
A Framework for Model-Based Repair

Ying Sun & Daniel S. Weld�

Department of Computer Science and Engineering, FR-35
University of Washington

Seattle, WA 98195
ysun, weld@cs.washington.edu

Abstract

We describe irs, a program that combines partial-

order planning with gde-style, model-based diagno-

sis to achieve an integrated approach to repair. Our

system makes three contributions to the �eld of diag-

nosis. First, we provide a uni�ed treatment of both

information-gathering and state-altering actions via

the uwl representation language. Second, we describe

a way to use part-replacement operations (in addition

to probes) to gather diagnostic information. Finally,

we de�ne a cost function for decision making that ac-

counts for both the eventual need to repair broken

parts and the dependence of costs on the device state.

Introduction

Although researchers have investigated model-based
diagnosis for many years, only recently has attention
turned to what should, perhaps, have been the cen-
tral question all along: repair. When �eld-replaceable
parts contain multiple components, focusing on deter-
mining the exact component responsible for faulty be-
havior can be counterproductive, since the �nal probes
may not distinguish between repair actions. Further-
more, most diagnosis research has assumed that all
probes have the same cost, leading to diagnostic strate-
gies guided solely by estimated information gains.
In this paper we argue that both of these problems

are best addressed by integrating theories of perception
and action. In other words, we claim that repair is best
thought of as a marriage of diagnosis and planning.
The planner needs to call diagnosis as a subroutine
to determine which observations will best improve its
incomplete information, and the diagnoser needs to call

�

This research was funded in part by National Science

Foundation Grant IRI-8957302, O�ce of Naval Research

Grant 90-J-1904, and a grant from the Xerox corpora-

tion. Our implementation is built on pieces of code that

were written in part by Johan de Kleer, Denise Draper,

Ken Forbus, Steve Hanks, and Scott Penberthy. In addi-

tion to those mentioned above, we bene�ted from conver-

sations with and comments by Oren Etzioni, Walter Ham-

scher, Nick Kushmerick, Neal Lesh, Mark Shirley, and Mike

Williamson.

the planner to estimate the cost of observations that
are not directly executable (e.g., probing a location
inside a closed cabinet). A rational approach to repair
requires accounting for both the cost/bene�t tradeo�
of actions as well as the synergistic changes in device
state that allow one action to facilitate others.
In this paper, we describe an integrated repair sys-

tem called irs
1, and discuss three important aspects

of its operation.

� Fundamentally, there is no di�erence between ac-
tions that gather information (i.e., probes) and ac-
tions that change the device state; they should
be treated uniformly. This allows representa-
tion of actions that have both state-changing and
information-gathering aspects. When estimating the
cost of an action that is not directly executable, an
agent should add the costs of the primitive actions
in a plan that achieves the desired e�ect.

� The ability to replace parts and repeat observa-
tions provides new diagnostic opportunities, similar
to those provided by test generation systems. Our
integrated theory of action and observation allows
a diagnostic agent to combine replacement and ob-
servation actions synergistically. A comprehensive
utility model selects between strategies.

� When estimating the cost of an operation, it is cru-
cial to consider the eventual cost of repairing broken
parts, not just the cost of diagnosis.

The next section of the paper de�nes an action rep-
resentation language that distinguishes between obser-
vations of and changes to the device state. Then we
show how to extend gde to handle diagnosis of devices
with changing state using both traditional observations
as well as replacement operations. We decompose our
cost function into two parts: the cost of executing the
substeps of the current operation, and the expected
cost of future diagnosis and repair operations. We show
how the ucpop planner (Penberthy and Weld 1992)
can be used to calculate this cost function, and we

1
irs stands for Integrated Repair System, but its con-

cern with cost evokes images of another basis for the

acronym.



illustrate our algorithm on two simple refrigerator (Al-
thouse et al. 1992) examples. After discussing the
implementation, we close with a discussion of related
and future work.

Modeling Action and Change

The �rst step in creating a uni�ed theory of repair is to
select a generalized model of action that distinguishes
between causal and information-gathering e�ects. For
example, it is crucial to di�erentiate between an ob-
servation that the voltage of a node is zero and an
action that grounds the node. Even though the agent
knows the voltage is zero in both cases, the e�ects are
very di�erent. Traditional diagnosis systems do only
the former, while most implemented planners handle
only the latter; an integrated repair system needs both.
Even though a whole AI research sub�eld is devoted to
representations of action (McCarthy and Hayes 1969),
most existing theories do not meet our needs:

1. Ability to represent incomplete information.

2. Distinguish between observations (which increase in-
formation, but don't change the world state) and
actions with causal e�ects.

3. Computationally tractable.

For example, although the strips representation
satis�es the last criterion, it assumes complete informa-
tion and thus renders the notion of observation mean-
ingless. (Moore 1985) develops a �rst-order modal
logic that codi�es actions that supply an agent with
information, and (Morgenstern 1987) presents a more
expressive language that allows actions to have knowl-
edge preconditions, but neither researcher considers al-
gorithms for generating plans using their models of ac-
tion.
Our uwl representation (Etzioni et al. 1992) is per-

fectly suited to the needs of repair. An extension of
strips that handles incomplete information, uwl was
originally designed to represent unix commands for a
Softbot (Etzioni and Segal 1992). The novel aspects of
the language include annotations to di�erentiate causal
from observational e�ects and informational from cau-
sational goals, T, F, and U truth values, and run-time
variables.
For example, one might write the goal or precondi-

tion of setting the voltage of V to 220 with (satisfy

(value-of V 220)) while the goal of determining
the current voltage at that probe point can be writ-
ten as (findout (value-of V ?x)). Similarly, the
e�ect of an action that grounds a node might be
(cause (value-of V 0)) while a step that just ob-
serves the value without changing it would be written
as (observe (value-of V !y)). In these examples,
?x denotes a plan-time variable whose value may be
constrained during subsequent planning decisions (Ste-
�k 1981), but !y denotes a run-time variable that is
treated as an (unknown) constant by the planner and

whose value is only established when the plan is ex-
ecuted. Abstractly, a uwl step schemata contains a
step name, a set of preconditions, and a set of post-
conditions (with associated cost). Preconditions and
goals are annotated with satisfy or findout; post-
conditions are annotated with cause and observe. Ini-
tial conditions are represented with a dummy step that
has no preconditions and whose postconditions cause
all propositions to take on some truth value, U in the
case of incomplete information. Complete details and
formal semantics are provided in (Etzioni et al. 1992).
To illustrate the use of uwl, we show a simpli-

�ed version of part of our refrigerator domain theory.
When the argument ?x of a measure step is an inter-
nal voltage, the probe cost is 5.2 A measure step also
causes the proposition (probed ?x) to be true and
sets ?x to !v, a run-time variable whose value will be
determined during plan execution.

(define-step (measure ?x)

:when (and (satisfy (internal-voltage ?x))

(satisfy (not (backplane-on))))

:effect (and (cause (probed ?x))

(observe (value-of ?x !v)))

:cost 5)

Diagnosis with Changing State

As discussed in (Sun and Weld 1992), a variety of ar-
chitectures are possible for a repair agent. We choose
to put a diagnostic reasoner at the top level with the
planner as a subroutine. The diagnosis code maintains
a model of the most probable modes of the device's
components (candidate sets) and uses the planner to
suggest useful action sequences. The most utile ac-
tion is chosen, the device state and candidate sets are
updated, and the process is repeated until the stop
criterion is satis�ed.
In the remainder of this section, we describe how this

planner allows estimation of the costs of di�erent oper-
ations in a manner that accounts for both the eventual
repair need and the state-dependence. We illustrate
our algorithm on two troubleshooting episodes with
a domestic refrigerator (Althouse et al. 1992) whose
schematic is shown in Figure 1.

Calculating Costs

Suppose that the refrigerator is in state S1: the refrig-
erator door is closed, the backplane is attached, the
refrigerator is located near the wall, and the power is
on; the temperature inside the refrigerator is too warm
yet the compressor is not running. In this example, it
will turn out that the actual fault is the thermostat
(which is stuck open), although irs, of course, does
not know this yet. Assuming that the power supply is
ok and every component has identical prior failure rate
(pfr = 0:001), the most probable candidates are:

2
Measuring the compressor status or other ?x might in-

cur a di�erent cost and have di�erent preconditions.



Figure 1: Wiring diagram for a domestic refrigerator

p([thermostat1]) = p([relay1]) =
p([compressor1]) = p([guardette1]) ' 0:25

To �nd the best operation Oi, various costs must be
computed and compared. irs employs a cost function
using n-step lookahead:

Ctotal(Oi;S;n) = Cexec(P(S; Oi)) + (1)
P

j p(Sij)EC(Sij;n� 1)

The total cost of executing operation Oi in state S
as estimated using n-step lookahead is equal to the
cost of directly executing a plan that achieves the op-
eration plus the weighted sum of the estimated ex-
pected costs of the resulting outcomes. P denotes the
planning function that takes an initial state and goal
conjunct (encoding a diagnosis or repair operation) as
arguments and returns a plan (linearized sequence of
primitive actions). Thus, Cexec(P(S; Oi)) denotes the
cost of executing a plan that achieves an operation Oi

(e.g., a probe or a replacement) given device state S.
The expected cost of future operations depends on the
outcome of the current operation. For each possible
state Sij resulting from executing the plan for Oi, we
compute the expected cost with (n � 1)-step looka-
head; the cost is then weighted by the probability of
each outcome.

The following recursive function computes the ex-
pected cost of device state S with n-step lookahead:

EC(S;n) = 0 if Reliab(S) > 1� � (2)

EC(S;n) = ECrepair(S; C) + ECdiag(S; C) (3)

=
X

c2C

p(c)Cexec(P(S;<(c))) +

ECop(C)[�
X

c2C

p(c)log(p(c))]

if n = 0

EC(S;n) = min
Oi

Ctotal(Oi;S;n) (4)

if n > 0

The function Reliab(S) estimates the reliability of
the device in state S; repair terminates when the reli-
ability is above the threshold 1 � �. In the base case,
when the lookahead step n = 0, irs estimates the re-
maining costs for candidate discrimination and part
repair, and sums them. To estimate the repair cost,
irs iterates through the candidates and asks the plan-
ner for a plan that replaces all the parts containing
a component in that candidate; the cost of that plan
is weighted by the probability of the candidate. In
the equation above, C denotes the set of candidates in
state S; <(c) denotes the conjunctive goal formula that
speci�es \Replacement" of all the parts with a compo-
nent in candidate c. The remaining repair cost also
includes the cost of placing any removed but working
parts back in the device. The remaining cost for par-
titioning the candidates is estimated using minimum
entropy, where ECop(C) is the estimated average cost
of such an operation (which may expand to multiple
actions). When n > 0, irs estimates the cost to be the
minimum cost of the possible operations at each step.
For example, to estimate the cost of probing the

status of condenser-fan1, irs calls the planner with
the goal (findout (value-of status-of-cond-fan1

!vcf)) and the initial state of the refrigerator. In this
case the planner returns3 a plan, 
1, with execution
cost Cexec(
1) = 4:

(move-refrigerator-away-from-wall) cost = 2

(measure status-of-condenser-fan1) cost = 2

There are two possible outcomes of probing the sta-
tus of condenser-fan1: with probability 0:5 !vcf

is on, which results in most probable candidates
p([relay1]) = p([compressor1]) ' 0:5; and with prob-
ability 0:5 !vcf is off, which results in most proba-
ble candidates p([thermostat1]) = p([guardette1]) '
0:5. If 1-step lookahead is used, irs arrives at the base
case at this point.
When condenser-fan1 is on, the estimated repair

cost is 56:

(disconnect-power) cost = 1

(remove-backplane) cost = 20

(remove-part relay1/compressor1) cost = 6

(place-part relay2/compressor2) cost = 6

(attach-backplane) cost = 20

(move-refrigerator-back-to-wall) cost = 2

(connect-power) cost = 1

When condenser-fan1 is off, the estimated re-
pair cost is 18 if thermostat1 turns out to be broken

3
Space limitations preclude a complete description of

our ucpop partial-order planning algorithm, but it has sev-

eral desirable attributes: sound, complete, and e�cient.

The details can be found in (Penberthy and Weld 1992).



(p ' 0:5) or 56 if guardette1 turns out to be bro-
ken (p ' 0:5), resulting in an average of 37. In both
cases, the estimated cost to discriminate among the
remaining candidates is 3:0 � [�(2 � 0:5log0:5)] = 3:0,
where 3:0 is the estimated average cost of such an op-
eration. Therefore, the estimated total cost of diagno-
sis and repair starting with a probe to the status of
condenser-fan1 is 4+(0:5�56+0:5�37)+3:0 = 53:5.

All other operations cost more at this point, so irs

chooses to probe the status of condenser-fan1.

The plan 
1 is executed, putting the device into state
S2. condenser-fan1 is observed to be off, causing the
set of most probable candidates to be updated to:

p([thermostat1]) = p([guardette1]) ' 0:4995
p([relay1; cond-fan1]) ' 0:0005
p([compressor1; cond-fan1]) ' 0:0005

At this point, the costs of all the possible opera-
tions are computed again. In addition to considering
the option of probing the status of thermostat1 or
guardette1, irs also considers the possibility of re-
placing one of the components. In this case, replacing
thermostat1 happens to be the cheapest operation,
with a plan, 
2, of cost Cexec(
2) = 16 and estimated
total cost Ctotal = 52 :

(disconnect-power) cost = 1

(open-refrigerator-door) cost = 1

(remove-part thermostat1) cost = 6

(place-part thermostat2) cost = 6

(close-refrigerator-door) cost = 1

(connect-power) cost = 1

Executing this plan leads the device to state S3.

Computing the costs of all the possible operations
reveals that probing the status of compressor1 (i.e.,
checking if it is running) has the lowest total cost, so
the corresponding plan, 
3, is executed:

(measure status-of-compressor1) cost = 1

The device state is updated to S4. Observ-
ing compressor1 running exonerates guardette1 and
yields the �nal candidate:

p([thermostat1]) ' 0:999

Since thermostat1 has already been replaced, irs
simply moves the refrigerator back to the original lo-
cation. At this point, the reliability of the device is
0:999, which is above the preset threshold 0:99, so we
are done.

Table 1 summarizes the changing reliability of the
device, the possible operations, their costs, and the
candidates generated from the executed operations. (If
a probe is executed, the value measured is shown after
an arrow.) Note how irs handles the state-dependent
probe costs and takes into account the eventual repair
cost throughout the diagnosis process.

A Di�erent Example

Interestingly, if we adjust the prior failure rates of the
components such that the failure rate of the guardette
is three times higher than that of the other compo-
nents, irs would generate a di�erent sequence of oper-
ations. After irs measures condenser-fan1 to be off,
the most probable candidates are p([guardette1]) '
0:75 and p([thermostat1]) ' 0:25. At this point, re-
placing thermostat1 is the cheapest operation to exe-
cute because there is no need to remove the backplane,
which is an expensive action. However, irs real-
izes that other operations have cheaper total costs
when taking into account projected diagnosis and re-
pair operations. Due to the higher failure rate of the
guardette, the backplane will probably need to be
opened anyway. Thus, irs correctly chooses to probe
the status of guardette1 before replacing any compo-
nents as summarized in Table 2.

Representing Time-Varying State
Due to the inadequacy of the notion of minimal di-
agnoses, we implemented a diagnosis engine based on
the alibis principle proposed by (Raiman 1992). As a
complement to minimal con
icts, minimal alibis spec-
ify conditions such as a component must be working
if n other components are known to be working. irs

works by incrementally generating minimal alibis, min-
imal con
icts, and the corresponding set of prime di-
agnoses.
In addition, we were forced to extend the nor-

mal component model to handle devices with chang-
ing state. Assumptions such as ok(relay1) are un-
changed because of the non-intermittency assump-
tion. However, irs's structural primitives require a
temporal component. We distinguish between the
role a component plays in a device (i.e., the slot it
occupies) and the device instance itself. irs's sys-
tem description is written in terms of roles (e.g., the
relay-function, etc.) A separate set of axioms indi-
cates what instances �ll what roles at what times, e.g.,
(fills-role relay-function relay1 t0). The as-
sumptions that distinguish possible worlds involve in-
stances, e.g., ok(relay1), and time tokens.
With these extensions, irs can reason about swap-

ping out a part, collecting evidence with a replacement
part, swapping the original back in, collecting more ev-
idence and so on. As a result, irs can combine evidence
collected at multiple times and involving di�erent sets
of component instances.
The irs implementation has been run on the refrig-

erator example and several others, including a modi�ed
3-inverter example (Sun and Weld 1992). It took ap-
proximately 2 minutes to run the refrigerator example
on a sun sparc.

Related Work
Since irs's behavior is to choose the operation with
the maximum expected utility, it could be seen as a



most probable relia- possible exec total operation
candidates bility operations cost cost executed

p([thermostat1]) ' .25 0 probe cond-fan1-status 4 53.5 X ! o�

p([relay1]) ' .25 probe relay1-status 27 67.1

p([compressor1]) ' .25 probe guardette1-status 27 67.1

p([guardette1]) ' .25 ...

p([thermostat1]) ' .50 0 replace thermostat1 16 52.0 X

p([guardette1]) ' .50 probe guardette1-status 25 62.0

... replace guardette1 34 70.0

...

p([thermostat1]) ' .50 .495 probe compressor1-status 1 37.0 X ! on

p([guardette1]) ' .50 probe cond-fan1-status 2 38.0

... ...

pfr(thermostat2)=.001

p([thermostat1]) ' .999 .999 move refrigerator back 2 2.0 X

DONE

Table 1: pfr(all components) = 0.001

most probable relia- possible exec total operation
candidates bility operations cost cost executed

p([guardette1]) ' .500 0 probe cond-fan1-status 4 56.3 X ! o�

p([relay1]) ' .167 probe guardette1-status 27 65.7

p([compressor1]) ' .167 ...

p([thermostat1]) ' .167

p([guardette1]) ' .75 0 probe guardette1-status 25 61.5 X ! open

p([thermostat1]) ' .25 replace guardette1 34 63.0

... replace thermostat1 16 69.0

...

p([guardette1]) ' 1.0 0 replace guardette1 34 36.0 X

p([guardette1]) ' 1.0 .997 move refrigerator back 2 2.0 X

pfr(guardette2)=.003 DONE

Table 2: pfr(guardette) = 3 * pfr(other components)

straightforward application of decision theory to the re-
pair problem. From this perspective, our contribution
is a program that automates both the identi�cation of
alternatives being compared and the cost estimation
for those alternatives. In the past this problem (called
decision analysis) has been left as a task that requires
human solution (Howard et al. 1976). See (Breese et
al. 1991) for other work on automating the construc-
tion of decision models.
The standard cost evaluation in model-based diag-

nosis is based on the number of probes needed to dis-
tinguish a set of hypotheses. Although (Raiman et al.
1991) and (de Kleer et al. 1991) generalize this no-
tion, both approaches assume �xed probe costs that
are speci�ed a priori, whereas the costs in our eval-
uation function are state-dependent. Compared with
some work on allowing multiple observation sets and
diagnosing devices with changing states (Raiman et al.
1991, Hamscher 1991, Friedrich and Lackinger 1991,
Ng 1991), our focus is on extending an intelligent agent
to plan for state change rather than having a passive
agent diagnose devices with dynamic behavior. Sev-
eral researchers have attempted to represent system
purpose explicitly and integrate repair with diagnosis.
For example, (Friedrich et al. 1991) formalizes a re-

pair process with time-dependence, (Poole and Provan
1991) focuses on the utility and granularity associated
with the repair actions, while (McIlraith and Reiter
1991) discusses how to recognize the relevance of a
probe given a goal; but none of these researchers in-
corporate planning explicitly into their framework. We
use planning explicitly to estimate the costs and exe-
cute diagnosis and repair operations. We avoid ex-
plicit representation of system purpose because repair
(replacement) is already intermingled with the diagno-
sis process. Recon�guration might be an interesting
extension for irs; we plan to investigate (Crow and
Rushby 1991) more carefully. Planning to minimize
breakdown costs is another ability that complements
irs's strengths; it would be straightforward to incor-
porate (Friedrich et al. 1992)'s time-dependent cost
function into our system, but their greedy algorithms
are unlikely to extend gracefully to handle the state-
dependent probe costs addressed by irs.
Our research is also similar to work on test genera-

tion programs which may also be thought of as a kind
of planner that needs to distinguish between control-
ling and observing the node values in a circuit. Unlike
our situation, the goal/subgoal graph for test genera-
tion is largely static; this allows prede�nition and op-



timization which are impossible in our case, but see
(Shirley 1986, Shirley 1988).

Conclusion

Wehave reported on irs, our preliminary integration of
diagnostic and planning algorithms, and argued that it
represents progress towards a general theory of repair.
Our contributions are three-fold:

� A uni�ed treatment of information-gathering and
state-altering actions with the uwl action represen-
tation language.

� A method for using part-replacement operations (as
well as simple probes) to gather diagnostic informa-
tion.

� Decision making based on a cost function that takes
into account both the eventual cost of repair and the
dependence of cost on device state.

In future work, we hope to investigate heuristics for
approximating Ctotal, incorporate the cost of com-
putation into the cost function, and integrate uwl's
treatment of incomplete information with ucpop's
ability to handle universal quanti�cation.

References

A. D. Althouse, C. H. Turnquist, and A. F. Brac-
ciano. Modern Refrigeration and Air Conditioning.
The Goodheart-Willcox Company, Inc., 1992.

J. Breese, R. Goldman, and M. Wellman, editors.
Notes from the Ninth National Conference on Arti�-
cial Intelligence (AAAI-91) Workshop on Knowledge-
Based Construction of Probabilistic and Decision
Models. AAAI, July 1991.

Judith Crow and John Rushby. Model-Based Recon-
�guration: Toward an Integration with Diagnosis. In
Proceedings of AAAI-91, pages 836{841, July 1991.

J. de Kleer, O. Raiman, and M. Shirley. One Step
Lookahead is Pretty Good. In Proceedings of the 2nd
International Workshop on Principles of Diagnosis,
October 1991.

Oren Etzioni and Richard Segal. Softbots as testbeds
for machine learning. In Working Notes of the
AAAI Spring Symposium on Knowledge Assimilation,
Menlo Park, CA, 1992. AAAI Press.

Oren Etzioni, Steve Hanks, Daniel Weld, Denise
Draper, Neal Lesh, and Mike Williamson. An Ap-
proach to Planning with Incomplete Information. In
Proceedings of KR-92, October 1992.

G. Friedrich and F. Lackinger. Diagnosing Tempo-
ral Misbehavior. In Proceedings of IJCAI-91, August
1991.

G. Friedrich, G. Gottlob, and W. Nejdl. Formalizing
the Repair Process. In Proceedings of the 2nd Interna-
tional Workshop on Principles of Diagnosis, October
1991.

G. Friedrich, , and W. Nejdl. Choosing Observations
and Actions in Model Based Diagnosis / Repair Sys-
tems. In Proceedings of KR-92, October 1992.

W.C. Hamscher. Modeling Digital Circuits for Trou-
bleshooting. Arti�cial Intelligence, 51(1{3):223{272,
October 1991.

R. Howard, J. Matheson, and K. Miller. Readings in
decision analysis. Stanford Research Institute, Menlo
Park, CA, 1976.

J. McCarthy and P. J. Hayes. Some Philosophical
Problems from the Standpoint of Arti�cial Intelli-
gence. In Machine Intelligence 4, pages 463{502. Ed-
inburgh University Press, 1969.

S. McIlraith and R. Reiter. On Experiments for Hy-
potherical Reasoning. In Proceedings of the 2nd In-
ternational Workshop on Principles of Diagnosis, Oc-
tober 1991.

R.C. Moore. A Formal Theory of Knowledge and Ac-
tion. In Formal Theories of the Commonsense World.
Ablex, 1985.

Leora Morgenstern. Knowledge preconditions for ac-
tions and plans. In Proceedings of IJCAI-87, 1987.

H.T. Ng. Model-based, Multiple Fault Diagnosis of
Dynamic, Continuous Physical Devices. IEEE Expert,
December 1991.

J.S. Penberthy and D. Weld. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In Pro-
ceedings of KR-92, pages 103{114, October 1992.

D. Poole and G. Provan. Use and Granularity in
Consistent-Based Diagnosis. In Proceedings of the 2nd
International Workshop on Principles of Diagnosis,
October 1991.

O. Raiman, J. de Kleer, V. Saraswat, and M. Shirley.
Characterizing Non-intermittent Faults. In Proceed-
ings of AAAI-91, July 1991.

O. Raiman. The alibi principle. In W. Hamscher,
L. Console, and J. de Kleer, editors, Readings in
Model-Based Diagnosis, pages 66{70. Morgan Kauf-
mann, 1992.

M. Shirley. Generating Tests by Exploiting Designed
Behavior. In Proceedings AAAI-86, pages 884{890,
August 1986.

M. Shirley. Generating Circuit Tests by Exploiting
Designed Behavior. AI-TR-1099, MIT AI Lab, De-
cember 1988.

M. Ste�k. Planning with Constraints (MOLGEN:
Part 1). Arti�cial Intelligence, 14(2), 1981.

Y. Sun and D. Weld. Beyond Simple Observation:
Planning to Diagnose. In Proceedings of the 3rd Inter-
national Workshop on Principles of Diagnosis, pages
67{75, October 1992.


