancing Time:  Neyoe, IS obtained from N tion has started or ended.

by simulating to just after the first time where *2 The only conflicts preventing an earlier dispatch of an ac-

t(Nepoch) + A is the start or end of a step in tion, however indirect, involve actions which start ear-
agenda(Nepocr,). Specifically,Nepoch =simulate(N, d + €) lier.

where  d=min {t|scagenda(N) and (t=t(s) or In developingoep+, we noted the first flaw, and attempted
t=t(s) + d(action(s))) andt > ¢t(N) + A}. to address it by allowing synchronization on the beginnings of

actions as well as their ends. However, there does not appear
Theorem 9 DEP+ is incomplete for temporally expressive to be any (practical) way of addressing the second flaw within
sub-languages ¢fbbL 2.1.3 the decision-epoch approach. One must either defigey
Proof: DEP+ cannot generate the plan in Figure 3, becausdMe Pointio be a decision epoch (branching over dense time!)
there are no decision epochs in the interval wherenust ~ ©" pick decision-epochs forwards and backwards, arbitrarily
execute; the beginning dt is not a decision epoch, because far: through time (as in LPGR.ong and Fox, 2008.
B is only included after the current decision epoch moves to !nstead, we develop a complete state-space approach, by

just after the end oft, that is, past the interval that must exploiting the idea olfifting (_)vertime: delayin_g the decisions
aboutwhento execute until all of the decisions aboubat

This discussion has ignored the non-zero-separation requird® execute have been made. Note that VHA®#unes and
ment ofPDDL 2.1.3, i.e.¢. Simmons, 200Balso lifts over time — we take a different



approach that allows us to preserve state information at eaghakespan optimal.

search node. Proof. Every potential permutation of beginnings and end-

Definition 9 A lifted temporal state V, is given by the ings of actions can be generated by appropriate decisions
current temporal variable,r(NV), a model, state(N), a  at fattening and advance-timechoice-points (if not pruned
lifted plan, agenda(N), and a set of temporal constraints, by simulate()). The transition sequence of any concurrent
constraints(N). plan is one such permutation, in particular a makespan opti-
We retain the terminology used inEp, and bEp+, to ~ Mal solution defines one such permutation. Pruning occurs if

h|gh||ght the S|m||ar|ty of the approaches1 despite the dﬁ-szmulate() fails at a SearCh_ node, i.e., a precondition is vio-
ferences in details which arise from lifting time. For ex- lated. No descendant of this search node can ever change the

ample, the agenda in a lifted temporal state is differengtate where the precondition is evaluated: every descendant
from that in a (ground) temporal state — we replace ex-would likewise fail to be executable. Solutions are, of course,
act dispatch timest()) with temporal variables.,()),  €xecutable, STEMPO does not prune any solutions. It fol-
and impose constraints throughnstraints(A). In fact, 10ws thatTEMPO is complete; makespan optimality follows
we associate every step, with two temporal variables: from the fact that the appropriate transition sequence is in the
Thegin (5) @NdTenq(s). All the duration constraints,,.(s) —  Search space, and the optimal dispatch is easy toffind.
Thegin (8) = 0(action(s)) and mutual exclusion constraints

7.(s)#7,(t), for mutually exclusive transitions(action(s)) 6 Discussion and Related Work

andy(action(t)) (r andy are each one dfegin or end), are . .
always, implicitly, part ofconstraints(). It should be noted that our analysis of temporal expressive-

The aspect of lifted and ground temporal states that rel'€SS was done at the language level, and most of our condi-
mains identical is the current world statéate(N). In both tions for expressiveness were necessary rather than sufficient.

cases this maps every fluent to the value it has at the cu{[‘ part|CL|J|Iar, It is ObV'OIUSIV posstlﬁlet ;[jo erteta domain in a
rent time. In particular, this is exactly the information needed'€MpPorally g?pressnﬁ anfguagte a (?les no req_uwedconc.ur—
to leverage the state-based reachability heuristics developi{ﬁncy (or write a problem for a temporally expressive domain

for classical planning. With respect to lifted temporal states!at does not require concurrency). For example, the (tem-
TEMPOIs a complete and optimal state-space temporal planP©ral) Rovers domain, contains actions with temporal gap.
NonethelessRovers is a temporally simple domain. This

ning algorithm, given by the following child-generator func- . o :
tiong: 9 9 y 9 9 is not a contradiction of Theorem 6 — any language permit-

ting theRovers encoding also containsther domains and
Fattening: Given a lifted state\V, we generate a child, problems that require concurrency. It would be interesting to
Ny, for every action,A € A. As before N4 repre- catalog domain/problem level necessary/sufficient conditions
sents starting4d; we add a steps to agenda(N’) with  for required concurrency.
action(s) = A. In addition, we add #4¢4in(s) > 7(N)” Several planners have considered using classical tech-
to constraints(N'). Unlike before, we immediately simu- niques augmented with simple scheduling to do tempo-
late: Na=simulate(N”, Thegin (s)). In particular, everything ral planning, for example, SGPLAN, MIPS, LPG-td, and
in agenda(N4) has already started. CRIKEY [Chenet al,, 2006; Edelkamp, 2003; Gerevini and
) _ Serina, 2002; Halsegt al,, 2004. That is, the planners only
AO!VﬂﬂC'Qg Time: For everyscagenda(N'), we generate  onsjder sequential solutions, but reschedule these using the
a child, N, Where A=action(s). Note thatA has al-  temporal information. Actually, CRIKEY does not quite fit
ready started; this is a decision to eddSpecifically, we add  thjs classification; CRIKEY attempts to do classical planning
Tend(s) > 7(N)" 10 constraints(N”) and then simulate:  as much as possible, and switches toEupo like search
Npocn=stmulate(N”, Tena(s)) to handle actions that could easily lead to required concur-
rency genvelopeactions). Modulo unimportant details, an
quivalent perspective on CRIKEY is as an implementation
f TEMPO that strives to cut down the number of transition
quences actually considered by identifying actions where
it is safe to immediately apply the ending transition after the
beginning transitionr(on-envelopeactions). Unfortunately,
our preliminary investigation reveals that the pruning that re-
sults is not completeness-preserving; the conditions used to
classify actions as safe are too generous.

In essence;TEMPO is searching the entire space of se-
guences of transitions (beginnings and endings of actions
in prefix order. That is, every search state corresponds t
the unique sequence of transitions that, if (assigned dispat
times and) executed, result in the given (lifted) temporal
state. Of course, just before terminatinggMPO must ac-
tually pick some particular assignment of times satisfying
constraints(N') (for a state NV, satisfying the goal) in order
to return a ground plan. Sineenstraints(N) will, among
other things, induce a total ordering, this will not be very .
difficult. So it should not be very surprising thaempois 7 Conclusion

guaranteed to find solutions — if there is a solution, it has o4ated by the observation that the most successful tempo-
sequence of transitions, amémpo will eventually visit that |, planners are incomplefélausam and Weld, 2006this
sequence, and find an assignment of times. paper presents a detailed examination of temporal planning
Theorem 11 TEMPO is complete for any temporally ex- algorithms and action languages. We make the following con-
pressive (or simple) sub-languagerbDL 2.1.3 moreover, tributions:



e We introduce the notion akquired concurrencyhich  [Fox and Long, 2008 M. Fox and D. Long. PDDL2.1: An exten-
divides temporal languages inteemporally simple sion to PDDL for expressing temporal planning domaid&IR,
(where concurrency is never required in order to solve 20:61-124, 2003.

a problem) andemporally expressiv@vhere it may be) [Foxetal, 2004 M. Fox, D. Long, and K. Halsey. An investigation
classes. Using the notion tdmporal gap we then de- into the expressive power of PDDL2.1. BCAI, pages 328-342,
compose subsets ebbDL 2.1.3 into a lattice which dis- 2004.

tinguishes the expressive and simple sub-languages. [Gerevini and Serina, 2002A. Gerevini and I. Serina. LPG: A

e We show that temporally simple languages are essen- Planner based on local search for planning graphalR§ 2002.
tially equivalent to STRIPS in expressiveness. Specifi{Halseyet al, 2004 K. Halsey, D. Long, and M. Fox. CRIKEY -
cally, we show a linear-time computable mapping into  a temporal planner looking at the integration of scheduling and
STRIPS, with no increase in the number of actions. planning. InWorkshop on Integrating Planning into Scheduling,
Thus, any classical planner may be used to generate so- |CAPS pages 46-52, 2004.
lutions to temporally simple planning problems! [Haslum and Geffner, 2001P. Haslum and H. Geffner. Heuristic

e We prove that a large class of popular temporal plan- Planning with time and resources. HCF, 2001.
ners, those that branch on a restricted set of decisiofHaslum, 2006 P. Haslum. Improving heuristics through relaxed
epochs €.g, all state-space planners like SAPA, SG- search — an analysis of TP4 and HSiR the 2004 planning
Plan), are completenly for the temporally simple lan- ~ competition.JAIR 25:233-267, 2006.
guages. In fact, there exist problems even in simple lanfHelmert, 2004 M. Helmert. A planning heuristic based on causal
guages for which these planners are not optimal. Since graph analysis. IICAPS pages 161170, 2004.
these decision-epoch planners won the temporal traciHoffmann and Nebel, 2091J. Hoffmann and B. Nebel. The FF
of the last three planning competitions, we question the planning system: Fast plan generation through heuristic search.

choice of problems used in the competitidfis. JAIR, 14:253-302, 2001.
e On a constructive note, we sketch the design of a comEKvarnstromet al, 2004 J. Kvarnstrém, P. Doherty, and P.
plete state-space temporal planning algorittmmaypPo, Haslum. Extending TALplanner with concurrency and resources.

which we hope will be able to achieve high performance N ECAI, 2000.
by leveraging the heuristics that power decision epochLong and Fox, 2008 D. Long and M. Fox. Exploiting a graphplan

planners. framework in temporal planning. 'CAPS pages 51-62, 2003.
[Mausam and Weld, 2006Mausam and D. S. Weld. Probabilistic
Acknowledgments temporal planning with uncertain durations.AAAI, 2006.

We thank J. Benton, Minh B. Do, Maria Fox, David Smith, Sumit [Nebel, 2009 B. Nebel. On the compilability and expressive power
Sanghai, and Menkes van den Briel for helpful discussions and ©f propositional planning formalismsAIR, 12:271-315, 2000.
feedback. We also appreciate the useful comments of the anonyNguyenet al, 2001 X. Nguyen, S. Kambhampati, and R. Ni-
mous reviewers on the prior draft. This work was supported by genda. Planning graph as the basis for deriving heuristics for
NSF grants 11S-0307906 and 11S-308139, ONR grants N00014-02- plan synthesis by state space and CSP seakth.135:73-123,
1-0932, N00014-06-1-0147, and NO0014-06-1-0058, the Lockheed 2001.

Martin subcontract TT0687680 to ASU as part of the DARPA Inte- [Penberthy and Weld, 1994S. Penberthy and D. Weld. Temporal
grated Learning program, and the WRF/TJ Cable Professorship. planning with continuous change. AAAI, 1994.

[Smith and Weld, 1999 D. E. Smith and D. Weld. Temporal plan-
References ning with mutual exclusion reasoning. IFCAI, 1999.

[Bacchus and Ady, 2001F. Bacchus and M. Ady. Planning with [Smith, 2003 D. E. Smith. The case for durative actions: A com-
resources and concurrency: A forward chaining approach. In  mentary on PDDL2.1JAIR 20:149-154, 2003.

IJCAI, 2001. ] [Vidal and Geffner, 2004 V. Vidal and H. Geffner. CPT: An opti-
[Bonetet al, 1997 B. Bonet, G. Loerincs, and H. Geffner. Aro-  mal temporal POCL planner based on constraint programming.

bust and fast action selection mechanism for planningAAA\, In IPC (ICAPS) 2004.

1997.

[Yang, 1990 Q. Yang. Formalizing planning knowledge for hierar-
[Chenet al, 2004 Y. Chen, C. Hsu, and B. Wah. Temporal plan- ~ chjcal planning.Computational Intelligenges:12—24, 1990.

ning using subgoal partitioning and resolution in SGPI3AIR, [Younes and Simmons, 20D34.L.S. Younes and R. G. Simmons

to appear, 2006. ; - '
PP ) . VHPOP: Versatile heuristic partial order plannéAIR, 20:405—
[Do and Kambhampati, 2003V. B. Do and S. Kambhampati. 430, 2003.

SAPA: A multi-objective metric temporal planngAIR 20:155—
194, 2003.

[Edelkamp, 2008 S. Edelkamp. Taming numbers and duration in
the model checking integrated planning systedAIR, 20:195—
238, 2003.

While the competition’s problems were encoded in a language
capableof encoding problems with required concurrency, it appears
that none of the actual problerd&l require concurrency.





