

A Reliable Natural Language Interface
to Household Appliances

Alexander Yates

University of Washington
Computer Science

Seattle, WA 98105 USA
206-616-1844

ayates@cs.washington.edu

Oren Etzioni
University of Washington

Computer Science
Seattle, WA 98105USA

206-685-3035
etzioni@cs.washington.edu

Daniel Weld
University of Washington

Computer Science
Seattle, WA 98105 USA

206-543-9196
weld@cs.washington.edu

“I have always wished that my computer would be as easy
to use as my telephone. My wish has come true. I no longer
know how to use my telephone.”

– Bjarne Stroustrop (originator of C++)

ABSTRACT
As household appliances grow in complexity and sophistication,
they become harder and harder to use, particularly because of
their tiny display screens and limited keyboards. This paper
describes a strategy for building natural language interfaces to
appliances that circumvents these problems. Our approach
leverages decades of research on planning and natural language
interfaces to databases by reducing the appliance problem to the
database problem; the reduction provably maintains desirable
properties of the database interface. The paper goes on to describe
the implementation and evaluation of the EXACT interface to
appliances, which is based on this reduction. EXACT maps each
English user request to an SQL query, which is transformed to
create a PDDL goal, and uses the Blackbox planner [13] to map
the planning problem to a sequence of appliance commands that
satisfy the original request. Both theoretical arguments and
experimental evaluation show that EXACT is highly reliable.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Language Parsing and
Understanding.

General Terms: Reliability, Human Factors.

Keywords: Natural language interface, database, appliance,
planner.

1. INTRODUCTION AND MOTIVATION
The exponential drop in microprocessor cost over time has
enabled appliance manufacturers to pack increasingly complex
feature sets into appliances such as phones, TVs, microwave
ovens, MP3 players, and more. Networked homes of the future
will allow even more complex functionality. Yet even today,
consumers are typically unable or unwilling to decipher
increasingly thick and all-too-often incomprehensible user
manuals. As a result, they often limit themselves to only a small

fraction of their appliances’ capabilities. Humorist Dave Barry
captured this sentiment when he wrote:

“I have a feature-packed telephone with 43 buttons, at least
20 of which I am afraid to touch. This phone probably can
communicate with the dead, but I don’t know how to
operate it, just as I don’t know how to operate my TV,
which has features out the wazooty and requires THREE
remote controls...” [5]

Most appliances have a very small screen and a limited set of
buttons compared with a personal computer. Thus, standard
Graphical User Interface (GUI) techniques such as browsing,
menu trees, and online help are far less appealing for appliances.
It is unlikely that these form factors will change because they are
dictated by the desired size, weight, and “look” of the appliance.
As the TV example illustrates, the problem of appliance interfaces
grows more acute when multiple devices1 interact – a scenario
that is becoming increasingly common as the era of pervasive
computing approaches.
Clearly, a conversational interface to appliances is worth
investigating. In addition to circumventing the form factor issues
of a GUI, a conversational interface would allow remote, hands
free operation of appliances. Imagine walking into your home and
saying, “Phone: any messages? Thermostat: raise the temperature
5 degrees... VCR: record Seinfeld.” As devices become
networked, one could even go to the living room and say “Lights:
flicker when the microwave is done.’’
The field of speech recognition has made great strides in the last
10 years and continues to do so. However, many speech interfaces
are still limited to single word commands. We posit that a
conversational speech interface would be far more desirable.
While natural language interfaces have been studied extensively
in AI, particularly in the context of databases [4], natural language
interfaces to household appliances have received scant attention to
date. Our paper raises the simple question: how do we build a
Natural Language Interface to Appliances (NLIA)?
An NLIA maps an English sentence (e.g., “defrost 2 pounds of
corn”) to a sequence of appliance commands that aims to satisfy
the original request.2 While NLIAs are largely unexplored, there
has been more than thirty years of research on Natural Language
Interfaces to DataBases (NLIDBs). An NLIDB maps an English
sentence to a corresponding SQL statement.

1 We use the terms “appliance” and “device” interchangeably.
2 Our NLIA is not a full-blown conversational interface; the NLIA focuses
on the task of reliably understanding single sentences. It is best viewed as
a powerful module to be integrated into a full-blown dialog system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001…$5.00.

Can we leverage the body of knowledge accumulated in decades
of studying NLIDBs to help in designing and building NLIAs? As
it turns out, we are able to make a strong claim in this regard,
which is our central insight: for a broad class of devices, which
appears to include all household appliances, the problem of NLIA
is provably reducible to the NLIDB problem. That is, given an
NLIDB, a planner, and a model of an appliance, we are able to
automatically generate an NLIA for the appliance. We
substantiate our claim both formally and experimentally.
The remainder of the paper is organized as follows. Section 2
discusses the framework for our problem, including design
requirements and significant hurdles. Section 3 presents an
example that we will refer to and develop throughout the paper,
and it also discusses some simplifying assumptions. In section 4,
we illustrate the reduction method and state the relevant
theoretical results and arguments. Section 5 describes the EXACT
implementation – a working NLIA based on the reduction method
– and section 6 reports on experiments measuring EXACT’s
performance. Sections 7 and 8 present a discussion of directions
for future research and related work in the areas of NLIDB,
planning, and dialogue interfaces.

2. GUIDING PRINCIPLES
Four principles underlie our approach to designing a reliable
NLIA. We insist that our NLIA be predictable, process high level
goals correctly, respond appropriately to impossible requests, and
generate safe plans. We explain these principles in more detail
below.

2.1 Predictability
As Norman and Schneiderman have argued [17, 24], predictability
is an essential feature of a user interface; without it, users will lose
the essential feeling of control. Norman and Schneiderman have
taken their arguments as an indictment of the intelligent user
interface paradigm. However, we can take the need for predictable
interfaces to heart without giving up on intelligent user interfaces.
Let’s consider the issue in the context of NLIAs.
There are two main aspects to an NLIA: understanding what the
user wants, and carrying out her request. If an NLIA can reliably
achieve these two tasks, then the user will feel in control. As we
explain below, EXACT uses a sound and complete NLIDB to
understand the user’s goal, and a sound and complete planner to
guide action. As section 4.2 will show, the combination of
guarantees on the NLIDB and the planner yields a sound and
complete NLIA. Of course, these guarantees, while helpful, are no
panacea: if the request is ambiguous, some sort of clarification
dialog will be necessary. However, our experimental results
(section 6) provide preliminary evidence that ambiguities are rare
and that EXACT is reliable and predictable in practice.

2.2 Complex And Impossible Requests
An NLIA insulates the user from the peculiarities of an
appliance’s command language and obviates the unpleasant task
of reading and re-reading appliance manuals. As a result, there
may be some mismatch between the user’s mental model of
appliance capabilities and the appliance’s exact command set.
This mismatch can come in at least two flavors. First, the user’s
request may require a sequence of commands to satisfy it, instead
of a single command. We refer to such requests as goals. Second,
the user may issue a request that is impossible to satisfy. We refer
to such requests as impossible requests. For example, the KX-
TC1040W phone does not have a ‘mute’ button, so a user’s

request to mute a call has to be declined. In general, when the user
is not looking at the device, she misses the physical cues that
suggest how the device can be used. We expect our NLIA to
handle both goals and impossible requests appropriately. In the
case of goals, the user need not be aware that her request
translates into a sequence of appliance commands – the NLIA
ought to make that transparent to the user. In the case of
impossible requests, the NLIA ought to respond in a way that
makes clear that the request was understood, but cannot be
satisfied (e.g., as in HAL’s infamous line “I can’t do that, Dave”).

2.3 Safety
When processing a complex request with a search-based planner,
one must confront the possibility that the resulting plan, while
achieving a user’s goal, may have unintended and harmful
consequences. Consider, for example, the goal “delete my old
messages”; because our answering machine has a single command
for deleting all messages (both old and new), a simple plan might
have surprising and unintended consequences. Since a powerful
NLIA can cause considerable havoc if not restrained, some
mechanism for controlling side-effects is crucial.
In 1994, Weld and Etzioni [28] introduced the ideas of safety and
tidiness in planning, ideas that were meant to restrain intelligent
agents from harming people or their property. Safety constraints
tell the planner never to violate certain conditions. For example,
“dont-disturb(written.to.tape(f) or isa(f, file))” tells a planner that
no file can be deleted unless it is already written to tape.
Unfortunately, these kinds of constraints are often too strict for
our domain. We do not want to tell the planner that it can never
delete a message. Rather, we want to constrain the planner so that
it never deletes a message unless the user tells it to.
Intuitively, one would like to tell the planner to minimize side-
effects that were not requested by the user, but Weld and Etzioni
recognized that obeying such a constraint is intractable in the
worst case, since it requires reasoning over the (infinite) space of
all plans to find the minimum. Instead, they proposed tidiness
constraints, which tell the agent to restore the state of the world as
much as possible to the way it was in the state before the plan
started executing; “restore(compressed(file))”, for example, tells
the agent’s planner to recompress as many files as possible after
achieving the user’s main goal. When actions are neatly
reversible, tidiness constraints often cause the planner to achieve
the intuitively desirable minimization. Unfortunately, many
appliances have irreversible actions, like deleting messages on an
answering machine, or cooking a dish in a microwave. Thus
tidiness is not well suited for our domain. Section 4.1 explains
how we define and enforce a new kind of safety constraint that is
a good fit for the appliance domain.

3. EXAMPLE AND SIMPLIFYING
ASSUMPTIONS
In order to illustrate the ideas underlying our reduction of an
NLIA to an NLIDB, we use the Panasonic KX-TC1040W
telephone/answering machine as a running example throughout
the paper. Our model of the phone system includes 37 actions and
involves a database schema with 5 relations. The relations contain
anywhere from two attributes for the answering machine
messages (pictured below in table 1) to eleven attributes for the
phone state. The actions include phone commands such as
changing the ringer volume as well as answering machine
commands and commands to access phone company services such
as call forwarding.

Note that while we have fully implemented the EXACT NLIA,
we have tested it on a simulation of the Panasonic device, rather
than the actual appliance hardware; we have not done the wiring
and tinkering that would be required to actually drive the
appliance. Nevertheless, our command set was taken directly from
the manual for the appliance [1], so we are confident that our
simulation is realistic.
 Our expertise is not in speech; hence the focus of this paper is on
developing an expressive NLIA as a step towards the ultimate
goal of linking it to a speech recognizer.
In contrast with the work of Moore, Allen, and Walker [30, 3, 26],
we have not built a full-blown dialog system. Instead, we focus on
the core capability of understanding single-sentence appliance
commands such as “Cook my corn for 5 minutes” as well as goals
such as “Delete my old messages,” which requires a multi-step
plan to find each old message and erase it in turn. Thus, our NLIA
implements a function from a single English sentence encoding a
person’s request to a command sequence that satisfies the request
when executed on the appliance. Due to its reliability, we believe
that our NLIA would be an attractive module for researchers
investigating dialog systems.
While our model is readily extensible to multiple devices in a
networked home, we have not yet addressed the issue of
identifying which device the user is addressing based on context
or content. However, the straightforward approach of explicitly
naming a device when addressing it seems reasonable. For
example, a person could say “VCR: record Seinfeld.”
Finally, we assume that the NLIA has an accurate behavioral
model of the appliances with which it integrates. If exogenous
events can affect the device (e.g., an external caller leaving a
message), we assume that the device will notify the NLIA of this
fact. This assumption is reasonable because all existing devices
we surveyed notify the user of exogenous events (e.g., the phone
rings, the answering machine displays a count of new messages,
and the thermostat display indicates whether the furnace is on or
off). While our implemented system depends on this assumption,
our overall approach does not. By using a more complex,
information-gathering planner such as PUCCINI or XII [9, 10,
11], our NLIA would operate correctly even without notification
of these events.
Interpreting a user’s commands is more complex if there are
multiple plans being executed at the same time. In this case a
user’s command can affect not just the appliance, but also the
agent’s execution stack of previously planned actions. Thus, we
assume that the NLIA will process new requests only after
previously planned actions have been fully executed.

4. NLIA BY REDUCTION
In this section we show how to build an NLIA using an NLIDB
and a planner. The reduction is based on the observation that user

commands to an appliance are made relative to the device’s state,
either by querying the state (e.g., “When is the sprinkler system
set to water?”) or modifying it (e.g., “Set the thermostat to 68°.”).
Since a relational database is a convenient and natural way to
conceptualize a device’s state, a user’s command can be modeled
with SQL statements, and can be computed using an NLIDB. In
order to create a full NLIA, however, we need to show a method
for satisfying the SQL query and update statements, using the
device’s primitive command set – for this task, we use a planning
algorithm. As we argue below, one of the advantages of this
approach is the construction of a reliable (i.e., sound and
complete) NLIA by exploiting the formal properties of existing
NLIDB and planning systems.

Formally, we model an appliance as a pair, <A, DB>, where A is
a set of action descriptions in the PDDL planning language [15]
and DB is a database representation of the appliance’s initial state.
For example, table 1 shows a fragment of a sample relation from
the database model of its internal state, and figure 1 shows some
sample actions for the Panasonic phone.

(:action delete-message
 :parameters (?x - integer)
 :precondition (and (leq 1 x) (leq x 64) (playing ?x))
 :effect (and (not (playing ?x))
 (when (leq ?x 63)
 (playing (+1 ?x)))
 (forall (?y)
 (and (not (message-list ?x ?y ?z))
 (message-list ?x Blank Old)))))

(:action play
 :parameters ()
 :precondition (not (playmode))
 :effect (and (playmode)
 (playing 1)
 (not (message-list 1 New))
 (message-list 1 Old)))

(:action play-next
 :parameters ()
 :precondition (playmode)
 :effect (forall (?x)
 (when (and (playing ?x) (leq ?x 63))
 (and (not (playing ?x)) (playing (+1 ?x))
 (not (message-list ?x New))
 (message-list ?x Old)))))

Figure 1: PDDL encoding of some Panasonic KXTC1040W
actions.

Our NLIA is composed of four parts: the appliance model <A,
DB>, an NLIDB, a translation module, and a planner. At run-
time, the system takes as input a natural language sentence and
feeds it to the NLIDB (figure 2). The NLIDB converts the input to
an SQL statement consistent with the schema of database DB.

If the SQL denotes a query, it is executed on DB and the result is
returned to the user. For example, the English question, “what is
the answering machine volume?” is mapped to the following SQL
query:

SELECT volume
FROM answer_machine

Table 1: The “message_list” table is one of five relations
comprising the database that EXACT uses to represent
the state of the Panasonic KXTC1040W.
message_number message
1 Old
2 Old
3 New
… …
64 Blank

Plan

NLIA
NLIDB

Translator

Planner

SQL
statements

Goal

DB

A

English Input

Dev ices

Figure 2: Building an NLIA out of an NLIDB and a Planner.
The gray box depicts the NLIA.

If the SQL is an update, the translator converts it into a goal in the
planning language, which is then sent to the planner to generate a
sequence of actions from A. When these actions are executed on the
appropriate devices (and also when exogenous events occur), DB is
updated to ensure correspondence with the device’s actual state.
We are able to skip the translation and planning stages in the case of
a SELECT query because of our assumption that the database
contains the complete state of the appliance. If this assumption were
not met, it might be the case that several actions would have to be
taken before the action that answers the query, and such a case
would require planning.
The translation step, converting from an SQL update statement to a
goal, requires some explanation. As Reiter has shown [22], database
updates can be modeled using the situation calculus; for our
purposes PDDL suffices also.
Without loss of generality, suppose that DB has relational schema X
= {X1, …, Xn}, where each relation Xj has attributes aj1, …, ajk,
where k varies from table to table. DB contains a set of tuples
satisfying each Xj and because of our earlier assumption regarding
notification of exogenous events, we can make the closed world
assumption [23].
An SQL update statement has the form:

UPDATE Xj
SET a1=c1, …, au=cu
WHERE am=cm, …, an=cn

where the ai are attributes of Xj, and the ci are constants. We can
convert this SQL statement into a PDDL goal with a process similar
to that used for generating a propositional form for a universally
quantified goal in classical planning [27]. The first step is running
the following SQL query on DB, the agent’s model of the device.

SELECT DISTINCT a1, …, ak
FROM Xj
WHERE am=cm, …, an=cn

Execution of this query will retrieve a set of tuples, {ti}, whose
values need to be modified. Let {ti’} denote the corresponding set of
tuples obtained by changing the value of the jth attribute of each
tuple to cj, for all m ≤ j ≤ n. Let Ψ denote the set of all tuples in DB,
and let CWA denote the function which computes the closure of a

set of relational atoms.3 The planner is given the following ground
problem:

Init = Ψ; Goal = CWA(Ψ- {ti} ∪ {ti’})

The reason for grounding the goal during the translation step is
somewhat subtle. The SQL UPDATE command’s SET clause refers
to the goal state, i.e. the desired state of the device after the plan has
been executed. In contrast, the WHERE clause refers to the state of
the device before any changes are made; that is, it refers to the
device state at the commencement of planning. Unfortunately,
PDDL has no notation for making this distinction4, so if the
translation step left any universally quantified variables in the
resulting goal, they would all refer to the goal state, or the state after
the plan.

4.1 Safety Revisited
We include Ψ as part of the goal to ensure that the planner doesn’t
generate a plan that has the nasty side effect of falsifying something
that is currently true. For example, the simplest plan to delete all old
messages is to delete all messages, new and old (the phone has a
single command to do this). By explicitly stating in the goal that
new messages should not be deleted, we force the planner to come
up with a safe plan. Similarly, we would not want the planner to
respond to “call Sue” by first randomly recording a new answering
machine greeting, and only then placing the call. Thus, we prevent
the planner from unwanted positive side effects by computing the
CWA. In domains where resource usage or other side effects are
necessary, one can exclude predicates describing these resources
from the goal.
As an example of this reduction in action, consider the operation of
our Panasonic phone NLIA on the sentence, “Delete all my old
messages.” Assume that this NLIA is given the actions from Figure
1 and the database fragment from Table 1 as part of its inputs. The
NLIDB translates the input sentence into the SQL statement:

UPDATE message_list
SET message = Blank
WHERE message = Old.

Our translator takes this SQL statement and performs the syntactic
manipulation required to rewrite it as a grounded goal in PDDL. Let
<old-msg-num-1> through <old-msg-num-n> represent the
numbers of all the old messages in the message_number column
of table message_list, and let <new-msg-num-1> through <new-
msg-num-m> represent the numbers of all the new messages. In
PDDL the grounded goal looks like:

 (and (not (message-list <old-msg-num-1> Old))
 (message-list <old-msg-num-1> Blank)

 …
 (not (message-list <old-msg-num-n> Old))
 (message-list <old-msg-num-n> Blank)
 (message-list <new-msg-num-1> Old)
 …
 (message-list <new-msg-num-m> Old))

For brevity’s sake, we omit the other relations in the database from
the above goal. The planner takes this goal, together with the initial

3 Closing a set of positive literals means explicitly adding the negation of
any atom, which is absent from the set. If the set of relations and constants
is finite and there are no function symbols (which is our case), this
operation takes polynomial time.
4 See, for instance, SADL [8] for an action description language that does
provide notation to distinguish between the initial and goal states.

state in the database DB, and returns a plan starting with the play
action. Next, the plan will contain a delete-message action if
message number one is one of <old-msg-num-1> through <old-
msg-num-n>, and a play-next action otherwise. This repeats until
all 64 messages have been checked and deleted if they are old.

4.2 Formal Properties
We are now in a position to state the benefits of our NLIA reduction
precisely. Abstractly, one can consider an NLIDB, N, as a function
from English sentences to SQL statements. Similarly our translator,
T (described above), is a function from SQL to planning problem
specifications.5 Finally, a planner is a function from these problem
specifications to action sequences. Since an NLIA takes an English
sentence, ε, and generates action sequences for the appliance, one
can summarize our reduction as follows:

NLIA(ε) ≡ P ◦ T ◦ N (ε)
Popescu et al. [20] define the conditions under which an SQL
statement is a valid interpretation of an English sentence ε, but the
definition is too complex to include in this paper. We borrow from
[20] the far simpler definitions of soundness and completeness
below.
Definition. An NLIDB is sound if any SQL it outputs is a valid
interpretation of its input sentence ε. An NLIDB is complete if it
returns all valid interpretations of ε.
Note that if an NLIDB is both sound and complete and it returns a
single SQL statement in response to a user’s utterance, then it has
unambiguously determined the user’s intent – subject to our
assumptions, of course.
Definition. Let S be an SQL statement over a relational database
DB. An appliance reaction R is consistent with S if S is a query and
R answers the query, or if S is an update and R is a sequence of
legal device commands that changes DB accordingly. An NLIA is
sound if in response to input ε, its reaction is consistent with some
valid interpretation of ε. An NLIA is complete if it makes a
consistent reaction to a valid interpretation of ε, when one exists.
There are a variety of formulations of automated planning [19], but
we briefly summarize with the following.
Definition. A planner is sound if any plan it outputs will transform
the initial situation into a world state where the goal holds. A
planner is complete if it returns a plan when one exists.
We can now formally state the two central benefits of our reduction:
Proposition 1 [Soundness]. Let N be a sound NLIDB, let P be a
sound planner, and let T be the translation scheme described above.
Then P ◦ T ◦ N is a sound NLIA.
Proposition 2 [Completeness]. Let N be a complete NLIDB, let P
be a complete planner, and let T be the translation scheme described
above. Then P ◦ T ◦ N is a complete NLIA.
The proofs are omitted due to lack of space.

4.3 Significance of the Theory
Of course, theoretical guarantees only apply in practice if their
assumptions are satisfied (e.g., all the words in the sentence are
known – see [20] for the complete enumeration). Our experimental
results (section 6) provide some evidence that these assumptions are
realistic.

5 Given a fixed set of actions, a planning problem is an initial state / goal
pair, thus T maps from SQL to the cross product of tuple specifications
with itself.

 Another potential objection to our theory is that it does not
guarantee the reliability of a full-blown conversational speech
interface; speech recognition, in particular, is likely to result in
errors. While this is clearly true, we see great value in having an
NLIA that is guaranteed to reliable – this enables the interface
designer to localize errors to other modules and to institute the
appropriate recovery strategy.
Consider, by way of analogy, a sophisticated chess-playing program
that combines mini-max search with alpha-beta pruning, a complex
and tunable evaluation function, specialized hardware, etc. Suppose
we prove that alpha-beta pruning is “reliable” in that it only prunes
moves that the search procedure would eventually discard. Well, the
reliability of alpha-beta pruning does not guarantee that the chess
program always makes the best move. However, when the program
makes a mistake, we know that it is definitely not due to alpha-beta
pruning. Again, the guaranteed reliability of one module, enables
the program’s designer to focus his attention on other modules.

5. THE “EXACT” IMPLEMENTATION
In order to test the theory developed in section 4, we built the
EXACT natural language interface to a telephone using the Precise
NLIDB [20] and Blackbox planner [13] as foundations. We
handcrafted a database model for the Panasonic KXTC1040W from
its user manual [1]. This model is used both as an input to the
Precise NLIDB and as the source of state information for the
planner. Finally, we created a set of actions that model the phone’s
commands, as described in the user manual. This action set is also
input to the planner.
The system takes an input sentence, converts it into a set of possible
SQL statements using Precise, translates those into a set of goals,
and looks for a plan to satisfy each goal. If there is more than one
goal and at least one goal has a plan, then we have an ambiguous
sentence, and EXACT needs to ask the user for help in
disambiguating. If no goal has a plan, then the phone cannot support
the function being asked for, so EXACT can tell the user as much.
If there is exactly one goal and it has a plan, EXACT can simply
carry out that plan. In our experiments, the last case was by far the
most common.
The dataset on which we evaluated our system includes examples of
impossible requests, but EXACT is well equipped to handle this
problem: if a sentence does not map to an appropriate SQL
statement, either because of unknown words or because there is no
attribute-value pairing for the sentence, then we can say that the
NLIDB cannot understand the sentence. On the other hand, if the
sentence maps to an SQL statement, but the planner fails to find a
plan for that goal, then since our planner is complete we can say that
the appliance does not support this function.
Our interface inherits desirable qualities, like reliability and
portability across many appliances, from the planner and the
NLIDB, but we had to make extensions to both components as
explained below.

5.1 The NLIDB Component
Precise is a highly portable NLIDB that guarantees soundness of its
SQL interpretations for certain kinds of English sentences, called
semantically tractable questions [20]. Precise automatically
generates a lexicon based on the names of relations, attributes, and
values in its input database. At its core, it reduces the problem of
mapping a sentence to an SQL query to a graph-matching problem,
which can be solved using the maxflow algorithm. Precise relies on
the Charniak parser to extract attachment information from the

sentence to help constrain the matching problem. Finally, Precise
generates the complete set of possible SQL interpretations of the
sentence that are consistent with its lexicon and its parser.

Precise was originally built to support only questions, which
translate to SELECT queries in SQL. Since an NLIA has to respond
to requests for changing the state of the appliance, which translate
naturally to SQL UPDATE statements, we had to extend Precise
appropriately. There is no room to explain the technical details of
Precise, but the essence is an extension of Precise’s graph matching
algorithm to keep track of two attributes, a “pre-attribute” and a
“post-attribute.” The pre-attributes contain values in the database
state before an UPDATE, and the post-attributes contain the new,
updated values. Any values that are set by an UPDATE statement
are matched with post-attributes, and all other values are matched
with pre-attributes. In order to understand an input sentence, the
system needs to classify it as an UPDATE or a SELECT, and
proceed appropriately. Precise’s other modules, including its
tokenizer, lexicon, and parser, remain unchanged.

5.2 The Planning Component
We have already explained how we prevent unwarranted side
effects and how we finesse the problem of information gathering.
But the domain of household appliances also has a surprising
amount of temporal complexity.
First, user commands may involve events occurring at specific
future times (e.g., “record Star Trek”). While one could use a
temporal planner to handle these goals, we instead rely on the
temporal capabilities of the device itself. Since it is possible now to
set a VCR to program later, EXACT can handle this goal with a
classical planner. If the VCR did not support this type of operation,
EXACT would explain that the goal was unachievable.
Second, numerous actions are durative; execution occurs over an
interval of time (e.g., “play all messages”). Although it might seem
natural to model the temporal aspects of these actions explicitly
(e.g., in PDDL 2.1 level 36), we tried this and discovered problems
(see below).
Finally, different commands naturally translate into goals with
different temporal annotations, but the nature of the temporal
mapping is complex and subtle. For example, consider the
command “Play all messages.” Note that the user (presumably)
doesn’t want the answering machine to play the messages forever;
once is enough. Thus if one models `play’ as a durative action
(which transiently plays a message), one cannot model the goal as
one of achievement. In a durative model, the goal has an implicit
temporal annotation that it must be true at some point during
execution, even if it is not true at the end of all execution. There are
two problems with such a model. First, few planners support such
expressiveness; indeed PDDL 2.1 level 3 does not even allow one to
express the goal. But the deeper problem is related to
disambiguating natural language. Consider the commands “Play all
messages” (which does not require playing to be true at the end of
the plan) and “Turn on answering machine” (which does). We could
think of no principled way to distinguish between these goals;
clearly the user would be very upset if EXACT responded to the last
command by turning answering on and then off again!
Our solution is to use a classical atomic model of time, implicitly
recognizing that exogenous events may subsequently change the
device state. Philosophically, this is consistent with PDDL 2.1 level
5 in which all actions are instantaneous, but some may initiate

6 http://www.dur.ac.uk/d.p.long/competition.html

physical processes (in this case the process of a message being
played) that evolve over time. We do not need to model the
processes explicitly, since (by assumption) the networked device
notifies the agent of events such as incoming messages. Thus
execution of the play command does not terminate with the device
playing; it simply stops later of its own accord. By modeling the
device in this fashion, we are able to use the Blackbox planner [13],
which operates by compiling PDDL planning problems into a set of
propositional clauses that is satisfiable exactly when an n-step plan
exists. A fast satisfiability algorithm is used; if an assignment is
found, a reverse compilation phase generates the plan; otherwise,
the plan length is incremented.

6. EXPERIMENTAL EVALUATION
To test our system, we gathered a total of 72 sentences from seven
graduate students and faculty at the University of Washington. The
people who provided us with data were given a concise list of the
features available on the Panasonic phone and were asked to write
down sentences in English that they might use to invoke those
features.
Of the 72 sentences gathered, we used 61 in our experiments. The
eleven sentences we excluded did not describe a goal or an action,
but rather they implied it. For example, we excluded the sentence,
“It’s too loud.” This sentence does not describe a goal state or an
action to achieve a goal. Instead, it describes the current state and
implies the goal. Such sentences clearly demonstrate the importance
of processing speech acts, but are beyond the current capabilities of
EXACT.

82.0%
86.9% 88.5%

100% 100% 100%

0%

20%

40%

60%

80%

100%

EXACT EXACT-2 EXACT-4

Recall Precision

Figure 3: EXACT’s performance in our experiment.

Figure 3 shows EXACT’s performance on our dataset. Recall is
the fraction of the sentences in the dataset where EXACT put
forth an interpretation.7 We refer to these sentences as tractable
sentences. On intractable sentences, EXACT indicates it cannot
understand the request and asks for a paraphrase.
Precision is the fraction of the tractable sentences in the dataset
that EXACT interpreted correctly (including the interpretation
that the sentence was an impossible request, where appropriate).
To measure precision and recall on our data, we labeled each
sentence with one or more valid interpretations.8 As the black bars
in the figure show, we achieve 100% precision on our dataset,

7 Remember that to maximize reliability, EXACT does not try to “guess”
the correct interpretation when it is not sure.
8 EXACT’s interpretation is correct if it is a member of the set of valid
interpretations.

reflecting our commitment to reliability and the utility of our
underlying theory.
EXACT’s recall is 82.0% because on eleven sentences it is unable
to choose a definitive interpretation. If we allow EXACT to ask
the user to choose between two possible interpretations (EXACT-
2) the recall goes up to 86.9%, and if the user may choose
between up to four interpretations the recall goes up slightly to
88.5% (EXACT-4). In the remaining cases, EXACT is unable to
interpret the sentence because it contains words outside of
EXACT’s lexicon. Unlike some natural language interfaces,
EXACT does not attempt to ignore unfamiliar words. To ensure
reliability, EXACT declines to interpret a sentence that contains
any unknown words.
The increasing recall from EXACT to EXACT-2 and then to
EXACT-4 quantifies the amount of ambiguity in our data. Two
sentences have exactly two interpretations; both cases reflect the
fact that the phone has two different volume settings (one for the
answering machine and one for the ringer). For a sentence like,
“Turn up the volume,” there are two interpretations, and both are
potentially correct. Only one other input sentence has multiple
interpretations in our data, and that is the somewhat idiosyncratic
single-word command “Aloud.” The four interpretations of this
sentence are actions to turn on the speakerphone (the intended
goal), turn on the handset ringer, turn on the intercom, and
playback messages, all of which play sounds aloud. With further
tuning of the system, such ambiguities could be resolved.

7. FUTURE WORK
There are a number of important directions for future work. First,
we need to test EXACT on a much wider range of users and
appliances. Second, we need to link EXACT to actual device
hardware, and to a speech recognizer. Third, we need to address
the user interface issues that arise due to speech recognition errors
and hardware problems. For example, it is appropriate for
EXACT to confirm its plans with the user before taking some
actions, but excessive confirmation can be a nuisance to the user.
Finally, it will be essential to enable EXACT to participate in full-
blown dialogs with users. Such dialogs would enable EXACT to
choose between multiple competing interpretations and to learn
new words, phrases, or idioms, thereby improving its recall.

8. RELATED WORK
We build on the large body of work in natural language interfaces
to databases. See Androutsopoulos et al. [4] for a survey. Only a
small number of NLIDBs handle updates, and none have
considered the NLIA problem.
Our emphasis on provable soundness as a foundation for a reliable
natural language interface is shared with Popescu et al. [20], but
our work on EXACT goes beyond Precise in several important
ways. First, we introduce and analyze the idea of reducing the
NLIA problem to the NLIDB problem while maintaining the
soundness and completeness of the interface. Second, EXACT
composes Precise with a planner to automatically generate an
NLIA. Third, we extended Precise to handle updates. Finally, we
show experimentally that linking EXACT to a ‘typical’ household
appliance, the Panasonic KXTC1040W phone, yields a highly
reliable interface that can handle goals, impossible requests, and
safety concerns.
Young and Moore [30] have described DPOCL, a sound discourse
planner that satisfies a limited form of completeness. They argue
that the formal properties of previous discourse planners have

been largely ignored, and that this lack of understanding leads to
inconsistencies in the representation of discourse. Their focus,
however, is on representing speaker intentions in texts. EXACT
focuses on simpler natural language utterances, and seeks to use
them to control household appliances.
Quesada et al. [21] describe a spoken dialogue agent in the
D’Homme project that is specifically designed for interacting with
household appliances. The agent uses a semantic grammar for a
restricted and tractable subset of natural language that they call a
Natural Command Language. The D’Homme agent is capable of
understanding complex natural language dialogs, but it does not
guarantee reliability. The agent also has no built-in planning
capability, so it cannot handle all goals that require multi-step
plans.
A number of commercial systems are being built to handle dialog
with household appliances. Some examples include the
Linguamatics Automated House9, the SmartKom Home/Office10,
the Fluency House11, and Voxi Smart Homes12. As these are
commercial systems, they do not report vital information about
their mechanisms.
TRIPS (Allen, et al. [3]) is an agent architecture for handling
natural conversation in the travel-planning domain. In contrast to
this kind of system, EXACT is designed to be easily portable to a
number of different domains, and the domains of interest
generally have a much simpler structure to the natural language
interaction.
The Universal Speech Interface (USI) [25] project at CMU has
design goals very similar to ours. USI/Gadget is a template system
that is portable to many different appliances. The natural language
capabilities of the system, however, are constrained by the speech
recognition technology, so the interaction is keyword-based.
Various ubiquitous computing projects (e.g., MIT’s intelligent
room [6]) have considered multi-modal interfaces that include
language. However, they have not considered the reliability of the
language module, nor have they considered embedding a planner
into the system to satisfy high-level goals, decline impossible
requests, and abide by safety constraints.
A number of other researchers have modeled appliances and
developed specification languages (e.g., in XML) for appliance
interfaces [2, 8, 12, 18]. Systems designed around these
specifications have tried to create a single interface to all
appliances on another, remote appliance like a PDA. The Personal
Universal Controller (PUC) [16] generates an interface to
appliances, using XML specifications. Unlike EXACT, the PUC
executes simple commands, not plans, and does not use natural
language.
The menu2dialog system [14] creates a dialog planning system
from a menu-based natural language system. It is not fully
automated, however, and it does not consider the problems of
reliability and safety.
 Like EXACT, Softbots [7] use planners to develop complex plans
on behalf of users. However, one drawback of softbot-based
interfaces has been their lack of natural language capabilities,
which can make them difficult to use, especially for novice users.

9http://www.linguamatics.com/technology/dialogue/home.html
10 http://www.smartkom.org
11http://visualhouse.fluencyvoice.com/housecgi/fluencyHouse.html
12 http://www.voxi.com

The Unix Consultant (UC) [29] is a natural language tutoring
system for Unix. Although UC was designed as an interface to a
device, UC has a very different focus from EXACT. UC is not
portable across many devices; instead, its focus is on a complete
model of a single, highly complicated “device” (the Unix shell).
Furthermore, its response to user input is to advise the user on
how to accomplish his or her goal, rather than performing actions
itself. Finally, due to its complexity, UC makes no reliability
guarantees.

9. CONCLUSION
This paper sketches a novel answer to the fundamental question:
how do we build a reliable natural language interface to household
appliances? Our answer, encapsulated in Figure 2, is to leverage
more than thirty years of research on natural language interfaces
in databases and reduce the appliance problem to the database
problem. We show how, when coupled with a planner, this
approach has a number of advantages, including formal
guarantees of soundness, the ability to enforce safety, and the
ability to appropriately handle high-level goals and impossible
requests. Our preliminary experiment complements our theoretical
arguments by showing that our interface in fact displays these
advantages in practice.

10. ACKNOWLEDGEMENTS
We thank Ana-Marie Popescu for her help with using and
extending the Precise system. We thank Krzysztof Gajos, Keith
Golden, Tessa Lau, Mike Perkowitz, and the anonymous reviews
for their insightful comments on previous drafts. This research
was supported in part by NASA grant NAG 2-1538, NSF grants
IIS-9872128 and IIS-9874759, and ONR grants N00014-02-1-
0932 and N00014-02-1-0324.

11. REFERENCES
[1] Panasonic Cordless Answering Sys. Op. Instructions.

http://www.pasc.panasonic.com/OperatingManuals/KXTC104
0W.PDF. Panasonic Consumer Electronics Company.

[2] Abrams, M.; Phanouriou, C.; Batongbacal, A.L.; Williams,
S.M.; and Shuster, J.E. UIML: An Appliance-Independent
XML User Interface Language. The Eighth International
World Wide Web Conference. 1999. Toronto, Canada.

[3] Allen, J.; Ferguson, G.; Stent, A. An architecture for more
realistic conversational systems. Intelligent User Interface,
2001.

[4] Androutsopoulos, I.; Ritchie, G.D.; and Thanish, P. Natural
Language Interfaces to Databases – An Introduction. Natural
Language Engineering, vol 1, part 1, 29-81, 1995.

[5] Barry, D. “Remote Control.” The Washington Post. Sunday,
March 5, 2000. pp. W32. Tribune Media Services.

[6] Coen, M.; Weisman, L; Thomas, K; Groh, M. A Context
Sensitive Natural Language Modality for the Intelligent Room.
Proceedings of MANSE’99. Dublin, Ireland. 1999.

[7] Etzioni, O. and Weld, D. A Softbot-based Interface to the
Internet. Communications of the ACM, July, 1994.

[8] Eustice, K.F.; Lehman, T.J., Morales, A.; Munson, M.C.;
Edlund, S.; and Guillen, M. A Universal Information
Appliance. IBM Systems Journal. 1999. 38(4): pp. 575-601.

[9] Golden, K. Leap Before You Look: Information Gathering in
the PUCCINI Planner. AIPS, 70-77, 1998.

[10] Golden, K.; Etzioni, O.; Weld, D. Omnipotence without
Omniscience: Sensor Management in Planning. AAAI, 1048-
1054, 1994.

[11] Golden, K.; Weld, D. Representing Sensing Actions: The
Middle Ground Revisited. KR, 1996.

[12] Haartsen, j.; Naghshineh, M.; Inouye, J.; Joeressen, O.J.; and
Allen, W. Bluetooth: Vision, Goals, and Architecture. ACM
Mobile Computing and Communications Review. 1998. 2(4):
pp. 38-45.

[13] Kautz, H. and Selman, B. BLACKBOX: A New Approach to
the Application of Theorem Proving to Problem Solving.
AIPS98 Workshop on Planning as Combinatorial Search. pp.
58-60. 1998.

[14] Larsson, S.; Cooper, R.; Ericsson, S. menu2dialog. IJCAI
Workshop on Knowledge And Reasoning In Practical Dialogue
Systems, 2001.

[15] McDermott, D. PDDL--The Planning Domain Definition
Language. AIPS, 1998.

[16] Nichols, J.; Myers, B.A; Higgins, M.; Hughes, J.; Harris, T.K.;
Rosenfeld, R.; Pignol, M. Generating Remote Control
Interfaces for Complex Appliances. CHI Letters: ACM
Symposium on User Interface Software and Technology, 2002.

[17] Norman, D. How Might People Interact with Agents? in J.
Bradshaw (Ed.), (1997). Software Agents. AAAI Press/The
MIT Press, Menlo Park, CA.

[18] Olsen Jr., D.R.; Jefferies, S.; Nielsen, T.; Moyes, W.; and
Fredrickson, P. Cross-modal Interaction using Xweb. ACM
SIGGRAPH Symposium on User Interface Software and
Technology. 2000. pp. 191-200.

[19] Penberthy, J.S. and Weld, D. UCPOP: A Sound, Complete,
Partial Order Planner for ADL, KR, 103-114, 1992.

[20] Popescu, A.; Etzioni, O.; Kautz, H. Towards a Theory of
Natural Language Interfaces. Intelligent User Interfaces, 2003.

[21] Quesada, J.F.; Garcia, F.; Sena, E.; Bernal, J.A.; Amores, G.
Dialogue Managements in a Home Machine Environment:
Linguistic Components over an Agent Architecture. SEPLN,
89-98. 2001.

[22] Reiter, R. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press:
Cambridge, MA, 2001.

[23] Reiter, R. On closed world databases. Logic and Data Bases,
55-76. ed. Gallaire, H. and Minker, J. Plenum Press, 1978.

[24] Schneiderman, B. and Maes, P., Direct Manipulation vs.
Interface Agents, Interactions, 4(6), 1997, pp 42-61.

[25] Shriver, S.; Toth, A.; Zhu, X.; Rudnicky, A.; Rosenfeld, R. A
Unified Design for Human-Machine Voice Interaction. CHI.
2001.

[26] Walker, M.; Fromer, J.; and Narayanan, S. Learning Optimal
Dialogue Strategies: A Case Study of a Spoken Dialogue
Agent for Email. ACL/COLING 98. 1998.

[27] Weld, D. An Introduction to Least-Commitment Planning.
Journal of AI, 27-61, 1994.

[28] Weld, D. and Etzioni, O. The First Law of Robotics (a call to
arms). AAAI. 1042-1047. 1994.

[29] Wilensky, R.; Chin, D.N.; Luria, M.; Martin, J.; Mayfield, J.;
Wu, D. The Berkeley Unix Consultant Project.
Computational Linguistics, 1988.

[30] Young, R.M.; Moore, J.D. DPOCL: A Principled Approach
to Discourse Planning. Seventh International Workshop on
Text Generation. pp. 13-20. 1994.

