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Abstract

Information-extraction (IE) systems seek
to distill semantic relations from natural-
language text, but most systems use super-
vised learning of relation-specific examples
and are thus limited by the availability of
training data. Open IE systems such as
TextRunner, on the other hand, aim to handle
the unbounded number of relations found
on the Web. But how well can these open
systems perform?

This paper presents WOE, an open IE system
which improves dramatically on TextRunner’s
precision and recall. The key to WOE’s per-
formance is a novel form of self-supervised
learning for open extractors — using heuris-
tic matches between Wikipedia infobox at-
tribute values and corresponding sentences to
construct training data. Like TextRunner,
WOE’s extractor eschews lexicalized features
and handles an unbounded set of semantic
relations. WOE can operate in two modes:
when restricted to POS tag features, it runs
as quickly as TextRunner, but when set to use
dependency-parse features its precision and
recall rise even higher.

1 Introduction

The problem of information-extraction (IE), gen-
erating relational data from natural-language text,
has received increasing attention in recent years.
A large, high-quality repository of extracted tu-
ples can potentially benefit a wide range of NLP
tasks such as question answering, ontology learn-
ing, and summarization. The vast majority of
IE work uses supervised learning of relation-
specific examples. For example, the WebKB
project (Craven et al., 1998) used labeled exam-
ples of the courses-taught-by relation to in-
duce rules for identifying additional instances of
the relation. While these methods can achieve

high precision and recall, they are limited by the
availability of training data and are unlikely to
scale to the thousands of relations found in text
on the Web.

An alternative paradigm, Open IE, pioneered
by the TextRunner system (Banko et al., 2007),
aims to handle an unbounded number of relations
and run quickly enough to process Web-scale cor-
pora. Domain independence is achieved by ex-
tracting the relation name as well as its two argu-
ments. Most open IE systems use self-supervised
learning, in which automatic heuristics generate
labeled data for training the extractor. For exam-
ple, TextRunner uses a small set of hand-written
rules to heuristically label training examples from
sentences in the Penn Treebank.

This paper presents WOE (Wikipedia-based
Open Extractor), the first system that au-
tonomously transfers knowledge from random ed-
itors’ effort of collaboratively editing Wikipedia to
train an open information extractor. Specifically,
WOE generates relation-specific training examples
by matching Infobox1 attribute values to corre-
sponding sentences (as done in Kylin (Wu and
Weld, 2007) and Luchs (Hoffmann et al., 2010)),
but WOE abstracts these examples to relation-
independent training data to learn an unlexical-
ized extractor, akin to that of TextRunner. WOE

can operate in two modes: when restricted to
shallow features like part-of-speech (POS) tags, it
runs as quickly as Textrunner, but when set to use
dependency-parse features its precision and recall
rise even higher. We present a thorough experi-
mental evaluation, making the following contribu-
tions:
• We present WOE, a new approach to open IE

that uses Wikipedia for self-supervised learn-
ing of unlexicalized extractors. Compared

1An infobox is a set of tuples summarizing the key at-
tributes of the subject in a Wikipedia article. For example,
the infobox in the article on “Sweden” contains attributes like
Capital, Population and GDP.



with TextRunner (the state of the art) on three
corpora, WOE yields between 79% and 90%
improved F-measure — generalizing well be-
yond Wikipedia.
• Using the same learning algorithm and fea-

tures as TextRunner, we compare four dif-
ferent ways to generate positive and negative
training examples with TextRunner’s method,
concluding that our Wikipedia heuristic is re-
sponsible for the bulk of WOE’s improved ac-
curacy.
• The biggest win arises from using parser fea-

tures. Previous work (Jiang and Zhai, 2007)
concluded that parser-based features are un-
necessary for information extraction, but that
work assumed the presence of lexical features.
We show that abstract dependency paths are
a highly informative feature when performing
unlexicalized extraction.

2 Problem Definition

An open information extractor is a function
from a document, d, to a set of triples,
{〈arg1,rel,arg2〉}, where the args are noun
phrases and rel is a textual fragment indicat-
ing an implicit, semantic relation between the two
noun phrases. The extractor should produce one
triple for every relation stated explicitly in the text,
but is not required to infer implicit facts. In this
paper, we assume that all relational instances are
stated within a single sentence. Note the dif-
ference between open IE and the traditional ap-
proaches (e.g., as in WebKB), where the task is
to decide whether some pre-defined relation holds
between (two) arguments in the sentence.

We wish to learn an open extractor without di-
rect supervision, i.e. without annotated training
examples or hand-crafted patterns. Our input is
Wikipedia, a collaboratively-constructed encyclo-
pedia2. As output, WOE produces an unlexicalized
and relation-independent open extractor. Our ob-
jective is an extractor which generalizes beyond
Wikipedia, handling other corpora such as the gen-
eral Web.

3 Wikipedia-based Open IE

The key idea underlying WOE is the automatic
construction of training examples by heuristically
matching Wikipedia infobox values and corre-
sponding text; these examples are used to generate

2We also use DBpedia (Auer and Lehmann, 2007) as a
collection of conveniently parsed Wikipedia infoboxes
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Figure 1: Architecture of WOE.

an unlexicalized, relation-independent (open) ex-
tractor. As shown in Figure 1, WOE has three main
components: preprocessor, matcher, and learner.

3.1 Preprocessor
The preprocessor converts the raw Wikipedia text
into a sequence of sentences, attaches NLP anno-
tations, and builds synonym sets for key entities.
The resulting data is fed to the matcher, described
in Section 3.2, which generates the training set.

Sentence Splitting: The preprocessor first renders
each Wikipedia article into HTML, then splits the
article into sentences using OpenNLP.

NLP Annotation: As we discuss fully in Sec-
tion 4 (Experiments), we consider several varia-
tions of our system; one version, WOEparse, uses
parser-based features, while another, WOEpos, uses
shallow features like POS tags, which may be
more quickly computed. Depending on which
version is being trained, the preprocessor uses
OpenNLP to supply POS tags and NP-chunk an-
notations — or uses the Stanford Parser to create a
dependency parse. When parsing, we force the hy-
perlinked anchor texts to be a single token by con-
necting the words with an underscore; this trans-
formation improves parsing performance in many
cases.

Compiling Synonyms: As a final step, the pre-
processor builds sets of synonyms to help the
matcher find sentences that correspond to infobox
relations. This is useful because Wikipedia edi-
tors frequently use multiple names for an entity;
for example, in the article titled “University of
Washington” the token “UW” is widely used to
refer the university. Additionally, attribute values
are often described differently within the infobox
than they are in surrounding text. Without knowl-
edge of these synonyms, it is impossible to con-
struct good matches. Following (Wu and Weld,
2007; Nakayama and Nishio, 2008), the prepro-
cessor uses Wikipedia redirection pages and back-



ward links to automatically construct synonym
sets. Redirection pages are a natural choice, be-
cause they explicitly encode synonyms; for ex-
ample, “USA” is redirected to the article on the
“United States.” Backward links for a Wiki-
pedia entity such as the “Massachusetts Institute of
Technology” are hyperlinks pointing to this entity
from other articles; the anchor text of such links
(e.g., “MIT”) forms another source of synonyms.

3.2 Matcher

The matcher constructs training data for the
learner component by heuristically matching
attribute-value pairs from Wikipedia articles con-
taining infoboxes with corresponding sentences in
the article. Given the article on “Stanford Univer-
sity,” for example, the matcher should associate
〈established,1891〉 with the sentence “The
university was founded in 1891 by . . . ” Given a
Wikipedia page with an infobox, the matcher iter-
ates through all its attributes looking for a unique
sentence that contains references to both the sub-
ject of the article and the attribute value; these
noun phrases will be annotated arg1 and arg2

in the training set. The matcher considers a sen-
tence to contain the attribute value if the value or
its synonym is present. Matching the article sub-
ject, however, is more involved.

Matching Primary Entities: In order to match
shorthand terms like “MIT” with more complete
names, the matcher uses an ordered set of heuris-
tics like those of (Wu and Weld, 2007; Nguyen et
al., 2007):
• Full match: strings matching the full name of

the entity are selected.
• Synonym set match: strings appearing in the

entity’s synonym set are selected.
• Partial match: strings matching a prefix or suf-

fix of the entity’s name are selected. If the
full name contains punctuation, only a prefix
is allowed. For example, “Amherst” matches
“Amherst, Mass,” but “Mass” does not.
• Patterns of “the <type>”: The matcher first

identifies the type of the entity (e.g., “city” for
“Ithaca”), then instantiates the pattern to create
the string “the city.” Since the first sentence of
most Wikipedia articles is stylized (e.g. “The
city of Ithaca sits . . . ”), a few patterns suffice
to extract most entity types.
• The most frequent pronoun: The matcher as-

sumes that the article’s most frequent pronoun

denotes the primary entity, e.g., “he” for the
page on “Albert Einstein.” This heuristic is
dropped when “it” is most common, because
the word is used in too many other ways.

When there are multiple matches to the primary
entity in a sentence, the matcher picks the one
which is closest to the matched infobox attribute
value in the parser dependency graph.

Matching Sentences: The matcher seeks a unique
sentence to match the attribute value. To produce
the best training set, the matcher performs three
filterings. First, it skips the attribute completely
when multiple sentences mention the value or its
synonym. Second, it rejects the sentence if the
subject and/or attribute value are not heads of the
noun phrases containing them. Third, it discards
the sentence if the subject and the attribute value
do not appear in the same clause (or in parent/child
clauses) in the parse tree.

Since Wikipedia’s Wikimarkup language is se-
mantically ambiguous, parsing infoboxes is sur-
prisingly complex. Fortunately, DBpedia (Auer
and Lehmann, 2007) provides a cleaned set of in-
foboxes from 1,027,744 articles. The matcher uses
this data for attribute values, generating a training
dataset with a total of 301,962 labeled sentences.

3.3 Learning Extractors
We learn two kinds of extractors, one (WOEparse)
using features from dependency-parse trees and
the other (WOEpos) limited to shallow features like
POS tags. WOEparse uses a pattern learner to
classify whether the shortest dependency path be-
tween two noun phrases indicates a semantic rela-
tion. In contrast, WOEpos (like TextRunner) trains
a conditional random field (CRF) to output certain
text between noun phrases when the text denotes
such a relation. Neither extractor uses individual
words or lexical information for features.

3.3.1 Extraction with Parser Features
Despite some evidence that parser-based features
have limited utility in IE (Jiang and Zhai, 2007),
we hoped dependency paths would improve preci-
sion on long sentences.

Shortest Dependency Path as Relation: Unless
otherwise noted, WOE uses the Stanford Parser
to create dependencies in the “collapsedDepen-
dency” format. Dependencies involving preposi-
tions, conjuncts as well as information about the
referent of relative clauses are collapsed to get
direct dependencies between content words. As



noted in (de Marneffe and Manning, 2008), this
collapsed format often yields simplified patterns
which are useful for relation extraction. Consider
the sentence:

Dan was not born in Berkeley.
The Stanford Parser dependencies are:

nsubjpass(born-4, Dan-1)
auxpass(born-4, was-2)
neg(born-4, not-3)
prep in(born-4, Berkeley-6)

where each atomic formula represents a binary de-
pendence from dependent token to the governor
token.

These dependencies form a directed graph,
〈V,E〉, where each token is a vertex in V , and E
is the set of dependencies. For any pair of tokens,
such as “Dan” and “Berkeley”, we use the shortest
connecting path to represent the possible relation
between them:

Dan
−−−−−−−−−→
nsubjpass born←−−−−−−prep in Berkeley

We call such a path a corePath. While we will
see that corePaths are useful for indicating when
a relation exists between tokens, they don’t neces-
sarily capture the semantics of that relation. For
example, the path shown above doesn’t indicate
the existence of negation! In order to capture the
meaning of the relation, the learner augments the
corePath into a tree by adding all adverbial and
adjectival modifiers as well as dependencies like
“neg” and “auxpass”. We call the result an ex-
pandPath as shown below:

WOE traverses the expandPath with respect to the
token orders in the original sentence when out-
putting the final expression of rel.

Building a Database of Patterns: For each of the
301,962 sentences selected and annotated by the
matcher, the learner generates a corePath between
the tokens denoting the subject and the infobox at-
tribute value. Since we are interested in eventu-
ally extracting “subject, relation, object” triples,
the learner rejects corePaths that don’t start with
subject-like dependencies, such as nsubj, nsubj-
pass, partmod and rcmod. This leads to a collec-
tion of 259,046 corePaths.

To combat data sparsity and improve learn-
ing performance, the learner further generalizes
the corePaths in this set to create a smaller set
of generalized-corePaths. The idea is to elimi-

nate distinctions which are irrelevant for recog-
nizing (domain-independent) relations. Lexical
words in corePaths are replaced with their POS
tags. Further, all Noun POS tags and “PRP”
are abstracted to “N”, all Verb POS tags to “V”,
all Adverb POS tags to “RB” and all Adjective
POS tags to “J”. The preposition dependencies
such as “prep in” are generalized to “prep”. Take
the corePath “Dan

−−−−−−−−−→
nsubjpass born←−−−−−−prep in

Berkeley” for example, its generalized-corePath
is “N

−−−−−−−−−→
nsubjpass V ←−−−−prep N”. We call such

a generalized-corePath an extraction pattern. In
total, WOE builds a database (named DBp) of
29,005 distinct patterns and each pattern p is asso-
ciated with a frequency — the number of matching
sentences containing p. Specifically, 311 patterns
have fp ≥ 100 and 3,519 patterns have fp ≥ 5.

Learning a Pattern Classifier: Given the large
number of patterns in DBp, we assume few valid
open extraction patterns are left behind. The
learner builds a simple pattern classifier, named
WOEparse, which checks whether the generalized-
corePath from a test triple is present in DBp, and
computes the normalized logarithmic frequency as
the probability3:

w(p) =
max(log(fp)− log(fmin), 0)

log(fmax)− log(fmin)

where fmax (54,274 in this paper) is the maximal
frequency of pattern in DBp, and fmin (set 1 in
this work) is the controlling threshold that deter-
mines the minimal frequency of a valid pattern.

Take the previous sentence “Dan was not born
in Berkeley” for example. WOEparse first identi-
fies Dan as arg1 and Berkeley as arg2 based
on NP-chunking. It then computes the corePath
“Dan

−−−−−−−−−→
nsubjpass born ←−−−−−−prep in Berkeley”

and abstracts to p=“N
−−−−−−−−−→
nsubjpass V ←−−−−prep

N”. It then queries DBp to retrieve the fre-
quency fp = 31, 767 and assigns a probabil-
ity of 0.95. Finally, WOEparse traverses the
triple’s expandPath to output the final expression
〈Dan,wasNotBornIn, Berkeley〉. As shown
in the experiments on three corpora, WOEparse

achieves an F-measure which is between 79% to
90% greater than TextRunner’s.

3.3.2 Extraction with Shallow Features
WOEparse has a dramatic performance improve-
ment over TextRunner. However, the improve-
ment comes at the cost of speed — TextRunner

3How to learn a more sophisticated weighting function is
left as a future topic.
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Figure 2: WOEposperforms better than TextRunner, especially on precision. WOEparsedramatically im-
proves performance, especially on recall.

runs about 30X faster by only using shallow fea-
tures. Since high speed can be crucial when pro-
cessing Web-scale corpora, we additionally learn a
CRF extractor WOEpos based on shallow features
like POS-tags. In both cases, however, we gen-
erate training data from Wikipedia by matching
sentences with infoboxes, while TextRunner used
a small set of hand-written rules to label training
examples from the Penn Treebank.

We use the same matching sentence set behind
DBp to generate positive examples for WOEpos.
Specifically, for each matching sentence, we label
the subject and infobox attribute value as arg1

and arg2 to serve as the ends of a linear CRF
chain. Tokens involved in the expandPath are la-
beled as rel. Negative examples are generated
from random noun-phrase pairs in other sentences
when their generalized-CorePaths are not in DBp.

WOEpos uses the same learning algorithm and
selection of features as TextRunner: a two-order
CRF chain model is trained with the Mallet pack-
age (McCallum, 2002). WOEpos’s features include
POS-tags, regular expressions (e.g., for detecting
capitalization, punctuation, etc..), and conjunc-
tions of features occurring in adjacent positions
within six words to the left and to the right of the
current word.

As shown in the experiments, WOEpos achieves
an improved F-measure over TextRunner between
15% to 34% on three corpora, and this is mainly
due to the increase on precision.

4 Experiments

We used three corpora for experiments: WSJ from
Penn Treebank, Wikipedia, and the general Web.
For each dataset, we randomly selected 300 sen-
tences. Each sentence was examined by two peo-
ple to label all reasonable triples. These candidate

triples are mixed with pseudo-negative ones and
submitted to Amazon Mechanical Turk for veri-
fication. Each triple was examined by 5 Turk-
ers. We mark a triple’s final label as positive when
more than 3 Turkers marked them as positive.

4.1 Overall Performance Analysis
In this section, we compare the overall perfor-
mance of WOEparse, WOEpos and TextRunner
(shared by the Turing Center at the University of
Washington). In particular, we are going to answer
the following questions: 1) How do these systems
perform against each other? 2) How does perfor-
mance vary w.r.t. sentence length? 3) How does
extraction speed vary w.r.t. sentence length?

Overall Performance Comparison
The detailed P/R curves are shown in Figure 2.

To have a close look, for each corpus, we ran-
domly divided the 300 sentences into 5 groups and
compared the F-measures of three systems in Fig-
ure 3. We can see that:
• WOEpos is better than TextRunner, especially

on precision. This is due to better training
data from Wikipedia via self-supervision. Sec-
tion 4.2 discusses this in more detail.
• WOEparse achieves the best performance, es-

pecially on recall. This is because the parser
features help to handle complicated and long-
distance relations in difficult sentences. In par-
ticular, WOEparse outputs 1.42 triples per sen-
tence on average, while WOEpos outputs 1.05
and TextRunner outputs 0.75.

Note that we measure TextRunner’s precision
& recall differently than (Banko et al., 2007)
did. Specifically, we compute the precision & re-
call based on all extractions, while Banko et al.
counted only concrete triples where arg1 is a
proper noun, arg2 is a proper noun or date, and



Figure 3: WOEposachieves an F-measure, which is
between 15% and 34% better than TextRunner’s.
WOEparseachieves an improvement between 79%
and 90% over TextRunner. The error bar indicates
one standard deviation.

the frequency of rel is over a threshold. Our ex-
periments show that focussing on concrete triples
generally improves precision at the expense of re-
call.4 Of course, one can apply a concreteness fil-
ter to any open extractor in order to trade recall for
precision.

The extraction errors by WOEparse can be cat-
egorized into four classes. We illustrate them
with the WSJ corpus. In total, WOEparse got
85 wrong extractions on WSJ, and they are
caused by: 1) Incorrect arg1 and/or arg2

from NP-Chunking (18.6%); 2) A erroneous de-
pendency parse from Stanford Parser (11.9%);
3) Inaccurate meaning (27.1%) — for exam-
ple, 〈she, isNominatedBy, PresidentBush〉 is
wrongly extracted from the sentence “If she is
nominated by President Bush ...”5; 4) A pattern
inapplicable for the test sentence (42.4%).

Note WOEparse is worse than WOEpos in the low
recall region. This is mainly due to parsing er-
rors (especially on long-distance dependencies),
which misleads WOEparse to extract false high-
confidence triples. WOEpos won’t suffer from such
parsing errors. Therefore it has better precision on
high-confidence extractions.

We noticed that TextRunner has a dip point
in the low recall region. There are two typical
errors responsible for this. A sample error of
the first type is 〈Sources, sold, theCompany〉
extracted from the sentence “Sources said

4For example, consider the Wikipedia corpus. From
our 300 test sentences, TextRunner extracted 257 triples (at
72.0% precision) but only extracted 16 concrete triples (with
87.5% precision).

5These kind of errors might be excluded by monitor-
ing whether sentences contain words such as ‘if,’ ‘suspect,’
‘doubt,’ etc.. We leave this as a topic for the future.

Figure 4: WOEparse’s F-measure decreases more
slowly with sentence length than WOEpos and Tex-
tRunner, due to its better handling of difficult sen-
tences using parser features.

he sold the company”, where “Sources” is
wrongly treated as the subject of the object
clause. A sample error of the second type is
〈thisY ear, willStarIn, theMovie〉 extracted
from the sentence “Coming up this year, Long
will star in the new movie.”, where “this year” is
wrongly treated as part of a compound subject.
Taking the WSJ corpus for example, at the dip
point with recall=0.002 and precision=0.059,
these two types of errors account for 70% of all
errors.

Extraction Performance vs. Sentence Length
We tested how extractors’ performance varies

with sentence length; the results are shown in Fig-
ure 4. TextRunner and WOEpos have good perfor-
mance on short sentences, but their performance
deteriorates quickly as sentences get longer. This
is because long sentences tend to have compli-
cated and long-distance relations which are diffi-
cult for shallow features to capture. In contrast,
WOEparse’s performance decreases more slowly
w.r.t. sentence length. This is mainly because
parser features are more useful for handling diffi-
cult sentences and they help WOEparse to maintain
a good recall with only moderate loss of precision.

Extraction Speed vs. Sentence Length
We also tested the extraction speed of different

extractors. We used Java for implementing the
extractors, and tested on a Linux platform with
a 2.4GHz CPU and 4G memory. On average, it
takes WOEparse 0.679 seconds to process a sen-
tence. For TextRunner and WOEpos, it only takes
0.022 seconds — 30X times faster. The detailed
extraction speed vs. sentence length is in Figure 5,
showing that TextRunner and WOEpos’s extraction
time grows approximately linearly with sentence
length, while WOEparse’s extraction time grows



Figure 5: Textrnner and WOEpos’s running time
seems to grow linearly with sentence length, while
WOEparse’s time grows quadratically.

quadratically (R2 = 0.935) due to its reliance on
parsing.

4.2 Self-supervision with Wikipedia Results
in Better Training Data

In this section, we consider how the process of
matching Wikipedia infobox values to correspond-
ing sentences results in better training data than
the hand-written rules used by TextRunner.

To compare with TextRunner, we tested four
different ways to generate training examples from
Wikipedia for learning a CRF extractor. Specif-
ically, positive and/or negative examples are se-
lected by TextRunner’s hand-written rules (tr for
short), by WOE’s heuristic of matching sentences
with infoboxes (w for short), or randomly (r for
short). We use CRF+h1−h2 to denote a particu-
lar approach, where “+” means positive samples,
“-” means negative samples, and hi ∈ {tr, w, r}.
In particular, “+w” results in 221,205 positive ex-
amples based on the matching sentence set6. All
extractors are trained using about the same num-
ber of positive and negative examples. In contrast,
TextRunner was trained with 91,687 positive ex-
amples and 96,795 negative examples generated
from the WSJ dataset in Penn Treebank.

The CRF extractors are trained using the same
learning algorithm and feature selection as Tex-
tRunner. The detailed P/R curves are in Fig-
ure 6, showing that using WOE heuristics to la-
bel positive examples gives the biggest perfor-
mance boost. CRF+tr−tr (trained using TextRun-
ner’s heuristics) is slightly worse than TextRunner.
Most likely, this is because TextRunner’s heuris-
tics rely on parse trees to label training examples,

6This number is smaller than the total number of
corePaths (259,046) because we require arg1 to appear be-
fore arg2 in a sentence — as specified by TextRunner.

and the Stanford parse on Wikipedia is less accu-
rate than the gold parse on WSJ.

4.3 Design Desiderata of WOEparse

There are two interesting design choices in
WOEparse: 1) whether to require arg1 to appear
before arg2 (denoted as 1≺2) in the sentence;
2) whether to allow corePaths to contain prepo-
sitional phrase (PP) attachments (denoted as PPa).
We tested how they affect the extraction perfor-
mance; the results are shown in Figure 7.

We can see that filtering PP attachments (PPa)
gives a large precision boost with a noticeable loss
in recall; enforcing a lexical ordering of relation
arguments (1≺2) yields a smaller improvement in
precision with small loss in recall. Take the WSJ
corpus for example: setting 1≺2 and PPa achieves
a precision of 0.792 (with recall of 0.558). By
changing 1≺2 to 1∼2, the precision decreases to
0.773 (with recall of 0.595). By changing PPa to
PPa and keeping 1≺2, the precision decreases to
0.642 (with recall of 0.687) — in particular, if we
use gold parse, the precision decreases to 0.672
(with recall of 0.685). We set 1≺2 and PPa as de-
fault in WOEparse as a logical consequence of our
preference for high precision over high recall.

4.3.1 Different parsing options
We also tested how different parsing might ef-
fect WOEparse’s performance. We used three pars-
ing options on the WSJ dataset: Stanford parsing,
CJ50 parsing (Charniak and Johnson, 2005), and
the gold parses from the Penn Treebank. The Stan-
ford Parser is used to derive dependencies from
CJ50 and gold parse trees. Figure 8 shows the
detailed P/R curves. We can see that although
today’s statistical parsers make errors, they have
negligible effect on the accuracy of WOE.

5 Related Work
Open or Traditional Information Extraction:
Most existing work on IE is relation-specific.
Occurrence-statistical models (Agichtein and Gra-
vano, 2000; M. Ciaramita, 2005), graphical mod-
els (Peng and McCallum, 2004; Poon and Domin-
gos, 2008), and kernel-based methods (Bunescu
and R.Mooney, 2005) have been studied. Snow
et al. (Snow et al., 2005) utilize WordNet to
learn dependency path patterns for extracting the
hypernym relation from text. Some seed-based
frameworks are proposed for open-domain extrac-
tion (Pasca, 2008; Davidov et al., 2007; Davi-
dov and Rappoport, 2008). These works focus
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Figure 6: Matching sentences with Wikipedia infoboxes results in better training data than the hand-
written rules used by TextRunner.

Figure 7: Filtering prepositional phrase attachments (PPa) shows a strong boost to precision, and we see
a smaller boost from enforcing a lexical ordering of relation arguments (1≺2).
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Figure 8: Although today’s statistical parsers
make errors, they have negligible effect on the
accuracy of WOE compared to operation on gold
standard, human-annotated data.

on identifying general relations such as class at-
tributes, while open IE aims to extract relation
instances from given sentences. Another seed-
based system StatSnowball (Zhu et al., 2009) can
perform both relation-specific and open IE by it-
eratively generating weighted extraction patterns.
Different from WOE, StatSnowball only employs
shallow features and uses L1-normalization to
weight patterns. Shinyama and Sekine proposed

the “preemptive IE” framework to avoid relation-
specificity (Shinyama and Sekine, 2006). They
first group documents based on pairwise vector-
space clustering, then apply an additional clus-
tering to group entities based on documents clus-
ters. The two clustering steps make it difficult to
meet the scalability requirement necessary to pro-
cess the Web. Mintz et al. (Mintz et al., 2009)
uses Freebase to provide distant supervision for
relation extraction. They applied a similar heuris-
tic by matching Freebase tuples with unstructured
sentences (Wikipedia articles in their experiments)
to create features for learning relation extractors.
Using Freebase to match arbitrary sentences in-
stead of matching Wikipedia infobox within corre-
sponding articles will potentially increase the size
of matched sentences at a cost of accuracy. Also,
their learned extractors are relation-specific. Alan
Akbik et al. (Akbik and Broß, 2009) annotated
10,000 sentences parsed with LinkGrammar and
selected 46 general linkpaths as patterns for rela-
tion extraction. In contrast, WOE learns 29,005
general patterns based on an automatically anno-
tated set of 301,962 Wikipedia sentences. The



KNext system (Durme and Schubert, 2008) per-
forms open knowledge extraction via significant
heuristics. Its output is knowledge represented
as logical statements instead of information rep-
resented as segmented text fragments.
Information Extraction with Wikipedia: The
YAGO system (Suchanek et al., 2007) extends
WordNet using facts extracted from Wikipedia
categories. It only targets a limited number of pre-
defined relations. Nakayama et al. (Nakayama and
Nishio, 2008) parse selected Wikipedia sentences
and perform extraction over the phrase structure
trees based on several handcrafted patterns. Wu
and Weld proposed the KYLIN system (Wu and
Weld, 2007; Wu et al., 2008) which has the same
spirit of matching Wikipedia sentences with in-
foboxes to learn CRF extractors. However, it
only works for relations defined in Wikipedia in-
foboxes.
Shallow or Deep Parsing: Shallow features, like
POS tags, enable fast extraction over large-scale
corpora (Davidov et al., 2007; Banko et al., 2007).
Deep features are derived from parse trees with
the hope of training better extractors (Zhang et
al., 2006; Zhao and Grishman, 2005; Bunescu
and Mooney, 2005; Wang, 2008). Jiang and
Zhai (Jiang and Zhai, 2007) did a systematic ex-
ploration of the feature space for relation extrac-
tion on the ACE corpus. Their results showed lim-
ited advantage of parser features over shallow fea-
tures for IE. However, our results imply that ab-
stracted dependency path features are highly in-
formative for open IE. There might be several rea-
sons for the different observations. First, Jiang and
Zhai’s results are tested for traditional IE where lo-
cal lexicalized tokens might contain sufficient in-
formation to trigger a correct classification. The
situation is different when features are completely
unlexicalized in open IE. Second, as they noted,
many relations defined in the ACE corpus are
short-range relations which are easier for shallow
features to capture. In practical corpora like the
general Web, many sentences contain complicated
long-distance relations. As we have shown ex-
perimentally, parser features are more powerful in
handling such cases.

6 Conclusion

This paper introduces WOE, a new approach to
open IE that uses self-supervised learning over un-
lexicalized features, based on a heuristic match
between Wikipedia infoboxes and corresponding

text. WOE can run in two modes: a CRF extrac-
tor (WOEpos) trained with shallow features like
POS tags; a pattern classfier (WOEparse) learned
from dependency path patterns. Comparing with
TextRunner, WOEpos runs at the same speed, but
achieves an F-measure which is between 15% and
34% greater on three corpora; WOEparse achieves
an F-measure which is between 79% and 90%
higher than that of TextRunner, but runs about
30X times slower due to the time required for
parsing.

Our experiments uncovered two sources of
WOE’s strong performance: 1) the Wikipedia
heuristic is responsible for the bulk of WOE’s im-
proved accuracy, but 2) dependency-parse features
are highly informative when performing unlexi-
calized extraction. We note that this second con-
clusion disagrees with the findings in (Jiang and
Zhai, 2007).

In the future, we plan to run WOE over the bil-
lion document CMU ClueWeb09 corpus to com-
pile a giant knowledge base for distribution to the
NLP community. There are several ways to further
improve WOE’s performance. Other data sources,
such as Freebase, could be used to create an ad-
ditional training dataset via self-supervision. For
example, Mintz et al. consider all sentences con-
taining both the subject and object of a Freebase
record as matching sentences (Mintz et al., 2009);
while they use this data to learn relation-specific
extractors, one could also learn an open extrac-
tor. We are also interested in merging lexical-
ized and open extraction methods; the use of some
domain-specific lexical features might help to im-
prove WOE’s practical performance, but the best
way to do this is unclear. Finally, we wish to com-
bine WOEparse with WOEpos (e.g., with voting) to
produce a system which maximizes precision at
low recall.
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