
To appear, IJCAI Workshop on Intelligent Techniques for Web Personalization (ITWP), 2001

Web Site Personalizers for Mobile Devices

Corin R. Anderson, Pedro Domingos, Daniel S. Weld
{corin, pedrod, weld }@cs.washington.edu

University of Washington, Seattle, WA, USA

Abstract

The fastest growing community of web users is that
of mobilevisitors who browse with wireless PDAs,
cell phones, and pagers. Unfortunately, most web
sites today are optimized exclusively for desktop,
broadband clients, and deliver content poorly suited
for mobile devices — devices that can display only
a few lines of text using slow wireless networks.
To best serve the needs of this growing community,
we propose buildingweb site personalizersthat ob-
serve the behavior of web visitors and automati-
cally customize and adapt sites for each individual
mobile visitor. In this paper, we give an overview of
our approach to web site personalization as utility-
maximizing search through the space of person-
alized web sites. Following this framework we
have implemented two personalizers: PROTEUS
and MINPATH. PROTEUS allows changes to site
navigation (adding or removing links) as well as
content manipulation (rearranging or eliding con-
tent), and evaluates the result with a learned model
of the current visitor. MINPATH concentrates ex-
clusively on adding “shortcut” links, but uses a
model learned by clustering visitors based on their
sequences of page requests. We introduce PRO-
TEUS and MINPATH, and outline our current and
future directions for these personalizers.

1 Introduction
The fastest growing community of web users is that ofmobile
visitors — people who browse the web with wireless PDAs,
cell phones, and pagers. Ninety-five percent of cell phones
sold today are “web-ready” and authorities predict that the
number of wireless Internet devices will outnumber desktop
computers by 2003. Despite this trend, however, few web
sites today cater to mobile visitors, instead optimizing their
content for desktop clients. Unfortunately, mobile devices
are not as capable as their desktop counterparts, being lim-
ited by small screens, low-bandwidth networks and slower
processors. Thus the user experience for mobile visitors at
these “one-size-fits-all” sites suffers. To address this prob-
lem, we propose buildingweb site personalizersthat auto-
matically adapt and personalize a web site to each individual

mobile visitor.
Mobile web visitors exhibit a variety of browsing behav-

iors: random surfing, task completion (e.g., buying stocks),
information-goal seeking (i.e., answering questions), etc.
Information-goal seeking is of particular interest because it
is generallypredictable: visitors tend to have similar infor-
mation goals in the future as in the past. Some example goals
include: “What is the current stock price of MSFT?”; “Are
there any Pentax K-mount zoom lenses on auction at eBay?”;
“What office is Dan Weld in?”. This behavior is predictable
because visitors generally follow the same set of links, view
the same set of pages, to achieve these goals each time, and
attempt to do so in a direct and efficient manner. In addi-
tion, visitors tend to view pages with similar content as pages
viewed in the past (e.g., a photographer may frequently view
pages containing words “zoom lens” and “f-stop”, although
the URLs requested may differ). By mining past interactions
with the web site for these behaviors, we can automatically
personalizethe web content for each individual visitor. We
envisionweb site personalizersthat act on behalf of a mo-
bile visitor to adapt web content as the visitor browses. A
web site personalizer is an intermediary between the web site
and the visitor and may be situated on the web server, on the
visitor’s device, or at a proxy server in between. A web site
personalizer can:

• Make frequently-visited destinations easier to find, by
highlighting relevant links or adding new links to a page.

• Highlight content that interests the visitor, by rearrang-
ing content on the page, or by adding visual cues.

• Elide uninteresting content and structure, replacing them
simply with links to the omitted material.

Web site personalization follows a two-step process. In
the first step, the personalizer builds a model of each visitor
by mining the access logs and site content. The model in-
cludes information about navigational browsing behavior as
well as content interests. This model could also include “out-
of-band” information, such as visitors’ geographic location or
demographics. In the second step, the personalizer transforms
the site to maximize theexpected utility[9] for a given visitor.
The expected utility of a personalized web site is a measure
of how much benefit the visitor will receive by browsing the
site; the personalizer computes this value based on the visitor
model derived in the first step.

The focus of our work is in defining this framework of
personalization as search and exploring how to instantiate
this framework in a practical manner. This paper discusses
our recent efforts along these lines and details current work.
This paper draws heavily from previous papers describing our
work [1; 2].

2 Personalization as search
We first describe our approach briefly. Our web site person-
alizer performs a search through the space of possible web
sites. The initial state is the original web site of unmodified
pages. The state is transformed by any of a number of adap-
tation functions, which can create pages, remove pages, add
links between pages, etc. The value of the current state (i.e.,
web site) is measured as the expected utility of the site for
the current visitor. The search continues either until no bet-
ter state can be found, or until computational resources (e.g.,
time) expire.

2.1 State representation
Each state in our search space is an entire web site,W .
Although an actual implemented system (such as those dis-
cussed in sections 3 and 4) may choose to personalize only a
single page at a time, we model the entire web site to allow
adaptations to be made anywhere in the site. The web site
W is modeled as a directed graph whose nodes are pages,
p0, . . . , pn, and whose arcs are hypertext links,l0, . . . , lm.
A link lk is a triple (ps, pd, a) whereps is the source page
(i.e., the page on which the link appears),pd is the destina-
tion page, anda is the anchor text. Each pagepi is modeled as
a hierarchy of web content, much in the same way the parse
tree of an HTML document confers a hierarchy of HTML
tags.pi is thus represented as the root of this hierarchy, and
is acontent node. A content nodec is a pair(C,B) whereC
is a sequence of children〈c1, . . . , ck〉 of c andB is a behav-
ior thatc imparts on its children. The elements ofC may be
either plain text or (recursively) content nodes. The behavior
B is the action that affects the human-viewable content. For
example, ifc were a “” node, thenB would ren-
der its children in boldface; or ifc were an “<a>” node, then
B would render them as a hypertext link. Summarizing:
S = {W0,W1, . . .} Each state in the space is a web site
W = ({p0, . . . , pn}, A web site is a directed graph of

{l0, . . . lm}) pages and links
lk = (ps, pd, a) A link has a source, destination,

and anchor
pi = ci A page is a root content node
ci = (〈ci1, . . . , cik〉, A content node is a sequence of

B) children and node behavior; or
ci = text A content node is plain text

2.2 State Evaluation
We estimate the quality of the personalized web site as its
expected utility from the point of view of the requested page.
Intuitively, the expected utility is the sum of the utility the vis-
itor receives by browsing each page in the site, discounted by
the difficulty of reaching each page1. For example, following

1We actually compute utility at a finer granularity than a page.

a link at the top of the current page may not be difficult, but
reaching a page many links away will require scrolling (to
find the links) and waiting for intermediate pages to down-
load over the wireless network. We transform this intuition
into practice by recursively defining the utility of a page as
the sum of itsintrinsic utility — the utility of the page, in
isolation — and itsextrinsicutility — the utility of the linked
pages2. We then calculate the utility of the site by evaluat-
ing this recursion beginning with the page requested by the
visitor. We make these concepts more precise below.

Web site model for evaluation
We find it advantageous to transform the search state model
slightly when calculating expected utility. Specifically, we
now decompose a pagepi into a sequence of “screens”
〈si0, . . . , sim〉, each of which represents the web content
that can be seen in one window of the visitor’s browser. A
screensij is composed of web content (i.e., text and graph-
ics), which we denote asTij , and a set of linkslij1, ..., lijk.

Expected utility
Let p̂ be the personalized page for the requested URLu and
let UV (p̂) be the utility of p̂ for visitor V . The evaluation
of W is the result of a recursive traversal through the site
beginning withp̂. Because only the firstscreenof p̂ is initially
visible to the visitor, the expected utility of̂p (or anypi, in
fact) is the expected utility of its first screen:

E[UV (pi)] = E[UV (si0)]
The expected utility of a screensij , in turn, is the sum of

its intrinsic and extrinsic utilities:

E[UV (sij)] = E[IUV (sij)] + E[EUV (sij)]
The intrinsic utility of a screen measures how useful the

screen’s content is towards fulfilling the visitor’s information
goal, independent of the rest of the web site. Typically, the in-
trinsic utility depends on the visitor model — past history and
demographics. A more detailed description of intrinsic utility
depends on particular assumptions regarding visitor interests
and goals; section 3 discusses the method used in PROTEUS.

The extrinsic utility measures the value of a screen by its
connections to the rest of the web site. To reach the rest of the
site, we model the visitor as choosing from a fixed set ofnav-
igation actions, any number of which the visitor may select
(i.e., the actions are not mutually exclusive). Specifically, if
the visitor is at screensij , then the visitor may: scroll down
to the next screen (assuming thatsij is not the last screen of
the page); or follow any link that appears on the screen. We
maintain independent probabilities that the visitor will take
each action, denoted asP (action), as well as the cost (i.e.,
negative utility) each action imposes on the visitor, denoted
γs andγl for scrolling and following a link, respectively. If
we letdijk be the destination page of linklijk, then the ex-
trinsic utility of screensij is a sum weighted by probabilities:

E[EUV (sij)] = P (scroll)(E[UV (si,j+1)]− γs) +∑
k

[P (lijk)(E[UV (dijk)]− γl)]

2In many ways, intrinsic and extrinsic utilities are analogous to
Kleinberg’s authority and hub weights[10].

This equation recursively references the utility of other
pages and screens. The recursion is halted when the ex-
pected utility of a screen or page is less than the cost of
reaching that content (i.e., whenE[UV (si,j+1)] < γs or
E[UV (dijk)] < γl).

If evaluated näıvely, expected utility is not computationally
tractable – it would require a screen-by-screen decomposition
of potentially every page in the entire web site. Fortunately,
the evaluation is made computationally much simpler with a
few assumptions. First, when the cost of scrolling dominates
the cost of following a link (γl + γs ≈ γl), then we treat all
pages but̂p as single-screen pages and can ignore the recur-
sion due to scrolling on these pages. Second, we limit how
deeply our recursion proceeds by setting a minimum thresh-
old on the probability of viewing a screen or page — if the
probability of it being visited is lower than the threshold, then
it is excluded from the calculation. The threshold allows us to
trade off performance for accuracy: the lower the threshold,
the more accurate the evaluation, at the expense of recurring
through more of the site.

3 Proteus
We have implemented this search framework in the web site
personalizer PROTEUS. While most of the details of the im-
plementation should be clear from the framework, we discuss
a few implementation-specific issues here.

3.1 Search operators

To reduce the complexity of PROTEUS, we require that search
operators directly affect the requested pagep̂ in some way,
e.g., adding links top̂ or manipulating content on̂p. We ex-
clude operators that, for instance, generate new pages or add
links between two other pages.

PROTEUS supports two transformation operators3: elide-
content andadd-shortcut. elide-content replaces a block
of content onp̂ with a link to the original content in a fash-
ion similar to Digestor[3] (Figure 1). Theadd-shortcut
operator creates a new link from̂p to some other page that
can be reached by following at mostk links from p̂. Thus,
add-shortcut creates a link that “shortcuts” a longer path of
links. For example, if the visitor previously followed the path
p̂ → pa → pb → pc → pd, add-shortcut may create a link
directly from p̂ to pd. Furthermore,add-shortcut places the
new link p̂→ pd next to the original link̂p→ pa, anticipating
that, when the visitor wants to findpd again, the visitor will
look towards the link topa first. This placement is possible
only if the visitor actually followed the path previously, oth-
erwise,add-shortcut places the link near pathsothervisitors
at the site have taken. The anchor text of the link is chosen
heuristically as either the destination’s<title > or<h1>.

3.2 Expected Utility

Our implementation measures intrinsic utility of a screen as a
weighted sum of two terms: how well the screen’s content
matches the visitor’s previously viewed content, according

3PROTEUSsupports a third operator,swap-siblings, but we omit
its discussion for space considerations.

to a text-similarity measure, and how frequently the visitor
viewed this screen. See earlier work[2] for more detail.

PROTEUSestimates the action probabilities by measuring
the frequency with which the visitor took each action in the
past. For example, the probability that the visitor follows a
link ps → pd is the quotient of the number of sessions in
which the visitor viewedpd sometime afterps divided by the
number of sessions in which the visitor viewedps. The prob-
ability for scrolling is derived empirically and is held con-
stant at 0.85, although we are in the process of determining
this number as part of the visitor model. Also through em-
pirical evaluation, we set the cost of scrolling,γs, at 0.01 and
the cost of following a link,γl, at 0.05. These values work
acceptably in practice, although our results are largely insen-
sitive to the exact values. In practice, the dominant term in
the expected utility equation is the product of probabilities of
taking chains of actions. For example, for all but the most
probable links, the contribution of a remote page to expected
utility is already vanishingly small, irrespective of the cost of
following the link.

3.3 Results

In this section we present the results of a small user study
of PROTEUS. We track ten test subjects’ browsing habits on
their desktop workstations and then measure how effectively
they use a suite of personalized and non-personalized web
sites on a wireless Palm Connected Organizer. We measure
visitor effort in terms of both time to attain the goal and the
amount of navigation (number of scrolling actions and links
followed) required.

To collect training data, we asked the subjects to perform
a suite of information-seeking tasks that we provided daily.
We directed the subjects to attain their goals by browsing ex-
clusively at the given site starting from a given page. An ex-
ample question is: “Find the current stock price for MSFT,
starting atfinance.yahoo.com ”. The tasks in the seed
suite were drawn randomly from a distribution of parametric
questions and represent a coherent model of visitor interest.

Following the training phase, we asked the subjects to an-
swer another suite of questions using a wireless Palm Con-
nected Organizer. We asked them to answer the questions
twice: once, on the unmodified web site, and again on aper-
sonalizedversion of the target site. PROTEUS personalized
the target site for each visitor by first building a model of that
visitor, based on the subject’s past browsing data, and then
creating adapted pages for the testing suite. Because our cur-
rent implementation is not yet fast enough to adapt a single
page in real-time, we personalized the sites before the sub-
jects performed their tests. We chose which pages for PRO-
TEUS to adapt by using our human judgment of where the
subjects would likely visit during the test. Note that we have
not influenced thepersonalizationat all — we have merely
selected the subset of pages that PROTEUSpersonalizes, for
efficiency.

Figure 2 compares links followed to attain each goal on
the personalized versus unmodified web sites (the graphs of
the time required and scrolling actions are similar). They-
axis shows the number of links while thex-axis shows the
location of each goal listed chronologically. The graph shows

Figure 1:Elided content. On the left is an unmodified web page. On the right a number of blocks of content have been elided
and replaced with hypertext links.

0

1

2

3

4

5

6

cs
.was

hin
gto

n.e
du

cn
et.

co
m

cs
.was

hin
gto

n.e
du

eb
ay

.co
m

fin
an

ce
.ya

ho
o.c

om
cn

n.c
om

cs
.was

hin
gto

n.e
du

fin
an

ce
.ya

ho
o.c

om
cn

n.c
om

cs
.was

hin
gto

n.e
du

fin
an

ce
.ya

ho
o.c

om

eb
ay

.co
m

lin

ks
 f

o
llo

w
ed

Unmodified
Personalized

Figure 2:Links followed.

that for a majority of the sites, PROTEUS’s personalizations
appear quite useful: the addition of shortcut links and elision
of unnecessary content reduced the amount of visitor naviga-
tion, and hence the amount of time spent, at the sites.

4 MinPath

One of PROTEUS’s weaknesses is that it builds its visitor
models in isolation of each other. When training data is
sparse, these models can be quite inaccurate. Instead, we
would like to combine data from many, similarly-behaving
visitors to build more robust models. To this end, we devel-
oped MINPATH, an algorithm that finds high-quality short-
cuts by modeling clusters of visitors, and using these mod-
els to predict where in the site the visitor is likely to travel.
By leveraging data from many visitors in a single cluster, the
models MINPATH builds are more accurate and lead to bet-
ter personalizations. Moreover, while not as general as PRO-
TEUS’s expected utility, MINPATH ’s evaluation metric — ex-
pected savings — can be very efficiently computed.

4.1 The MinPath algorithm
A trail [16] T = 〈p0, p1, . . . pn〉 is a sequence of page re-
quests such that each request occurs within some fixed time
window of the previous request and is the destination of a
link on the previous page. The personalizer watching a vis-
itor’s behavior midway through the trail sees only aprefix,
〈p0, . . . , pi〉. The trailsuffix, 〈pi+1, . . . , pn〉, must be hypoth-
esized by the personalizer.

If one had knowledge of the complete trail〈p0, . . . ,
pi, . . . pn〉, selecting the best shortcut at any pagepi is easy:
simply,pi → pn. Of course, given only a trail prefix, the per-
sonalizer must infer the remaining pages. Our approach uses
a model of the visitor’s behavior to compute a probability for
every possible trail suffix〈qi+1, . . . , qn〉 on the site. Intu-
itively, these suffixes are all possible trails originating from
pi. Given a suffix and its probability, we assign anexpected
savingsto the shortcutpi → qj for eachqj in the suffix as
the product of the probability of the suffix and the number of
links saved by the shortcut. Note that many trail suffixes may
pass through the same pageqj , and so the expected savings
of a shortcutpi → qj is summed over all suffixes.

For example, suppose that a visitor requests the trail prefix
〈A,B,C〉 and we wish to find shortcuts to add to pageC.
Suppose further that our model of the visitor indicates there
are exactly two sequences of pages the visitor may complete
the trail with: 〈D,E, F,G,H〉, with probability 0.6, and
〈I, J,H,K〉 with probability 0.4. The expected savings from
the shortcutC → E would be0.6×1 = 0.6, because the trail
withE occurs with probability 0.6 and the shortcut saves only
one link. The expected savings for shortcutC → H includes
a contribution from both suffixes:0.6× 4 + 0.4× 2 = 3.2.

M INPATH constructs trail suffixes by traversing the di-
rected graph induced by the web site’s link structure. Start-
ing at the page last requested by the visitor,pi, M INPATH
computes the probability of following each link and recur-
sively traverses the graph until the probability of viewing a
page falls below a threshold, or a depth bound is exceeded.

The savings at each page is the product of the probability of
reaching that page and the number of links saved. MINPATH
collates the results and returns the best shortcuts. We next
describe how we obtain the model required by MINPATH.

4.2 Predictive Models
The key element to MINPATH ’s success is the predictive
model of web usage. The probabilistic model predicts the
next web page requestpi given a trail prefix〈p0, . . . , pi−1〉
and the visitor’s identityV : P (pi = q|〈p0, . . . , pi−1〉, V). Of
course, a model may condition this probability on only part
or even none of the available data; we explore such models in
our experiments. We fit the models to past web usage data,
either to all the visitors to the site at once, or to clusters of
visitors. We group visitors by clustering their sequences of
web page requests, and use EM to simultaneously find the
clusters and fit the models. For theen masseand cluster-
ing approaches, we evaluate two types of models: uncondi-
tional, which predicts the next link without regard to previ-
ous browsing, and Markov, which predicts the next link given
the previous request. When applied to clusters of visitors, we
effectively havemixture models, either Näıve Bayes mixture
models[6] or mixtures of Markov models[5]. We describe
these models in more detail in our other work[1].

4.3 MinPath results
We evaluate MINPATH ’s performance on usage at our home
institution’s web site. We use web access data for September
2000 to produce a training set of 35,212 trails (approximately
20 days of web usage) and a test set of 2,500 trails (1.5 days);
the time period from which the test trails were drawn occurred
strictly after the training period. We selected only those trails
with link length at least two, because shorter trails cannot be
improved. We measure MINPATH ’s performance by the num-
ber of links a visitor must follow to reach the end of the trail.

We compare MINPATH ’s performance using the models
described earlier (see Figure 3). The first column shows the
number of links followed in the unmodified site. In the sec-
ond and third sets of columns, MINPATH uses, respectively,
an unconditional and Markov model, each fitted to all the
site’s visitors, and produces 1, 3, or 5 shortcuts per page4.
In the last two sets, MINPATH uses mixture models of either
10 or 25 clusters, and selects the distribution of the models
in the mixtures based on only the current trail prefix (ignor-
ing past visitor behavior). This graph demonstrates that the
shortcuts MINPATH finds are of high quality — when using a
mixture of Markov models and suggesting just three short-
cuts, MINPATH can eliminate an average of 0.97 links, or
40% of the possible savings. Of course, the actual effective-
ness of adding shortcuts will depend on the visitor’s ability
to discern whether the link will be of value, and in section 6
we describe our ongoing work to intelligently select appro-
priate link anchor texts. Finally, we note that MINPATH ’s
running time is quite small. The models are learned offline,
but the process usually requires only several minutes. Given
a model and the trail prefix, MINPATH finds a set of short-
cuts in 0.65 seconds on an average desktop PC. MINPATH ’s

4We limit M INPATH to only as many shortcuts as can reasonably
be displayed on the small screen of a wireless web browser.

3.42

3.13

2.75
2.63

2.74

2.47
2.31

2.72 2.70

2.45 2.45

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

A
ve

ra
g

e

o
f

lin
ks

 p
er

 t
ra

il

Unmodified Unconditional
model

Markov
model

Naïve Bayes
mixture model

Mixture of
Markov models

10 10 2525

1 shortcut
3 shortcuts

5 shortcuts

0 shortcuts

Figure 3:MinPath’s performance. Each column shows the
average number of links followed in a trail. Mixture model
columns are annotated with the number of clusters. Error-
bars denote 95% confidence intervals.

expected savings computation is substantially faster than and
positively complements PROTEUS’s more general approach.

5 Related work
Two closely related lines of research are IndexFinder[15] and
Digestor [3]. IndexFinder creates singular transformations
that appeal to all visitors at the site, in particular, generat-
ing new index pages— hubs of links to other pages on the
site. These pages are evaluated based strictly on the naviga-
tional usage patterns of past visitors — the pages requested
— irrespective of their content. Digestor optimizes pages for
small-screen display and uses a steepest-descent search simi-
lar to ours. However, Digestor rates the quality of a web page
simply by how much screen space it occupies, a metric that
encourages degenerate pages — a blank web page receives
the highest quality value. In contrast, our approach personal-
izes content per visitor, and evaluates the adaptations using a
principled, utility-maximizing approach.

The Web Browser Intelligence (WBI)[12] project pro-
poses an architecture of pluggable intermediaries between
web servers and clients. These intermediaries generate, trans-
form, and monitor the content they see as visitors browse, and
can be used either individually or in chains. An interesting
line of future research would be to integrate PROTEUS into
the WBI framework and investigate what what other interme-
diaries could be usefully composed with PROTEUS.

Countless other systems attack all or part of the web site
personalization problem; we mention briefly several related
systems. The Daily Learner[4] learns a Palm VII user’s pref-
erence for news content, by monitoring exactly which stories
the user requests from both the Palm device and the user’s
corresponding desktop computer. Mobasheret. al. [13] mine
web usage patterns and web content to personalize the vis-
itor experience, specifically, to recommend new content the
visitor may like to see. The PersonalClipper[7] allows visi-
tors to build their own custom views of web sites by record-
ing navigational macros using a VCR-metaphor and select-
ing components of the target page to view with the mobile
device. Letizia[11], WebWatcher[8], and adaptive web site
agents[14] guide visitors by suggesting pages they may like

to see. Our work differs from this earlier agent-based work in
that we concentrate on personalizing the web site for each vis-
itor, instead of merely suggesting which links to follow next,
and in the depth to which we mine the web logs for useful
access patterns.

6 Future work
Our approach to personalization as search offers many fruit-
ful lines of continued research; we are currently exploring
several directions. First, we are investigating how to incor-
porate MINPATH ’s cluster-based model of visitors into PRO-
TEUS’s expected utility framework. The models MINPATH
and PROTEUSemploy differ substantially: MINPATH builds
apredictivemodel of visitor behavior, while PROTEUSbuilds
a descriptivemodel of visitor behavior and interests. At the
heart of this work is applying the cluster-based techniques to
descriptive models.

Second, we are exploring how to automatically select con-
cise and descriptive anchor texts for shortcut links. PRO-
TEUS’s heuristics to select either a shortcut destination’s
<title > or <h1> text as the anchor are frequently in-
adequate. The title text of a shortcut destination may contain
redundant information. A page’s<h1> tag may contain too
little information, or may not exist at all. Instead, we propose
using an information-based approach to select anchor words
with the highest information content.

In a third direction we are considering incorporating guid-
ance from both the web master and the web visitor into the
personalizer’s search process. The web master can provide
suggestions, either directly or in the form of annotations in
HTML documents, on what personalizations are allowed or
disallowed and which might be the most useful. The web
visitor can express to the personalizer certain aspects of the
visitor model, perhaps as a list of keywords the visitor finds
interesting, or a set of pages that the visitor wants to be able
to easily find.

Finally, we are expanding the set of transformations that
PROTEUS can make to a site. Specifically, we are investi-
gating a transformation that can aggregate blocks of content
from many pages into a single view for the visitor. Such a
transformation can allow PROTEUSto effectively create “por-
tal pages” that integrate information from several separate re-
sources on a web site. The challenge of this work lies in ap-
propriately melding blocks of content into a cohesive whole
by carefully analyzing the donor and recipient documents for
clues about their presentation.

7 Conclusions
As the community of mobile web visitors grows, so grows the
need for web sites to cater to visitors off the desktop and off
broadband network connections. We propose building web
site personalizers to meet the need of this community, and
this paper gives an overview of our approach to personalizers
as utility-maximizing search. Initial results from our person-
alizers, PROTEUSand MINPATH, indicate that this approach
holds great promise for improving the mobile web experi-
ence. In the future we plan to extend their capabilities and
continue to improve browsing for mobile visitors.

References
[1] C. R. Anderson, P. Domingos, and D. S. Weld. Adaptive

web navigation for wireless devices. inProc. of the 17th
Intl. Joint Conf. on Art. Int., 2001.

[2] C. R. Anderson, P. Domingos, and D. S. Weld. Person-
alizing web sites for mobile users. InProc. of the 10th
Intl. WWW Conf., 2001.

[3] T. W. Bickmore and B. N. Schilit. Digestor: Device-
independent access to the World Wide Web. InProc. of
the 6th Intl. WWW Conf., 1997.

[4] D. Billsus, M. J. Pazzani, and J. Chen. A learning agent
for wireless news access. InProc. of the Conf. on Intel-
ligent User Interfaces, 2000.

[5] I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and
S. White. Visualization of navigation patterns on a web
site using model based clustering. InProc. of the 6th.
Intl. Conf. on Know. Disc. and Data Mining, 2000.

[6] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and
D. Freeman. AutoClass: A Bayesian classification sys-
tem. InProc. of the 5th Intl. Conf. on Mac. Learning,
1988.

[7] J. Freire and B. Kumar. Web services and information
delivery for diverse environments. InProc. of the VLDB
Wkshp. on Tech. for E-Services, 2000.

[8] T. Joachims, D. Freitag, and T. Mitchell. WebWatcher:
A tour guide for the World Wide Web. InProc. of the
15th Intl. Joint Conf. on Art. Int., 1997.

[9] R. L. Keeney and H. Raiffa.Decisions with Multiple
Objectives: Preferences and Value Trade-Offs. Wiley,
New York, NY, 1976.

[10] J. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. InProc. 9th ACM-SIAM Symp. on Discrete
Alg., 1998.

[11] H. Lieberman. Letizia: An agent that assists web brows-
ing. In Proc. of the 14th Intl Joint Conf. on Art. Int.,
1995.

[12] P. P. Maglio and R. Barrett. Intermediaries personalize
information streams.Comm. of the ACM, 43(8), 2000.

[13] B. Mobasher, H. Dai, T. Luo, Y. Sun, and J. Zhu. Com-
bining web usage and content mining for more effec-
tive personalization. InProc. of the Intl. Conf. on E-
Commerce and Web Technologies (ECWeb), 2000.

[14] M. J. Pazzani and D. Billsus. Adaptive web site agents.
In Proc. of the 3rd Intl. Conf. on Auto. Agents, 1999.

[15] M. Perkowitz and O. Etzioni. Towards adaptive web
sites: Conceptual framework and case study.Art. Int. J.,
118(1–2), 2000.

[16] A. Wexelblat and P. Maes. Footprints: History-rich tools
for information foraging. InProc. of ACM CHI Conf. on
Human Factors in Comp. Sys., 1999.

