
When is Temporal PlanningReallyTemporal?

William Cushing and Subbarao Kambhampati
Dept. of Comp. Sci. and Eng.

Arizona State University
Tempe, AZ 85281

Mausam and Daniel S. Weld
Dept. of Comp. Sci. and Eng.

University of Washington
Seattle, WA 98195

Abstract
While even STRIPS planners must search for plans
of unbounded length, temporal planners must also
cope with the fact that actions may start at any
point in time. Most temporal planners cope with
this challenge by restricting action start times to
a small set ofdecision epochs, because this en-
ables search to be carried out instate-spaceand
leverages powerful state-based reachability heuris-
tics, originally developed for classical planning.
Indeed, decision-epoch planners won the Interna-
tional Planning Competition’s Temporal Planning
Track in 2002, 2004 and 2006.
However, decision-epoch planners have a largely
unrecognized weakness: they are incomplete. In
order to characterize the cause of incompleteness,
we identify the notion ofrequired concurrency,
which separatesexpressive temporal action lan-
guagesfrom simpleones. We show that decision-
epoch planners are only complete for languages in
the simpler class, and we prove that the simple class
is ‘equivalent’ to STRIPS! Surprisingly, no prob-
lems with required concurrency have been included
in the planning competitions. We conclude by de-
signing a complete state-space temporal planning
algorithm, which we hope will be able to achieve
high performance by leveraging the heuristics that
power decision epoch planners.

1 Introduction
Although researchers have investigated a variety of architec-
tures for temporal planning (e.g., plan-space: ZENO[Pen-
berthy and Weld, 1994], VHPOP [Younes and Simmons,
2003]; extended planning graph: TGP[Smith and Weld,
1999], LPG [Gerevini and Serina, 2002]; reduction to lin-
ear programming: LPGP[Long and Fox, 2003]; and others),
the most popular current approach is progression (or regres-
sion) search through an extended state space (e.g., SAPA[Do
and Kambhampati, 2003], TP4[Haslum and Geffner, 2001],
TALPlan [Kvarnströmet al., 2000], TLPlan [Bacchus and
Ady, 2001], and SGPlan[Chen et al., 2006]) in which a
search node is represented by a world-state augmented with
the set of currently executing actions and their starting times.

This architecture is appealing, because it is both conceptually
simple and facilitates usage of powerful reachability heuris-
tics, first developed for classical planning[Bonetet al., 1997;
Hoffmann and Nebel, 2001; Nguyenet al., 2001; Helmert,
2004]. Indeed, SGPlan, which won the International Plan-
ning Competition’s Temporal Planning Track in both 2004
and 2006, is such a progression planner.

There is an important technical hurdle that these tempo-
ral state-space planners need to overcome: each action could
start at any of an infinite number of time points. Most of these
planners avoid this infinite branching factor by a (seemingly)
clever idea: restricting the possible start-time of actions to a
small set of special time points, calleddecision epochs. Un-
fortunately, the popularity of this approach belies an impor-
tant weakness — decision epoch planners areincompletefor
many planning problems requiring concurrency[Mausam and
Weld, 2006].

Seen in juxtaposition with their phenomenal success in the
planning competitions, this incompleteness of decision epoch
planners raises two troubling issues:

1. Are the benchmarks in the planning competition captur-
ing the essential aspects of temporal planning?

2. Is it possible to make decision epoch planners complete
while retaining their efficiency advantages?

In pursuit of the first question, we focused on characteriz-
ing what makes temporal planning really temporal — i.e. dif-
ferent from classical planning in a fundamental way. This
leads us to the notion ofrequired concurrency: the ability
of a language to encode problems for whichall solutions are
concurrent. This notion naturally divides the space of tem-
poral languages into those that can require concurrency (tem-
porally expressive) and those that cannot (temporally simple).
What is more, we show that the temporally simple languages
are only barely different from classical, non-temporal, lan-
guages. This simple class, unfortunately, is the only class for
which decision epoch planners are complete.

In pursuit of the second question, we show that the incom-
pleteness of decision epoch planners is fundamental: anchor-
ing actions to absolute times appears doomed. This leaves
the temporal planning enterprise in the unenviable position
of having one class of planners (decision epoch) that are
fast but incomplete in fundamental ways, and another class
of planners (e.g., partial order ones such as Zeno and VH-

rao
Text Box
Appears in Proc. IJCAI 2007, Hyderabad, India.



POP) that are complete but often unacceptably slow. For-
tunately, we find a way to leverage the advantages of both
approaches: a temporally lifted state-space planning algo-
rithm called TEMPO. TEMPO uses the advantage of lift-
ing (representing action start times with real-valued variables
and reasoning about constraints) from partial order planners,
while still maintaining the advantage of logical state informa-
tion (which allows the exploitation of powerful reachability
heuristics). The rest of the paper elaborates our findings.

2 Temporal Action Languages
Many different modeling languages have been proposed for
planning with durative actions, and we are interested in
their relative expressiveness. The TGP language[Smith and
Weld, 1999], for example, requires that an action’s precon-
ditions hold all during its execution, whilePDDL 2.1.3 al-
lows more modeling flexibility.1 We study various restric-
tions of PDDL 2.1.3, characterized by thetimes at which
preconditions and effects may be ‘placed’ within an action.
Our notation uses superscripts to describe constraints on pre-
conditions, and subscripts to denote constraints on effects:
Lpreconditions

effects is the template. The annotations are:

s “at-start”
e “at-end”
o: “over-all” (over the entire duration)

For example,Lo
s,e is a language where every action pre-

condition must hold over all of its execution and effects may
occur at start or at end.PDDL 2.1.3 does not define, or allow,
effects over an interval of time:o is only used as an annota-
tion on preconditions.

Many other language features could be included as possi-
ble restrictions to analyze; however, most end up being less
interesting than one might expect. For example, deadlines,
exogenous events (timed literals), conditional effects, param-
eters (non-ground structures), preconditions required at inter-
mediate points/intervals inside an action, or effects occurring
at arbitrary metric points (as in ZENO) can all be compiled
into Ls,o,e

s,e [Smith, 2003; Foxet al., 2004]. In particular, an
analysis of justLs,o,e

s,e is simultaneously an indirect analysis
of these syntactically richer languages. Naturally these com-
pilations can have dramatic performance penalties if carried
out in practice; the purpose of such compilations is to ease
the burden of analysis and proof. Of course, we also exclude
some interesting language features (for the sake of simplic-
ity), for example, metric resources and continuous change.

2.1 Basic Definitions
Space precludes a detailed specification of action semantics;
thus, we merely paraphrase some of the relevant aspects of
thePDDL 2.1.3 semantics for durative actions[Fox and Long,
2003].

Definition 1 (Actions) A model is a total function mapping
fluents to values and aconditionis a partial function mapping
fluents to values. Atransitionis given by two conditions: its
preconditions, and its effects.

1PDDL 2.1.3 denotes level 3 of PDDL2.1[Fox and Long, 2003].

An action, A, is given by a beginning transitionbegin(A),
an ending transitionend(A), an over-all conditiono(A), and
a positive, rational, durationδ(A).

Definition 2 (Plans) A plan, P = {s1, s2, s3, . . . , sn}, is
a set of steps, where eachstep, s, is given by an action,
action(s), and a positive, rational, starting timet(s). The
makespanof P equals

δ(P ) = max
s∈P

(t(s) + δ(action(s)))−min
s∈P

(t(s))

A rational model of time provides arbitrary precision with-
out Real complications.

Definition 3 (Problems) A problem, P = (A, I, G), con-
sists of a set of actions (A), an initial model (I), and a goal
condition (G).

Definition 4 (States) A (temporal)state, N , is given by a
model, state(N), a time, t(N), and a plan,agenda(N),
recording the actions which have not yet finished (and when
they started).

A precise formulation of plansimulationis long and unnec-
essary for this paper; see the definition ofPDDL 2.1.3 [Fox
and Long, 2003]. Roughly, the steps of a plan,P =
{s1, . . . , sn}, are converted into a transition sequence, i.e., a
classical plan. SimulatingP is then given by applying the
transitions, in sequence, starting from the initial model (a
classical state). Simulation fails when the transition sequence
is not executable, simulation also fails if any of the over-all
conditions are violated. In either case,P is notexecutable. P
is asolutionwhen the goal condition is true in the model that
results after simulation.

Plans can berescheduled; one plan is a rescheduling of
another when the only differences are the dispatch times of
steps. Lets′ = delay(s, d) be the result of delaying a step
s by d units of time: t(s′) = t(s) + d (andaction(s′) =
action(s)). Similarly, P ′ = delay(P, d) is the result of de-
laying an entire plan:P ′ = {delay(s, d) : s ∈ P}. Has-
tening steps or plans is the result of applying negative de-
lay. A steps has slack d in an executable planP when
P \ {s}∪ {delay(s,−t)} is also an executable plan for every
value oft between 0 andd. A step without slack isslackless,
likewise, a plan isslacklesswhen every step is slackless, that
is, the plan is “left-shifted”.

Definition 5 (Completeness)A planner iscompletewith re-
spect to an action languageL, if for all problems expressible
in L, the planner is guaranteed to find a solution if one ex-
ists. A planner isoptimal, with respect to languageL and
cost functionc, if for all solvable problems expressible inL,
the planner is guaranteed to find a solution minimizingc. A
planner ismakespan optimalif it is optimal with makespan
as the cost function.

2.2 Required Concurrency
We now come to one of the key insights of this paper. In
some cases it is handy to execute actions concurrently; for
example, it may lead to shorter makespan. But in other cases,
concurrency is essential at a very deep level.



2G P

1G Q

A [4]

B [2]

Q

P

P

Q

In
itia

lly
 T

ru
e

Le(a) s

2G

A [4]

B [2]

L(b) e
s

P

Q
1G Q

P 2G1G

1G 2G

A [4]

B [2]

L(c) s,e

A [4]

B [2]

R G

(d)

R

G

R

Ls
s,e

1G 2G

2G

A [4]

B [2]

L(e) e

Figure 1:Preconditions are shown above actions at the time point enforced; effects are depicted below. Action durations are shown in square
brackets. (a), (b), and (c): The first three problems demonstrate thatLs

e, Le
s, andLs,e are temporally expressive, respectively. In the first two

problems, every solution must have bothA andB begin before either can end. In (c), every solution must haveB contain the end ofA. (d):
Modeling resources can easily lead to required concurrency. In this example,A provides temporary access to a resourceR, whichB utilizes
to achieve the goal. (e): B must start in the middle ofA, when nothing else is happening, to achieve makespan optimality.

Definition 6 (Required Concurrency) Let
P={s1, . . . , sn} be a plan. A step,s ∈ P , is con-
current2 when there is some other step,s′ ∈ P , so
that either t(s) ≤ t(s′) ≤ t(s) + δ(action(s)) or
t(s′) ≤ t(s) ≤ t(s′) + δ(action(s′)). A plan isconcurrent
when any step is concurrent, otherwise the plan issequential.
A solvable planning problem hasrequired concurrencywhen
all solutions are concurrent.

To make this concrete, consider the plan in Figure 1(d).
The literals above the action denote its preconditions and be-
low denote effects. Starting withG andR false, assumingA
andB are the only actions, the problem of achievingG has
required concurrency. That is, both of the sequential plans (A
beforeB or vice versa) fail to be executable, let alone achieve
G.

Definition 7 (Temporally Simple / Expressive) An action
language,L, is temporally expressiveif L can encode a prob-
lem with required concurrency; otherwiseL is temporally
simple.

2.3 Temporally Simple Languages
Theorem 1 Lo

e is temporally simple (and so is the TGP rep-
resentation3).

Proof: We will prove thatLo
e is temporally simple by show-

ing that every concurrent solution of every problem in the
language can be rescheduled into a sequential solution.

Fix a concurrent solution,P , of a problemP = (A, I, G).
Without loss of generality, assume the step which ends last,
says ∈ P , is a concurrent step.4 Since actions have effects
only at end, the model that holds after simulating all ofP \{s}
is identical to the model that holds immediately before apply-
ing the effects ofaction(s) when simulatingP . Since every

2Actions execute over closed intervals inPDDL 2.1.3, so actions
with overlapping endpoints are executing concurrently — at an in-
stantaneous moment in time.

3While the TGP representation is temporally simple, there is no
perfect correspondence to any strict subset ofPDDL 2.1.3, because
they have slightly different semantics and hence different mutex
rules.Lo

e is extremely close, however.
4If not, consider the problemsP ′ = (A, I, S) and P ′′ =

(A, S, G) whereS is the model that holds after simulating just past
all the concurrent steps ofP ; the suffix ofP is a sequential solution
to the latter problem, and the argument gives a sequential reschedul-
ing of the prefix ofP solving the former problem.

precondition of an action holds over its entire duration, the
preconditions ofaction(s) hold immediately prior to apply-
ing its effects, i.e., in the final model ofP \ {s}. Therefore
P ′ = (P \ {s}) ∪ {delay(s, δ(action(s)))} is an executable
rescheduling ofP . The final models in simulations ofP and
P ′ are identical, since both result from applyingaction(s)
to the same model. By induction on the number of concur-
rent steps (note thatP ′ has fewer concurrent steps), there is a
rescheduling ofP into a sequential solution.2

Theorem 1 is interesting, because a large number of
temporal planners (TGP, TP4[Haslum and Geffner, 2001],
HSP∗ [Haslum, 2006], TLPlan[Bacchus and Ady, 2001], and
CPT[Vidal and Geffner, 2004]) have restricted themselves to
the TGP representation, which is now shown to be so simple
that essential temporal phenomena cannot be modeled! Note,
for example, that the common motif of temporary resource
utilization (Figure 1(d)) cannot be encoded in these represen-
tations. Yet some of these planners did extremely well in the
last three International Planning Competitions. The reality:
the majority of the problems in the Temporal Track do not
require concurrency!

Note that the proof of Theorem 1 demonstrates a signifi-
cantly stronger result than the theorem itself; not only does
every problem inLo

e have sequential solutions, but there is
in fact a sequential rescheduling of every concurrent solu-
tion. This idea can be applied in reverse: problems in tempo-
rally simple languages can be optimally solved using classical
techniques.

Theorem 2 Let P be a planning problem in a temporally
simple subset ofPDDL 2.1.3, and letP ′ be a correspond-
ing STRIPS problem where durations are ignored and every
action is collapsed into a single transition.5

There is a linear-time computable bijection between the
slackless solutions ofP and the solutions ofP ′.

In particular, with the appropriate heuristics, optimal so-
lutions to P can be found by solvingP ′ instead. That
is, STRIPS and temporally simple languages are essentially
equivalent; though we do not delve into the details, one can
show this correspondence in a formal manner using Nebel’s

5This transformation is performed by MIPS, LPG, and SGPlan:
see those planners for details[Edelkamp, 2003; Gerevini and Serina,
2002; Chenet al., 2006].



framework of expressive power[Nebel, 2000].6

Proof: We give a linear-time procedure for mapping solutions
of the STRIPS problem to slackless solutions, which is the
bijection of the theorem. However, we omit showing that the
inverse is a linear-time computable total function on slackless
solutions. We also omit proof for any case besidesLo

e; the
same basic technique (PERT scheduling) can be applied, with
minor modifications, to every other case.

Consider some solution ofP ′, P ′ = A1, A2, . . . , An. As-
sociate with every literal,f=v, the time at which it was
achieved,τ(f=v), initially 0 if v is the initial value off ,
and -1 otherwise. Find the earliest dispatch time of eachAi,
τ(Ai), by the following procedure7; initializing τ(A1) to ε
andi to 1:

1. For all (f=v) ∈ effects(Ai), if v 6= argmax v′τ(f=v′)
setτ(f=v) = τ(Ai) + δ(Ai)

2. Set τ(Ai+1) = ε + max({τ(f=v) : (f=v) ∈
precond(Ai+1)} ∪ {τ(Ai) + δ(Ai)− δ(Ai+1)})

3. Incrementi, loop until i > n

ThenP = {si : action(si) = Ai andt(si) = τ(Ai)} is a
slackless rescheduling ofP ′, preserving the order of the ends
of actions, starting each action only after all of its precon-
ditions have been achieved. In particular,P is a slackless
solution.2

2.4 Temporally Expressive Languages
We have already seen one language,Ls

s,e, which can express
problems with required concurrency (Figure 1(d)). Of course,
the full language,PDDL 2.1.3, is also a temporally expressive
language. It is no surprise that by adding at-start effects to
Lo

e one can represent required concurrency, but it is interest-
ing to note that merely shrinking the time that preconditions
must hold to at-start (i.e. the languageLs

e) also increases ex-
pressiveness. In fact,Ls

e is a particularly special temporally
expressive language in that it exemplifies one of three funda-
mental kinds of dependencies that allow modeling required
concurrency.

Theorem 3 Ls
e is temporally expressive.

The dual ofLs
e, Le

s, is an odd language — all preconditions
must follow effects. Nonetheless, the language is interesting
because it is also one of the three minimal temporally expres-
sive languages.

Theorem 4 Le
s is temporally expressive.

It is not surprising that adding at-start effects (to a lan-
guage allowing at-end effects) allows modeling required con-
currency, because there is an obvious technique to exploit the
facility: make a precondition of some action available only
during the execution of another action. Figure 1(d) is a good
example.

6The basic idea is to compile the scheduling into the planning
problem.

7Technically, one must takeε to be some positive value by the
requirements ofPDDL 2.1.3. In a temporally simple language with-
out a non-zero separation requirement (such as TGP) one can takeε
as 0 instead.

Figure 2: The taxonomy of temporal languages and their ex-
pressiveness; those outlined by dotted lines are discussed in
the text.

What is surprising is that there is a different technique to
exploit allowing effects at multiple times, one that does not
even require any preconditions at all.

Theorem 5 Ls,e is temporally expressive.

Proof (of Theorems 3, 4, and 5):We prove thatLs
e, Le

s, and
Ls,e are temporally expressive by demonstrating problems in
each language that require concurrency. See Figure 1(a), (b),
and (c), respectively.2

2.5 Temporal Gap
Figure 2 places the languages under discussion in the context
of a lattice of the PDDL sub-languages, and shows the divide
between temporally expressive and simple. We have already
shown thatLo

e, our approximation to TGP, is temporally sim-
ple. Surprisingly, the simple syntactic criteria oftemporal
gapis a powerful tool for classifying languages as temporally
expressive or temporally simple.

Roughly, an action has temporal gap when there is no sin-
gle time point in the action’s duration when all preconditions
and effects hold together (which is easy to check via a simple
scan of the action’s definition). A language permits temporal
gap if actions in the language could potentially have tempo-
ral gap, otherwise a language forbids temporal gap. We show
that a language is temporally simple if and only if it forbids
temporal gap. This makes intuitive sense since without a tem-
poral gap, the duration of an action becomes a secondary at-
tribute such as cost of the action.8

8This understanding of temporal expressiveness in terms of tem-
poral gap is reminiscent of the “unique main sub-action restric-
tion” [Yang, 1990] used in HTN schemas to make handling of task
interactions easy. The resemblance is more than coincidental, given
that temporal actions decompose into transitions in much the same
way as HTNs specify expansions (see Section 2.1).



Definition 8 A before-conditionis a precondition which is
required to hold at or before at least one of the action’s ef-
fects. Likewise, anafter-conditionis a precondition which is
required to hold at or after at least one of the action’s effects.

A gap between two temporal intervals, non-intersecting
and not meeting each other, is the interval between them
(so that the union of all three is a single interval). An ac-
tion hastemporal gapif there is a gap between its precondi-
tions/effects, i.e., if there is

a gap between a before-condition and an effect, or
a gap between an after-condition and an effect, or
a gap between two effects.

Actions without temporal gap have acritical point: the
(unique) time at which all the effects occur.

Theorem 6 A sub-language ofPDDL 2.1.3 is temporally
simple if and only if it forbids temporal gap.

Proof: We begin by showing that forbidding temporal gap is
necessary for a language to be temporally simple.

Languages permitting a gap between a before-condition
and an effect, a gap between an after-condition and an effect,
or a gap between effects are super-languages ofLs

e, Le
s, or

Ls,e, respectively. By Theorems 3, 4, and 5, such languages
are temporally expressive. Therefore temporally simple lan-
guages require that, for every action, all before-conditions
hold just before any effect is asserted, all after-conditions
hold just after any effect is asserted, and that all effects are
asserted at the same time. That is, a temporally simple lan-
guage must forbid temporal gap.

For the reverse direction, i.e., the interesting direction, we
show that any language forbidding temporal gap is tempo-
rally simple, by demonstrating that slackless solutions to any
problem can be rescheduled into sequential solutions, a gen-
eralization of the proof of Theorem 1. Fix some slackless
solution to some problem in a language forbidding temporal
gap.

Consider the sequence of critical points in the slackless so-
lution, along with the models that hold between them, i.e.,
M0, c1,M1, c2, . . . ,Mn−1, cn,Mn, where theci are critical
points and theMi are models. It is trivial to insert an arbitrary
amount of delay between each critical point, lengthening the
period of time over which each model holds, without altering
them, by rescheduling steps. For example, multiplying each
dispatch time by the maximum duration of an action achieves
a sequential rescheduling preserving the sequence. For each
critical pointci, all of that action’s before-conditions hold in
Mi−1 and all of its after-conditions hold inMi, because the
original plan is executable. Since those models are unaltered
in the sequential rescheduling, the rescheduling is also exe-
cutable, and thus a solution.2

Coming back to the space of languages, we have al-
ready noted that several popular temporal planners (e.g. TGP,
TP4, HSP∗, TLPlan, CPT) restrict their attention to tempo-
rally simple languages, which are essentially equivalent to
STRIPS. The next section shows that most of the planners
which claim to address temporally expressive languages, are
actually incomplete in the face of required concurrency.

3 Decision Epoch Planning
The introduction showed that most temporal planners, no-
tably those dominating the recent IPC Temporal Tracks, use
the decision epoch (DE) architecture. In this section, we look
in detail at this method, exposing a disconcerting weakness:
incompleteness for temporally expressive action languages.

SAPA [Do and Kambhampati, 2003], TLPlan [Bacchus
and Ady, 2001], TP4, and HSP∗a [Haslum and Geffner, 2001],
among others, are all decision-epoch based planners. Rather
than consider each in isolation, we abstract the essential el-
ements of their search space by definingDEP. The defining
attribute ofDEP is search in the space of temporal states. The
central attribute of a temporal state,N , is the world state,
state(N). Indeed, the world state information is responsible
for the success and popularity ofDEP, because it enables the
computation of state-based reachability heuristics developed
for classical, non-temporal, planning.

We defineDEP’s search space by showing how temporal
states are refined; there are two ways of generating children:

Fattening: Given a temporal state,N , we generate a child,
NA, for every action,A ∈ A. Intuitively, NA represents an
attempt to start executingA; thus,NA differs from N only
by adding a new step,s, toagenda(NA) with action(s) = A
andt(s) = t(N).

Advancing Time: We generate a single child,Nepoch , by
simulating forward in time just past the next transition in the
agenda:Nepoch=simulate(N, d+ ε), whered=min {t : s ∈
agenda(N) and(t=t(s) or t=t(s) + δ(action(s))) andt ≥
t(N)}.

Our definition emphasizes simplicity over efficiency. We
rely on simulate to check action executability; inconsistent
temporal states are pruned. Obviously, a practical implemen-
tation would check these as soon as possible.

The key property ofDEP is the selection of decision epochs,
that is, the rule for advancing time. In order forDEP to branch
over action selection at a given time point, time must have ad-
vanced to that point. Since time always advances just past the
earliest transition in the agenda,DEP can only choose to start
an action when some other action has just ended, or just be-
gun. Conversely,DEP is unable to generate solutions where
the beginning of an action does not coincide with some tran-
sition. Forcing this kind of behavior is surprisingly easy.

Theorem 7 DEP is incomplete for temporally expressive lan-
guages.

Proof: It suffices to show thatDEP is incomplete forLs
e, Le

s,
and Ls,e to show thatDEP is incomplete for all temporally
expressive languages, by Theorem 6 (see Figure 2).

Figure 1(c) gives aLs,e example which stumpsDEP—
achieving the goal requires startingB in the middle ofA, but
there are no decision epochs available in that interval.DEP
can solve the problems in Figure 1(a) and (b), but not minor
modifications of these problems. For example, alteringA to
deleteG2, in (a), forcesB to start where there are no decision
epochs.2

Theorem 8 DEP is complete for temporally simple sub-
languages ofPDDL 2.1.3, but not makespan optimal.



Proof: Figure 1(e) presents an example of makespan sub-
optimality; DEP would find the serial solution, but not the
optimal (concurrent) plan shown. Completeness follows triv-
ially from Theorem 2: temporally simple languages have se-
quential solutions, andDEP includes every sequential plan in
its search space (consider advancing time whenever possible).

4 Generalized Decision Epoch Planning
As the example of Figure 1(c) shows,DEP does not consider
enough decision epochs. Specifically, it makes the mistaken
assumption that every action will begin immediately after
some other action has begun or ended. In Figure 1(c), how-
ever, actionB has toend(not begin) afterA ends. Thus, it is
natural to wonder if one could develop a complete DE plan-
ner by exploiting this intuition. In short, the answer is “No.”
but the reason why the effort fails is instructive, so we present
theDEP+ algorithm below.

We generalizeDEP to DEP+ by considering both begin-
ning and ending an action at the current decision epoch. This
would involve altering the past in the case of ending an action
if the decision epoch were not sufficiently far in the future; to
address this, we take our decision epochs as the current time
plus the maximum duration of any action in the problem. Let
∆ be the maximum duration, i.e.,∆ = maxA∈A δ(A).

This raises a second issue: normally one would start the
search at time 0, however, this would leave out the possibility
of starting actions between 0 and∆. We take the expedient
of starting the search at time−∆, and continue to rely on
simulate to prune inconsistent temporal states, e.g., trying to
start an action before time 0. In particular, the first decision
epoch is at time 0, and attempting to end an action at the
current decision epoch is not successful until the action would
begin at or after time 0.9

Fattening: For every actionA, we create two children
of N . Ns

A is analogous toNA in DEP— we commit to
starting actionA by adding a steps to agenda(Ns

A) with
action(s)=A andt(s)=t(Ns

A) + ∆.
The latter,Ne

A, the essential difference fromDEP, differs
from N only in thatagenda(Ne

A) contains a new step,s, with
action(s)=A andt(s)=t(Ne

A) + ∆− δ(A).

Advancing Time: Nepoch is obtained from N
by simulating to just after the first time where
t(Nepoch) + ∆ is the start or end of a step in
agenda(Nepoch). Specifically,Nepoch=simulate(N, d + ε)
where d=min {t|s∈agenda(N) and (t=t(s) or
t=t(s) + δ(action(s))) andt ≥ t(N) + ∆}.

Theorem 9 DEP+ is incomplete for temporally expressive
sub-languages ofPDDL 2.1.3.

Proof: DEP+ cannot generate the plan in Figure 3, because
there are no decision epochs in the interval whereC must
execute; the beginning ofB is not a decision epoch, because
B is only included after the current decision epoch moves to
just after the end ofA, that is, past the interval thatC must

9This discussion has ignored the non-zero-separation require-
ment ofPDDL 2.1.3, i.e.,ε.

aR aR aG bG

bR

cG aG

aR

bR bR bG

A [5]

B [4]

C [1]

Figure 3:DEP+ can not find a plan to achieveGa ∧Gb ∧Gc.

execute within. Similar examples demonstrate thatDEP+ is
incomplete for all other expressive languages.2

Furthermore, arbitrarily complex examples of chaining
may be constructed; for example, split each action in Figure 3
into a million pieces. That is, trying to fixDEP+ by consid-
ering a denser set of decision epochs, or using some kind of
lookahead, is a losing proposition.

DEP+ doesimprove onDEP, but, in just one way:

Theorem 10 DEP+ is makespan optimal for temporally sim-
ple sub-languages ofPDDL 2.1.3.

Proof (Sketch): In a temporally simple language, by Theo-
rem 6, every action has a critical point where all effects occur.
Restrict child-generation so that the critical point of the action
being added is always further in the future than the current de-
cision epoch. Then every critical point eventually becomes a
decision epoch. One can show that taking every critical point
as a decision epoch is sufficient to allow the generation of
every slackless solution.2

5 Temporally Lifted Progression Planning
The key observation about decision-epoch planning is that de-
cisions aboutwhento execute actions are made very eagerly
— before all the decisions aboutwhat to execute are made.
DEP attempts to create tight plans by starting actions only
at those times where events are already happening. Unfor-
tunately, for temporally expressive languages, this translates
into the following two erroneous assumptions:

*1 Every action will start immediately after some other ac-
tion has started or ended.

*2 The only conflicts preventing an earlier dispatch of an ac-
tion, however indirect, involve actions which start ear-
lier.

In developingDEP+, we noted the first flaw, and attempted
to address it by allowing synchronization on the beginnings of
actions as well as their ends. However, there does not appear
to be any (practical) way of addressing the second flaw within
the decision-epoch approach. One must either defineevery
time pointto be a decision epoch (branching over dense time!)
or pick decision-epochs forwards and backwards, arbitrarily
far, through time (as in LPGP[Long and Fox, 2003]).

Instead, we develop a complete state-space approach, by
exploiting the idea oflifting over time: delaying the decisions
aboutwhento execute until all of the decisions aboutwhat
to execute have been made. Note that VHPOP[Younes and
Simmons, 2003] also lifts over time — we take a different



approach that allows us to preserve state information at each
search node.

Definition 9 A lifted temporal state, N , is given by the
current temporal variable,τ(N ), a model, state(N ), a
lifted plan, agenda(N ), and a set of temporal constraints,
constraints(N ).

We retain the terminology used inDEP, and DEP+, to
highlight the similarity of the approaches, despite the dif-
ferences in details which arise from lifting time. For ex-
ample, the agenda in a lifted temporal state is different
from that in a (ground) temporal state — we replace ex-
act dispatch times (t()) with temporal variables (τbegin()),
and impose constraints throughconstraints(N ). In fact,
we associate every step,s, with two temporal variables:
τbegin(s) andτend(s). All the duration constraintsτend(s)−
τbegin(s) = δ(action(s)) and mutual exclusion constraints
τx(s)6=τy(t), for mutually exclusive transitionsx(action(s))
andy(action(t)) (x andy are each one ofbegin or end ), are
always, implicitly, part ofconstraints().

The aspect of lifted and ground temporal states that re-
mains identical is the current world state,state(N). In both
cases this maps every fluent to the value it has at the cur-
rent time. In particular, this is exactly the information needed
to leverage the state-based reachability heuristics developed
for classical planning. With respect to lifted temporal states,
TEMPO is a complete and optimal state-space temporal plan-
ning algorithm, given by the following child-generator func-
tion:

Fattening: Given a lifted state,N , we generate a child,
NA, for every action,A ∈ A. As beforeNA repre-
sents startingA; we add a steps to agenda(N ′) with
action(s) = A. In addition, we add “τbegin(s) ≥ τ(N )”
to constraints(N ′). Unlike before, we immediately simu-
late:NA=simulate(N ′, τbegin(s)). In particular, everything
in agenda(NA) has already started.

Advancing Time: For everys∈agenda(N ), we generate
a child,NA

epoch , whereA=action(s). Note thatA has al-
ready started; this is a decision to endA. Specifically, we add
“τend(s) ≥ τ(N )” to constraints(N ′) and then simulate:
NA

epoch=simulate(N ′, τend(s))

In essence,TEMPO is searching the entire space of se-
quences of transitions (beginnings and endings of actions),
in prefix order. That is, every search state corresponds to
the unique sequence of transitions that, if (assigned dispatch
times and) executed, result in the given (lifted) temporal
state. Of course, just before terminating,TEMPO must ac-
tually pick some particular assignment of times satisfying
constraints(N ) (for a state,N , satisfying the goal) in order
to return a ground plan. Sinceconstraints(N ) will, among
other things, induce a total ordering, this will not be very
difficult. So it should not be very surprising thatTEMPO is
guaranteed to find solutions — if there is a solution, it has a
sequence of transitions, andTEMPO will eventually visit that
sequence, and find an assignment of times.

Theorem 11 TEMPO is complete for any temporally ex-
pressive (or simple) sub-language ofPDDL 2.1.3, moreover,

makespan optimal.

Proof: Every potential permutation of beginnings and end-
ings of actions can be generated by appropriate decisions
at fatteningand advance-timechoice-points (if not pruned
by simulate()). The transition sequence of any concurrent
plan is one such permutation, in particular a makespan opti-
mal solution defines one such permutation. Pruning occurs if
simulate() fails at a search node, i.e., a precondition is vio-
lated. No descendant of this search node can ever change the
state where the precondition is evaluated: every descendant
would likewise fail to be executable. Solutions are, of course,
executable, soTEMPO does not prune any solutions. It fol-
lows thatTEMPO is complete; makespan optimality follows
from the fact that the appropriate transition sequence is in the
search space, and the optimal dispatch is easy to find.2

6 Discussion and Related Work
It should be noted that our analysis of temporal expressive-
ness was done at the language level, and most of our condi-
tions for expressiveness were necessary rather than sufficient.
In particular, it is obviously possible to write a domain in a
temporally expressive language that does not require concur-
rency (or write a problem for a temporally expressive domain
that does not require concurrency). For example, the (tem-
poral)Rovers domain, contains actions with temporal gap.
Nonetheless,Rovers is a temporally simple domain. This
is not a contradiction of Theorem 6 — any language permit-
ting theRovers encoding also containsother domains and
problems that require concurrency. It would be interesting to
catalog domain/problem level necessary/sufficient conditions
for required concurrency.

Several planners have considered using classical tech-
niques augmented with simple scheduling to do tempo-
ral planning, for example, SGPLAN, MIPS, LPG-td, and
CRIKEY [Chenet al., 2006; Edelkamp, 2003; Gerevini and
Serina, 2002; Halseyet al., 2004]. That is, the planners only
consider sequential solutions, but reschedule these using the
temporal information. Actually, CRIKEY does not quite fit
this classification; CRIKEY attempts to do classical planning
as much as possible, and switches to aTEMPO like search
to handle actions that could easily lead to required concur-
rency (envelopeactions). Modulo unimportant details, an
equivalent perspective on CRIKEY is as an implementation
of TEMPO that strives to cut down the number of transition
sequences actually considered by identifying actions where
it is safe to immediately apply the ending transition after the
beginning transition (non-envelopeactions). Unfortunately,
our preliminary investigation reveals that the pruning that re-
sults is not completeness-preserving; the conditions used to
classify actions as safe are too generous.

7 Conclusion
Motivated by the observation that the most successful tempo-
ral planners are incomplete[Mausam and Weld, 2006], this
paper presents a detailed examination of temporal planning
algorithms and action languages. We make the following con-
tributions:



• We introduce the notion ofrequired concurrencywhich
divides temporal languages intotemporally simple
(where concurrency is never required in order to solve
a problem) andtemporally expressive(where it may be)
classes. Using the notion oftemporal gap, we then de-
compose subsets ofPDDL 2.1.3 into a lattice which dis-
tinguishes the expressive and simple sub-languages.

• We show that temporally simple languages are essen-
tially equivalent to STRIPS in expressiveness. Specifi-
cally, we show a linear-time computable mapping into
STRIPS, with no increase in the number of actions.
Thus, any classical planner may be used to generate so-
lutions to temporally simple planning problems!

• We prove that a large class of popular temporal plan-
ners, those that branch on a restricted set of decision
epochs (e.g., all state-space planners like SAPA, SG-
Plan), are completeonly for the temporally simple lan-
guages. In fact, there exist problems even in simple lan-
guages for which these planners are not optimal. Since
these decision-epoch planners won the temporal track
of the last three planning competitions, we question the
choice of problems used in the competitions.10

• On a constructive note, we sketch the design of a com-
plete state-space temporal planning algorithm,TEMPO,
which we hope will be able to achieve high performance
by leveraging the heuristics that power decision epoch
planners.

Acknowledgments
We thank J. Benton, Minh B. Do, Maria Fox, David Smith, Sumit
Sanghai, and Menkes van den Briel for helpful discussions and
feedback. We also appreciate the useful comments of the anony-
mous reviewers on the prior draft. This work was supported by
NSF grants IIS-0307906 and IIS-308139, ONR grants N00014-02-
1-0932, N00014-06-1-0147, and N00014-06-1-0058, the Lockheed
Martin subcontract TT0687680 to ASU as part of the DARPA Inte-
grated Learning program, and the WRF/TJ Cable Professorship.

References
[Bacchus and Ady, 2001] F. Bacchus and M. Ady. Planning with

resources and concurrency: A forward chaining approach. In
IJCAI, 2001.

[Bonetet al., 1997] B. Bonet, G. Loerincs, and H. Geffner. A ro-
bust and fast action selection mechanism for planning. InAAAI,
1997.

[Chenet al., 2006] Y. Chen, C. Hsu, and B. Wah. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan.JAIR,
to appear, 2006.

[Do and Kambhampati, 2003] M. B. Do and S. Kambhampati.
SAPA: A multi-objective metric temporal planner.JAIR, 20:155–
194, 2003.

[Edelkamp, 2003] S. Edelkamp. Taming numbers and duration in
the model checking integrated planning system.JAIR, 20:195–
238, 2003.

10While the competition’s problems were encoded in a language
capableof encoding problems with required concurrency, it appears
that none of the actual problemsdid require concurrency.

[Fox and Long, 2003] M. Fox and D. Long. PDDL2.1: An exten-
sion to PDDL for expressing temporal planning domains.JAIR,
20:61–124, 2003.

[Fox et al., 2004] M. Fox, D. Long, and K. Halsey. An investigation
into the expressive power of PDDL2.1. InECAI, pages 328–342,
2004.

[Gerevini and Serina, 2002] A. Gerevini and I. Serina. LPG: A
planner based on local search for planning graphs. InAIPS, 2002.

[Halseyet al., 2004] K. Halsey, D. Long, and M. Fox. CRIKEY -
a temporal planner looking at the integration of scheduling and
planning. InWorkshop on Integrating Planning into Scheduling,
ICAPS, pages 46–52, 2004.

[Haslum and Geffner, 2001] P. Haslum and H. Geffner. Heuristic
planning with time and resources. InECP, 2001.

[Haslum, 2006] P. Haslum. Improving heuristics through relaxed
search — an analysis of TP4 and HSP∗

a in the 2004 planning
competition.JAIR, 25:233–267, 2006.

[Helmert, 2004] M. Helmert. A planning heuristic based on causal
graph analysis. InICAPS, pages 161–170, 2004.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF
planning system: Fast plan generation through heuristic search.
JAIR, 14:253–302, 2001.

[Kvarnströmet al., 2000] J. Kvarnström, P. Doherty, and P.
Haslum. Extending TALplanner with concurrency and resources.
In ECAI, 2000.

[Long and Fox, 2003] D. Long and M. Fox. Exploiting a graphplan
framework in temporal planning. InICAPS, pages 51–62, 2003.

[Mausam and Weld, 2006] Mausam and D. S. Weld. Probabilistic
temporal planning with uncertain durations. InAAAI, 2006.

[Nebel, 2000] B. Nebel. On the compilability and expressive power
of propositional planning formalisms.JAIR, 12:271–315, 2000.

[Nguyenet al., 2001] X. Nguyen, S. Kambhampati, and R. Ni-
genda. Planning graph as the basis for deriving heuristics for
plan synthesis by state space and CSP search.AIJ, 135:73–123,
2001.

[Penberthy and Weld, 1994] S. Penberthy and D. Weld. Temporal
planning with continuous change. InAAAI, 1994.

[Smith and Weld, 1999] D. E. Smith and D. Weld. Temporal plan-
ning with mutual exclusion reasoning. InIJCAI, 1999.

[Smith, 2003] D. E. Smith. The case for durative actions: A com-
mentary on PDDL2.1.JAIR, 20:149–154, 2003.

[Vidal and Geffner, 2004] V. Vidal and H. Geffner. CPT: An opti-
mal temporal POCL planner based on constraint programming.
In IPC (ICAPS), 2004.

[Yang, 1990] Q. Yang. Formalizing planning knowledge for hierar-
chical planning.Computational Intelligence, 6:12–24, 1990.

[Younes and Simmons, 2003] H.L.S. Younes and R. G. Simmons.
VHPOP: Versatile heuristic partial order planner.JAIR, 20:405–
430, 2003.




