
Execution Control for Crowd-Sourcing

Daniel S. Weld, Mausam, Peng Dai
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{weld, mausam, daipeng}@cs.washington.edu

ABSTRACT
Crowdsourcing marketplaces enable a wide range of appli-
cations, but constructing any new application is challeng-
ing — usually requiring a complex, self-managing work-
flow in order to guarantee quality results. We report on the
CLOWDER project, which uses machine learning to continu-
ally refine models of worker performance and task difficulty.
We present decision-theoretic optimization techniques that
can select the best parameters for a range of workflows. Ini-
tial experiments show our optimized workflows are signifi-
cantly more economical than with manually set parameters.

ACM Classification Keywords: H5.2. Information inter-
faces and presentation: User Interfaces.

General terms: Algorithms, performance, experimentation.

Author Keywords: Human computation, decision-theory.

INTRODUCTION
Amazon Mechanical Turk and similar crowd-sourcing mar-
ketplaces enable applications that seamlessly mix human
computation with AI and other automated techniques. Ex-
ample applications already span the range from product cat-
egorization and photo tagging to A/V transcription and in-
terlingual translation. In order to guarantee quality results
from variable competency workers, most applications use
complex, self-managing workflows with independent pro-
duction and review stages. E.g., iterative improvement [7]
and find-fix-verify workflows [2] are popular patterns. But
devising these patterns and adapting them to a new task is
both complex and time consuming. Existing development
environments, e.g. Turkit [7] simplify important issues, such
as control flow and debugging, but many challenges remain.
In order to craft an effective application, the designer must:

• Choose between alternative workflows for the same task.
• Optimize the parameters for a selected workflow.
• Create tuned interfaces for the expected workers.
• Control execution of the final workflow.

We argue that AI methods such as machine learning,
decision-theory, optimization can solve these problems, fa-
cilitating the rapid construction of effective crowd-sourced
workflows. Our first system, TURKONTROL [4, 5], uses
decision-theoretic control to optimize iterative workflows
on Amazon Mechanical Turk. It automatically learns task-

Copyright is held by the author/owner(s).
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
ACM 978-1-4503-1014-7/11/10.

HTN
library

DT planner

user 
models

task 
models

worker
marketplace

renderer

rendered
job

learner

Figure 1: Architecture of the CLOWDER system.

dependent models of typical workers and refines this model
for individuals over the course of interaction. More recently,
we present the architecture of a successor system, CLOWDER
(Figure 1), which we are starting to implement [8]. This
poster focuses on our methods for optimizing execution
of two new workflow patterns: find-fix-verify [2] and the
retainer-bonus model [1] for real-time crowd creation [3].

OPTIMAL WORKFLOW CONTROL
Decision-theoretic modeling of workflows allows CLOWDER
to automatically control the different pieces of the task and
dynamically allocate resources to the sub-tasks that are ex-
pected to yield largest benefits. The benefits are evaluated in
terms of the utility that is given as the input by the requester.
For example, in a find-fix-verify workflow invoked by Soy-
lent, the user’s utility function would reward the absence of
errors and the quality of the repairing prose. In a retainer-
bonus workflow designed for real-time response, the utility
function might follow a step function such that answers de-
livered more than 2-3 seconds after requested had low utility.

CLOWDER extends the decision-theoretic control method-
ology used in TURKONTROL [4]. Each controller runs
a partially-observable Markov decision process (POMDP).
The agent seeks to execute actions that maximize the utility
based on the current belief – a probability distribution over
possible world states – since the true world state is hidden.

For example, in an iterative improvement workflow, the (un-
seen) world state comprises the quality of the current arti-
fact (e.g., an English description of a picture), the quality
of a modified artifact (e.g., a potentially improved descrip-
tion just returned by a worker) and the accuracy levels of
the workers involved. By executing ballot actions (where a
potentially-fallible worker reports which artifact is better) the
system updates its belief estimates.

For a find-fix-verify workflow, a world state includes the
number of flaws and quality estimates of proposed repairs as



Generate 
Find HIT

Find more 
flaws?

Update 
posterior 
of flaw f

Generate 
verify HIT

Update 
posteriors 
for all ®’is

More 
verification 

needed?

® all ®’is bk

submit the best combination of all ®’s

Y

N

Y

N

initial 
artifact (®) 

f

Pick a 
flaw to fix

Generate 
Fix HIT

f Fix more 
flaws?

®f

N

Y

®’i

Figure 2: Decision-theoretic computations needed to control the find-fix-verify workflow.

Activate 1 worker 

Activate 2workers 

Activate 3 workers 

Activate 4workers 

Activate 5 N
e

t 
U

ti
lit

y
 

Gross Utility 

Figure 3: Expected utility of activating retained workers

well as an accuracy model for workers. CLOWDER will con-
trol this workflow based on its evolving, probabilistic belief
about the state. Figure 2 shows the control flow addressed
by a POMDP-based controller for a Soylent-style word pro-
cessor that uses a Find-Fix-Verify workflow to shorten and
rewrite text written by the user [2], There are several deci-
sion points, such as whether to request more flaws, fixes or
votes; and also which flaws to ask the fixes for, and how to
combine the various artifacts to submit the final version. By
using EM-style learning to track the effectiveness of workers
(including both the accuracy of voters and the improvement
distribution for those rewriting text), CLOWDER will dynam-
ically calculate how many votes are necessary to verify the
edits of different workers. Initial experiments on iterative im-
provement workflows, which have structure extremely close
to fix-verify, show that this form of decision-theoretic con-
trol can save as much as 28% of the cost to achieve a given
quality of artifact compared to hand-coded policies [5].

Because of its high-dimensional and continuous state space,
solving a POMDP is a notoriously hard problem. For the case
of iterative-improvement workflows a simple k-step looka-
head greedy search performed remarkably well; however,
more sophisticated methods may be necessary as we increase
the number of decision points made by the agent. We will in-
vestigate a variety of strategies, including discretization and
the Monte Carlo methods pioneered in UCT [6].

OPTIMIZING REALTIME CROWD RESPONSE
A very different model is required in order to model realtime
crowd invocation, such as that popularized in WizViz [3] and
Adrenaline [1]. In constrast to our previous models, in which
at most one job was sourced to the crowd at any time, the re-
tainer model requires modeling concurrency explicitly. Thus,
while our previous POMDP controller chose the next action

only upon completion of a HIT, we now need a model which
is polled every k time units in order to choose an action.

The world state includes the set of workers currently on re-
tainer with the elapsed time, accuracy and response factors
for each. Note that the agent has complete information about
the amount of time a retainer worker has been waiting (which
affects response time) but only a probability distribution over
the worker’s accuracy and response characteristics. In addi-
tion the agent must model expected arrival time of the next
user task (a distribution over delta times until the next task).

The POMDP affords only two actions: recruit another re-
tained worker and submit a user task to a retained worker.
We adopt the bonus model described in Bernstein et al. [1],
since the 3 cent bonus for rapid (2 second) response is cost
effective compared to putting additional workers on retainer.
But note that the agent may choose not to notify all retained
workers when a user task actually comes in. Figure 3 shows
the net utility as a function of the user’s gross utility for
a timely (2 second) response, depending on the number of
workers activated and assuming that 60% will respond within
2 seconds. The actual utility calculation must additionally
incorporate the individual worker’s waiting times, response
characteristics, the probability of additional user tasks and
the time required to put additional workers on retainer.

REFERENCES
1. M. Bernstein, J. Brandt, R. Miller, and D. Karger. Crowds in

two seconds: Enabling realtime crowd-powered interfaces. In
UIST, 2011.

2. M. Bernstein, G. Little, R. Miller, B. Hartmann, M. Ackerman,
D. Karger, D. Crowell, and K. Panovich. Soylent: A word
processor with a crowd inside. In UIST, 2010.

3. J. Bigham, C. Jayant, H. Ji, G. Little, , A. Miller, R. Miller,
A. Tatarowicz, B. White, S. White, and T. Yeh. VizWiz: nearly
real-time answers to visual questions. In UIST, 2010.

4. P. Dai, Mausam, and D. S. Weld. Decision-theoretic control of
crowd-sourced workflows. In AAAI10, 2010.

5. P. Dai, Mausam, and D. S. Weld. Artificial intelligence for
artificial, artificial intelligence. In AAAI, 2011.

6. L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In ECML, pages 282–293, 2006.

7. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller.
TurKit: Tools for Iterative Tasks on Mechanical Turk. In
Human Computation Workshop (HComp2009), 2009.

8. D. Weld, Mausam, and P. Dai. Human Intelligence Needs
Artificial Intelligence. In Human Computation Workshop
(HComp2011), 2011.


	INTRODUCTION
	OPTIMAL WORKFLOW CONTROL
	OPTIMIZING REALTIME CROWD RESPONSE

