
To appear in KR '96

Representing Sensing Actions:
The Middle Ground Revisited

Keith Golden Daniel Weld�

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195
fkgolden, weldg@cs.washington.edu

Abstract

To build e�ective planning systems, it is
crucial to �nd the right level of representa-
tion: too impoverished, and important ac-
tions and goals are impossible to express;
too expressive, and planning becomes in-
tractable. Within the classical framework,
Pednault's adl [24] provided a happy com-
promise between the impoverished strips

representation and the expensive situation
calculus.

Among languages handling sensing actions
and information goals, there is a similar spec-
trum of expressiveness. uwl, an extension of
strips, can't express goals like \Rename the
�le paper.tex to kr.tex." Nor can it repre-
sent universally quanti�ed goals or e�ects. At
the other extreme are elegant languages [22,
21, 17] for which e�ective planners do not ex-
ist.

In this paper, we combine elements of uwl
and adl, to de�ne sadl: a middle-ground
representation for sensing actions. Under-
lying our language are two insights, miss-
ing from uwl: 1) Knowledge goals are in-
herently temporal. 2) Knowledge precondi-
tions are unnecessary for an important class
of domains (those obeying a Markov prop-
erty). sadl is expressive enough to encode
the rich domain theory of the Internet Soft-
bot, including hundreds of UNIX and Inter-
net operators; yet it supports tractable infer-
ence by planners such as xii [11, 10].

�Many thanks to Mark Boddy, Bob Doorenbos, Oren
Etzioni, Marc Friedman, Robert Goldman, Neal Lesh,
Greg Linden, Mike Perkowitz, Rich Segal, Jonathan Shakes
and Ellen Spertus for helpful comments. This research
was funded in part by O�ce of Naval Research Grant
N00014-94-1-0060, by National Science Foundation Grant
IRI-9303461, by ARPA / Rome Labs grant F30602-95-1-
0024, by a gift from Rockwell International Palo Alto Re-
search, and by a Microsoft Graduate Fellowship

1 INTRODUCTION

One of the stumbling blocks to past research in plan-
ning with incomplete information has been inadequate
or imprecisely de�ned languages for representing infor-
mation goals and sensing actions. Many researchers
have devised formalisms for reasoning about knowl-
edge and action [21, 22, 23, 5, 3, 32, 17], but those
languages are too expressive to be used in practical
planning algorithms. uwl [9] o�ered a more tractable
representation (based on strips) that was tailored to
current planning technology, but as Levesque [17] ob-
serves, the semantics of uwl are unclear | the de�-
nitions were made relative to a speci�c planning algo-
rithm. In our e�orts to de�ne a semantics for uwl,
we determined that uwl confused information goals
with maintenance goals, and conated knowledge goals
with knowledge preconditions. Furthermore, years of
experience with uwl convinced us that it wasn't ex-
pressive enough to fully handle the real-world domains
(e.g., unix and the Internet) for which it was intended.
Since uwl didn't support universal quanti�cation or
conditional e�ects, it could not correctly represent the
unix command ls, which lists all �les in a directory,
or rm *, which deletes all writable �les.

Information Expressiveness �!

Complete strips adl Situation Calculus

Incomplete uwl SADL Moore et al

In this paper, we de�ne a new action representation
language, sadl,1 that combines ideas from uwl with
those from Pednault's adl [26, 24]. Just as adl

marked the \middle ground" on the tractability spec-
trum between strips and the situation calculus, sadl
o�ers an advantageous combination of expressiveness
and e�ciency. Since sadl supports universally quanti-
�ed information goals and universally quanti�ed, con-
ditional, observational e�ects, it is expressive enough
to represent hundreds of unix and Internet commands.

1
sadl (pronounced \Saddle") stands for \Sensory Ac-

tion Description Language."



Indeed, four years of painful experience writing and
debugging the Internet Softbot [7] knowledge base
forced us to uncover and remedy some subtle confu-
sions about information goals:

� In a dynamic world, knowledge goals are inher-
ently temporal | If proposition P is true at one
time point and false in another, which time point
do we mean when we ask about P 's truth value?
Since uwl has limited provision to make tem-
poral distinctions, it cannot encode an impor-
tant class of goals. In particular, uwl cannot
express goals that require causal change to at-
tributes used to designate objects, e.g.\Rename
the �le paper.tex to kr.tex." (See Sections 2.2
and 2.3 for the sadl solution)

� We identify a large class of domains, called
Markov domains, and argue that actions in these
domains are best encoded without knowledge pre-
conditions. The multiagent scenarios that in-
spired Moore, Morgenstern, and others are not
Markov, but UNIX and much of the Internet
are. While sadl discourages knowledge precon-
ditions it recognizes the need for knowledge sub-
goals. (Section 2.4 elaborates).

1.1 ROADMAP

Section 2 describes problems with the uwl formula-
tion of knowledge goals and presents the sadl so-
lution. In Section 3 we discuss observational e�ects
of actions, and causal e�ects, which can decrease the
agent's knowledge about the world. We also demon-
strate the representational adequacy of sadl by pre-
senting an encoding of the UNIX ls -a command. In
Section 4 we discuss temporal projection in sadl. In
Section 5 we demonstrate that the sadl formalism is
expressive enough to represent many interesting ac-
tions. Section 6 argues that sadl's expressive power
comes at a reasonable price | reasoning is tractable.
We conclude with a discussion of related work in Sec-
tion 7 and a summary in Section 8.

2 KNOWLEDGE GOALS AND

PRECONDITIONS

In uwl, preconditions and goals were limited to con-
junctions of literals, each annotated with one of three
tags: satisfy, hands-o�, and �nd-out. The sadl
action language is based on uwl, but uses a di�er-
ent set of annotations: satisfy, hands-o�, and ini-
tially, which provide a cleaner semantics for informa-
tion goals and greater expressive power; additionally,
sadl uses unannotated literals to designate precon-
ditions that don't depend on the agent's knowledge.
Furthermore, sadl supports universal quanti�cation
and conditional e�ects, both of which have interesting
rami�cations in the context of incomplete information.
We proceed by reviewing uwl, uncovering some con-
fusions, presenting the sadl solution, and sketching
the formal semantics.

In uwl (and in sadl) individual literals have truth
values expressed in a three-valued logic: T, F, U (un-
known). Free variables are implicitly existentially
quanti�ed, and the quanti�er takes the widest pos-
sible scope.2 For example, satisfy(in.dir (f , tex), T)3

means \Ensure that there's at least one �le in direc-
tory tex." Truth values can also be represented by
variables. For example, satisfy(in.dir (myfile, tex),
tv) means \Find out whether or not myfile is in tex."

Although the semantics of uwl was de�ned procedu-
rally [9], we provide sadl's semantics in terms of the
situation calculus. The situation calculus [19] is a �rst-
order logic used to capture changes to the world that
come about by the execution of actions. A uent is a
proposition whose truth value changes over time. Ev-
ery uent, '(x), takes an additional argument, namely
a situation, s. '(x; s) represents the statement that
'(x) holds in situation s. By convention, s is always
the last argument of ', so we will freely add or drop
the s, depending on whether we are referring to ' in
a particular situation. Thus, if in.dir(f; d) means �le
f is in directory d, in.dir(f; d; s) means this fact holds
in situation s. All state changes are assumed to result
from the execution of actions. The special function DO
is used to describe these changes: DO(a; s) returns the
situation resulting from executing action a in situation
s. We use fagn1 to represent the sequence of actions
a1; a2; : : : ; an. DO(fagn1 ; s) denotes nested applica-
tion DO(an;DO(an�1; : : : ;DO(a1; s))), i.e., the result
of executing the entire sequence, starting in situation
s. We use sn as a shorthand for DO(fagn1 ; s0).

Our formulation of sadl is based on Scherl and
Levesque's [32] solution to the frame problem for
knowledge-producing actions. We adopt their com-
pleteness assumptions, and their formulation of incom-
plete knowledge, and thus their results (i.e. the per-
sistence of knowledge and of ignorance) hold for us
as well. Incomplete knowledge is de�ned in terms of
the standard possible-worlds semantics, where K(s0; s)
means that if the situation is s, then it is con-
sistent with the agent's knowledge to believe that
the situation could in fact be s0. In other words,
fs0jK(s0; s)g denotes the set of all possible worlds con-
sistent with the agent's knowledge in situation s. We
assume that an agent's knowledge is correct, so the
actual situation is always considered possible by the
agent (8s:K(s; s)), and we assume that situations only
change when the agent executes an action. We de�ne

KNOW('; s)
def
=8s0:K(s0; s)) '(s0), i.e., ' is true in

all worlds consistent with the agent's knowledge.

2Explicit quanti�ers can be used to indicate a narrower
scope.

3For notational convenience, an omitted truth value de-
faults to T, so this could be rewritten as satisfy(in.dir (f ,
tex)). We use this shorthand in the remainder of the paper.
Italicized lower-case symbols, such as f , denote variables.
Symbols in typewriter font denote constants. Annota-
tions are in bold.



As we mentioned, sadl uses a three-valued logic (T, F,
U) to represent knowledge. The relation between these
truth values and KNOW is straightforward. If ' has
the truth value T, then KNOW('). If ' has the truth
value F, then KNOW(:'). If the truth value is U, then
:KNOW(') ^ :KNOW(:').

2.1 SATISFACTION AND
MAINTENANCE GOALS

The goal satisfy(P ) indicates a traditional goal (as
in adl): achieve P by whatever means possible. In
the presence of incomplete information, we make the
further requirement that the agent knows that P is
true. We de�ne GOAL(G; s0; fag

n
1 ) to mean that goal

G is achieved in the situation resulting from executing
plan fagn1 in situation s0; since we assume the agent's
knowledge is correct, it is su�cient to state that the
agent knows P :

GOAL(satisfy(P; T); s0; fag
n
1 )

def
= KNOW(P; sn) (1)

GOAL(satisfy(P; F); s0; fag
n
1 )

def
= KNOW(:P; sn) (2)

GOAL(satisfy(P; tv); s0; fag
n
1 )

def
=

KNOW(P; sn)_
KNOW(:P; sn)

(3)

Note that when given an (existentially quanti�ed) vari-
able as truth value, a satisfy goal requires that the
agent learn whether the proposition is true or false
(which could be achieved by making it true or false).
Equation 3 is a slight simpli�cation; if several uents
in a goal use the same variable, tv, then they should all
have the same truth value. The above de�nition fails
to capture such correlations. We don't discuss corre-
lated truth values in this paper, so for clarity, we omit
these variable constraints in the remainder of the pa-
per. However, we show them below for satisfy goals.
Variable constraints in the other de�nitions follow the
same form:

GOAL(satisfy(P; tv); s0; fag
n
1 )

def
=

KNOW(P ^ tv = T; sn) _KNOW(:P ^ tv = F; sn) (4)

The hands-o� annotation indicates a maintenance
goal that prohibits the agent from changing the u-
ent in question.

GOAL(hands-o�(P ); s0; fag
n
1 )

def
=

8s 2 State-History:[P (s), P (s0)] (5)

By State-History we mean the set of n + 1 situations
produced during execution of DO(fagn1 ; s0) (including
both s0 and sn). Thus, the de�nition of hands-o�
requires that P not change value during execution
of the plan. Etzioni et al [9] noted that together,
satisfy+hands-o� can be used to indicate a \look
but don't touch" goal: the agent may sense the uent's
value, but is forbidden to change it. While hands-o�
goals are clearly useful, we argue that they are an
overly restrictive way of specifying knowledge goals. In
particular, they outlaw changing the value of a uent
after it has been sensed.

2.2 KNOWLEDGE GOALS ARE
INHERENTLY TEMPORAL

Before explaining the sadl approach to knowledge
goals, we discuss the uwl �nd-out annotation.
�nd-out is problematic because the original de�nition
was in terms of a particular planning algorithm [9].
The motivation for �nd-out was the existence of goals
for which hands-o� is too restrictive, but satisfy
alone is too permissive. For example, given the goal
\Tell me what �les are in directory tex," executing rm
tex/* and reporting \None" would clearly be inappro-
priate. But what about the conjunctive goal \Free up
some disk space and tell me what �les are in directory
tex"? In this case excluding the rm seems inappro-
priate, since it may be necessary in service of freeing
disk space. Yet the knowledge that the directory is
now empty is relevant to the information goal. Pro-
ponents of �nd-out argued that rm was unacceptable
for the �rst goal, but acceptable in service of the con-
junction [9]. We contend that this de�nition is unclear
and unacceptable; a plan that satis�es the conjunction
A ^B should also be a solution to A.

While the examples used to justify the original
�nd-out de�nition are evocative, their persuasive
powers stem from ambiguity. At what time point do
we wish to know the directory contents? Before freeing
disk space, afterward, or in between? Since uents are
always changing, a general information goal requires
two temporal arguments: the time a uent is sensed,
and the time the sensed value is to be reported. E.g.,
one can ask \Who was president in 1883," or \Tell me
tomorrow who was president today."

Since planning with an explicit temporal representa-
tion is slow, our quest for the \middle ground" along
the expressiveness / tractability spectrum demands a
minimal notion of time that captures most common
goals. We limit consideration to two time points: the
time when a goal is given to the agent, and the time the
agent gives his reply. Note that satisfy(P; tv) (Equa-
tion 3) allows one to specify the goal of knowing P 's
truth value at this latter time point. To specify the
goal of sensing a uent at the time the goal is given,
we introduce the annotation initially.

GOAL(initially(P; tv); s0; fag
n
1 )

def
=

[8s2ORIGn: P (s)] _ [8s2ORIGn: :P (s)] (6)

We use ORIGn (Figure 1) to represent the
agent's knowledge in sn about the past situation
s0, i.e., the set of situations indistinguishable
from s0 after execution of the plan: ORIGn =
fs j K(DO(fagn1 ; s);DO(fag

n
1 ; s0))g. Thus the def-

inition of initially states that when the agent has
�nished executing the plan, he will know whether P
was true or false when he started. initially(P ) is not
achievable by an action that changes the uent P , since
such an action only obscures the initial value of P .
However, changing P after determining its initial value



i i i

i i i

i i i

- - -

- - -

- - -

. . .

. . .

. . .

a1 a2 an

a1 a2 an

a1 a2 an

i i i

i i i

i i i

i i i

- - -

- - -

- - -

- - -

. . .

. . .

. . .

. . .
. . . . . .

. . . . . .

.

..

..

.

..

..

..

..

.

..

.

.

..

..

.

..

..

..

..

.

..

.

s0

a1 a2 an

a1 a2 an

a1 a2 an

a1 a2 an

sn

ORIG

K(s; s0)

K(s; sn)

Figure 1: The region surrounded by dotted lines rep-
resents the set ORIGn, the set of states indistinguish-
able from s0, based on the agent's knowledge in state
sn. ORIGn is a subset of fs j K(s; s0)g, the states that
were consistent with the agent's knowledge in s0, since
the agent has learned more about what originally held,
but has not forgotten anything it knew originally.

is �ne. By combining initially with satisfy we can
express \tidiness" goals (modify P at will, but restore
its initial value by plan's end) [35]. Furthermore, we
can express goals such as \Find the the �le currently
named paper.tex, and rename it to kr.tex," which
are impossible to express in uwl. Since uwl can't
make temporal distinctions, there is no way to ask for
the past value of a uent without also requiring that
the uent have the same value when the reply is given,
so any goal of the form \Find some x such that P (x),
and make P (x) false" is inexpressible in uwl.

2.3 UNIVERSALLY QUANTIFIED GOALS

When de�ning universally quanti�ed goals, one must
again be speci�c with respect to time points: does the
designator specifying the Herbrand universe refer to s0
or sn? Since sadl allows an arbitrary goal description
to be used to scope a universally quanti�ed goal, one
can specify a wide range of requests. For example,
suppose an agent is given the goal of seeing to it that
all �les in directory tex are compressed. What plans
satisfy the goal? It depends on what the request really
means. In sadl, one can write one of the following
precise versions, thus eliminating the ambiguity.

1. Ensure that all �les, which were initially in tex,
end up being compressed: 8f initially(in.dir
(f , tex)) ) satisfy(compressed (f)). Executing
compress tex/* solves this goal, as does execut-
ing mv tex/* temp then compress temp/*.

2. Ensure that all �les, which end up in tex, end
up being compressed: 8f satisfy(in.dir (f , tex))
) satisfy(compressed (f)). Executing compress

tex/* solves this goal, but so does rm tex/*!

3. Determine if all �les, initially in tex, were ini-
tially compressed: 8f initially(in.dir (f , tex))

) initially(compressed (f)).

4. Determine if all �les, in tex at the end of execu-
tion, were initially compressed: 8f satisfy(in.dir
(f , tex)) ) initially(compressed (f)). This is
equivalent to 8f initially(compressed (f), F) )
satisfy(in.dir (f , tex), F), i.e. ensure that all �les
not initially compressed do not end up in tex.

The �rst example seems the most likely interpreta-
tion of the goal in this case, but it still leaves some-
thing to be desired, since the user may not want
the �les moved from tex. We can easily state the
additional requirement that the �les not be moved
(hands-o�(in.dir (f , tex))), or that they be returned
to tex by the end (satisfy(in.dir (f , tex))). We
should be careful not to make goals overly restrictive,
though. If the desire is that the agent should fail
if there's no way to compress the �les without mov-
ing them, then adding such restrictions is correct. If
the desire is merely that the agent should avoid mov-
ing the �les unnecessarily, then we want the original
solution, with some background preference to mini-
mize unnecessary changes. Such background prefer-
ences could be expressed in terms of a utility function
over world states [30], a measure of plan quality [28,
36], or an explicit notion of harm [35].

Note that even if we decide to forbid moving the �les
from tex, there are still other actions, such as deleting
all the �les in important/papers, or sending threaten-
ing email to president@whitehouse.gov that haven't
been excluded. This is a general problem with sat-
is�cing plans: anything goes as long as the goal is
achieved. Specifying all the undesired outcomes with
every goal would be tedious and error-prone. A better
solution is to separate the criteria of goal satisfaction
from background preferences, as is done in [37, 13,
35].

Given the appropriate annotations on uents, which
provide temporal information, the semantics of 8 goals
is straightforward:

GOAL(8~x:P ; s0; fag
n
1 )

def
= 8~x:GOAL(P; s0; fag

n
1 ) (7)

GOAL(P)Q; s0; fag
n
1 )

def
=

GOAL(P; s0; fag
n
1 ))

GOAL(Q; s0; fag
n
1 )

(8)

Logical operators such as ^, _, and 9 follow the same
form as above.

2.4 KNOWLEDGE PRECONDITIONS
CONSIDERED HARMFUL

Moore [21] identi�ed two kinds of knowledge precon-
ditions an agent must satisfy in order to execute an
action in support of some proposition P : First, the
agent must know a rigid designator (i.e., an unambigu-
ous, executable description) of the action. Second,
the agent must know that executing the action will in
fact achieve P . Subsequent work, e.g. [22], general-
ized this framework to handle scenarios where multiple
agents reasoned about each other's knowledge.



In the interest of tractability, we take a much narrower
view, assuming away Moore's �rst type of knowledge
precondition and refuting the need for his second type.
Our argument occupies the remainder of this section,
but the summary is that there is a large class of do-
mains, those obeying a Markov property, for which ac-
tions are best encoded without knowledge precondi-
tions. While the multiagent scenarios considered by
Moore and Morgenstern are not Markov, UNIX and
much of the Internet are.

We start the argument by assuming away Moore's
�rst type of knowledge precondition. We de�ne ac-
tions as programs that can be executed by a robot
or softbot, without the need for further reason-
ing. In this view, all actions are rigid designators.
dial (combination(safe)) is not an admissible action,
but dial(31-24-15) is. Lifted action schemas, e.g.
dial(x), are not rigid designators, but it is easy to
produce one by substituting a constant for x. Thus
Moore's �rst type of knowledge precondition vanishes.

Moore's second type of knowledge precondition pre-
supposes that an action in a plan must provably suc-
ceed in achieving a desired goal. This is a standard
assumption in classical planning, but is overly restric-
tive given incomplete information about the world; en-
forcing this assumption by adding knowledge precon-
ditions to actions is inappropriate. For example, if
knowledge of the safe's combination is a precondition
of the dial action, then it becomes impossible for a
planner to solve the goal \�nd out whether the com-
bination is 31-24-15" by dialing that number, since
before executing the dial action, it will need to sat-
isfy that action's precondition of �nding out whether
31-24-15 is the right combination!4

On the other hand, it is often necessary for an agent
to plan to obtain information, such as the combination
of a safe, either to reduce search or to avoid dangerous
mistakes. These knowledge subgoals, naturally, have a
temporal component, but the only time point of inter-
est is the moment the action is executed. For example,
the goal of knowing the safe's combination could be
satis�ed by watching another agent open the safe, but
it might also be satis�ed by changing the combination
to some known value (for instance, at some earlier time
when the safe is open).

We say that an action is Markov if its e�ects depend
only on the state of the world at the time of execution.
Note that simple mechanical and software systems are
naturally encoded as Markov, while multiagent sys-

4Note that eliminating the knowledge precondition from
the dial action also allows the unhurried agent to devise a
plan to enumerate the possible combinations until he �nds
one that works. Indeed, the Internet Softbot [7] follows an
analogous strategy when directed to �nd a particular user,
�le or a web page, whose location is unknown. If finger
and ls included knowledge preconditions, then the actions
would be useless for locating users and �les.

tems are typically not, because it is useful to endow
one's model of another agent with state (i.e., I know
that Bill knew : : : ). If all actions in a domain are
Markov, then all knowledge sub-goals will be of the
same form: 1) The agent needs to know the value of
some uent at the time the action is to be executed,
and 2) it doesn't matter if the agent a�ects the u-
ent while obtaining its value.5 These requirements for
knowledge sub-goals are met by the sadl de�nition of
satisfy (Equation 3),6 if we regard the action sequence
fagn1 as a plan to achieve the preconditions of action
an+1.

The Markov assumption for actions yields a substan-
tially simpler representation of change than those de-
�ned by Moore and Morgenstern. While their theo-
ries are more appropriate for complex, multi-agent do-
mains, sadl gains tractability while retaining enough
expressive power to model many important domains.

3 EFFECTS

Like uwl, sadl divides e�ects into those that change
the world, annotated by cause, and those that
merely report on the state of the world, annotated by
observe. Because it lacked universal quanti�cation,
uwl couldn't even correctly model UNIX ls. sadl

goes beyond uwl by allowing both observational and
causal e�ects to have universal quanti�cation and sec-
ondary preconditions.

3.1 OBSERVATIONAL EFFECTS

Executing actions with observational e�ects assigns
values to runtime variables that appear in those ef-
fects. By using a runtime variable as a parameter to a
later action (or to control contingent execution), infor-
mation gathered by one action can a�ect the agent's
subsequent behavior. Inside an e�ect, runtime vari-
ables (syntactically identi�ed with a leading an ex-
clamation point, e.g. !tv) can appear as terms or as
truth values. For example, ping twain has the ef-

5The reader may object that (nonrigid) indexical ref-
erences could appear as preconditions to actions. For ex-
ample, suppose that running Netscape requires that the
�le netscape.bookmarks be in a given directory. It is not
su�cient that a �le of that name be there, because re-
naming paper.tex to netscape.bookmarks would cause
Netscape to fail. But this example makes it clear that
the proposed preconditions of Netscape are simply under-
speci�ed. They should be \The directory contains a �le
named netscape.bookmarks, which is a valid bookmarks
�le, and : : : " This is just the quali�cation problem [18] in
disguise. Granted, it will usually be impossible (or unde-
sirable) to model all such preconditions.

6A justi�cation that might be given for initially or
hands-o� preconditions is to minimize destructive actions
used by an agent to satisfy a goal (i.e. don't use mv to �nd
out the name of a �le). We agree on the need for reasoning
about plan quality, but an accurate theory of action should
distinguish action preconditions from user preferences.



fect of observe(machine.alive(twain), !tv), i.e. deter-
mining whether it is true or false that the machine
named twain is alive, and wc myfile has the e�ect
observe(word.count(myfile, !word)), i.e. determin-
ing the number of words in myfile.

Before we de�ne individual e�ects, we discuss what
it means to execute an action, with all its e�ects. Let
EFF(E; a; s) denote the fact that E becomes true after
action a is executed in s, let �a be the precondition of
action a, and let "a be the e�ects. An action's e�ects
will only be realized if the action is executed when
its preconditions are satis�ed. Furthermore, the agent
always knows when it executes an action, and it knows
the e�ects of that action. Following Moore [21]:

8s:GOAL(�a; s; fg)) 8s
00

:[K(s
00

;DO(a; s)),

9s
0

:K(s
0

; s) ^ s
00

= DO(a; s
0

) ^ EFF("a; a; s)] (9)

The fact that the agent knows the e�ects of a doesn't
imply that e�ects are always certain. As we discuss in
Section 3.3, actions with conditional e�ects can result
in uncertainty.

We now de�ne the semantics of observe in terms of
primitive situation calculus expressions:

EFF(observe(P; T); a; s)
def
= 8s

0

:K(s
0

;DO(a; s)))

9si:K(si; s) ^ s
0

= DO(a; si) ^ P (si) (10)

EFF(observe(P; tv); a; s)
def
= 8s

0

:K(s
0

;DO(a; s)))

9si:K(si; s) ^ s
0

= DO(a; si) ^ (P (si), P (s)) (11)

In other words if action a has an observe e�ect and
is executed in situation s, then in the resulting sit-
uation, the agent knows more about the value that
P had in s. For example, if in s the agent observes
that the sky is blue, we would say that in situation
s0 = DO(look; s), the agent knows that the sky was
blue in situation s. The double use of the K operator
in Equations 9 and 10 is a trie redundant given only
a single observational e�ect. Indeed, if we assume pos-
itive introspection (i.e. K is transitive), as in the S4
logic, the resulting equation can be greatly simpli�ed.
However, in more complex e�ects, we wish to distin-
guish between the agent knowing that the e�ect as a
whole took place, and knowing the value of a single
uent.

sadl supports universally quanti�ed run-time vari-
ables. By nesting universal and existential quanti�ers,
sadl can model powerful sensory actions that pro-
vide several pieces of information about an unbounded
number of objects. For example, ls -a, (Figure 2),
reports several facts about each �le in the current di-
rectory. The universal quanti�er indicates that, at ex-
ecution time, information will be provided about all
�les !f which are in directory d. Since the value of !f is
observed, quanti�cation uses a run-time variable. The
nested existential quanti�er denotes that each �le has

action ls(d)
precond: satisfy(current.shell(csh)) ^

satisfy(protection(d, readable)) ^

effect: 8 !f when in.dir(!f, d)
9 !p, !n
observe(in.dir(!f, d)) ^

observe(pathname(!f, !p)) ^

observe(name(!f, !n))

Figure 2: UNIX action schema. The sadl ls ac-
tion (UNIX ls -a) to list all �les in the a directory.

a distinct �lename and pathname. The conditional
when restricts the �les sensed to those in directory d.
The fact that the in.dir relation appears in two places
may seem odd, but as we shall explain, the �rst use of
in.dir refers to the actual situation s, whereas the sec-
ond refers to the agent's knowledge (i.e., all possible
situations).

It is useful to note that after executing ls -a tex,
the agent not only knows all �les in tex; she knows
that she knows all �les (i.e., she has closed world
knowledge on the contents of tex). Because of the
8 in the e�ects of ls, and since she knows the ef-
fects of ls, the agent can infer closed-world knowl-
edge. Such inference would be costly if it were
done using �rst-order theorem-proving in the situa-
tion calculus. We have devised e�cient algorithms
for doing this reasoning, which we describe in [6,
8].

The translation of 8 e�ects into the situation calculus
is straightforward (Other logical operators follow the
same form):

EFF(8~x:E; a; s)
def
= 8~x:EFF(E; a; s) (12)

This de�nition of 8 e�ects may seem anticlimactic.
The magic, however, stems from the way in which
when introduces secondary preconditions; these are
required for 8 e�ects, where the when clause restricts
the universe of discourse to a �nite set, and indicates
precisely the range of the quanti�er.

3.2 CONDITIONAL EFFECTS

A secondary precondition, i.e. one associated with an
e�ect [26], de�nes the conditions under which action
execution will achieve that e�ect. Unlike primary pre-
conditions, secondary preconditions need not be true
for the action to be executed. If p is the secondary
precondition of e�ect e, then the resulting conditional
e�ect is de�ned as:

EFF(when(p; e); a; s)
def
= GOAL(p; s; fg)) EFF(e; a; s)

We use GOAL in our de�nition of when, but we
have only de�ned GOAL for annotations satisfy,



hands-o� and initially. How should we de�ne when
preconditions? Since they need to hold, if at all, when
the action is executed, they are di�erent from initially
preconditions. But satisfy requires that the agent
know that the condition is true, which would lead to
the faulty conclusion that the e�ect only occurs if the
agent knows that the secondary preconditions hold. So
we add a new type of precondition, without any an-
notation at all, to represent conditions that must hold
at the time of execution, with or without knowledge
of the agent:

GOAL(P; s0; fag
n
1 )

def
= P (sn) (13)

This ensures that whether the e�ects occur depends
only on the state of the world. It also makes it clear
what is being quanti�ed over in ls: The �les really in
d, at the time of execution.

3.3 UNCERTAIN EFFECTS

In some cases, executing actions with causal e�ects
can decrease the agent's knowledge about the world.
sadl provides two ways of encoding these actions: as
conditional e�ects whose secondary precondition is un-
known, or by explicitly specifying the U truth value. As
an example of the former, executing rm tex/* deletes
all writable �les in tex; if the agent doesn't know
which �les are writable, then she won't know which
�les remain in tex even if she knew the contents be-
fore executing the action. As an example of explicit
creation of uncertainty, we encode compress myfile

with the e�ect 8n cause (size (myfile, n), U).7

We de�ne causal e�ects for T and U truth values as
follows:

EFF(cause(P; T); a; s)
def
= P (DO(a; s)) (14)

EFF(cause(P; U); a; s)
def
=

UnkP (a;DO(a; s)), P (DO(a; s)) (15)

where, UnkP is a predicate such that

:KNOW (UnkP (a);DO(a; s)) ^

:KNOW (:UnkP (a);DO(a; s)) (16)

In other words, we represent an uncertain e�ect as a
deterministic function of hidden state. UnkP (a) de-
notes a unique unknown predicate, which represents
the hidden state responsible for the change in truth
value of P . It must be unique to avoid biasing corre-
lation of independent unknown e�ects.

It is clear from the above de�nition how a cause ef-
fect may make P unknown. What may not be clear
is how a cause e�ect can make P known. In fact,

7In principle, we could represent all uncertain e�ects as
conditional e�ects with unknown preconditions, but doing
so would be cumbersome. However, we de�ne the seman-
tics of uncertain e�ects in precisely this manner.

it wouldn't, if not for the fact that the agent knows
all the e�ects of an action (Equation 9). However,
knowledge of a conditional e�ect does not necessarily
mean knowledge of the consequent. For example, if
an agent executes compress myfile, she only knows
that if she had write permission prior to executing
compress, then myfile is compressed afterward.

4 TEMPORAL PROJECTION &

REGRESSION

We have discussed the function DO, which maps a sit-
uation and an action (or sequence of actions) to a new
situation, but we haven't yet said how the two situa-
tion terms relate to each other. If s0 = DO(fagn1 ; s),
we want to answer the following questions.

� Progression: What can we say about s0, given
knowledge of the conditions that hold in s?

� Regression: What must be true in s, to guarantee
some desired condition in s0?

We treat each in turn.

4.1 PROJECTION & THE FRAME
PROBLEM

The de�nitions for preconditions and e�ects that we
have given are insu�cient to solve the temporal pro-
jection problem. sadl e�ects only list uents that an
action a�ects, but what about uents it doesn't af-
fect? Explicitly stating everything that doesn't change
would be tedious | this is the well-known frame prob-
lem. The standard approach to the frame problem,
and the one we adopt, is to make the strips assump-
tion: anything not explicitly said to change remains
the same. To fully specify the sadl semantics, it is
necessary to express the strips assumption in terms
of the situation calculus. We use the formulation in-
troduced in [31], and augmented in [32] to account
for sensing actions. This strategy consists of provid-
ing a formula for each uent, called a successor state
axiom, that speci�es the value of the uent in terms of
1) the action executed, and 2) the conditions that held
before the action was executed. By quantifying over
actions, we can produce a single, concise formula for
each uent that includes only the relevant information.

Specifying update axioms for each uent indepen-
dently requires uents to be logically independent of
each other, so disjunction is not allowed. E�ects con-
sist of conjunctions of terms, each term being equiva-
lent to one of the following

when TP (a) cause(P; T) (17)

when FP (a) cause(P; F) (18)

when UP (a) cause(P; U) (19)

when �tvP (a) observe(P; tv) (20)



where a is an action and P is a uent, which may
contain universally quanti�ed variables or constants,8

and tvP (a) and �tvP (a) represent arbitrary goal
expressions.9 For example, if compress tex/*

changes the size of all writable �les in directory

tex, then Usize(f)(compress tex/*) = indir(f , tex)

^ writable(f). Clearly, all actions can be repre-
sented by specifying the  and � preconditions for
each uent in the domain theory. If a has a non-
conditional e�ect, cause(P , tv), then tvP (a) = T.
We can express the fact that action a doesn't a�ect
P at all by saying 8tv:tvP (a) = F. We don't list
observe(P; T) above, since it is subsumed by the con-
junction observe(P; v) ^ v = T (similarly for F).

Given these de�nitions, we can state the conditions
under which an action changes or preserves a uent's
truth value. Following Pednault [24], we de�ne �a

' to

be the conditions under which an executable action a
will establish ', and �a

' to be the conditions under

which a will preserve '. We have the following estab-
lishment conditions:

�a
' , T'(a) _ (Unk'(a) ^ 

U
'(a)) (21)

�a
:' , F'(a) _ (:Unk'(a) ^ 

U
'(a)) (22)

where Unk'(a) is the unknown predicate introduced
in Equations 15 and 16. The presence of an e�ect with
a U truth value will make ' true or false, depending
on the value of Unk'(a). Since Unk'(a) is unknown
by de�nition, e�ects with U truth values aren't gener-
ally useful for goal establishment. We also have the
following preservation conditions:

�a
' , :F'(a) ^ (:Unk'(a) _ :

U
'(a)) (23)

�a
:' , :T'(a) ^ (Unk'(a) _ :

U
'(a)) (24)

For each uent, we can then generate an expression
that speci�es precisely when it is true or false, by quan-
tifying over actions. For each uent P , there is a suc-
cessor state axiom, which combines update axioms and
frame axioums for P . The successor state axioms are
straightforward statements of the strips assumption:
a uent is true if and only if it was made true, or it
was true originally and it wasn't made false:

GOAL(�a; s; fg) ) [P (DO(a; s)), �a
P (s) _

P (s) ^ �a
P (s)] (25)

Similarly, there is a successor state axiom for K.

GOAL(�a; s; fg)) [K(s00;DO(a; s)), 9s0:K(s0; s)

^(s00 = DO(a; s0)) ^

8P:([�vP (a; s) ^ P (s)]) [P (s0) ^ v =s0 T] ^

([�vP (a; s) ^ :P (s)]) ) [:P (s0) ^ v =s0 F])] (26)

8Including variables that will resolve to constants.
9with the restriction that e�ects must be consistent, so,

for example, TP (a) ^ FP (a) must always be false.

We have stated this formula in second-order logic, but
only because the formula depends on all of the actual
uents in the domain theory. Given any speci�c do-
main, this second-order formula could be replaced with
an equivalent �rst-order formula by replacing P with
each uent in the domain.

The above de�nition only speci�es when information
is gained, and seems to say nothing about when it is
lost. However, information loss is indeed accounted
for, through the successor state axiom for P . If P
becomes true in some situations accessible from s, and
false in others, then by de�nition, P is unknown. For
example, compress myfile compresses myfile if it is
writable. If it is unknown whether myfile is writable,
then in some accessible worlds, myfile is writable and
will be compressed. In other worlds, myfile is not
writable and won't be compressed. The result is that
it becomes unknown whether myfile is compressed.
Similarly, if P was known previously and not changed,
then by the successor state axioms for P and K, P
will continue to be known. [32].

The above formula correctly describes how K changes,
but it is a little unwieldy if what we want to know
about is KNOW('). Intuitively, KNOW(') becomes
true if ' is known to become true, or ' is observed.
Additionally, ' continues to be known true until it
possibly becomes false. The following formulas follow
from the successor state axioms for ' and K.

�a

KNOW(')
, KNOW(�a

') (27)

�a

KNOW(')
, KNOW (T'(a)) _ (�tv' (a) ^ '

^�a

KNOW(')
)10 (28)

4.2 REGRESSION

Most modern planners build plans using goal regres-
sion | starting with a goal and successively adding
actions that achieve either part of the goal or precon-
ditions of previously added actions. Once no precon-
ditions remain that aren't true in the initial state, the
plan is complete. It is therefore useful to have a for-
mal speci�cation of what conditions must be true for a

10The additional requirement �a

KNOW(')
may come as

a surprise, since an action that simultaneously observes '
and causes ' to become false or unknown would seem to
violate our rule against inconsistent actions. However, such
e�ects aren't inconsistent, since the observation pertains
to situation s, whereas the update is to situation DO(a; s).
Such destructive sensing actions are commonplace. By the
Heisenberg Uncertainty Principle, they are inevitable, but
examples can be found in macroscopic domains as well.
Biologists �nd out the number of insects living in a tree
by placing containers under the tree and then fogging the
tree with poison. The number of insects that fall into the
containers provides an estimate of the number that were
originally living there.



given action sequence to achieve a given goal. Let a�1

be a regression operator for action a. a�1(') is a con-
dition that, if true immediately before the execution of
a, results in ' being true after a is executed. We de�ne
(fagn1 )

�1(') to be an
�1(an�1

�1( : : : (a1
�1(')))). Nat-

urally, regression on an action sequence of zero length

is the identity function: fg
�1
(') = '.

Let � be an axiomatization of the initial conditions,
and let � be some goal expression. The objective of
planning is to produce an executable sequence of ac-
tions, fagn1 , such that �j=(fagn1 )

�1(�). We discuss
executability in Section 4.3.

We specify regression operators for satisfy, initially
and hands-o� goals below. Since some conditions
could be true in the initial state, we also must specify
when a condition is true after executing a plan of zero
length. Since initially indicates something that must
be true before the plan is executed, and satisfy in-
dicates things true afterwards, it follows that if there
is no plan, then initially and satisfy have the same
interpretation: For all ',

�j=KNOW('; S0), fg
�1
(initially(')) = T (29)

�j=KNOW('; S0), fg
�1
(satisfy(')) = T (30)

hands-o� is always true in the initial state, since it
can only be violated by changing the proscribed uent:

fg
�1
(hands-o�(')) = T (31)

We now consider how to regress a sadl goal formula
through an action. A goal satisfy(') is achieved if
the agent knows that ' is true; i.e., ' just became
true, was just observed to be true, or was previously
known to be true and wasn't subsequently a�ected.
The �rst two conditions are captured by �a

KNOW(')
.

The latter holds when satisfy(') held in the previous
state, and knowledge of ' was preserved:

a�1(satisfy(')) = �a

KNOW(')
_ (satisfy(')

^�a

KNOW(')
) (32)

A hands-o� goal holds if the state of ' always
remains the same as it was in the initial state.
hands-o�(') doesn't forbid actions that a�ect '
| just actions that change '. For example, an
action compress myfile doesn't violate the goal
hands-o�(compressed(myfile)) if myfile was al-
ready compressed initially.11

a�1(hands-o�(')) = (�a
:' _ initially('))

^(�a
' _ initially(:'))

^hands-o�(') (33)

11This is a departure from uwl's notion of hands-o�,
in which the compress would be a violation. However, un-
compressing the �le and then recompressing it does violate
the goal, since the uncompress changes the uent.

initially(') is satis�ed after action a if it was already
satis�ed, or if ' was observed by action a, and wasn't
a�ected by any previous actions. Unlike other goals,
we are interested in the �rst time point at which an
initially goal is achieved, as opposed to the last. The
disjunct initially(') ensures that the �rst occurrence
is considered, because it is always regressed back.

a�1(initially(')) = initially(') _ (�tv' (a) ^ '

^hands-o�(')) (34)

This de�nition doesn't rule out using destructive sens-
ing actions. All that matters is that ' be undisturbed
before it is sensed. It's �ne if the act of sensing the
value of ' itself a�ects '.

Unannotated preconditions merely need to be satis�ed
in the �nal state, and it isn't necessary that they be
known true.

a�1(') = �a
' _ (' ^�a

') (35)

Logical operators are simply regressed back to the ini-
tial state, since their interpretation is the same across
all situations, as detailed in [25].

With these de�nitions, we can show that regression is
correct | that is, if the conditions returned by a�1(�)
are true, and fagn1 is successfully executed, then � will
indeed be true.

Theorem 1 (Soundness of Regression) Let fagn1
be an executable action sequence. Let � be a goal for-
mula, and let � be an axiomatization of the initial
state, s0. Then �j=(fag

n
1 )

�1(�)) GOAL(�; s0; fag
n
1 )

We believe that the reverse is also true | i.e., if �
is true after fagn1 is executed, then a�1(�) must have
been true.

4.3 EXECUTABILITY

Regression operators alone only tell part of the story
about when an action, or sequence of actions, can
achieve a goal. a�1(') consists of the conditions un-
der which a will achieve ' assuming it is successfully
executed. So to ensure that a brings about ', we must
also ensure that a can be executed. Action a is exe-
cutable in situation s i� the preconditions of a are true
in s. A sequence of actions, fagn1 , is executable in s i�
a1 is executable in s, a2 is executable in DO(a1; s), a3
is executable in DO(a2;DO(a1; s)), and so on.

5 EXPRESSIVENESS

Although sadl is appropriate for any Markov domain
(e.g., transportation logistics, manufacturing, mobile
robotics, etc.), the language is best at modeling do-
mains with accurate (low noise) sensors. We have



concentrated our e�orts on UNIX and the Internet,
encoding hundreds of commands. Examples of sensory
actions include finger, wc, grep, the netfind and
inspec Internet sites, and actions to traverse the Web;
causal actions include cp, rm, and compress. Univer-
sal quanti�cation allows us to model actions that re-
turn an unbounded amount of information, such as ls
(Figure 2).

As an illustration, consider the goal, �, of �nding
a �le named old and renaming it to new: � =
9f:initially(name(f; old)) ^ satisfy(name(f; new)).
Recall that this goal is inexpressible in uwl. It can
be achieved by executing ls in various directories un-
til the desired �le is found, and then executing mv to
change the name to new. There is no single action
sequence that will work in all situations, because the
location of old is not necessarily known. Let's assume
that old resides in the directory tex, and that its loca-
tion is unknown. We also assume that the agent knows
that tex is readable, and that current.shell(csh) is
true. The shortest possible action sequence that would
achieve the goal is ls tex then mv tex/old tex/new.
For brevity, we abbreviate these actions as ls and mv,
respectively. We show that this action sequence is ex-
ecutable, and that it achieves the goal.

For the sake of this example, we won't consider mv in
its full glory. Rather, we assume a simpli�ed version
of mv, with the precondition �mv = satisfy(name(f,
old)) ^ satisfy(in.dir(f, tex)), and the single ef-
fect "mv = cause(name(f, new)). This represen-
tation ignores many details, such as whether tex is
writable, old is readable, there is already a �le named
new, etc.

To show that the plan is executable, we must �rst
show that the preconditions of ls hold in S0, i.e., S0j=

�ls, and then show that the preconditions of mv hold
after ls is executed, i.e., DO(ls; S0)j=�

mv: To show
that the plan achieves the goal, we need show that
DO(mv;DO(ls; S0))j=�. We use regression to show
that these results hold.

We �rst regress the two conjuncts of � through mv.
mv achieves the satisfy goal, with no secondary
preconditions: mv�1(satisfy(name(f; new))) (

�mvKNOW(name(f;new)) ( KNOW(Tname(f;new)(mv))

( KNOW(T) ( T.

mv has no e�ect on the initially goal:
mv�1(initially(name(f; old) ( initially(name(f; old)):

Now we regress mv�1(�) ^ �mv through ls. That is,
we regress initially(name(f; old)) ^
satisfy(name(f; old)) ^ satisfy(in.dir(f; tex)). We
regress the �rst two conjuncts through ls. The �nal
conjunct, satisfy(in.dir(f; tex)), follows the same
pattern.

The action ls tex has the e�ect 8f9n
observe(name(f , n)) ^ observe(in.dir(f; tex)),
with the secondary precondition in.dir(f , tex). This
precondition does not require knowledge on the part
of the agent. So ls�1(initially(name(f; old)) ^

satisfy(name(f; old))) ( �ls
KNOW(name(f;old)) ^

hands-o�(name(f; old)) ^ �ls
:name(f;old) (

�T
KNOW(name(f;old))(ls) ^ KNOW(�lsname(f;old))

^ name(f; old) ^ hands-o�(name(f; old)) ^

:Tname(f;old)(ls) ^ :
U
name(f;old)(ls) ( in.dir(f ,

tex) ^ KNOW(:Tname(f;old)(ls)) ^

:Uname(f;old)(ls)) ^ name(f; old) ( in.dir(f , tex)

^ KNOW(T) ^ name(f; old).

This last formula is entailed by S0. All that re-

mains is to show that S0j= fg
�1
(�ls). By the de�-

nition of fg
�1

for satisfy goals, that follows i� S0j=
KNOW(current.shell(csh) ^ KNOW(protection tex,

readable), which is true by assumption.

6 TRACTABILITY

sadl is implemented by xii [11, 10], a partial-order
planner whose performance is comparable to the
ucpop/snlp family of classical planners. We analyze
its performance in terms of the re�nement paradigm
described in [15] | xii has three re�nement opera-
tions: goal establishment, conict resolution and ac-
tion execution. Goal establishment involves possibly
adding an action to the plan, and adding an interval
protection constraint (IPC) to prevent the goal from
being clobbered. In sadl, there are three possible in-
tervals to consider. If sp is the situation in which the
action will be executed, and sc is the situation in which
the goal is to be ful�lled, the intervals are [sp+1; sc],
[s0; sp] or [s0; sc], corresponding to satisfy, initially
or hands-o�, respectively. Ensuring that no actions
violate the IPC requires O(n) time, where n is the
number of steps in the plan, but maintaining a consis-
tent ordering of actions requires O(n2) time. Conict
resolution and action execution also take O(n2) time.
In contrast, note that goal establishment and conict
resolution are undecidable in the situation calculus.

7 RELATED WORK

McCarthy and Hayes [19] �rst argued that an agent
needs to reason about its ability to perform an ac-
tion. Moore [21] devised a theory of knowledge and
action, based on a variant of the situation calculus
with possible-worlds semantics. He provided an anal-
ysis of knowledge preconditions, which we discussed
earlier, and information-providing e�ects. Morgen-
stern [22] generalized Moore's results to express par-
tial knowledge that agents have about the knowledge
of other agents (e.g. \John knows what Bill said"),
using a substantially more expressive logic, which



is syntactic rather than modal. Davis [3] extended
Moore's theory to handle contingent plans, though,
like Moore, he doesn't discuss actions with indetermi-
nate e�ects. Levesque [17] o�ers an elegant theory of
when a plan, with conditionals and loops, achieves a
satisfaction goal in the presence of incomplete infor-
mation. However, Levesque doesn't discuss knowledge
goals, and his sensory actions can return only T or
F, and can't change the state of the world. Goldman
and Boddy [12] present a clean language for contin-
gent plans with context-dependent e�ects and nonde-
terminism. However, like Levesque, they don't allow
variables in sensing actions: possible outcomes are rep-
resented as a disjuction. Shoham [33] presents a lan-
guage, with explicit time, for representing beliefs and
communication among multiple agents. Agents can
request other agents to perform actions, which can
include (nested) communicative actions, but not ar-
bitrary goals. A discrete temporal logic, without 8,
is used to represent beliefs. prs [14] is a procedural
language that can represent a similar class of goals
as sadl, but lacks temporal goals such as initially.
prs has annotation achieve corresponding to sadl

satisfy, preserve corresponding to hands-o�, and
test corresponding to satisfy+hands-o�, as well as
several procedural constructs that have no correspond-
ing terms in the declarative sadl language.

Partially-observable Markov Decision Processes [20,
2] provide an elegant representation of sensing actions
and actions with uncertain outcomes in Markov do-
mains. However, they don't lend themselves to e�-
cient algorithms. With few exceptions, such as [1],
work in MDPs assumes that reward functions (goals)
are Markov as well, so temporal goals like initially
are inexpressible.

A number of contingent planning systems have intro-
duced novel representations of uncertainty and sensing
actions. Warplan-C [34] tags actions as conditional,
meaning they have two possible outcomes: P or :P .
C-buridan [16, 4] uses a probabilistic action language
that can represent conditional, observational e�ects,
including noisy sensors, and e�ects that cause infor-
mation loss. Unlike sadl, the C-buridan language
is propositional, and makes no distinction between
knowledge goals and goals of satisfaction. C-buridan
and Cassandra [29] (and wcpl [12]) can represent and
reason with uncertain outcomes of actions as disjunc-
tions, allowing them to deal with correlations between
multiple unknown variables (e.g. either it is raining
and Fido is wet, or it is sunny and Fido is dry). By
using the U truth value, sadl gives up the ability to
represent these correlations (i.e. as far as the agent
knows, it is raining and �do is dry). However, rea-
soning with U truth values is more e�cient than the
possible-worlds representation used to handle disjunc-
tion. cnlp [27], like sadl, uses a three-valued logic
to represent uncertainty. Another limitation of these
other languages is an inability to represent actions,

like ls that return information about an unbounded
number of objects.

8 CONCLUSIONS

We introduced sadl, a language for representing sens-
ing actions and information goals, which embodies the
lessons learned during four years of building and de-
bugging Internet Softbot domain theories: 1) Since
knowledge goals are temporal, sadl supports the tem-
poral annotation initially. 2) In Markov domains,
such as UNIX, knowledge preconditions for actions are
inappropriate, but subgoaling to obtain knowledge is
often necessary; sadl handles this paradox by elimi-
nating knowledge preconditions from actions, but us-
ing secondary preconditions to clearly indicate when
subgoaling to acquire knowledge could be useful. sadl
is expressive enough to represent real-world domains,
such as UNIX and the World Wide Web, yet restricted
enough to be used e�ciently by modern planning al-
gorithms, such as xii [10].

References

[1] Fahiem Bacchus, Craig Boutilier, and Adam
Grove. Rewarding behaviors. In Proc. 14th Nat.
Conf. on AI, 1995.

[2] A. R. Cassandra, L. P. Kaebling, and M. L.
Littman. Algorithms for partially observable
markov decision processes. Technical report 94-
14, Brown University, Providence, Rhode Island,
1994.

[3] E. Davis. Knowledge preconditions for plans.
Technical Report 637, NYU Computer Science
Department, May 1993.

[4] D. Draper, S. Hanks, and D. Weld. A probabilis-
tic model of action for least-commitment planning
with information gathering. In Proc. 10th Conf.
on Uncertainty in Arti�cal Intelligence, 1994.

[5] M. Drummond. Situated control rules. In Pro-
ceedings of the First International Conference on
Knowledge Representation and Reasoning, May
1989.

[6] O. Etzioni, K. Golden, and D. Weld. Sound and
e�cient closed-world reasoning for planning. Ar-
ti�cial Intelligence, 1997. (To appear).

[7] O. Etzioni and D. Weld. A softbot-based interface
to the Internet. CACM, 37(7):72{76, 1994.

[8] Oren Etzioni, Keith Golden, and Dan Weld.
Tractable closed-world reasoning with updates.
In Proc. 4th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, pages 178{
189, 1994.

[9] Oren Etzioni, Steve Hanks, Daniel Weld, Denise
Draper, Neal Lesh, and Mike Williamson. An ap-
proach to planning with incomplete information.



In Proc. 3rd Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, pages 115{
125, 1992.

[10] K. Golden, O. Etzioni, and D. Weld. Planning
with execution and incomplete information. Tech-
nical Report 96-01-09, University of Washington,
Department of Computer Science and Engineer-
ing, February 1996. Available via FTP from
pub/ai/ at ftp.cs.washington.edu.

[11] Keith Golden, Oren Etzioni, and Dan Weld. Om-
nipotence without omniscience: Sensor manage-
ment in planning. In Proc. 12th Nat. Conf. on
AI, pages 1048{1054, 1994.

[12] Robert P. Goldman and Mark S. Boddy. Ex-
pressive Planning And Explicit Knowledge. In
Proc. 3rd Intl. Conf. on AI Planning Systems,
May 1996.

[13] Peter Haddawy and Steve Hanks. Utility Mod-
els for Goal-Directed Decision-Theoretic Plan-
ners. Technical Report 93{06{04, Univ. of Wash-
ington, Dept. of Computer Science and Engineer-
ing, September 1993. Submitted to Arti�cial In-
telligence. Available via FTP from pub/ai/ at
ftp.cs.washington.edu.

[14] F. Ingrand, R. Chatila, R. Alami, and F Robert.
PRS: A high level supervision and control lan-
guage for autonomous mobile robots. In Proceed-
ings of the 1996 IEEE International Conference
On Robotics and Automation, 1996.

[15] S. Kambhampati, C. Knoblock, and Q. Yang.
Planning as re�nement search: A uni�ed frame-
work for evaluating design tradeo�s in partial or-
der planning. Arti�cial Intelligence, 76:167{238,
1995.

[16] N. Kushmerick, S. Hanks, and D. Weld. An Al-
gorithm for Probabilistic Planning. Arti�cial In-
telligence, 76:239{286, 1995.

[17] Hector Levesque. What is planning in the pres-
ence of sensing? In Proc. 14th Nat. Conf. on AI,
1996.

[18] J. McCarthy. Circumscription - a form of
non-monotonic reasoning. Arti�cial Intelligence,
13(1,2):27{39, April 1980.

[19] J. McCarthy and P. J. Hayes. Some philosophical
problems from the standpoint of arti�cial intelli-
gence. In Machine Intelligence 4, pages 463{502.
Edinburgh University Press, 1969.

[20] G. E. Monahan. A survey of partially observ-
able markov decision processes: Theory, models,
and algorithms.Management Science, 28(1):1{16,
1982.

[21] R. Moore. A Formal Theory of Knowledge and
Action. In J. Hobbs and R. Moore, editors, For-
mal Theories of the Commonsense World. Ablex,
Norwood, NJ, 1985.

[22] Leora Morgenstern. Knowledge preconditions for
actions and plans. In Proceedings of IJCAI-87,
pages 867{874, 1987.

[23] Leora Morgenstern. Foundations of a Logic of
Knowledge, Action, and Communication. PhD
thesis, New York University, 1988.

[24] E. Pednault. Toward a Mathematical Theory of
Plan Synthesis. PhD thesis, Stanford University,
December 1986.

[25] E. Pednault. Synthesizing plans that contain ac-
tions with context-dependent e�ects. Computa-
tional Intelligence, 4(4):356{372, 1988.

[26] E. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In
Proc. 1st Int. Conf. on Principles of Knowledge
Representation and Reasoning, pages 324{332,
1989.

[27] M. Peot and D. Smith. Conditional Nonlinear
Planning. In Proc. 1st Intl. Conf. on AI Planning
Systems, pages 189{197, June 1992.

[28] Martha Pollack. The uses of plans. Arti�cial In-
telligence, 57(1), 1992.

[29] L. Pryor and G. Collins. Planning for contingen-
cies: A decision-based approach. Journal of Arti-
�cial Intelligence Research, 1996.

[30] Howard Rai�a. Decision Analysis: Introductory
Lectures on Choices Under Uncertainty. Addison-
Wesley, 1968.

[31] R. Reiter. The frame problem in the situa-
tion calculus: A simple solution (sometimes) and
a completeness result for goal regression. In
Vladimir Lifschitz, editor, Arti�cial Intelligence
and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy, pages 359{380.
Academic Press, 1991.

[32] R. Scherl and H. Levesque. The frame problem
and knowledge producing actions. In Proc. 11th
Nat. Conf. on AI, pages 689{695, July 1993.

[33] Y. Shoham. Agent-oriented programming. Arti-
�cial Intelligence, 60(1):51{92, March 1993.

[34] D. Warren. Generating Conditional Plans and
Programs. In Proceedings of AISB Summer Con-
ference, pages 344{354, University of Edinburgh,
1976.

[35] Dan Weld and Oren Etzioni. The �rst law of
robotics (a call to arms). In Proc. 12th Nat. Conf.
on AI, pages 1042{1047, 1994.

[36] D. E. Wilkins. Practical Planning. Morgan Kauf-
mann, San Mateo, CA, 1988.

[37] M. Williamson and S. Hanks. Optimal planning
with a goal-directed utility model. In Proc. 2nd
Intl. Conf. on AI Planning Systems, June 1994.


