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Abstract

Although most people believe that planners that delay step-ordering deci-
sions as long as possible are more e�cient than those that manipulate totally
ordered sequences of actions, this intuition has received little formal justi�-
cation or empirical validation. In this paper we do both, characterizing the
types of domains that o�er performance di�erentiation and the features that
distinguish the relative overhead of three planning algorithms. As expected,
the partial-order (nonlinear) planner often has an advantage when confronted
with problems in which the speci�c order of the plan steps is critical. We argue
that the observed performance di�erences are best understood with an exten-
sion of Korf's taxonomy of subgoal collections. Each planner quickly solved
problems whose subgoals were independent or trivially serializable, but prob-
lems with laboriously serializable or nonserializable subgoals were intractable
for all planners. Since di�erent plan representations induce distinct search
spaces, the subgoals for a given problem may be trivially serializable for one
planner, laboriously serializable for another, and nonserializable for a third.
We contend that the partial-order representation yields superior performance
because it more frequently results in trivial serializability.
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1 Introduction

Since the early work on NOAH [29], the common wisdom of the planning
community has been that nonlinear planners are more e�cient than linear
algorithms, but this intuition has never been convincingly demonstrated. Fur-
thermore, the very term \linear planner" is often confusingly given two di�er-
ent meanings:

1. A planner that represents plans as totally ordered sets of actions (i.e.,
manipulates linear lists of actions).

2. A planner that focuses problem solving attention on one subgoal, shifting
to another only after the �rst has been completely addressed.2

We argue that the factors of plan representation and subgoal selection can
and should be considered independently. In this paper we focus on the former
and hold the latter �xed; we evaluate the relative e�ciency of total-order and
partial order representations in planners that focus on a single subgoal before
shifting to the next goal.3 To alleviate confusion, we follow the advice of [8]

and avoid the adjective \linear" in the rest of this paper. By holding the
subgoal elaboration strategy �xed, we present an objective evaluation of early
ordering commitment on planning e�ciency.

We found no problem domains in which a total-order planner performed
signi�cantly better than an equivalent partial-order planner, but several do-
mains in which the partial-order algorithm was exponentially faster than the
total-order planners. The contribution of this paper is a careful characteriza-
tion of the types of domains in which a partial-order planner beats total-order
approaches (the requisite features are rather subtle) and a description of do-
mains in which both approaches encounter intractable branching. We argue
that the observed performance di�erences are best understood with an exten-
sion of Korf's taxonomy of subgoal collections [17]. Each planner performed
well when dealing with problems whose subgoals were independent or trivially

2In fact, Sussman's original de�nition of the \linear assumption" is satis�ed only by a
planner that assumes that subgoals can be solved independently and in any order [32, p.
58], but few consider this a viable strategy.

3Note that it is crucial to distinguish between a planner's plan-time and execution-time
commitments. A planner's decision to plan for subgoal U before subgoal V is not necessarily
related to the decision to execute the actions corresponding to U strictly before, strictly
after or interleaved with those generated for V . In fact, in a partial-order planner, these
decisions are necessarily distinct while some total-order planners link the decisions and some
do not. As long as a planner does not link these decisions, subgoal ordering is independent
of completeness.
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serializable, but problems with laboriously serializable or nonserializable sub-
goals were intractable. Since the di�erent plan representations induce di�erent
search spaces, the subgoals for a given problem may be trivially serializable
for one planner, laboriously serializable for another, and nonserializable for a
third. We believe that the partial-order representation yields superior perfor-
mance because it more frequently produces trivial serializability.

1.1 Algorithms & Methodology

We performed this evaluation by implementing three planners that share key
subroutines but di�er in important ways. All planners operate on action
schemata that conform to the STRIPS representation [11].

The planner that turned out to perform the best is a lifted version of
McAllester and Rosenblitt's [19] propositional planner; since it represents plans
with a partial order and uses tagged pointers, called \causal links," to mark
protections, we call it POCL.4 The second planner represents plans as to-
tally ordered sequences of steps; since this planner also uses causal links to
determine appropriate locations for new steps, it is called the \total-order,
causal-link planner," or TOCL. The third, and simplest, planner is called the
\total-order, prior-insertion planner" (TOPI) since it dispenses with causal
links and only adds steps prior to the existing steps of an incomplete plan. To
assure a fair comparison, the three planners share data structures and utility
routines to the maximum extent possible.

We tested the set of planners on large sets of randomly generated prob-
lems from both classical (e.g., the blocks world, transportation planning, and
a reconstruction of Ste�k's [31] MOLGEN molecular biology domain) and arti-
�cial domains. In this paper we limit our report almost exclusively to arti�cial
domains. While the \real" domains were a rich source of intuitions, the dif-
�culty of decoupling di�erent causes of combinatorial explosion made them
uninformative testbeds for empirical experiments. Speci�cally, planners make
two types of combinatorial choices: deciding how to achieve a goal and de-
ciding when to do so. Most real problems are fraught with both sources of
intractability, but neither partial nor total order representation provides much
guidance in the problem of choosing how to achieve a goal. Since we are inter-
ested in the utility of partial-order plan representations, we focus this paper
on the combinatorics of ordering decisions. Thus most of our arti�cial domains
include only one method for achieving each type of goal, but these methods

4A Common Lisp implementation of this algorithm, known as SNLP, has be-
come quite popular as a framework for AI research and education. Send mail to
bug-snlp@cs.washington.edu for information on acquiring the source code for the three
planners and for the domains mentioned in this paper.
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interact in rich and complex ways. However, since there is interaction between
the choice of operator used to achieve a goal and choice of the order in which
the resulting steps are executed, section 3.6 does explore arti�cial domains
with signi�cant operator selection complexity and section 3.8 briey discusses
experience with a \real" domain.

Another advantage of arti�cial domains is the ability to quantify the dif-
�culty of problems. In real domains it is extremely di�cult to come up with
such a measure | the number of objects in the world, the number of subgoals,
the length of an optimal solution, and related measures are much too crude
to yield any useful generalizations. The regularity of an arti�cial domain fa-
cilitates such a measure (even for randomly generated problems), enabling a
precise estimate of the asymptotic complexity growth as problems get harder.
Of course, the analysis of arti�cial domains is not an end in itself, but by de-
coupling the myriad causes of planning complexity, they provide insight into
the di�culties implicit in conventional domains.

We used the following experimental methodology. In each domain and for
each di�culty level, we generated a �xed number of random problems which
were given to each of the three planners. We display the data by graphing
the mean CPU time required by the planners at each di�culty level as well
as 90% con�dence intervals. With probability 0.9 the mean of all possible
problems at a particular di�culty level is within the interval. We terminated
each planner's performance curve when the di�culty became so great that it
could not successfully complete all problems in the random suite within the
time bound. Depending on the domain, we varied the number of problems
that we generated per di�culty level from �ve to thirty in an e�ort to keep
the con�dence intervals small.

1.2 Contributions

Our paper presents two major results: an extension to Korf's classi�cation of
subgoals and a series of experiments comparing the performance of our three
planners on eight di�erent domains. We link the contributions by analyzing
the experimental results in terms of our augmented taxonomy.

Korf's [17] insightful de�nition of independent, serializable, and nonserial-
izable collections of subgoals forms the foundation of our work. However, we
argue that the de�nition of subgoal independence is so strong that in practice
it rarely applies, and we observe that while nonserializable subgoals are always
di�cult, many serializable problems are almost as hard. This leads us to re�ne
Korf's class of serializable subgoals with the following new classes:

� A set of subgoals is trivially serializable if each subgoal can be
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solved sequentially in any order without ever violating past progress. As
we explain in section 3, trivial serializability is considerably more general
than independence, yet results in comparable performance.

� A set of subgoals is laboriously serializable if there exist an inade-
quate percentage of orders in which the subgoals may be solved without
ever violating past progress. When it is di�cult or impossible to de-
termine the correct order, laboriously serializable subgoals are just as
intractable as nonserializable ones.

Figure 19 (page 36) shows the extended hierarchy of subgoal collections
that results from our analysis. We also extend Korf's treatment of subgoals
from search through states of the world to search through a space of incomplete
plans, since this is the representation of choice in modern planners [6]. With
this reformulation the computational advantages of the various algorithms
becomes clearer: the natural subgoal decomposition of a problem might be
trivially serializable for the search space of one planner, laboriously serializable
for another, and nonserializable for a third (table 3 on page 37). In fact, the
arti�cial domain D1S2 (section 3.5) has exactly this property.

In addition to classifying problems in terms of their subgoal structure, we
performed a series of experiments to evaluate the relative performance of the
three planners. In no domain did either of the total-order planners perform
signi�cantly better than the partial-order planner; however, in some cases
the partial-order planner POCL did exponentially better than either total-
order algorithm. Both causal-link planners outperformed TOPI on all but the
simplest problems and domains.

In all our tests there was a clear correspondence between the classi�cation
of a problem's natural subgoals and the speed of the planner. All three al-
gorithms took exponential time to solve problems in which the subgoals were
laboriously serializable or nonserializable yet took apparently linear (or low-
order polynomial) time on domains with independent or trivially serializable
subgoals. We conclude that the major advantage of using a partial-order plan-
ning algorithm derives from the fact that it renders many subgoal collections
trivially serializable.

1.3 Outline

In the next section we formally de�ne the class of problems that we are try-
ing to solve. We then give pseudocode descriptions for the three planning
algorithms, POCL, TOCL, and TOPI, and present a complexity analysis of
their operation. The bulk of the paper is our analysis of the performance of

4



the planners on a number of di�erent domains. We start, in section 3, by
extending Korf's [17] characterization of problem domains, and then we per-
form a sequence of experiments that isolate the domain features that give the
partial-order planner a major advantage over total-order approaches. Section
4 summarizes our results and proves several generalizations. Related and fu-
ture work are discussed in sections 5 and 6 respectively. Finally, section 7
closes by stating our contributions.
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2 Planners

Before presenting our results, we summarize the algorithms and representa-
tions used. Each planner uses what is known as the STRIPS action represen-
tation [5] although it is in fact a simpli�cation of that used by STRIPS [7,
11]. Each operator has sets of preconditions, an add list and a delete list (the
members of which are propositional schemata that are function-free atomic)
and a set of codesignation (and noncodesignation) constraints. For example,
the blocks world operator (puton ?x ?y)5, which takes block ?x from ?z and
puts it on ?y, is shown in �gure 1.

(defoperator : action 0
(puton ?x ?y)

: precond 0
((on ?x ?z) (clear ?x) (clear ?y))

: add 0
((on ?x ?y) (clear ?z))

: delete 0
((on ?x ?z) (clear ?y))

: equals 0
((6= ?x ?y) (6= ?x ?z) (6= ?y ?z)

(6= ?x Table) (6= ?y Table)))

Figure 1: An operator to move a block ?x o� of ?z and onto ?y.

Note the codesignation constraints listed in the :equals �eld. They specify
that ?x, ?y, and ?z must refer to di�erent blocks. Also neither ?x nor ?y can
refer to Table. The variables mentioned in an action are only used to de�ne
constraints between a step's variables. A unique set of variables is created and
used whenever a new step is created. Codesignation constraints between vari-
ables of di�erent steps are added to an incomplete plan to constrain a step's
possible e�ects. For example, a step with action (puton ?x1 ?y1) can be con-
strained to clear block C by adding the codesignation constraint: (= ?z1 C).

Although the limitations of this action representation have been clearly
documented [5], we have succeeded in encoding a number of domains, in-
cluding the blocks world, several arti�cial worlds, a discrete time version of
Minton's scheduling world [21], a simple transportation scheduling world, and
an approximation of Ste�k's MOLGEN molecular biology domain [31].

The planners each require three arguments: a set of operators, a set of
initial conditions, and a set of goal conditions; they return sequences of steps.
All planners treat variables the same way in that they use least-commitment,
constraint-posting techniques when reasoning about the arguments to the op-
erators, and all planners operate via backward chaining. To ensure fairness,

5Symbols that start with question marks denote variables (which are also known as
formal objects [20]).
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the planners were implemented in Common Lisp using a shared set of data
structures and subroutines. The most important such subroutine is the vari-
able binding and uni�cation code that handles all of the variable constraints.

2.1 Planning as Search

Like [17], we view planning as a search problem. In order to discuss our
planners, we need to de�ne a planning problem, and how it can be considered
as a search. From [19] we adopt:

De�nition 1 A STRIPS operator consists of an operator name plus a

precondition list, an add list and a delete list. The elements of the

precondition, add, and delete lists are all function-free, atomic expressions. A

STRIPS planning problem is a triple �O;�;
� in which O denotes a set

of STRIPS operators, � denotes a set of initial propositions, and 
 denotes a

set of goal propositions.

Previous analyses of planning problems [13, 17] viewed planning as a search
through a graph of world-states | i.e., a graph in which nodes are labeled
with a set of propositions that specify what is true in that state of the world.
A STRIPS planning problem can be solved by searching through such a graph.
� speci�es the initial world-state, 
 speci�es a set of goal world-states, and
the operators in O specify the directed edges. If an operator's preconditions
are satis�ed in a world-state, then an edge leads from that node to the node
denoting the e�ect of applying that operator. The purpose of the search is to
�nd a path from the initial world-state to a goal world-state. The solution to
the planning problem consists of the actions associated with the edges of this
path. An example of such a search space appears in �gure 2.

One of the major contributions of Sacerdoti's NOAH [29] was a conceptual
shift: instead of viewing planning as search through a space of world-states,
NOAH searched through a space of (possibly incomplete) plan-states. Our
planners perform similar searches.

De�nition 2 A plan-state is a triple: �S;O;B� in which S denotes a set

of plan steps (also known as actions), O denotes a set of ordering constraints

that specify a (possibly partial) order on S, and B denotes a set of binding

constraints over the variables mentioned by the steps in S.

This shift makes the structure of a search space dependent on the planner
as well as the domain. The arcs between world-states were just determined by
domain actions, but the arcs between plan-states represent the extension of
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Figure 2: A STRIPS planning problem �O;�;
�can be solved by searching
through a graph of world-states. The goal is to �nd a path from � to a world-
state labeled with 
i � 
. Edges out of a world-state correspond to operators
that can be performed in that world-state

an incomplete plan (i.e., the addition of a step, ordering constraint or binding
constraint) rather than the regression of a world description.

In plan-state search, a planning problem is encoded in an initial plan-state

�S;O;B�consisting of two steps s0 and s1. The step s0 adds �, and s1 has

 for preconditions. This plan-state has no variable-binding constraints, but
O has one constraint to force s0 before s1. The set O de�nes what can be
added to the set S in a plan-state. The goal of the search is to �nd a solution
plan-state.

De�nition 3 A solution plan-state �S;O;B�is a plan-state in which

the preconditions of each step si 2 S are all necessarily true in the input

situation of si.

To make this de�nition precise, we recall the following terminology from
Chapman's formalization of planning [5]. The input situation of a step is a
set of propositions that are true immediately prior to the execution of that
step [5]. A proposition is necessarily true in the input situation of a step in a
partially ordered plan-state �S;O;B� when it is true in all completions that
extend the partial constraints of O and B into total constraints.

2.2 Algorithms

In order to test our intuitions regarding how representations of the space of
plan-states a�ects planning di�culty, we implemented three di�erent planning
algorithms. Each of these algorithms is sound and complete and each exhibits
what McAllester terms the \systematic" property [19]6. Loosely speaking,

6We note that the utility of systematicity has not been clearly documented. We sus-
pect that for some domains systematic planners will be more e�cient than nonsystematic
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systematicity means that each algorithm is guaranteed to search among plan-
states in an irredundant fashion { visiting every possible plan-state exactly
once. This property is reected in the structure of each planner's search space
in that the directed edges form a tree rooted in the initial plan-state.

The �rst algorithm, called POCL and shown in �gure 3, uses a partially
ordered step representation for de�ning plans. POCL is a lifted version of
McAllester's algorithm. The algorithm is loosely descended from TWEAK [5]

and NONLIN [33], but is conceptually simpler. Like some previous planners
(e.g., [14, 33, 34, 35]) but unlike TWEAK, McAllester's algorithm uses causal
links to record the purpose for introducing a step into a plan and to protect
that purpose. If a step Si adds a proposition p to satisfy a precondition of
step Sj, then Si

p

!Sj denotes the causal link. McAllester's key innovation is
a clever, methodical technique for creating and protecting causal links. We
say that a link Si

p

!Sj is threatened if some step Sk may possibly be ordered
between Si and Sj, and Sk either deletes or adds7 a proposition that possibly
uni�es with p. Two propositions possibly unify if they can be uni�ed by adding
variable-binding constraints to a plan-state without making that plan-state's
variable constraint set B inconsistent.

Each precondition p of a plan-state step Sj is an open condition if it has no

corresponding causal link Si
p

!Sj 2 L. The algorithm searches for a solution
plan-state �S;O;B�by eliminating open conditions in G while ensuring the
safety of causal links in L. In the initial invocation of POCL, �S;O;B�is the
initial plan-state, G is the set of preconditions of s1, and L is the empty set.

Our use of least commitment for variable bindings has a subtle e�ect on the
causal-link-protection step. In the absence of unbound variables, protecting a
causal link si

p

!sj from a step sk simply involved ordering sk before si or after
sj. With the introduction of unbound variables we get the extra possibility
of adding variable constraints between the e�ects of sk and the proposition
p. For example, there are 5 di�erent sets of constraints that can be added to

protect si
(on?x?y)
! sj from a step sk that deletes (on ?a ?b).

1. fsk before sig

2. fsk after sjg

3. fsk between si and sj, ?x 6= ?a, ?y 6= ?bg

algorithms while the converse will hold in other domains. Since a detailed evaluation of the
utility of systematicity is beyond the scope of this paper, we feel that holding systematicity
constant in our experiments increases their validity.

7Steps that add p threaten the causal link Si
p
!Sj because they negate the purpose for

adding step Si. POCL would not be systematic if it ignored these threats.
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Algorithm: POCL(�S;O;B�,G,L)

1. Termination: If G is empty, report success and stop.
2. Goal selection: Let c be a proposition in G, and let Sneed be the step

for which c is a precondition.
3. Operator selection: Let Sadd be a step that adds c (either a new

step or an existing step possibly prior to Sneed). If no such step exists
then backtrack. Let L0 = L [ fSadd

c

!Sneedg, S0 = S [ fSaddg, O0 =
O [ fSadd � Sneedg, and B0 = B[ the set of variable bindings to make
Sadd add c. Backtrack point: Each existing and possibly addable step

must be considered for completeness.

4. Update goal set: Let G0 = (G � fcg)[ preconditions of Sadd, if new.

5. Causal link protection: A step sk threatens a causal link si
p

!sj when
it occurs between si and sj and it adds or deletes p. For every step sk

that might threaten a causal link si
p

!sj 2 L0:

� Ensure that sk does not threaten si
p

!sj by adding constraints to

O0 and/or B0. Backtrack point: Each way to protect si
p

!sj from sk
must be considered for completeness.

6. Recursive invocation: POCL(�S 0; O0; B0�,G',L').

Figure 3: The Partial-Order, Causal-Link (POCL) Algorithm

4. fsk between si and sj, ?x 6= ?a, ?y = ?bg

5. fsk between si and sj, ?x = ?a, ?y 6= ?bg

The addition of codesignation as well as noncodesignation constraints is
required to ensure systematicity. In general, the number of ways to protect a
causal link is exponential in the number of unbound variables involved.

The second algorithm, TOCL, is similar to POCL, but it restricts its use
of plan-states by only generating plans comprised of totally ordered sets of
steps. It can insert steps anywhere between s0 and s1 in a plan, but it can
never reorder two existing steps. The algorithm (�gure 4) is similar to POCL

except there is an extra linearization step, and causal links are only used to
determine possible locations for new steps.

Since TOCL is just a modi�cation of POCL, its calling conventions are
identical, and its search space is very similar to that of POCL. The similarity
is due to the fact that they start with the same initial plan-state and each par-
tially ordered plan produced by POCL corresponds to a set of totally ordered
plans. Each of these totally ordered plans are generated by TOCL whenever
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Algorithm: TOCL(�S;O;B�,G,L)

1. Termination: If G is empty, report success and stop.
2. Goal selection: Let c be a proposition in G, and let Sneed be the step

for which c is a precondition.
3. Operator selection: Let Sadd be a step that adds c (either a new step

or an existing step which is necessarily prior to Sneed). If no such step
exists then backtrack. Let L0 = L [ fSadd

c

!Sneedg, S0 = S [ fSaddg,
and B0 = B[ set of variable bindings to make Sadd add c. If Sadd is a
new step, let R = (Sinitial; Sneed), the ordered pair of existing steps that
bound the places to insert Sadd into the plan. Backtrack point: Each

existing and possibly addable step must be considered for completeness.

4. Update goal set: Let G0 = (G � fcg)[ preconditions of Sadd, if new.
5. Causal link protection: For every step sk that might threaten a causal

link si
p

!sj 2 L0:

� Protect the causal link from sk by adding constraints to B0. Also,
if Sadd is new, either si or sk is Sadd and the link can be protected
by replacing one of the bounds in R. Backtrack point: Each way to

protect si
p

!sj from sk must be considered for completeness.

6. Linearization: If Sadd is a new step, let O0 = O[ constraints to insert
Sadd into the plan-state at a point between the steps in R. Otherwise, let
O0 = O. Backtrack point: Each insertion point between R's steps must

be considered for completeness.

7. Recursive invocation: TOCL(�S0; O0; B0�,G',L').

Figure 4: The Total-Order, Causal-Link (TOCL) Algorithm

POCL generates the partially ordered plan. This similarity lets us compare
the two algorithms using techniques developed in [22].

The third algorithm, TOPI, only adds steps to the beginning of the plan
(i.e., immediately after s0). Thus it can be seen that TOPI is equivalent to
the regression planner of [25, section 7.4] which performs backward-chaining
search through the space of lifted world states.

TOPI works by de�ning the the goal conditions as planning subgoals and
building a plan backwards (�gure 5). It considers all steps that could possibly
add a subgoal without deleting any other unsolved subgoal. When it �nds
such a step it creates a new plan-state by adding that step between s0 and
every other step already in the plan, eliminating the resolved subgoals and
adding the weakest preconditions for the new step as new subgoals. The
planner terminates when all of the open goals of a plan G unify with the
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initial conditions I.
Since causal links were used to guide the placement of new steps in a plan,

and since TOPI only inserts steps at one point, causal links are not needed
by TOPI. Although TOPI does not require data structures for links or step
ordering, it shares with the other algorithms the data structures and routines
for variable bindings and constraints.

Algorithm: TOPI(�S;O;B�,I,G)

1. Termination: If G � I, report success and stop.
2. Operator selection: Let Sadd be a new step that adds a set of condi-

tions A such that (A \ G) 6= ;, does not delete g 2 G, and has a set of
preconditions C. Let S0 = S[fSaddg, O0 = O[ ordering constraints that
make Sadd come after s0 but before any other step in S, and B0 = B[
constraints to make Sadd add A and not delete any element of G. Back-
track point: All possibly added steps and variable constraints must be

considered for completeness.

3. Update goal set: Let G0 be the set (G�A) [ C

4. Recursive invocation: TOPI(�S0; O0; B0�,I,G').

Figure 5: The Total-Order, Prior-Insertion (TOPI) Algorithm

2.3 Per-Step Complexity

Comparing the performance of these three algorithms requires looking at the
number of plan-states each algorithm generates when solving a planning prob-
lem and the computational cost per plan-state. Comparing the number of
plan-states generated requires looking at planning problems, but the per-plan-
state complexity can be inferred from the algorithm descriptions.

From the POCL and TOCL algorithm descriptions we see that steps to
detect termination, select goals, and update the goal set all require constant
time. The major points where the algorithms di�er in terms of per-plan-state
complexity are the steps selecting an operator to solve a goal and protecting
a causal link. They arise from the di�erent ways that step orderings are
performed. One of the problems in operator selection is to determine the
existing steps that might solve the selected goal; this takes O(jSj2) time for
partially ordered steps and O(jSj) time for totally ordered steps. Similarly,
causal-link protection only involves protecting a new link from existing steps
and existing links from a new step. For this reason there are onlyO(jSj) threats
to resolve, and the loop only executes O(jSj) times. Detecting these threats
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requires O(jSj2) time for POCL and only O(jSj) time for TOCL. Resolving a
threat takes constant time.

In contrast with the causal-link algorithms, the TOPI algorithm's per-plan-
state complexity does not depend on the number of steps at all. It depends
on the number of unsolved goals jGj. The most costly step in TOPI is the
termination detection step because �nding a set of variable bindings to make
G a subset of I takes exponential time. We can prove that this problem is
NP-hard by reducing the 3-Dimensional Matching problem [12], which is NP-
complete, to it. The step by step per-plan-state complexity comparison is
summarized in table 1.

Algorithm

Step POCL TOCL TOPI

Termination O(1) O(1) O(jIjjGj)
Goal selection O(1) O(1) {
Operator selection O(jOj) O(jSj) O(jGj)
Update goal set O(1) O(1) O(1)
Causal link protection O(jOj) O(jSj) {
Linearization { O(1) {

Table 1: The complexity of each step in the three planning algorithms for a
plan-state �S;O;B�. The number of ordering constraints O can be O(jSj2).
For TOPI the sets I and G are the initial conditions and open goals respec-
tively.
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3 Analysis of Domains

In the view of [13] and [17] planning is modeled as search through a directed
graph of world-states, and the di�culty of a problem is measured in terms of
how hard it is to break it up into subproblems and use these subproblems to
guide the search for a �nal solution.

We wish to analyze the e�ect of reformulating problems as plan-state
searches. In order to compare the di�erent search spaces of our planners
we need to consider them in the context of solving problems. We start by
discussing subgoals and how they decompose world-state searches and plan-
state searches. Next we review and extend Korf's subgoal hierarchy. Finally
we de�ne example domains and show how the classi�cation of subgoals varies
from planner to planner.

3.1 Subgoals

Like [13] and [17] we are concerned with analyzing the e�ect of using various
subgoals on the speed of planning algorithms. In the simplest case a subgoal
is an intermediate state on the path from initial state to goal. Intuitively, it is
clear that searching from the initial state to the subgoal and then again from
the subgoal to the goal might be faster than searching all the way in one step.
Korf presents a broader de�nition of subgoal, which we adopt for this paper.

In general, a subgoal is not a single state but rather a property
that is true of a number of states. For example, if we establish a
subgoal for the Eight Puzzle of correctly positioning a particular
tile, this subgoal is satis�ed by any state in which that tile is in
its goal position, regardless of the position of the remaining tiles.
Therefore, we formally de�ne a subgoal to be a set of states, with
the interpretation that a state is an element of a subgoal set if and
only if it has properties that satisfy the subgoal [17, page 68].

It is frequently awkward to refer to subgoals explicitly as sets of states. A
common technique used in [13] and [17] is to use elements of 
 to specify sub-
goals. A world-state is in a subgoal if the subgoal's associated goal proposition
is true in the world-state. This supposes that world-states with more elements
of 
 are closer to a goal world-state than those with less elements of 
.

The conceptual shift to planning with plan-states a�ects this technique for
specifying a subgoal. When planning with plan-states we think in terms of
the satis�ability of various elements of 
. We can do this with the following
formal de�nition.
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De�nition 4 Let �O;�;
� be a STRIPS planning problem and let P 2 

denote one of the goal propositions. The subgoal specified by P with

respect to �O;�;
� is a set, U , of plan-states such that every �S;O;B�2

U satis�es:

1. S contains a step s0 which only adds �.

2. S contains a step s1 which only requires 
.

3. Every total order of S consistent with O has s0 and s1 as the �rst and

last steps, respectively.

4. P is necessarily true in the input situation of s1.

Proving that a proposition P is necessarily true can be done using Chap-
man's modal truth criterion [5]. Certain properties of our algorithms make
this proof process easier. For example, in TOPI the operator selection step
has the restriction that added steps cannot delete open goals. This and the
fact that TOPI can only add steps to the beginning of an incomplete plan
ensures that a proposition is necessarily true when it is either in the initial
conditions or it is added by a step and all of that step's preconditions are
necessarily true. Thus a goal proposition P is necessarily true once all of the
open preconditions of steps added to solve P are in the initial conditions.

The causal-link protection step of TOCL and POCL makes it easy to prove
the necessary truth of a proposition. A goal proposition P is necessarily true

if it has an associated causal link si
P

!s1, and all of the preconditions of step
si are necessarily true. The causal-link protection step ensures that no steps
ever interfere with the truth of P . Thus P is necessarily true once all of
preconditions of all of the steps involved in solving P have associated causal
links.

3.2 Subgoal Hierarchy

Frequently, a problem is di�cult enough to make it necessary to specify several
subgoals in the e�ort to guide search. Korf classi�es a set of subgoals in terms
of how the members interact with each other. These interactions de�ne a
problem's complexity in terms of its subgoals. Figure 6 summarizes Korf's
hierarchy.

Independent subgoals are the rare ideal case | progress toward one has no
e�ect on another. Korf de�nes independent subgoals in terms of the distance
between two states, d(u; v), which denotes the length of the shortest path
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Figure 6: Korf's Hierarchy of Subgoal Collections.

from u to v. This primitive distance function allows de�nition of the distance
between two subgoals U and V with the equation

D(U; V ) = max
u2U

min
v2V

d(u; v)

Using D(U; V ), Korf de�nes and motivates independent subgoals with the
following statements.

A collection of subgoals are independent if each operator only
changes the distance to a single subgoal. : : :One of the impor-
tant properties of independent subgoals, which is clear from the
de�nition, is that an optimal global solution can be achieved by
simply concatenating together optimal solutions to the individual
subproblems in any order [17, page 71].

Solving a single independent subgoal might be nontrivial, but the com-
plexity of problems with independent subgoals increases only linearly with the
number of subgoals. Korf de�nes serializable subgoals, those that do interact
in a limited manner, with the following statements.

We de�ne a set of subgoals to be serializable if there exists an
ordering among the subgoals such that the subgoals can always
be solved sequentially without ever violating a previously solved
subgoal in the order [17, page 71].

Thus, serializability means that for every state in the intersection of the
�rst n subgoals there exists a path to a state in the n + 1st subgoal that
lies wholly within the intersection. Since these paths are ways to reach later
subgoals without interfering with those previously achieved, the complexity
of problems with serializable subgoals is linear, with the number of subgoals,
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if the subgoals are solved in the correct order. Each subgoal only has to be
established once. Using the wrong order can lead to exponential complexity
because solving a set of subgoals in the wrong order can require having to
violate and reestablish a subgoal an exponential number of times.

Korf labels all sets of subgoals that aren't serializable as nonserializable:

It is often the case that given a collection of subgoals, previ-
ously satis�ed subgoals must be violated in order to make further
progress towards the main goal, regardless of the solution order.
Such a collection of subgoals will be called non-serializable [17,
pages 72{73].

Since nonserializable subgoals may need to be violated and reestablished
many times, they o�er little guidance to a planner: solution time will likely
rise superlinearly with the number of subgoals.

This completes our review of Korf's subgoal hierarchy. We will be using
this hierarchy to analyze our planners' performances in various domains, but
�rst we observe several limitations. First, while it may be possible to determine
if a set of subgoals is independent, little work has been done on the problem
of determining that a set of subgoals is serializable and �nding the order [3,
4, 15]. The obvious method for verifying the serializability of a set of subgoals
is harder than simply solving the problem without subgoals. Second, the
knowledge that a set of subgoals is serializable just indicates that there exists
an order such that they can be solved monotonically, but provides no guidance
in the task of �nding the order. Third, the knowledge that a set U of subgoals
is serializable says little about the properties of subsets of U . We make this
precise with

Proposition 1 Let U be a set of subgoals and let V � U .

1. If U is independent then V is independent.

2. If U is serializable but not independent, then V may be independent,

serializable, or nonserializable.

3. If U is nonserializable, then V may be independent, serializable, or non-

serializable.

In some sense, the only surprising aspect of this result is that a subset
of a set of serializable subgoals may be nonserializable. In fact, the proof of
this is due to an observation of Korf's [17] regarding the Sussman Anomaly.
He showed that the goal set f(on A B), (on B C)g is nonserializable (in the
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space of world states), but the superset f(on A B), (on B C), (on C Table)g

is serializable.8

Our experiments showed that Korf's hierarchy is by no means complete
| there are a number of interesting classes of subgoals between independent
collections and arbitrary serializable collections. Recall that a set of subgoals
is independent when progress towards one subgoal implies that the distance
towards all others is unchanged; this is an extremely restricted de�nition. In
the e�ort to provide a more re�ned taxonomy, we de�ne the following term.

De�nition 5 A set of subgoals is trivially serializable if they can be

solved in any order without ever violating a previously solved subgoal.

We note the following important properties:

Proposition 2 Let U be a set of subgoals.

1. If U is trivially serializable and V � U , then V is trivially serializable.

2. If U is independent, then U is trivially serializable.

3. The converse of property 2 does not hold.

Trivial serializability is more general than independence because it is strictly
a topological property while independence is metric (i.e., de�ned in terms of
a distance function). In particular, two trivially serializable subgoals are not
independent if some operator helps to achieve both of them. Of course there
is a price for the extra generality | trivial serializability does not carry the
compositional properties that are entailed by independence. In particular, so-
lutions to the separate subgoals cannot be concatenated to achieve a solution
to the conjunct. Nevertheless, trivial serializability is much more common
than independence and it appears to make the complexity of planning close to
linear in the number of subgoals.

Just as trivially serialized subgoals represent an ideal collection, it is nat-
ural to consider collections of subgoals that are pathological while still being
serializable. For such a collection of subgoals, it is di�cult to determine the
correct order. Solving problems with laboriously serializable subgoals, without
prior knowledge of the order, may take time exponential in the number of
subgoals.

8When mapped into the search space of partially-ordered plans, both f(on A B), (on B

C)g and its superset are serializable.
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De�nition 6 A set of n subgoals is laboriously serializable if there ex-

ists at least one serializable ordering yet at least 1
n
of the subgoal orders can

not be solved sequentially without possibly violating a previously solved subgoal.

Even if the majority of subgoal orderings are �ne, the exponential cost
of backtracking on the few pathological cases will dominate average planning
time. After all, when a planner chooses a bad subgoal ordering, the result is
e�ective nonserializability | the planner will be forced to repeatedly resolve
the subgoals listed early in the ordering as subsequent subgoals induce back-
tracking. Since bad orderings can require exponentially more time than good
orderings, tractability requires that the number of bad orderings be exponen-
tially decreasing in the number of orderings. But if 1

n
(or any only polynomi-

ally decreasing percentage) of the orderings are bad, then intractability will
dominate.

3.3 Experiments with Independent Subgoals

To test our algorithms on problems consisting of independent subgoals we
created a domain, called D0S1, with �fteen operators. A template for such
an operator is illustrated below. In general, we named our domains DxSy

because they contain x entries in each operator's delete set and it takes y
steps to achieve a goal.

(defoperator :action Ai :precond fIig :add fGig
:delete fg)

Note that each operator adds a di�erent goal condition Gi when its indi-
vidual initial condition Ii is present. The operators are independent | neither
preconditions nor add lists overlap, and every operator's delete set is empty.
As a result, both the order in which a problem's goal conditions were handled
and the eventual order of the steps were irrelevant to the performance of every
algorithm.

Given this domain, we generated 75 solvable problems each consisting of 15
randomly permuted initial conditions and between 1 and 15 randomly selected
and permuted goal conditions such that for each number of goal conditions, 5
problems were generated. Each problem was given to all three algorithms; the
results are shown in �gure 7. Each point on the graph represents the average
of �ve random tests with that number of goal conditions; 90% con�dence
intervals are included, but are often too small to discern. Performance was
measured in seconds of Dec 5000 CPU time.
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Figure 7: The causal-link algorithms appear to exhibit linear time complex-
ity when given problems consisting of independent subgoals (as with D0S1),
but the prior-insertion algorithm requires time that appears quadratic in the
number of goals.

It is clear from the graph that both causal-link planning algorithms have
close to linear time complexity in the number of goals9 for this unconstrained
domain, and that the prior-insertion algorithm has close to quadratic time
complexity. Graphs showing the number of incomplete plans created during
the search were all linear. TOPI's quadratic performance was caused by its
termination step. It must be noted that the performance shown depends on
the fact that only solvable problems were generated. While POCL would
have quickly quit attempting to achieve an impossible goal, the total-order
algorithms might have explored an exponential number of plans in a futile
attempt to �nd a satisfactory order. Similarly, the performance of the total-
order planners depends on the use of a bounded depth-�rst search strategy.

3.4 Experiments with Serializable Subgoals

Our investigation of serializable subgoals consisted of two domains, DmS1

and D1S1, with large and small delete sets respectively. Elements of delete

9In this discussion and in subsequent analyses, we assume that each planner can suc-
cessfully solve individual subgoals in a �xed amount of time. In other words, we describe
performance in terms of the complexity of integrating the solutions to the subgoals, assuming
that the cost of solving these isolated subgoals is �xed.
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sets cause steps in each domain to interact, however detecting the extent of
interaction is easier in the �rst domain than the second. This caused TOCL to
perform as well as POCL in the �rst domain,DmS1, while it degraded terribly
in the harder D1S1. We show that each planner performs well if the domain
is trivially serializable and poorly otherwise.

3.4.1 Goal Interactions are Manifest in DmS1

The DmS1 domain resembles D0S1 except that the temporal order of plan
steps is tightly constrained by the delete sets of each operator. The Dm part
of DmS1 signi�es that there are many entries in each operator's delete set. A
template for an operator is illustrated below.

(defoperator :action Ai :precond fIig :add fGig
:delete fIjjj < ig)

Note that operator Ai deletes the preconditions of operators Aj for all j
less than i. This implies that for any set of goals, there exists a single ordering
of steps that will achieve that set of goals. The reason is illustrated in �gure
8.

For a real world analog to this domain, consider sealing a set of di�erently
sized boxes such that box i �ts inside box i+ 1. Once one box is sealled, all
of the boxes inside of it are not accessible. The accessibility of a box bi is
represented by initial condition Ii, operator Ai seals the box, and its being
sealled is represented by goal condition Gi. The di�culty of problems in this
domain is summarized by proposition 3.
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Figure 8: The causal structure of solutions to problems in DmS1 and D1S1.
Time progresses to the right and each step deletes the preconditions of all
steps above it or the immediate step above it respectively.
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Figure 9: A total-order planner can excel in a domain, such as DmS1, in which
tight ordering constraints result in trivial serializability.

Proposition 3 The problems in DmS1 have laboriously serializable subgoals

for TOPI, and trivially serializable subgoals for TOCL and POCL.

The proof of this proposition follows directly from lemmas 13 and 15 (See
appendix A).

We generated 75 solvable problems in the same fashion as the previous
experiment: 5 random problems for each number of goal conditions between
1 and 15. Figure 9 illustrates the results of this experiment. Both causal-
link planners appear to have linear time complexity, but TOPI was incapable
of solving even moderately sized problems before the resource cuto�. We
attribute this di�erence to the fact that the domain is laboriously serializable
for TOPI, but trivially serializable for the causal-link planners.

3.4.2 Goal Interactions are More Subtle in D1S1

To show the e�ect of the arbitrary ordering decisions made by TOCL's lin-
earization step we created a domainD1S1 similar to DmS1. Operators in D1S1

contain only one entry in their :delete �elds, but that entry makes solutions
to problems in D1S1 identical to those in DmS1. However, this successful
ordering can only be discovered by looking at numerous steps together and
considering their combined constraints. In contrast, the redundant deletes in
DmS1 made the correct placement of a step clear in isolation. In �gure 8,
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where a step in DmS1 deleted all of the preconditions of steps above it, a step
in D1S1 only deletes the precondition of the step immediately above it.

(defoperator :action Ai :precond fIig :add fGig

:delete fIi�1g)

The blocks world is a familiar analog to this arti�cial domain. Consider
building a tower of N blocks from an initial state where all blocks are on the
table. The initial condition Ii represents that block bi is clear, action Ai puts
block bi on top of block bi�1, and the goal Gi represents that block bi is on top
of block bi�1.

Proposition 4 shows that eliminating the redundant delete constraints
makes this domain considerably harder for TOCL, transforming it from triv-
ially to laboriously serializable:

Proposition 4 The problems in D1S1 have laboriously serializable subgoals

for TOPI and TOCL. They have trivially serializable subgoals for POCL.

The proof of this proposition follows directly from lemmas 13, 16, and 17
in appendix A.

We generated 390 solvable problems in the same fashion as the earlier ex-
periments: 30 random problems for each number of goal conditions between
1 and 13. As shown in �gure 10, POCL maintained its near-linear perfor-
mance, while both total-order planners exhibited apparently exponential time
complexity. Because this domain is laboriously serializable for TOCL, the al-
gorithm branched intractably when considering arbitrary ordering constraints
between steps Ai�1 and Ai+1 before adding step Ai, which gives the correct
ordering constraint.

3.5 Experiments with Nonserializable Subgoals

In this section we explore the performance of our algorithms on three domains,
all of which are nonserializable when considered in terms of either the space of
world states or the search space of TOPI, but are serializable for the causal-
link planners. The �rst two are readily solved by POCL, but the last one is
more di�cult.

3.5.1 POCL Finds DmS2 and D1S2 Trivially Serializable

To experiment with nonserializable subgoals we created two di�erent domains,
DmS2 and D1S2, by modifyingDmS1 and D1S1. The di�erence, of course, lies
in the S2 superscript which signi�es that subgoals require subplans of length 2
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Figure 10: Some domains, such as D1S1, give all total-order planners problems,
but are easily solved by partial-order planners.

unlike the singleton subplans of the S1 domains. The pattern of the delete sets
of the new domains force the planners to interleave the steps introduced for
each subgoal, and (as in the previous section) determining the correct ordering
is easier for Dm due to the redundant constraints.

As a concrete example of the domains, templates for the operators needed
to achieve goal condition Gi in domain DmS2 are shown below.

(defoperator :action A1

i :precond fIig :add fPig

:delete fIjjj < ig)

(defoperator :action A2

i :precond fPig :add fGig

:delete fIjj8jg [ fPj jj < ig)

A step in DmS2 deletes the preconditions of all prior steps, while a step
in D1S2 deletes the preconditions of the only the immediately prior step.
Templates for the operators needed to achieve goal condition Gi in domain
D1S2 are shown below.

(defoperator :action A1
i :precond fIig :add fPig

:delete fIi�1g)

(defoperator :action A2

i :precond fPig :add fGig

:delete fIjj8jg [ fPi�1g)
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Thus, there exists a single ordering of steps that will achieve a set of goal
conditions. The causal structure of a solution to a problem in these domains
appears in �gure 11.
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Figure 11: The causal structure of solutions to problems in D1S2 and DmS2.

For each domain we generated 120 problems. Each problem type consisted
of 16 initial conditions and between 1 and 8 goal conditions. 15 problems
were generated for each problem type. As in previous sections, the initial
conditions and goal conditions were randomly permuted, and performance was
measured in seconds of Dec 5000 CPU time. The di�culties of these domains
are summarized in propositions 5 and 6, and the results of the experiments
appear in �gures 12 and 13.

Proposition 5 The problems in D1S2 have subgoals that are nonserializ-

able for TOPI, laboriously serializable for TOCL, and trivially serializable for

POCL.

The proof is derived simply from lemmas 14, 16, and 17 in appendix A.

Proposition 6 The problems in DmS2 have subgoals that are nonserializable

for TOPI and trivially serializable for TOCL and POCL.

The proof follows directly from lemmas 14 and 15 in appendix A.

3.5.2 Ordering Decisions in DmS2* are Di�cult

So far, in all our experiments, the set of subgoals was trivially serializable
for POCL. In order to create a harder domain for POCL we created DmS2*.
The subgoals in this domain are laboriously serializable for POCL. Once again,
there is only one way to achieve a subgoal, and �nding it is trivial. The problem
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Figure 12: In D1S2 POCL outperformed all other planners.
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Figure 13: Solving problems inDmS2 was easy for both causal-link algorithms.
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comes in �tting the solutions together. There are two types of subgoals. The
�rst is speci�ed by Gi and templates to achieve this type appear below.

(defoperator :action A1

i :precond fIig :add fPig

:delete fPjjj < ig)

(defoperator :action A2

i :precond fPig :add fGig

:delete fPjjj < ig)

There are an exponential number of solutions to problems that solely con-
sist of subgoals like Gi, but the number reduces to one when subgoal G� is
included in the problem. Solving subgoal G� only requires an instance of the
following operator.

(defoperator :action A� :precond fI�g :add fG�g
:delete fIij8ig [ fGij8ig)

The causal structure of the solution to a problem in DmS2* appears in
�gure 14. The step A� a�ects all the causal links that do not appear directly
below it, and the steps A1

i and A2

i a�ect the middle link of the causal chains
above them. The di�culty of this domain is summarized in the following
proposition:

Proposition 7 The problems in DmS2* have subgoals that are nonserializable

for TOPI and laboriously serializable for POCL and TOCL.

The proof follows from lemmas 14 and 18 in appendix A.
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Figure 14: The causal structure of solutions to problems in DmS2*.

Given this domain we generated 60 solvable problems in the same fashion
as the earlier experiments: 20 randomly generated problems for each number
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Figure 15: Some simple domains, such as DmS2*, give all planners problems.

of goal conditions between 1 and 6. Figure 15 plots the results: all plan-
ners exhibited exponential degradation when confronted with more goal con-
juncts; this con�rms the expectation that laborious serializability results in
intractability. When solving problems with 6 goals, the mean performances of
TOCL and POCL were quite variable, resulting in large 90% con�dence inter-
vals. This was caused by the fact that in a third of the problems the planners
were lucky, chanced upon a good serialization orderings, and thus took only
a linear amount of time. For the majority of problems, however, the planners
required exponential time which dominated the average problem solving time.
See the proof of lemma 18 for further elaboration.

3.6 Experiments with Operator Selection Decisions

The domains considered in previous sections are much simpler than those
encountered in many real planning problems because the arti�cial domains
provided only one way to achieve each subgoal. This meant that step order-
ing decisions were the only source of combinatorial search since the operator
selection decision was always trivial. Because the complexity due to operator
selection is important for most planning tasks, this section explores the inter-
action between the selection and ordering decisions in the three planners. To
make this analysis, we introduce a general transformation �n for the previously
de�ned domains and scrutinize several illuminating instances.

We illustrate this transformation by taking DmS1 and constructing the
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new domain �2D
mS1. Our construction begins by taking each operator in

DmS1 (section 3.4.1) and creating the following two10 operators for the new
domain by adding the precondition P� or P�.

(defoperator :action A�
i :precond fIi; P�g :add fGig

:delete fIjjj < ig)

(defoperator :action A
�
i :precond fIi; P�g :add fGig

:delete fIjjj < ig)

When the terms P� and P� are in a problem's initial conditions, there are
two ways to achieve any subgoal Gi. One uses operator A

�
i and the other uses

operator A�
i . The construction is completed by adding the following operator

A� to the domain.

(defoperator :action A� :precond fg :add fG�g
:delete fP�g [ fGij8ig)

Problems with goal G� require adding a step of type A� to the plan, but

this step threatens the causal link Ax
i

Gi!s1 which was created while achieving a
goal Gi with either step A

�
i or A

�
i . This threat can be resolved by ordering step

A� before step Ax
i , but when x is �, A� also threatens the causal link s0

P�
!A

�
i .

This latter threat cannot be resolved. Thus, complete solutions cannot contain
A
�
i steps, but no planner can determine this until it plans for goal G�. This

means that any serializable ordering in the �2D
mS1 domain must begin with

the subgoal for G�. The following proposition describes the general case:

Proposition 8 For POCL and TOCL, the ratio of orderings that are seri-

alizable for an M goal problem in a �n transformed domain (n � 2)is R=M ,

where R is the ratio of orderings that are serializable for an M�1 goal problem
in the original domain.

This proposition has interesting consequences:

Corollary 9 For POCL and TOCL, problems with 2 or more subgoals are

laboriously serializable in any domain which has been transformed by �n (for

n � 2).

10To increase the complexity of step selection further one can replace with an arbitrary

number of new operators, but setting n = 2 su�ces to complicate planning by an exponential

factor.
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The corollary makes intuitive sense: since �n domains have multiple ways
to achieve each subgoal and the di�erent methods interfere, backtracking is
required for most subgoal orderings. The proof is straightforward. Since R
can never exceed 1 and M�1

M
� 1

M
for M � 2, the corollary follows directly

from proposition 8 and de�nition 6.
Since TOPI does not use causal links, the above arguments do not directly

apply. Still, just like POCL and TOCL, TOPI cannot know which step to
use in achieving a subgoal Gi until it achieves the subgoal for G�. At this
point we note that G� has to be achieved last to make step A� appear �rst in
the plan. This leads to proposition 10.

Proposition 10 For TOPI, all problems in �n transformed domains have

nonserializable subgoals.

Empirically, we explore the interaction of step ordering decisions with op-
erator selection decisions by constructing the domains �2D

mS1 and �2D
0S1

from DmS1 and D0S1 respectively. For each of these domains we generated
300 solvable problems. Each problem type consisted of 17 initial conditions,
and between 1 and 10 goal conditions. Performance was measured in seconds
of Dec 5000 CPU time. The results are shown in �gures 16 and 17. Each data
point represents a planner's average performance over 30 randomly generated
problems. The 90% con�dence intervals show how much the the performance
varied from one problem to another.

In the �2D
mS1 domain, only one step ordering is legal, and TOCL could

infer this ordering early in the planning process. As a result, TOCL avoided
pointless backtracking over equivalent step ordering decisions and exhibited
the same performance as POCL in this domain.

In the �2D
0S1 domain, any step ordering beginning with A� is legal. Since

the placement of A� is easily determined from all of its delete conditions, the
di�culty of these problems is solely caused by the operator selection decisions.
The main lesson learned from this experiment is that arbitrary step ordering
decisions interact with arbitrary operator selection decisions. All planners
exhibited exponential performance, but the early commitment on step ordering
resulted in a higher branching factor for the total order planners. Although
the order of the steps was immaterial to the success or failure of the plan under
consideration, more awed plans were considered on average leading to poor
performance.

These experiments are interesting because the �2 transformation had dif-
ferent e�ects on the relative performance of the planners in the two cases.
Although POCL and TOCL performed equally in D0S1 and DmS1, their
performance di�ered in the �2 derivatives. This shows that a partial order
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Figure 16: In domain �2D
mS1, TOCL's performance mimicked that of

POCL.

planner can have a performance advantage which is solely due to operator
selection issues.

The phenomena can be explained by realizing that the �2 domains cause
both planners to make mistakes and eventually backtrack. But since each
POCL plans corresponds to many totally ordered plans, TOCL requires more
search to regain the path after each mistake.

3.7 Experiments with Heterogeneous Sets of Subgoals

Until this point we have been concentrating on problems that contain sets of
related subgoals. In order to explore how the di�culty of a problem behaves
when it contains two unrelated sets of subgoals, we constructed a test that
contained subgoals from DmS2* and D0S1.

In this domain we generated 1620 solvable problems. Each problem type
consisted of 12 initial conditions, between 0 and 8 D0S1 goal conditions, and
between 0 and 5 DmS2* goal conditions. 30 problems were generated for each
problem type. Each problem had its initial and goal conditions randomly
permuted. Performance was measured in seconds of Dec 5000 CPU time. The
results are shown in �gure 18.

The main lesson learned from this experiment is that the di�culty of solv-
ing problems with heterogeneous subgoals is not simply additive because the
number of plan-states which need violated subgoals to reach a solution can
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Figure 17: In domain �2D
0S1, TOCL took as long as TOPI.

increase dramatically when combining di�erent sets of subgoals. The most
illustrative example of this occurs in the graph for TOCL where the number
of DmS2* goals is held at three and the number of D0S1 goals varies from
zero to eight. The complexity appears to rise exponentially with the number
of independent goals.

The behavior of TOCL can be explained by noting that there are two
plan-states, [A1

1
, A2

1
, A1

2
, A2

2
] and [A1

2
, A2

2
, A1

1
, A2

1
], in three goal problems

of DmS2* that cannot be modi�ed into a solution without violating previous
subgoals. The number of such plan-states rises exponentially with the number
of independent goals. TOPI has a similar problem. In this example, POCL
avoids the problem because the number of such minimal plan-states only rises
linearly with the number of independent goals. This is not the case in general.

3.8 Application to Real Domains

Previously, we argued that real world domains typically include many di�erent
types of subgoal interaction which impedes any understanding of the source of
computational intractability. By restricting our attention to arti�cial domains,
we've teased apart the di�erent aspects of domain complexity and compared
the scaling properties of di�erent planning algorithms. However, our theory
can also be applied to more complex domains as we now illustrate.

We focus on the Tyre world domain which encodes repair actions on a
British automobile. While not completely \real," Tyre world's 14 operators
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Figure 18: For total-order planners the di�culty of solving a problem can rise
exponentially with the number of independent subgoals.

make it fairly complex. We selected the domain for several reasons. First, it
was written independently by Stuart Russell at Berkeley and thus represented
an independent test for our theory. Second, Russell had posed a di�cult
planning problem for the domain (replacing a at tire by jacking the wheel,
unbolting the lugs, etc., eventually restoring all tools to the trunk) whose
optimal solution required 19 steps and took six hours to solve (e.g., required
exploring 3 million partial plans) even when using extremely e�cient search
techniques (in fact, Russell invented the problem to test his bounded-memory
IE search technique [28]). We took as our challenge, the problem of rendering
this problem tractable.

Our theory predicted that the eight subgoals of the problem were nonse-
rializable for TOPI yet laboriously serializable for POCL and TOCL. Con-
centrating on the causal link planners, we noted four constraints on subgoal
ordering that would render the problem trivially serializable for POCL.11 Anal-
ysis showed that only 9408

40320
= 23:3% of the possible orderings denoted correct

serializations for POCL. Two extra constraints were needed to render the prob-
lem trivially serializable for TOCL so only 1576

40320
= 3:91% of all orderings were

correct serializations for TOCL
To test if our theory of subgoal interactions could lead to signi�cant per-

formance improvement in this domain, we generated three sets of planning

11For example, three conditions force a planner to generate steps that use a tool prior to

considering goals to put that tool away (e.g., the planner must consider how it will inate

the spare before determining how and when the pump will be put in the trunk). Space

restrictions preclude a detailed description of this domain and our experiments, but the

complete encoding, source code for the planners, and our data is available by anonymous

FTP. Send mail to bug-snlp@cs.washington.edu for details.
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problems. All planning problems encoded Russell's tire changing task with
the same eight goal conjuncts | the only di�erence was the order of the con-
juncts. The �rst ten problem were randomly chosen serializations for both
TOCL and POCL. The second ten problems were serializations for POCL

but not for TOCL. Finally, the last ten problems weren't serializations for
eith planner. As Table 2 shows, the performance we measured corresponds
perfectly with our theory.

Serializations POCL TOCL
for Completed Mean Time Completed Mean Time

TOCL & POCL 100% 123 100% 863
Just POCL 100% 102 50% > 6769
Neither 0% > 10323 0% > 11594

Table 2: Summary of the three experiments with Tyre world problems. Times
are in CPU seconds; the \>" appears when the mean includes time spent
planning before failure induced by resource cuto�.

These experiments suggest that our theory of subgoal interactions does

provide useful insight about the performance of planners on real world do-
mains. When given a serializable ordering, both partial and total order plan-
ners exhibit comparable performance. The challenge is �nding a serialization
ordering. A partial order planner's ability to delay step ordering decisions of-
ten increases the number of serializable orderings, sometimes quite drastically
(i.e., trivial serializability).
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4 Discussion

One of the major advances of Sacerdoti's NOAH [29] was the shift from search-
ing through a space of world-states to searching through a space of partially
ordered, plan-states. This paper analyzed that contribution by comparing the
performance of three di�erent planning algorithms on a variety of domains.
The �rst planner, POCL, delays the ordering of steps in a plan until they
interact in a way that a�ects the plan's correctness. The second planner,
TOCL, is a modi�cation of POCL that restricts generated plans to contain to-
tally ordered steps. This restriction makes TOCL add premature step-ordering
constraints that POCL avoids.

Although the �rst two planners add steps anywhere in a plan, the third
planner, TOPI, only adds steps prior to existing steps. This last algorithm
is radically di�erent from the previous two: although it uses plan-states, it
structures the search space in a way that makes it equivalent to a backward
chaining world-state search such as the regression planner of [25].

The performance of each algorithm is determined by the number of plan-
states that it visits to �nd a solution and the complexity of visiting each
plan-state. We �rst compared the three algorithms in terms of the complexity
of visiting a plan-state. TOCL is the most e�cient at visiting a plan-state:
its cost is linear in the number of existing steps. The use of partial orderings
made POCL'cost per step be quadratic in the number of steps. Finally, TOPI's
complexity did not depend on the number of steps, but it was exponential
in terms of the number of open goal conditions (assuming P 6= NP). This
cost applies to any backward chaining state-space search that uses a least
commitment binding strategy for variables.

To compare the number of plan-states each planner visited, we had to
classify the di�culty of problems for the various planners. We made this char-
acterization by considering the set of subgoals speci�ed by a problem's goal
conjuncts, and classifying that set in Korf's subgoal hierarchy. Since Korf's
subgoal hierarchy is overly general, we extended it to include the trivial and la-
borious subclasses of serializable subgoals (�gure 19). Solving problems with
independent or trivially serializable subgoals required visiting a number of
plan-states that was linear in the number of subgoals, but problems with labo-
riously serializable or nonserializable subgoals required visiting an exponential
number of plan-states.

To explore this re�ned hierarchy, we generated several arti�cial domains
and compared the di�erent planners. We observed that the partial-order
planner never took signi�cantly longer than either total-order planner, and
sometimes the partial-order planner performed much better. In all cases the
planners only performed well when given a problem with trivially serializable
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Figure 19: An Extended Hierarchy of Subgoal Collections.

subgoals. With one simplifying assumption this result can be proven true:

Proposition 11 Assuming that a problem's subgoals can be achieved in con-

stant time, the expected time to solve a problem rises linearly with the number

of subgoals if the problem is trivially serializable, but rises exponentially if the

problem is laboriously serializable or nonserializable.

The proof follows easily from the fact that a subgoal only has to be achieved
once given a serialization ordering, but may have to be solved an exponential
number of times when given some other ordering.

A close examination of our experiments reveals even more interesting regu-
larities as summarized in table 3. Notice that the di�culty of a set of subgoals
was never harder for POCL than it was for the total order planners, and that
it was always hardest for TOPI.

Attempting to prove these observations are guaranteed leads us to propo-
sition 12 which implies that solving a set of subgoals is never more di�cult
for POCL than it is for TOCL (our experiments show that it is often much
easier).

Proposition 12 Any serializable subgoal ordering for TOCL is also a serial-

izable subgoal ordering for POCL.

The proof follows from lemma 19 in section A.2.
Perhaps suprisingly, a similar domination result for POCL and TOPI can-

not be made. There exist problems with subgoals that are trivially serializable
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Algorithm

Domain POCL TOCL TOPI
D0S1 I I I

�2D
0S1 L L N

D1S1 T L L
DmS1 T T L

�2D
mS1 L L N
D1S2 T L N
DmS2 T T N
DmS2� L L N
Tyre L L N

Table 3: Summary of the subgoal classi�cations of each domain for each plan-
ner. Subgoals are independent (I), trivially serializable (T), laboriously seri-
alizable (L), or nonserializable (N).

for TOPI and laboriously serializable for the causal link algorithms. For ex-
ample, consider the following domain which we call D�S1C2:

(defoperator :action A1

i :precond fIig :add fGig

:delete fG�g)

(defoperator :action A2

i :precond fIig :add fGig
:delete fg)

Problems inD�S1C2 have initial conditions fG�; I1; :::; Ing and goals fG�; G1; :::; Gng.
For the causal link algorithms, all serializable subgoal orderings have to start
with the subgoal for G�. For TOPI, the operator selection step ensures that
any subgoal ordering is a serializable ordering.

Finally, although one might expect that the partial order representation
provides no bene�t when planning complexity results from the need to choose
which operator should be used to achieve open conditions, we showed that this
intuition is false. In some domains, a partial order planner can rule out bad
combinations of operator selection decisions more e�ciently than can a total
order planner. In our last experiment, we explored the interaction of di�erent
sets of subgoals. We discovered that even though two sets are independent
with respect to each other, solving problems with both sets together is harder
than solving each set separately.
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5 Related Work

In previous work [2, 30] we reported on preliminary experiments regarding the
e�ect of step-order representations on planning. Besides an increased num-
ber of experiments, this paper analyzes the results in terms of an extended
version of Korf's [17] taxonomy of subgoals and domain complexity. Joslin
and Roach [13] extend Korf's analysis of nonserializable subgoals12 with a
topological analysis of subgoals in terms of their connected components. Our
extensions to Korf's taxonomy are independent of Joslin and Roach's con-
tribution since they do not consider the number of viable subgoal orderings
while this is the key concept underlying our notions of trivial and laborious
serializability.

Besides our earlier papers, there has been little other work comparing the
performance of partial-order and total-order planners. A notable exception
is the excellent work of Minton et al. [22]. This paper considers the to and
ua algorithms which resemble propositional versions of our TOCL and POCL

algorithms with one di�erence: unlike our planners, to and ua are not sys-
tematic. Minton et al. demonstrate the existence of an isomorphism L which
maps from nodes in the ua's search space into nonempty equivalence classes
that partition the search space of to. The existence of L proves that the search
space of their partial-order planner is no larger than that of the total-order
algorithm, and that it is possibly exponentially smaller. Systematicity and
our proof of lemma 19 proves that L also exists between POCL and TOCL.
Minton et al. argue that since ua's cost to evaluate a search space node
is only slightly more than that of to, the partial-order planner should run
faster. They also report on experiments that suggest that ua's advantage in-
creases with a decreasing number of interactions between plan steps, but this
is the only domain characteristics they consider. Minton et al. also show that
partial-order planners can exploit certain types of heuristics more e�ectively
than their total-order siblings; given the crucial need for heuristics to guide
search through the exponential spaces of real problems, this result is of great
importance. In a recent extension to their earlier work, Minton et al. [23] con-
sider the e�ects of di�erent search strategies and the distribution of solutions
on performance.

12Unfortunately, Joslin and Roach did not phrase their work in these terms, appearing

unaware of Korf's work.
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6 Future Work

There are several other limitations to this work that point to future research
directions. We need a way to analyze the di�culty of solving a single sub-
goal and techniques for analyzing domains which contain subgoals of varying
di�culty. Also, characterizing serializable subgoals as trivial or laborious is
still too coarse. There is room for more re�nement in Korf's hierarchy, espe-
cially in the critical cases where there are only a few (perhaps an exponentially
decreasing percentage) of bad subgoal orderings.

Our conclusion that domains with laboriously serializable subgoals are in-
tractable is based on the assumption that good serializations can't be pre-
dicted before planning commences. If it were possible to construct some sort
of domain theory compiler which identi�ed good and bad orderings, then the
bene�ts would be considerable. In fact, much of the work on abstraction in
planning can be viewed as doing exactly this. Perhaps it might be possible
to generalize the techniques in ALPINE [15, 16] or the subgoal interaction
analysis of STATIC [9] in this direction.

A major weakness in our work is its dependence on the STRIPS represen-
tation. We plan to use UCPOP [27] to explore whether partial-order represen-
tations are useful given more expressive domains, such as ADL [26], which in-
clude conditional e�ects and universally quanti�ed e�ects. Also using UCPOP,
we hope to replicate the experiments of Minton [21] to see if explanation based
learning can speed up a partial-order planner as much as it has PRODIGY
[24].

All of the experiments reported in this paper challenged planners only with
solvable problems. A natural extension would be to investigate the perfor-
mance of the algorithms when confronted with impossible goals. Our intuition
is that the advantage of POCL would be ampli�ed. Another research direction
that begs for attention is consideration of other subgoal focusing mechanisms.
In this paper we assumed that each subgoal was completely solved before at-
tempting the next, but there are numerous other control strategies. For
example, it would be interesting to consider iterative sampling techniques de-
scribed in [18, 23].

On a more basic level, it is unclear that our de�nition of subgoals for plan-
state searches is the best one. Our work, as well as [13] and [17], de�nes
subgoals using elements of 
, but such need not be the case. Our causal link
algorithms focused on reaching subgoals, as we de�ned them, by using a FILO
strategy for selecting open goals to resolve. Just as there are other strategies
for selecting open goals, there are other ways to de�ne a subgoal.

For example, one selection strategy prioritizes open goals based on predi-
cate type and leads to a form of abstraction [19]. A plan-state is in a subgoal
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when it contains an abstract solution to a problem, and the next less abstract
solution is the next subgoal. We have performed some preliminary experi-
ments using POCL with di�erent strategies for selecting open goals and noted
that the di�culty of problems is strongly inuenced by the strategy. More
work needs to be done to relate strategies with de�nitions of subgoals and to
characterize which strategy is best for a problem.
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7 Conclusions

In this paper we have evaluated the e�ect of a partial-order plan representation
on planning performance both empirically and in terms of the e�ect of repre-
sentation on subgoal structure. Our paper makes several major contributions:

� We demonstrate that Korf's [17] subgoal taxonomy fails to di�erentiate
between classes that have vastly di�erent computational properties. In
particular, we argue that some serializable sets are easy to solve while
others are di�cult. We conclude that the distinguishing feature is the
number of feasible serialization orderings and this leads to our de�nitions
of trivially serializable and laboriously serializable subgoals.
Since all orderings of trivially serializable subgoals lead to a global solu-
tion, this class is computationally tractable. We note that pure trivial
and pure laborious serializability are but two points on a continuum of
arduousness and many real problems may be intermediate in di�culty.

� We present and analyze three planning algorithms on eight arti�cial do-
mains, which were created to illustrate di�erent types of subgoal inter-
actions. From the results of our experiments, we make the following
observations:

1. The total-order planners never performed signi�cantly better than
the partial-order planner.

2. In domains with complex ordering interactions the partial-order
planner performed exponentially better than either total-order plan-
ner. In particular, the D1S1 and D1S2 domains (sections 3.4.2 and
3.5) have ordering interactions that involve numerous steps in a
pairwise fashion; only POCL was able to deduce a successful order-
ing e�ciently.

3. Planning problems which involved operator selection decisions (i.e.,
multiple, interacting ways to achieve open conditions) were easier
for a partial order planner | even when the corresponding single-
operator problems (e.g., D0S1 and �2D

0S1) were easy for planners
with either representation.

4. The performance di�erence of the planners correlates perfectly with
the subgoal classi�cation of the domains. Since the algorithms use
di�erent plan representations, they have di�erent search spaces.
Thus the natural subgoal decomposition of a D1S2 problem was
trivially serializable for POCL, laboriously serializable for TOCL

and nonserializable for TOPI. As as predicted by proposition 11, all
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three planners performed well only when confronted with trivially
serializable subgoals.

� We prove (proposition 12) that compared to TOCL, the partial order
POCL planner renders a strictly greater number of problems trivially
serializable.
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A Proofs

There is one feature of our planners (used in all the proofs) that needs to
be discussed prior to proving the lemmas of this section. All of our planners
perform bounded depth �rst searches. This search interacts with the subgoal
classi�cation of a problem to a�ect the planners' performances. For instance,
solving a set of serializable subgoals in the correct order ensures that a previ-
ously solved subgoal need never be violated. This a�ects the depth �rst search
by limiting the amount of backtracking that needs to be performed. Once a
plan-state in a subgoal is found, the search will never need to backtrack back
through it.

We can use this feature to prove that a certain subgoal ordering is not a
serializable ordering. An ordering is not a serializable ordering when a planner
reaches a plan-state where it will have to backtrack and violate a previous
subgoal.

A.1 Prior Insertion Algorithm (TOPI)

As mentioned in section 3.1, plan-states for TOPI are in the subgoal for a
proposition P when all of the open conditions of steps added to solve P are in
the initial conditions. There are two ways to violate this subgoal. One is to
backtrack, delete a step, and make one of the open conditions for P not be in
the initial conditions. The other is to add a step for one of the open conditions
where one of that step's preconditions is not in the initial conditions. We will
focus our proofs on the �rst way to violate a subgoal; the second does not
happen in our domains.

The two main features of TOPI that we will use in the following proofs
are that steps are only added prior to existing steps, and no steps that delete
open conditions can be added.

Lemma 13 Problems in D1S1 and DmS1 domains have laboriously serializ-

able subgoals for TOPI.

Proof: The subgoals of problems in these domains are obviously serializable
because it only takes the addition of one step, Ai, to achieve a subgoal,
Gi. Thus, ordering the subgoals to add the steps in the right order
assures that TOPI never needs to violate a previous subgoal. The actual
serializable order is Gn, Gn�1, ..., G1.

Consider any subgoal ordering other than the above serializable ordering.
In this order there is a case whereGi comes beforeGj when i < j. In such
a case there exists a reachable plan-state in Gi and all of its preceding
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subgoals that does not contain step Aj. Since Aj deletes a precondition
of Ai, TOPI cannot add Aj to the beginning of the plan-state until step
Ai is removed, but this would violate subgoal Gi.

Thus any serializable ordering other than the actual ordering cannot
ensure that some goal Gj can be solved without violating a previous
subgoal Gi. This means that for a problem with n subgoals only one of
n! orderings assures that the subgoals can be solved sequentially without
ever violating a previous subgoal. 2

Lemma 14 The problems in D1S2, DmS2, and DmS2� domains have subgoals

that are nonserializable for TOPI.

Proof: From the de�nitions of these domains there is only a single ordering
of steps that can achieve the goal. Take any ordering of the subgoals and
consider plan-states in all subgoals except the last subgoal, for Gx. One
of the steps required for achieving Gx is A

2

x. Since A
2

x has to appear after
steps A1

y, for all y, these steps have to be deleted before TOPI can add
A2

x to the plan, but this violates all of the previous subgoals. Therefore,
the subgoals of problems in S2 domains are nonserializable for TOPI. 2

A.2 Causal-Link Algorithms (TOCL and POCL)

Unlike TOPI, the causal-link algorithms can add steps into the middle of a
plan, but they have other features that we can use in our proofs. The �rst
such feature is that at each point in the planning process the planners focus
on a single subgoal. They solve that subgoal and then move on to the next
in the subgoal ordering. Solving the subgoal for Gx is a two step process for
problems in the S1 domains and a three step process for the S2 domains. In
each problem, the planners perform these processes for the current subgoal
and later move onto the next.

� Achieving a subgoal in S1 domains.

1. Add step Ax and Ax
Gx!s1. Protecting existing causal links from

step Ax can add ordering constraints to the plan-state.

2. Add s0
Ix!Ax. Protecting s0

Ix!Ax from any existing step Aj can add
ordering constraints to the plan-state.

� Achieving a subgoal in S2 domains.

1. Add step A2

x and A2

x

Gx!s1. Protecting existing causal links from
step A2

x can add ordering constraints to the plan-state.
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2. Add step A1

x and A1

x

Px!A2

x. Protecting existing causal links from
step A1

x can add ordering constraints to the plan-state.

3. Add s0
Ix!A1

x. Protecting s0
Ix!A1

x from any existing step A1

j can add
ordering constraints to the plan-state.

The second feature comes from the causal-link-protection step. This step
ensures that the necessary truth of a solved subgoal is never violated while the
relevant causal links exist. Thus, the only way to violate a previously solved
subgoal is to get rid of a causal link through backtracking.

Lemma 15 Problems in Dm domains have trivially serializable subgoals for

both POCL and TOCL.

Proof: Consider an arbitrary ordering of the subgoals for a problem in the
DmS1 domain. The �rst subgoal is achievable from the null plan by
performing the S1 subgoal achievement process. No protection is nec-
essary because there are no other steps in the plan. Now consider the
plan-state reached by focusing on the �rst m subgoals. Suppose that
its m steps are ordered such that Ai precedes Aj when i < j. This is
trivially true of the plan-state reached when focusing on the �rst sub-
goal. Reaching the m+1st subgoal involves performing the S1 subgoal
achievement process, and protecting causal links ensures that all m+ 1
steps in the new plan-state are ordered such that Ai precedes Aj when
i < j. Since this ordering is consistent, POCL can always achieve the
next subgoal without violating a previous subgoal.

The same argument used for POCL works for TOCL because the ordering
of a plan-state's steps upon achieving the mth subgoal, for any m, is a
total ordering. This argument can also be extended to cover the DmS2

domain because of the similarity or the domain steps and the subgoal
achievement processes. 2

Lemma 16 Problems in D1 domains are trivially serializable for POCL.

Proof: Consider an arbitrary ordering of the subgoals for a problem in the
D1S1 domain. The �rst subgoal is achievable from the null plan by per-
forming the S1 subgoal achievement process. No protection is necessary
because there are no other steps. Now consider the plan-state reached
by focusing on the �rst m subgoals. Suppose that its m steps are or-
dered such that Ai�1 precedes Ai. This is trivially true of the plan-state
reached when focusing on the �rst subgoal. Reaching them+1st subgoal
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involves performing the two step process, and protecting causal links en-
sures that all m + 1 steps in the new plan-state are ordered such that
Ai�1 precedes Ai. Since this ordering is consistent, POCL can always
achieve the next subgoal without violating a previous subgoal.

This argument extends to the D1S2 domain by replacing the subgoal
achievement process. Both steps added to achieve the next subgoal get
ordering constraints similar to those in the D1S1 domain. 2

Lemma 17 Problems in D1 domains are laboriously serializable for TOCL.

Proof: Consider orderings of n subgoals that start with a subgoal Gi inD
1S1.

The next subgoal in the ordering must be Gi�1 or Gi+1. Otherwise,
the steps Ai and Aj, for the second subgoal Gj , are not ordered with
respect to each other because they do not a�ect each other. The lack of
an ordering constraint gives the linearization step license to choose an
arbitrary order. Since the steps in the �nal solution are totally ordered,
only one of these arbitrary orders is the correct one. This means that
subgoal Gj will have to be violated, via backtracking, several times to
�nd the order.

In general the valid serializable orders are those where a subgoal Gi only
appears at the beginning or after the appearance of Gi�1 or Gi+1. Any
other ordering would have a case like the one described above. There
are

�
n� 1

k � 1

�
such orders that start with Gk, and the total number of

such orders is 2n�1. But this means that the number of bad orderings is
n!�2n�1

n!
which is greater than or equal to 1

n
for n � 3. Thus, problems in

D1S1 are laboriously serializable for TOPI.

This same argument holds for D1S2. 2

Lemma 18 Problems in the DmS2� domain are laboriously serializable for

POCL and TOCL.

Proof: Consider any ordering where G� and Gi are the �rst two subgoals.
The only plan-state found while focusing on these subgoals contains the
totally ordered plan [A1

i ,A�,A
2

i ]. Now consider plan-state reached by
focusing on the �rst m subgoals. Suppose that its 2m � 1 steps are
ordered as shown in �gure 14. This is trivially true for the �rst two
subgoals. Focusing on the m+ 1st subgoal Gx involves adding steps A

1

x

and A2

x. Protecting links s0
Ix!A1

x and A
2

x

Gx!s1 forces A� between A
1

x and

A2

x. Protecting link A
1

x

Px!A2

x from existing steps A1

y and A
2

y, where x < y,
forces steps A1

x and A2

x between steps A1

y and A2

y. Finally, protecting
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existing links A1

y

Py
!A2

y from the new steps A1

x and A2

x, where y < x,
forces steps A1

y and A2

y between steps A1

x and A2

x. Thus the resultant
ordering of the plan for m + 1 subgoals is ordered as shown in �gure
14, and any ordering where G� and Gi are the �rst two subgoals is a
serializable ordering. Since the ordering of steps in a plan for the �rst m
subgoals is always a total ordering, these serializable orderings are also
valid for TOCL.

Consider any ordering where G� is not one of the �rst two subgoals. Both
POCL and TOCL can generate a totally ordered plan-state [A1

i ,A
2

i ,A
1

j ,A
2

j]
where Gi and Gj are the �rst two subgoals and i < j. This plan-state
cannot be modi�ed to include step A� and achieve subgoal G� without
deleting A1

j and adding it before A1

i . Since this deletion involves vio-
lating subgoal Gj , any ordering that does not include G� as the �rst or
second subgoal is not a serializable ordering.

So, since only 2

n
of the orderings are good serialization orderings, at least

1

n
are bad for large n. We conclude that problems in the DmS2� domain

are laboriously serializable for POCL and TOCL. 2

De�nition 7 Suppose O denotes a set of consistent constraints specifying a

partial ordering on a set S of steps, and suppose the set fO1; :::; Ong con-

tains all total orderings which are consistent with O. Let L denote a func-

tion from invocations of POCL to a set of invocations of TOCL such that

L(POCL(�S;O;B�; G; L)) = ft1; :::; tng where ti = TOCL(�S;Oi; B�; G; L).

Lemma 19 Given that both POCL and TOCL use the same goal selection

strategy, for every invocation p that POCL can make, TOCL can (nondeter-

ministically) make any of the invocations in L(p).

Proof: The lemma is trivially true for the initial calls to POCL and TOCL. As
an induction hypothesis, consider an invocation p = POCL(�S;O;B�,G,L)
at depth n of the recursion, and assume that TOCL can make all invoca-
tions in L(p). We prove by contradiction that this remains true at depth
n+ 1.

Suppose that a sequence of nondeterministic choices leads p to make the
recursive invocation p0 = POCL(�S;Op0; B�; G; L), but there exists a
t0 2 L(p0) which cannot be called from any ti 2 L(p). Since we are
assuming that the lemma holds at depth n and since POCL and TOCL

manipulate the sets S, B, G, and L in an identical manner, the only
possible di�erence between p0 and t0 concerns their respective ordering
constraints, Op0 and Ot0. We now consider possible di�erences between
these orderings.
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case 1: Suppose p does not add a new step. Then Op0 is a simple re-
�nement of O. By de�nition of L, O0

t is a linearization of Op0, so
Ot0 must be a linearization of O. But this means that there exists
a depth n invocation in L(p) with the same ordering and it could
call t0.

case 2: If p does add a step, Sadd, then Ot0 is a total ordering of S [
fSaddg. Removing references to Sadd from Ot0 results in a total
ordering Ot of S that is consistent with O. Thus 9t 2 L(p) with
ordering Ot. But TOCL's construction of range R mirrors POCL's
re�nement of Op0 so t can call t0.

Since these cases are exhaustive, we have veri�ed the inductive hypoth-
esis at depth n+ 1. 2

Proposition 12 Any serializable subgoal ordering for TOCL is also a serial-

izable subgoal ordering for POCL.

Proof: Suppose that both TOCL and POCL use the same goal selection strat-
egy, and there exists a serializable subgoal ordering for TOCL that is not
a serializable subgoal ordering for POCL. This implies that there exists
an invocation p = POCL(�S;O;B�,G,L) where L contains just those
causal links needed to achieve the �rst n subgoals, and �S;O;B�cannot
be further extended to achieve the �rst n+ 1 subgoals.

Consider an invocation TOCL(�S;Oi; B�,G,L) 2 L(p). From Lemma
19 we know that this invocation can be made by TOCL. Since the subgoal
ordering is serializable for TOCL, the plan-state �S;Oi; B � can be
extended to achieve the �rst n+1 subgoals, but since�S;O;B�has fewer
constraints, it too can be extended to achieve the �rst n + 1 subgoals.
But this contradicts our hypothesis so any serializable subgoal ordering
for TOCL must be a serializable subgoal ordering for POCL. 2

48



References

[1] J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. Morgan
Kaufmann, San Mateo, CA, August 1990.

[2] A. Barrett, S. Soderland, and D. Weld. The E�ect of Step-Order Repre-
sentations on Planning. Technical Report 91-05-06, University of Wash-
ington, Department of Computer Science and Engineering, June 1991.

[3] T. Bylander. Complexity Results for Serial Decomposability. In Proceed-

ings of AAAI-92, 1992.

[4] Prasad Chalasani, Oren Etzioni, and John Mount. Integrating E�cient
Model-Learning and Problem-Solving Algorithms in Permutation Envi-
ronments. In Proceedings of KR-91, 1991.

[5] D. Chapman. Planning for Conjunctive Goals. Arti�cial Intelligence,
32(3):333{377, July 1987.

[6] E. Charniak and D. McDermott. Introduction to Arti�cial Intelligence.
Addison-Wesley Publishing Company, Reading, MA, 1984.

[7] E. Davis. Representations of Commonsense Knowledge. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1990.

[8] M. Drummond and K. Currie. Goal Ordering in Partially Ordered Plans.
In Proceedings IJCAI-89, pages 960{965, August 1989.

[9] Oren Etzioni. Static: A problem-space compiler for prodigy. In the Pro-

ceedings of the Ninth National Conference on Arti�cial Intelligence., 1991.

[10] Oren Etzioni and Ruth Etzioni. Statistical methods for analyzing speedup
learning experiments.Machine Learning, 1992. Technical note, to appear.

[11] R. Fikes and N. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Arti�cial Intelligence, 2(3/4),
1971.

[12] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979.

[13] D. Joslin and J. Roach. A Theoretical Analysis of Conjunctive-Goal Prob-
lems. Arti�cial Intelligence, 41:97{106, 1989/90.

49



[14] S. Kambhampati and J. Hendler. A Validation Structure Based Theory
of Plan Modi�cation and Reuse. Arti�cial Intelligence, 55:193{258, 1992.

[15] C. Knoblock. Learning Abstraction Hierarchies for Problem Solving. In
Proceedings of AAAI-90, pages 923{928, August 1990.

[16] C. Knoblock. Automatically Generating Abstractions for Problem Solving.
PhD thesis, Carnegie Mellon University, 1991. Available as technical
report CMU-CS-91-120.

[17] R. Korf. Planning as Search: A Quantitative Approach. Arti�cial Intel-
ligence, 33(1), September 1987.

[18] P. Langley. Systematic and Nonsystematic Search Strategies. In Proceed-

ings of the First International Conference on AI Planning Systems, pages
145{152, June 1992.

[19] D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In
Proceedings of AAAI-91, pages 634{639, July 1991.

[20] D. McDermott. Regression Planning. International Journal of Intelligent
Systems, 6:357{416, 1991.

[21] S. Minton. Quantitative Results Concerning the Utility of Explanation-
Based Learning. In Proceedings of AAAI-88, pages 564{569, August 1988.

[22] S. Minton, J. Bresina, and M. Drummond. Commitment Strategies in
Planning: A Comparative Analysis. In Proceedings of IJCAI-91, pages
259{265, August 1991.

[23] S. Minton, M. Drummond, J. Bresina, and A. Phillips. Total Order vs.
Partial Order Planning: Factors Inuencing Performance. In Proceedings

of KR-92, October 1992.

[24] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R.
Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-based learning:
A problem-solving perspective. Arti�cial Intelligence, 40:63{118, 1989.
Available as technical report CMU-CS-89-103.

[25] N. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Com-
pany, Palo Alto, CA, 1980.

[26] E.P.D. Pednault. ADL: Exploring the Middle Ground between STRIPS
and the Situation Calculus. In Proceedings Knowledge Representation

Conf.,, 1989.

50



[27] J.S. Penberthy and D. Weld. UCPOP: A Sound, Complete, Partial Order
Planner for ADL. In Proceedings of KR-92, pages 103{114, October 1992.

[28] S. Russell. E�cient Memory-Bounded Search Algorithms. In Proceedings

of the Tenth European Conference on Arti�cial Intelligence. Wiley, 1992.

[29] E. Sacerdoti. The Nonlinear Nature of Plans. In Proceedings of IJCAI-75,
pages 206{214, 1975.

[30] S. Soderland and D. Weld. Evaluating Nonlinear Planning. Technical Re-
port 91-02-03, University of Washington, Department of Computer Sci-
ence and Engineering, January 1991.

[31] M. Ste�k. Planning with Constraints (MOLGEN: Part 1). Arti�cial

Intelligence, 14(2), 1981.

[32] G. Sussman. A Computer Model of Skill Acquisition. American Elsevier,
New York, 1975.

[33] A. Tate. Generating Project Networks. In Proceedings of IJCAI-77, pages
888{893, 1977.

[34] D. Warren. WARPLAN: A System for Generating Plans. Memo No. 76,
Univerity of Edinburgh, Department of Computational Logic, 1974.

[35] Q. Yang and J. Tenenberg. ABTWEAK: Abstracting a Nonlinear, Least-
CommitmentPlanner. In Proceedings of AAAI-90, pages 204{209, August
1990.

51


