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“I have always wished that my computer would be as easy 
to use as my telephone. My wish has come true. I no longer 
know how to use my telephone.” 

– Bjarne Stroustrop (originator of C++)  

ABSTRACT 
As household appliances grow in complexity and sophistication, 
they become harder and harder to use, particularly because of 
their tiny display screens and limited keyboards. This paper 
describes a strategy for building natural language interfaces to 
appliances that circumvents these problems. Our approach 
leverages decades of research on planning and natural language 
interfaces to databases by reducing the appliance problem to the 
database problem; the reduction provably maintains desirable 
properties of the database interface. The paper goes on to describe 
the implementation and evaluation of the EXACT interface to 
appliances, which is based on this reduction. EXACT maps each 
English user request to an SQL query, which is transformed to 
create a PDDL goal, and uses the Blackbox planner [13] to map 
the planning problem to a sequence of appliance commands that 
satisfy the original request. Both theoretical arguments and 
experimental evaluation show that EXACT is highly reliable. 

Categories and Subject Descriptors 
I.2.7 [Natural Language Processing]: Language Parsing and 
Understanding. 

General Terms: Reliability, Human Factors. 

Keywords: Natural language interface, database, appliance, 
planner. 

1. INTRODUCTION AND MOTIVATION 
The exponential drop in microprocessor cost over time has 
enabled appliance manufacturers to pack increasingly complex 
feature sets into appliances such as phones, TVs, microwave 
ovens, MP3 players, and more. Networked homes of the future 
will allow even more complex functionality. Yet even today, 
consumers are typically unable or unwilling to decipher 
increasingly thick and all-too-often incomprehensible user 
manuals. As a result, they often limit themselves to only a small 

fraction of their appliances’ capabilities. Humorist Dave Barry 
captured this sentiment when he wrote: 

“I have a feature-packed telephone with 43 buttons, at least 
20 of which I am afraid to touch. This phone probably can 
communicate with the dead, but I don’t know how to 
operate it, just as I don’t know how to operate my TV, 
which has features out the wazooty and requires THREE 
remote controls...” [5] 

Most appliances have a very small screen and a limited set of 
buttons compared with a personal computer.  Thus, standard 
Graphical User Interface (GUI) techniques such as browsing, 
menu trees, and online help are far less appealing for appliances. 
It is unlikely that these form factors will change because they are 
dictated by the desired size, weight, and “look” of the appliance. 
As the TV example illustrates, the problem of appliance interfaces 
grows more acute when multiple devices1 interact – a scenario 
that is becoming increasingly common as the era of pervasive 
computing approaches. 
Clearly, a conversational interface to appliances is worth 
investigating. In addition to circumventing the form factor issues 
of a GUI, a conversational interface would allow remote, hands 
free operation of appliances. Imagine walking into your home and 
saying, “Phone: any messages? Thermostat: raise the temperature 
5 degrees... VCR: record Seinfeld.” As devices become 
networked, one could even go to the living room and say “Lights: 
flicker when the microwave is done.’’ 
The field of speech recognition has made great strides in the last 
10 years and continues to do so. However, many speech interfaces 
are still limited to single word commands. We posit that a 
conversational speech interface would be far more desirable. 
While natural language interfaces have been studied extensively 
in AI, particularly in the context of databases [4], natural language 
interfaces to household appliances have received scant attention to 
date. Our paper raises the simple question: how do we build a 
Natural Language Interface to Appliances (NLIA)? 
An NLIA maps an English sentence (e.g., “defrost 2 pounds of 
corn”) to a sequence of appliance commands that aims to satisfy 
the original request.2 While NLIAs are largely unexplored, there 
has been more than thirty years of research on Natural Language 
Interfaces to DataBases (NLIDBs). An NLIDB maps an English 
sentence to a corresponding SQL statement.  

                                                 
1 We use the terms “appliance” and “device” interchangeably. 
2 Our NLIA is not a full-blown conversational interface; the NLIA focuses 
on the task of reliably understanding single sentences. It is best viewed as 
a powerful module to be integrated into a full-blown dialog system. 
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Can we leverage the body of knowledge accumulated in decades 
of studying NLIDBs to help in designing and building NLIAs? As 
it turns out, we are able to make a strong claim in this regard, 
which is our central insight: for a broad class of devices, which 
appears to include all household appliances, the problem of NLIA 
is provably reducible to the NLIDB problem. That is, given an 
NLIDB, a planner, and a model of an appliance, we are able to 
automatically generate an NLIA for the appliance. We 
substantiate our claim both formally and experimentally. 
The remainder of the paper is organized as follows. Section 2 
discusses the framework for our problem, including design 
requirements and significant hurdles. Section 3 presents an 
example that we will refer to and develop throughout the paper, 
and it also discusses some simplifying assumptions. In section 4, 
we illustrate the reduction method and state the relevant 
theoretical results and arguments. Section 5 describes the EXACT 
implementation – a working NLIA based on the reduction method 
– and section 6 reports on experiments measuring EXACT’s 
performance. Sections 7 and 8 present a discussion of directions 
for future research and related work in the areas of NLIDB, 
planning, and dialogue interfaces. 

2. GUIDING PRINCIPLES 
Four principles underlie our approach to designing a reliable 
NLIA. We insist that our NLIA be predictable, process high level 
goals correctly, respond appropriately to impossible requests, and 
generate safe plans. We explain these principles in more detail 
below. 

2.1 Predictability 
As Norman and Schneiderman have argued [17, 24], predictability 
is an essential feature of a user interface; without it, users will lose 
the essential feeling of control. Norman and Schneiderman have 
taken their arguments as an indictment of the intelligent user 
interface paradigm. However, we can take the need for predictable 
interfaces to heart without giving up on intelligent user interfaces. 
Let’s consider the issue in the context of NLIAs. 
There are two main aspects to an NLIA: understanding what the 
user wants, and carrying out her request. If an NLIA can reliably 
achieve these two tasks, then the user will feel in control. As we 
explain below, EXACT uses a sound and complete NLIDB to 
understand the user’s goal, and a sound and complete planner to 
guide action. As section 4.2 will show, the combination of 
guarantees on the NLIDB and the planner yields a sound and 
complete NLIA. Of course, these guarantees, while helpful, are no 
panacea: if the request is ambiguous, some sort of clarification 
dialog will be necessary. However, our experimental results 
(section 6) provide preliminary evidence that ambiguities are rare 
and that EXACT is reliable and predictable in practice. 

2.2 Complex And Impossible Requests 
An NLIA insulates the user from the peculiarities of an 
appliance’s command language and obviates the unpleasant task 
of reading and re-reading appliance manuals. As a result, there 
may be some mismatch between the user’s mental model of 
appliance capabilities and the appliance’s exact command set. 
This mismatch can come in at least two flavors. First, the user’s 
request may require a sequence of commands to satisfy it, instead 
of a single command. We refer to such requests as goals. Second, 
the user may issue a request that is impossible to satisfy. We refer 
to such requests as impossible requests. For example, the KX-
TC1040W phone does not have a ‘mute’ button, so a user’s 

request to mute a call has to be declined. In general, when the user 
is not looking at the device, she misses the physical cues that 
suggest how the device can be used. We expect our NLIA to 
handle both goals and impossible requests appropriately. In the 
case of goals, the user need not be aware that her request 
translates into a sequence of appliance commands – the NLIA 
ought to make that transparent to the user. In the case of 
impossible requests, the NLIA ought to respond in a way that 
makes clear that the request was understood, but cannot be 
satisfied (e.g., as in HAL’s infamous line “I can’t do that, Dave”). 

2.3 Safety 
When processing a complex request with a search-based planner, 
one must confront the possibility that the resulting plan, while 
achieving a user’s goal, may have unintended and harmful 
consequences. Consider, for example, the goal “delete my old 
messages”; because our answering machine has a single command 
for deleting all messages (both old and new), a simple plan might 
have surprising and unintended consequences. Since a powerful 
NLIA can cause considerable havoc if not restrained, some 
mechanism for controlling side-effects is crucial.   
In 1994, Weld and Etzioni [28] introduced the ideas of safety and 
tidiness in planning, ideas that were meant to restrain intelligent 
agents from harming people or their property. Safety constraints 
tell the planner never to violate certain conditions. For example, 
“dont-disturb(written.to.tape(f) or isa(f, file))” tells a planner that 
no file can be deleted unless it is already written to tape. 
Unfortunately, these kinds of constraints are often too strict for 
our domain. We do not want to tell the planner that it can never 
delete a message. Rather, we want to constrain the planner so that 
it never deletes a message unless the user tells it to.  
Intuitively, one would like to tell the planner to minimize side-
effects that were not requested by the user, but Weld and Etzioni  
recognized that obeying such a constraint is intractable in the 
worst case, since it requires reasoning over the (infinite) space of 
all plans to find the minimum. Instead, they proposed tidiness 
constraints, which tell the agent to restore the state of the world as 
much as possible to the way it was in the state before the plan 
started executing; “restore(compressed(file))”, for example, tells 
the agent’s planner to recompress as many files as possible after 
achieving the user’s main goal. When actions are neatly 
reversible, tidiness constraints often cause the planner to achieve 
the intuitively desirable minimization. Unfortunately, many 
appliances have irreversible actions, like deleting messages on an 
answering machine, or cooking a dish in a microwave. Thus 
tidiness is not well suited for our domain.  Section 4.1 explains 
how we define and enforce a new kind of safety constraint that is 
a good fit for the appliance domain.  

3. EXAMPLE AND SIMPLIFYING 
ASSUMPTIONS 
In order to illustrate the ideas underlying our reduction of an 
NLIA to an NLIDB, we use the Panasonic KX-TC1040W 
telephone/answering machine as a running example throughout 
the paper. Our model of the phone system includes 37 actions and 
involves a database schema with 5 relations. The relations contain 
anywhere from two attributes for the answering machine 
messages (pictured below in table 1) to eleven attributes for the 
phone state. The actions include phone commands such as 
changing the ringer volume as well as answering machine 
commands and commands to access phone company services such 
as call forwarding. 



 

 
Note that while we have fully implemented the EXACT NLIA, 
we have tested it on a simulation of the Panasonic device, rather 
than the actual appliance hardware; we have not done the wiring 
and tinkering that would be required to actually drive the 
appliance. Nevertheless, our command set was taken directly from 
the manual for the appliance [1], so we are confident that our 
simulation is realistic. 
 Our expertise is not in speech; hence the focus of this paper is on 
developing an expressive NLIA as a step towards the ultimate 
goal of linking it to a speech recognizer.  
In contrast with the work of Moore, Allen, and Walker [30, 3, 26], 
we have not built a full-blown dialog system. Instead, we focus on 
the core capability of understanding single-sentence appliance 
commands such as “Cook my corn for 5 minutes” as well as goals 
such as “Delete my old messages,” which requires a multi-step 
plan to find each old message and erase it in turn. Thus, our NLIA 
implements a function from a single English sentence encoding a 
person’s request to a command sequence that satisfies the request 
when executed on the appliance.  Due to its reliability, we believe 
that our NLIA would be an attractive module for researchers 
investigating dialog systems. 
While our model is readily extensible to multiple devices in a 
networked home, we have not yet addressed the issue of 
identifying which device the user is addressing based on context 
or content. However, the straightforward approach of explicitly 
naming a device when addressing it seems reasonable. For 
example, a person could say “VCR: record Seinfeld.” 
Finally, we assume that the NLIA has an accurate behavioral 
model of the appliances with which it integrates. If exogenous 
events can affect the device (e.g., an external caller leaving a 
message), we assume that the device will notify the NLIA of this 
fact. This assumption is reasonable because all existing devices 
we surveyed notify the user of exogenous events (e.g., the phone 
rings, the answering machine displays a count of new messages, 
and the thermostat display indicates whether the furnace is on or 
off). While our implemented system depends on this assumption, 
our overall approach does not. By using a more complex, 
information-gathering planner such as PUCCINI or XII [9, 10, 
11], our NLIA would operate correctly even without notification 
of these events. 
Interpreting a user’s commands is more complex if there are 
multiple plans being executed at the same time. In this case a 
user’s command can affect not just the appliance, but also the 
agent’s execution stack of previously planned actions. Thus, we 
assume that the NLIA will process new requests only after 
previously planned actions have been fully executed. 

4. NLIA BY REDUCTION 
In this section we show how to build an NLIA using an NLIDB 
and a planner. The reduction is based on the observation that user 

commands to an appliance are made relative to the device’s state, 
either by querying the state (e.g., “When is the sprinkler system 
set to water?”) or modifying it (e.g., “Set the thermostat to 68°.”). 
Since a relational database is a convenient and natural way to 
conceptualize a device’s state, a user’s command can be modeled 
with SQL statements, and can be computed using an NLIDB. In 
order to create a full NLIA, however, we need to show a method 
for satisfying the SQL query and update statements, using the 
device’s primitive command set – for this task, we use a planning 
algorithm. As we argue below, one of the advantages of this 
approach is the construction of a reliable (i.e., sound and 
complete) NLIA by exploiting the formal properties of existing 
NLIDB and planning systems.  

Formally, we model an appliance as a pair, <A, DB>, where A is 
a set of action descriptions in the PDDL planning language [15] 
and DB is a database representation of the appliance’s initial state. 
For example, table 1 shows a fragment of a sample relation from 
the database model of its internal state, and figure 1 shows some 
sample actions for the Panasonic phone. 

(:action delete-message
    :parameters (?x - integer)
    :precondition (and (leq 1 x)  (leq x 64) (playing ?x))
    :effect (and (not (playing ?x))
                        (when (leq ?x 63)
                            (playing (+1 ?x)))
                        (forall (?y)
                             (and (not (message-list ?x ?y ?z))
                                     (message-list ?x Blank Old)))))

(:action play
    :parameters ()
    :precondition (not (playmode))
    :effect (and (playmode)
                        (playing 1)
                        (not (message-list 1 New))
                        (message-list 1 Old)))

(:action play-next
    :parameters ()
    :precondition (playmode)
    :effect (forall (?x)
                   (when (and (playing ?x) (leq ?x 63))
                      (and (not (playing ?x)) (playing (+1 ?x))
                              (not (message-list ?x New))
                              (message-list ?x Old)))))

 
Figure 1: PDDL encoding of some Panasonic KXTC1040W 
actions. 

Our NLIA is composed of four parts: the appliance model <A, 
DB>, an NLIDB, a translation module, and a planner. At run-
time, the system takes as input a natural language sentence and 
feeds it to the NLIDB (figure 2). The NLIDB converts the input to 
an SQL statement consistent with the schema of database DB. 

If the SQL denotes a query, it is executed on DB and the result is 
returned to the user.  For example, the English question, “what is 
the answering machine volume?” is mapped to the following SQL 
query: 

SELECT volume 
FROM answer_machine 

Table 1: The “message_list” table is one of five relations 
comprising the database that EXACT uses to represent 
the state of the Panasonic KXTC1040W. 
message_number message 
1 Old 
2 Old 
3 New 
… … 
64 Blank 
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Figure 2: Building an NLIA out of an NLIDB and a Planner. 
The gray box depicts the NLIA. 

If the SQL is an update, the translator converts it into a goal in the 
planning language, which is then sent to the planner to generate a 
sequence of actions from A. When these actions are executed on the 
appropriate devices (and also when exogenous events occur), DB is 
updated to ensure correspondence with the device’s actual state. 
We are able to skip the translation and planning stages in the case of 
a SELECT query because of our assumption that the database 
contains the complete state of the appliance. If this assumption were 
not met, it might be the case that several actions would have to be 
taken before the action that answers the query, and such a case 
would require planning. 
The translation step, converting from an SQL update statement to a 
goal, requires some explanation. As Reiter has shown [22], database 
updates can be modeled using the situation calculus; for our 
purposes PDDL suffices also.  
Without loss of generality, suppose that DB has relational schema X 
= {X1, …, Xn}, where each relation Xj has attributes aj1, …, ajk, 
where k varies from table to table. DB contains a set of tuples 
satisfying each Xj and because of our earlier assumption regarding 
notification of exogenous events, we can make the closed world 
assumption [23].  
An SQL update statement has the form: 

UPDATE Xj  
SET a1=c1, …, au=cu  
WHERE am=cm, …, an=cn 

where the ai are attributes of Xj, and the ci are constants. We can 
convert this SQL statement into a PDDL goal with a process similar 
to that used for generating a propositional form for a universally 
quantified goal in classical planning [27]. The first step is running 
the following SQL query on DB, the agent’s model of the device. 

 

SELECT DISTINCT a1, …, ak 
FROM Xj  
WHERE am=cm, …, an=cn 

Execution of this query will retrieve a set of tuples, {ti}, whose 
values need to be modified. Let {ti’} denote the corresponding set of 
tuples obtained by changing the value of the jth attribute of each 
tuple to cj, for all m ≤ j ≤ n. Let Ψ denote the set of all tuples in DB, 
and let CWA denote the function which computes the closure of a 

set of relational atoms.3 The planner is given the following ground 
problem:  

Init = Ψ;   Goal = CWA(Ψ- {ti} ∪ {ti’})
 

The reason for grounding the goal during the translation step is 
somewhat subtle. The SQL UPDATE command’s SET clause refers 
to the goal state, i.e. the desired state of the device after the plan has 
been executed. In contrast, the WHERE clause refers to the state of 
the device before any changes are made; that is, it refers to the 
device state at the commencement of planning. Unfortunately, 
PDDL has no notation for making this distinction4, so if the 
translation step left any universally quantified variables in the 
resulting goal, they would all refer to the goal state, or the state after 
the plan. 

4.1 Safety Revisited 
We include Ψ as part of the goal to ensure that the planner doesn’t 
generate a plan that has the nasty side effect of falsifying something 
that is currently true. For example, the simplest plan to delete all old 
messages is to delete all messages, new and old (the phone has a 
single command to do this). By explicitly stating in the goal that 
new messages should not be deleted, we force the planner to come 
up with a safe plan. Similarly, we would not want the planner to 
respond to “call Sue” by first randomly recording a new answering 
machine greeting, and only then placing the call. Thus, we prevent 
the planner from unwanted positive side effects by computing the 
CWA. In domains where resource usage or other side effects are 
necessary, one can exclude predicates describing these resources 
from the goal. 
As an example of this reduction in action, consider the operation of 
our Panasonic phone NLIA on the sentence, “Delete all my old 
messages.” Assume that this NLIA is given the actions from Figure 
1 and the database fragment from Table 1 as part of its inputs. The 
NLIDB translates the input sentence into the SQL statement: 

UPDATE message_list  
SET message = Blank 
WHERE message = Old. 

Our translator takes this SQL statement and performs the syntactic 
manipulation required to rewrite it as a grounded goal in PDDL. Let 
<old-msg-num-1> through <old-msg-num-n> represent the 
numbers of all the old messages in the message_number column 
of table message_list, and let <new-msg-num-1> through <new-
msg-num-m> represent the numbers of all the new messages. In 
PDDL the grounded goal looks like: 

  (and (not (message-list <old-msg-num-1> Old)) 
      (message-list <old-msg-num-1> Blank) 

   … 
   (not (message-list <old-msg-num-n> Old)) 
   (message-list <old-msg-num-n> Blank) 
   (message-list <new-msg-num-1> Old) 
   … 
   (message-list <new-msg-num-m> Old)) 

For brevity’s sake, we omit the other relations in the database from 
the above goal. The planner takes this goal, together with the initial 

                                                 
3 Closing a set of positive literals means explicitly adding the negation of 
any atom, which is absent from the set. If the set of relations and constants 
is finite and there are no function symbols (which is our case), this 
operation takes polynomial time. 
4 See, for instance, SADL [8] for an action description language that does 
provide notation to distinguish between the initial and goal states. 



 

state in the database DB, and returns a plan starting with the play 
action. Next, the plan will contain a delete-message action if 
message number one is one of <old-msg-num-1> through <old-
msg-num-n>, and a play-next action otherwise. This repeats until 
all 64 messages have been checked and deleted if they are old. 

4.2 Formal Properties  
We are now in a position to state the benefits of our NLIA reduction 
precisely. Abstractly, one can consider an NLIDB, N, as a function 
from English sentences to SQL statements. Similarly our translator, 
T (described above), is a function from SQL to planning problem 
specifications.5 Finally, a planner is a function from these problem 
specifications to action sequences. Since an NLIA takes an English 
sentence, ε, and generates action sequences for the appliance, one 
can summarize our reduction as follows:  

NLIA(ε) ≡ P ◦ T ◦ N (ε) 
Popescu et al. [20] define the conditions under which an SQL 
statement is a valid interpretation of an English sentence ε, but the 
definition is too complex to include in this paper. We borrow from 
[20] the far simpler definitions of soundness and completeness 
below. 
Definition. An NLIDB is sound if any SQL it outputs is a valid 
interpretation of its input sentence ε. An NLIDB is complete if it 
returns all valid interpretations of ε. 
Note that if an NLIDB is both sound and complete and it returns a 
single SQL statement in response to a user’s utterance, then it has 
unambiguously determined the user’s intent – subject to our 
assumptions, of course. 
Definition. Let S be an SQL statement over a relational database 
DB. An appliance reaction R is consistent with S if S is a query and 
R answers the query, or if S is an update and R is a sequence of 
legal device commands that changes DB accordingly. An NLIA is 
sound if in response to input ε, its reaction is consistent with some 
valid interpretation of ε. An NLIA is complete if it makes a 
consistent reaction to a valid interpretation of ε, when one exists. 
There are a variety of formulations of automated planning [19], but 
we briefly summarize with the following.  
Definition. A planner is sound if any plan it outputs will transform 
the initial situation into a world state where the goal holds. A 
planner is complete if it returns a plan when one exists.  
We can now formally state the two central benefits of our reduction: 
Proposition 1 [Soundness]. Let N be a sound NLIDB, let P be a 
sound planner, and let T be the translation scheme described above.  
Then P ◦ T ◦ N is a sound NLIA.  
Proposition 2 [Completeness]. Let N be a complete NLIDB, let P 
be a complete planner, and let T be the translation scheme described 
above.  Then P ◦ T ◦ N is a complete NLIA.  
The proofs are omitted due to lack of space. 

4.3 Significance of the Theory 
Of course, theoretical guarantees only apply in practice if their 
assumptions are satisfied (e.g., all the words in the sentence are 
known – see [20] for the complete enumeration). Our experimental 
results (section 6) provide some evidence that these assumptions are 
realistic. 
                                                 
5 Given a fixed set of actions, a planning problem is an initial state / goal 
pair, thus T maps from SQL to the cross product of tuple specifications 
with itself. 

 Another potential objection to our theory is that it does not 
guarantee the reliability of a full-blown conversational speech 
interface; speech recognition, in particular, is likely to result in 
errors. While this is clearly true, we see great value in having an 
NLIA that is guaranteed to reliable – this enables the interface 
designer to localize errors to other modules and to institute the 
appropriate recovery strategy. 
Consider, by way of analogy, a sophisticated chess-playing program 
that combines mini-max search with alpha-beta pruning, a complex 
and tunable evaluation function, specialized hardware, etc. Suppose 
we prove that alpha-beta pruning is “reliable” in that it only prunes 
moves that the search procedure would eventually discard. Well, the 
reliability of alpha-beta pruning does not guarantee that the chess 
program always makes the best move. However, when the program 
makes a mistake, we know that it is definitely not due to alpha-beta 
pruning. Again, the guaranteed reliability of one module, enables 
the program’s designer to focus his attention on other modules. 

5. THE “EXACT” IMPLEMENTATION 
In order to test the theory developed in section 4, we built the 
EXACT natural language interface to a telephone using the Precise 
NLIDB [20] and Blackbox planner [13] as foundations. We 
handcrafted a database model for the Panasonic KXTC1040W from 
its user manual [1]. This model is used both as an input to the 
Precise NLIDB and as the source of state information for the 
planner. Finally, we created a set of actions that model the phone’s 
commands, as described in the user manual. This action set is also 
input to the planner. 
The system takes an input sentence, converts it into a set of possible 
SQL statements using Precise, translates those into a set of goals, 
and looks for a plan to satisfy each goal. If there is more than one 
goal and at least one goal has a plan, then we have an ambiguous 
sentence, and EXACT needs to ask the user for help in 
disambiguating. If no goal has a plan, then the phone cannot support 
the function being asked for, so EXACT can tell the user as much. 
If there is exactly one goal and it has a plan, EXACT can simply 
carry out that plan. In our experiments, the last case was by far the 
most common. 
The dataset on which we evaluated our system includes examples of 
impossible requests, but EXACT is well equipped to handle this 
problem: if a sentence does not map to an appropriate SQL 
statement, either because of unknown words or because there is no 
attribute-value pairing for the sentence, then we can say that the 
NLIDB cannot understand the sentence. On the other hand, if the 
sentence maps to an SQL statement, but the planner fails to find a 
plan for that goal, then since our planner is complete we can say that 
the appliance does not support this function. 
Our interface inherits desirable qualities, like reliability and 
portability across many appliances, from the planner and the 
NLIDB, but we had to make extensions to both components as 
explained below. 

5.1 The NLIDB Component 
Precise is a highly portable NLIDB that guarantees soundness of its 
SQL interpretations for certain kinds of English sentences, called 
semantically tractable questions [20]. Precise automatically 
generates a lexicon based on the names of relations, attributes, and 
values in its input database.  At its core, it reduces the problem of 
mapping a sentence to an SQL query to a graph-matching problem, 
which can be solved using the maxflow algorithm. Precise relies on 
the Charniak parser to extract attachment information from the 



 

sentence to help constrain the matching problem. Finally, Precise 
generates the complete set of possible SQL interpretations of the 
sentence that are consistent with its lexicon and its parser.  

Precise was originally built to support only questions, which 
translate to SELECT queries in SQL. Since an NLIA has to respond 
to requests for changing the state of the appliance, which translate 
naturally to SQL UPDATE statements, we had to extend Precise 
appropriately. There is no room to explain the technical details of 
Precise, but the essence is an extension of Precise’s graph matching 
algorithm to keep track of two attributes, a “pre-attribute” and a 
“post-attribute.” The pre-attributes contain values in the database 
state before an UPDATE, and the post-attributes contain the new, 
updated values. Any values that are set by an UPDATE statement 
are matched with post-attributes, and all other values are matched 
with pre-attributes. In order to understand an input sentence, the 
system needs to classify it as an UPDATE or a SELECT, and 
proceed appropriately. Precise’s other modules, including its 
tokenizer, lexicon, and parser, remain unchanged. 

5.2 The Planning Component 
We have already explained how we prevent unwarranted side 
effects and how we finesse the problem of information gathering. 
But the domain of household appliances also has a surprising 
amount of temporal complexity.  
First, user commands may involve events occurring at specific 
future times (e.g., “record Star Trek”). While one could use a 
temporal planner to handle these goals, we instead rely on the 
temporal capabilities of the device itself. Since it is possible now to 
set a VCR to program later, EXACT can handle this goal with a 
classical planner. If the VCR did not support this type of operation, 
EXACT would explain that the goal was unachievable. 
Second, numerous actions are durative; execution occurs over an 
interval of time (e.g., “play all messages”). Although it might seem 
natural to model the temporal aspects of these actions explicitly 
(e.g., in PDDL 2.1 level 36), we tried this and discovered problems 
(see below).  
Finally, different commands naturally translate into goals with 
different temporal annotations, but the nature of the temporal 
mapping is complex and subtle. For example, consider the 
command “Play all messages.” Note that the user (presumably) 
doesn’t want the answering machine to play the messages forever; 
once is enough. Thus if one models `play’ as a durative action 
(which transiently plays a message), one cannot model the goal as 
one of achievement. In a durative model, the goal has an implicit 
temporal annotation that it must be true at some point during 
execution, even if it is not true at the end of all execution. There are 
two problems with such a model. First, few planners support such 
expressiveness; indeed PDDL 2.1 level 3 does not even allow one to 
express the goal. But the deeper problem is related to 
disambiguating natural language. Consider the commands “Play all 
messages” (which does not require playing to be true at the end of 
the plan) and “Turn on answering machine” (which does). We could 
think of no principled way to distinguish between these goals; 
clearly the user would be very upset if EXACT responded to the last 
command by turning answering on and then off again! 
Our solution is to use a classical atomic model of time, implicitly 
recognizing that exogenous events may subsequently change the 
device state. Philosophically, this is consistent with PDDL 2.1 level 
5 in which all actions are instantaneous, but some may initiate 

                                                 
6 http://www.dur.ac.uk/d.p.long/competition.html 

physical processes (in this case the process of a message being 
played) that evolve over time. We do not need to model the 
processes explicitly, since (by assumption) the networked device 
notifies the agent of events such as incoming messages. Thus 
execution of the play command does not terminate with the device 
playing; it simply stops later of its own accord. By modeling the 
device in this fashion, we are able to use the Blackbox planner [13], 
which operates by compiling PDDL planning problems into a set of 
propositional clauses that is satisfiable exactly when an n-step plan 
exists. A fast satisfiability algorithm is used; if an assignment is 
found, a reverse compilation phase generates the plan; otherwise, 
the plan length is incremented. 

6. EXPERIMENTAL EVALUATION 
To test our system, we gathered a total of 72 sentences from seven 
graduate students and faculty at the University of Washington. The 
people who provided us with data were given a concise list of the 
features available on the Panasonic phone and were asked to write 
down sentences in English that they might use to invoke those 
features.  
Of the 72 sentences gathered, we used 61 in our experiments. The 
eleven sentences we excluded did not describe a goal or an action, 
but rather they implied it. For example, we excluded the sentence, 
“It’s too loud.” This sentence does not describe a goal state or an 
action to achieve a goal. Instead, it describes the current state and 
implies the goal. Such sentences clearly demonstrate the importance 
of processing speech acts, but are beyond the current capabilities of 
EXACT. 
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Figure 3: EXACT’s performance in our experiment. 

Figure 3 shows EXACT’s performance on our dataset. Recall is 
the fraction of the sentences in the dataset where EXACT put 
forth an interpretation.7 We refer to these sentences as tractable 
sentences. On intractable sentences, EXACT indicates it cannot 
understand the request and asks for a paraphrase.  
Precision is the fraction of the tractable sentences in the dataset 
that EXACT interpreted correctly (including the interpretation 
that the sentence was an impossible request, where appropriate). 
To measure precision and recall on our data, we labeled each 
sentence with one or more valid interpretations.8 As the black bars 
in the figure show, we achieve 100% precision on our dataset, 
                                                 
7 Remember that to maximize reliability, EXACT does not try to “guess” 
the correct interpretation when it is not sure. 
8 EXACT’s interpretation is correct if it is a member of the set of valid 
interpretations. 



 

reflecting our commitment to reliability and the utility of our 
underlying theory.  
EXACT’s recall is 82.0% because on eleven sentences it is unable 
to choose a definitive interpretation. If we allow EXACT to ask 
the user to choose between two possible interpretations (EXACT-
2) the recall goes up to 86.9%, and if the user may choose 
between up to four interpretations the recall goes up slightly to 
88.5% (EXACT-4). In the remaining cases, EXACT is unable to 
interpret the sentence because it contains words outside of 
EXACT’s lexicon. Unlike some natural language interfaces, 
EXACT does not attempt to ignore unfamiliar words. To ensure 
reliability, EXACT declines to interpret a sentence that contains 
any unknown words. 
The increasing recall from EXACT to EXACT-2 and then to 
EXACT-4 quantifies the amount of ambiguity in our data. Two 
sentences have exactly two interpretations; both cases reflect the 
fact that the phone has two different volume settings (one for the 
answering machine and one for the ringer). For a sentence like, 
“Turn up the volume,” there are two interpretations, and both are 
potentially correct. Only one other input sentence has multiple 
interpretations in our data, and that is the somewhat idiosyncratic 
single-word command “Aloud.” The four interpretations of this 
sentence are actions to turn on the speakerphone (the intended 
goal), turn on the handset ringer, turn on the intercom, and 
playback messages, all of which play sounds aloud. With further 
tuning of the system, such ambiguities could be resolved.  

7. FUTURE WORK 
There are a number of important directions for future work. First, 
we need to test EXACT on a much wider range of users and 
appliances. Second, we need to link EXACT to actual device 
hardware, and to a speech recognizer. Third, we need to address 
the user interface issues that arise due to speech recognition errors 
and hardware problems. For example, it is appropriate for 
EXACT to confirm its plans with the user before taking some 
actions, but excessive confirmation can be a nuisance to the user. 
Finally, it will be essential to enable EXACT to participate in full-
blown dialogs with users. Such dialogs would enable EXACT to 
choose between multiple competing interpretations and to learn 
new words, phrases, or idioms, thereby improving its recall. 

8. RELATED WORK 
We build on the large body of work in natural language interfaces 
to databases. See Androutsopoulos et al. [4] for a survey. Only a 
small number of NLIDBs handle updates, and none have 
considered the NLIA problem.  
Our emphasis on provable soundness as a foundation for a reliable 
natural language interface is shared with Popescu et al. [20], but 
our work on EXACT goes beyond Precise in several important 
ways. First, we introduce and analyze the idea of reducing the 
NLIA problem to the NLIDB problem while maintaining the 
soundness and completeness of the interface. Second, EXACT 
composes Precise with a planner to automatically generate an 
NLIA. Third, we extended Precise to handle updates. Finally, we 
show experimentally that linking EXACT to a ‘typical’ household 
appliance, the Panasonic KXTC1040W phone, yields a highly 
reliable interface that can handle goals, impossible requests, and 
safety concerns. 
Young and Moore [30] have described DPOCL, a sound discourse 
planner that satisfies a limited form of completeness. They argue 
that the formal properties of previous discourse planners have 

been largely ignored, and that this lack of understanding leads to 
inconsistencies in the representation of discourse. Their focus, 
however, is on representing speaker intentions in texts. EXACT 
focuses on simpler natural language utterances, and seeks to use 
them to control household appliances. 
Quesada et al. [21] describe a spoken dialogue agent in the 
D’Homme project that is specifically designed for interacting with 
household appliances. The agent uses a semantic grammar for a 
restricted and tractable subset of natural language that they call a 
Natural Command Language. The D’Homme agent is capable of 
understanding complex natural language dialogs, but it does not 
guarantee reliability. The agent also has no built-in planning 
capability, so it cannot handle all goals that require multi-step 
plans. 
A number of commercial systems are being built to handle dialog 
with household appliances. Some examples include the 
Linguamatics Automated House9, the SmartKom Home/Office10, 
the Fluency House11, and Voxi Smart Homes12. As these are 
commercial systems, they do not report vital information about 
their mechanisms. 
TRIPS (Allen, et al. [3]) is an agent architecture for handling 
natural conversation in the travel-planning domain. In contrast to 
this kind of system, EXACT is designed to be easily portable to a 
number of different domains, and the domains of interest 
generally have a much simpler structure to the natural language 
interaction.  
The Universal Speech Interface (USI) [25] project at CMU has 
design goals very similar to ours. USI/Gadget is a template system 
that is portable to many different appliances. The natural language 
capabilities of the system, however, are constrained by the speech 
recognition technology, so the interaction is keyword-based. 
Various ubiquitous computing projects (e.g., MIT’s intelligent 
room [6]) have considered multi-modal interfaces that include 
language. However, they have not considered the reliability of the 
language module, nor have they considered embedding a planner 
into the system to satisfy high-level goals, decline impossible 
requests, and abide by safety constraints. 
A number of other researchers have modeled appliances and 
developed specification languages (e.g., in XML) for appliance 
interfaces [2, 8, 12, 18]. Systems designed around these 
specifications have tried to create a single interface to all 
appliances on another, remote appliance like a PDA. The Personal 
Universal Controller (PUC) [16] generates an interface to 
appliances, using XML specifications. Unlike EXACT, the PUC 
executes simple commands, not plans, and does not use natural 
language.  
The menu2dialog system [14] creates a dialog planning system 
from a menu-based natural language system. It is not fully 
automated, however, and it does not consider the problems of 
reliability and safety. 
 Like EXACT, Softbots [7] use planners to develop complex plans 
on behalf of users. However, one drawback of softbot-based 
interfaces has been their lack of natural language capabilities, 
which can make them difficult to use, especially for novice users. 

                                                 
9http://www.linguamatics.com/technology/dialogue/home.html 
10 http://www.smartkom.org 
11http://visualhouse.fluencyvoice.com/housecgi/fluencyHouse.html 
12 http://www.voxi.com  



 

The Unix Consultant (UC) [29] is a natural language tutoring 
system for Unix. Although UC was designed as an interface to a 
device, UC has a very different focus from EXACT. UC is not 
portable across many devices; instead, its focus is on a complete 
model of a single, highly complicated “device” (the Unix shell). 
Furthermore, its response to user input is to advise the user on 
how to accomplish his or her goal, rather than performing actions 
itself. Finally, due to its complexity, UC makes no reliability 
guarantees. 

9. CONCLUSION 
This paper sketches a novel answer to the fundamental question: 
how do we build a reliable natural language interface to household 
appliances? Our answer, encapsulated in Figure 2, is to leverage 
more than thirty years of research on natural language interfaces 
in databases and reduce the appliance problem to the database 
problem. We show how, when coupled with a planner, this 
approach has a number of advantages, including formal 
guarantees of soundness, the ability to enforce safety, and the 
ability to appropriately handle high-level goals and impossible 
requests. Our preliminary experiment complements our theoretical 
arguments by showing that our interface in fact displays these 
advantages in practice. 
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