
To Appear, AAAI-94

Temporal Planning with Continuous Change�

J. Scott Penberthy

IBM T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532
jsp@watson.ibm.com

Daniel S. Weld

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98105
weld@cs.washington.edu

Abstract

We present zeno, a least commitment planner
that handles actions occurring over extended in-
tervals of time. Deadline goals, metric precon-
ditions, metric e�ects, and continuous change
are supported. Simultaneous actions are allowed
when their e�ects do not interfere. Unlike most
planners that deal with complex languages, the
zeno planning algorithm is sound and complete.
The running code is a complete implementation
of the formal algorithm, capable of solving simple
problems (i.e., those involving less than a dozen
steps).

Introduction

We have built a least commitment planner, zeno, that
handles actions occuring over extended intervals of
time and whose preconditions and e�ects can be tem-
porally quanti�ed. These capabilities enable zeno to
reason about deadline goals, piecewise-linear contin-
uous change, external events and to a limited extent,
simultaneous actions. While other planners exist with
some of these features, zeno is di�erent because it is
both sound and complete.
As an example of zeno's capabilities, consider a toy

world in which a single plane moves passengers between
cities. \Slow ying" travels at 400 miles per hour and
consumes 1 gallon of fuel every 3 miles, on average.
\Fast ying" travels at 600 miles per hour and con-
sumes 1 gallon of fuel every 2 miles. Passengers can
be boarded in 30 minutes and deplaned in 20 minutes.
Refueling gradually increases the fuel level to a max-
imum of 750 gallons, taking one hour from an empty
tank. Boarding, deplaning, and refueling must all oc-
cur while the plane is on the ground. The plane ies
routes between 4 cities as shown in �gure 1.
Suppose that dan and ernie are at city-c, but the

empty plane and scott are at city-a. If the plane only

�This research was funded in part by the IBM Corpora-
tion, National Science Foundation Grant IRI-8957302, Of-
�ce of Naval Research Grant 90-J-1904 and a grant from
the Xerox corporation.

Scott Ernie Dan Plane

Start Finish

600
800

1000
1000

Figure 1: Airplane routes and a sample problem

has 500 gallons of fuel, how can we ensure that scott
and ernie get to city-d in less than 5 + 1

2
hours?

Synthesizing the solution requires reasoning about
simultaneous actions and continuous change. Since the
plane's fuel diminishes at di�ering rates depending on
the speed of ight, zeno needs to trade o� speed for
e�ciency. The planner must also handle conditional
e�ects, since passengers are moved only when they are
aboard. Deadline goals are present: the plane must
meet a tight schedule. zeno takes about three minutes
to solve the problem. The Gantt chart below depicts
zeno's plan | facts established by actions are shown
as indented formulae, and the bars to the right indicate
the intervals of time over which actions occur or facts
persist.

Deadline
At(ernie,city-c)

At(scott,city-a)

At(plane,city-a)

Board(scott,city-a)

In(scott)

Slow-fly(city-a,city-c)

At(scott,city-c)

At(plane,city-c)

Board(ernie,city-c)

In(ernie)

Refuel(city-c)

Fast-fly(city-c,city-d)

At(ernie,city-d)

At(scott,city-d)

The constraints (over 100 of them) can be para-



phrased as follows. Passenger scott takes 30 minutes
to board the plane at city-a. Since it doesn't have
enough fuel to fast-fly, the plane ies slowly from
city-a to city-c, taking 2 hours, 30 minutes. The
plane is refueled over the next hour at city-c; mean-
while passenger ernie climbs onboard. Note that the
deadline could not be met without scheduling these ac-
tions simultaneously. Finally, over the next 1:20, the
plane is own quickly from city-c to city-d. This
leaves 235 gallons of fuel in the plane for a total plan
time of 5 hours, 20 minutes | 10 minutes to spare.
The rest of this paper describes our action and plan
representation, provides an overview of the zeno algo-
rithm, then discusses formal and empirical aspects.

Actions and goals

zeno uses a typed, �rst-order language with equality
to describe goals and the e�ects of actions. A point-
based model of time is adopted; temporal functions
and relations use a time point as their �rst argument.
Quanti�ers specify the type of the quanti�ed variable
(i.e., 8type and 9type ). All types except time are

assumed �nite. To represent maintenance (i.e., inter-
val) goals and piecewise-linear continuous e�ects, one
simply speci�es universal quanti�cation over variables
of type time.
A zeno action schema (e.g., �gure 2) characterizes

a set of possible actions with sentences from zeno's

Schema Fast-Fly (m, l)

at-time: [ts; te]

precondition:

8time t t 2 [ts; te] � fuel(t; plane) > 0 ^

at(ts,plane,m) ^

dist(m,l)=�2 ^ mpg(plane)=�3
constraints:

�4 = �600=�3, te = ts + �2=600
effect:

at(te,plane,l) ^

8time t t 2 (ts; te] � :at(t;plane;m) ^

[8human o 8time t

(t 2 (ts; te]^ in(t; o)) � :at(t; o;m)^ at(te; o; l)] ^

8time t t 2 [ts; te] �
@

@t
fuel(t;plane) = �4

Figure 2: An action schema for fast ying.

logic. A schema speci�es the time over which an ac-
tion occurs, the preconditions for execution, and the
e�ects on the world. For example, the precondition
at(ts; plane;m) insists that the plane start at loca-
tion m at time ts in order to y from location m to
location l. The �rst precondition of Fast-Fly,

8time t t 2 [ts; te] � fuel(t; plane) > 0

restricts the plane's fuel level to remain above zero
while ying, but does not commit to a single value:
fuel(t,plane) may vary throughout the interval
[ts; te]. While a goal may be any quanti�ed sentence

composed of logical connectives (^; _) and literals
(f(t; x1 : : :xn) = c, R(x1 : : :xn), or :R(x1 : : :xn)),
disjunction and existential quanti�cation are banned
from action e�ects. Internally, the conjunctive e�ects
of each action are simpli�ed to a set of literals through
reduction parsing (Penberthy 1993). This approach
simpli�es the matching of action e�ects to goals. The
last e�ect conjunct of Fast-Fly,

8time t t 2 [ts; te] �
@
@t
fuel(t; plane) = �4

states that the fuel level will change at a constant rate
of �4. The value of �4 is constrained with additional
equations, relating �4 to the speed of the plane, 600
miles per hour, and the fuel e�ciency, mpg(plane).
We must specify the entire continuous behavior over
the interval [ts; te], as our semantics insist that all con-
tinuous behaviors are the result of direct, explicit ac-
tion. After an action e�ect terminates, the last value
obtained by continous change will persist through time
until explicitly modi�ed by another action's e�ect.

Plans

zeno plans are triples �S;L; C� where S is a set of
steps (i.e., instantiated action schemata), L is a set
of causal links, and C is a set of constraints. The con-
straints in C include metric equations, linear equalities,
linear inequalities, and noncodesignation constraints.
The steps in S are partially ordered by the relevant
temporal constraints in C. The causal links L denote
protection ranges for literals; each link is a pair ��; ��
where � is a literal that must remain true throughout
the interval of time �.
Because preconditions and e�ects have explicit tem-

poral scope, a planning problem can be encoded as a
partial plan with a single dummy step whose time of
\execution" bounds all planned activity. For example,
our sample problem becomes the dummy step:

Schema Dummy

at-time: [t0; t1]

precondition:

at(t1,scott,city-d) ^ at(t1,ernie,city-d)

constraints:

t0 < t1 � t0 + 5:5
effect:

at(t0,scott,city-a) ^ at(t0,ernie,city-c) ^

at(t0,dan,city-c) ^ fuel(t0,plane)=500

This unintuitive encoding of planning problems was
chosen because zeno's temporal model eliminated the
need for separate initial and goal steps. When we in-
troduce continuous time into a planning system, initial
conditions, external events and domain axioms become
formally equivalent. They are simply clauses that oc-
cur, beyond the program's control, at speci�c times.
Final goals and deadline goals are also indistinguish-
able. They are merely clauses that must be achieved at
a speci�c time. We lump external events, initial condi-
tions, and domain axioms into the e�ects of the dummy
action. Deadline goals and �nal goals are lumped into



its preconditions. Finally, the time of the dummy ac-
tion spans the desired time for the plan to complete.
In addition, conditional e�ects represent external

events that can be disabled, i.e., one can specify that
unless a bomb is disarmed by a speci�c time, it will
explode. Domain axioms are encoded as universally
quantifed temporal e�ects.

The Zeno Algorithm

zeno is a least commitment, regression planner. It
searches a space whose nodes are pairs �P;G� where
P is a partially speci�ed plan and G is a goal agenda.
As zeno traverses arcs, it rewrites complex goals
into simpler ones, satis�es simple goals, imposes con-
straints, and generates subgoals.
The planner begins at a node where P = �S;L; C�

is a one-step plan encoding the planning problem and
G is the agenda of top-level goals. The algorithm ter-
minates when it �nds a node whose agenda is empty
(signifying a solution) or when the plan's constraints
are inconsistent (failure). The search process is de-
scribed as a ow chart in �gure 3.

Start: Is C consistent? -
no

fail

?
yes

Does G = ; ?

?
yes

Return P.

-
no Remove a goal

�'; �g� from G

?

reduce �'; �g�
Goto Start

�
no Is ' primitive?

?
yes

Choose source
ei for �'; �g�;
Add link ��p; '� to L;
Resolve threats.
Goto Start

�
no Is ' metric?

?
yes

post �'; �g�
Goto Start

Figure 3: The main loop of zeno.

The full algorithm involves three nondeterministic
decisions: (1) decomposing a complex goal into sim-
pler formula, (2) choosing actions to satisfy simple
goals, and (3) introducing constraints to prevent in-
terference between actions and goals. Completeness
requires backtracking on these decisions | the branch-
ing factor is proportional to the number of available
actions and the number of disjunctive goals. Note that
completeness does not require backtracking on goal se-
lection (seen as \Remove a goal" in �gure 3). Since
subgoal ordering decisions can a�ect planning perfor-
mance as much as the true nondeterministic choices,

domain dependent guidance (when available) is useful
for all four types of decisions.

The remaining subsections briey describe each path
through the main loop. These paths are dispatched
by �rst testing to see if a goal �'; �g� remains on the
agenda; if so, it is removed. Note that this tuple format
is representative of the sentence 8time t t 2 �g � '.
zeno next checks whether ' is primitive, i.e., if it is
a logical literal (e.g., R(x1 : : : xn) or :R(x1 : : :xn)),
a metric equality (possibly constraining a uent, e.g.
f(x1 : : : xn) = �), an arbitrary metric constraint be-
tween metric primitives (e.g., �1 � �2) or codesignation
constraint x � y. Unless ' is primitive, it is reduced
as explained in the next section.

Goal reduction

The reduce procedure simpli�es a complex goal by
substituting stronger yet simpler conditions. A dis-
junctive goal '1 _ : : :_'n is replaced, nondeterminis-
tically, by one of its disjuncts 'i. A conjunctive goal
'1^: : :^'n is replaced by the set of goals f'1; : : : ; 'ng.

An interval goal 8timet t 2 � � ' is reduced in one
of two ways: either the program splits the interval �
into two subinterval subgoals, or it marks the interval
as indivisible. This allows zeno to explore all possible
subdivisions of interval goals. Each marked interval
corresponds to a linear segment of a piece-wise linear
equation ', or it corresponds to a single interpreta-
tion of logical literal '. To avoid in�nite branching,
the implementation will only split intervals to a pre-
set depth. This bound restricts the number of actions
that, in combination, can be used to satisfy an interval
goal; iterative deepening search can ensure complete-
ness.

A universally quanti�ed goal 8typex', where

type 6= time, is replaced by its universal base (Pen-
berthy & Weld 1992; Weld 1994), which is the con-
junction of all ground terms 'i, one for each extension
xi of x where xi is a constant of type type. Note that
domains must be �nite for this to work; hence we treat
time specially as described in the previous paragraph
and the next section.

Existential quanti�ers within the scope of a univer-
sal quanti�er are replaced with Skolem functions. All
other existentials are treated as simple variable names,
requiring algorithms to handle codesignation and non-
codesignation constraints.

Finally, metric constraints on logical uents, such as
value(t1; x) � value(t2; y) are separated into their
individual components,1 yielding e.g.

9�1; �2 value(t1; x) =�1 ^ value(t2; y) =�2 ^ �1 � �2

1Although this last transformation may seem trivial,
subtle arguments (Nelson & Oppen 1979; Penberthy 1993)
show that it is necessary to ensure soundness.



Metric and codesignation goals

If ' is a codesignation (e.g., x � y or x 6� y) or prim-
itive metric constraint (e.g., �1 � �2), it is posted di-
rectly to the constraint reasoning system which deter-
mines whether its constraints are collectively consis-
tent. The phrase \post �'; �g�" of �gure 3 means the
following. If �g is a time point, then only one constraint
' is posted, '(�g). Otherwise, zeno exploits piece-
wise linearity and posts ' for both endpoints of the
interval.2 For example, the requirement that the plane
have fuel � 0 during ight yields constraints that the
plane have gas at takeo� and landing. If the constraint
is valid at both endpoints, the Mean Value Theorem
guarantees that it will be true for the entire interval.
This approach works because we limit goals ' to

linear inequalities and assume that no further decom-
position of �g is needed. zeno handles the case where
�g needs to be divided into subintervals in the call to
reduce, the \goal reduction" path.

Logical and uent-de�nitional goals

If ' from �'; �g� is a literal such as At(ernie,

city-d), it is satis�ed in a style similar to ucpop (Pen-
berthy &Weld 1992; Weld 1994) and snlp (McAllester
& Rosenblitt 1991) in the \logical goals" path of the
main loop. zeno nondeterministically chooses a source
for ' by �nding an e�ect that concludes ' over �e,
where �e possibly precedes �g. Sources from both newly
instantiated and existing steps Si are considered. In
both cases, ordering constraints are added to C, ensur-
ing that �e precedes3 �g in any �nal plan.
zeno then protects the literal ' over the interval

�p, where �p exactly covers both �g and �e. This is
accomplished by �rst adding a new causal link ��p; '�
to L and then removing all threats to the new link. The
tuple format of a causal link is shorthand for a logical
sentence stating that ' must persist over the interval
�p (Penberthy 1993).
A threat is any e�ect ek that might possibly cause

:' over some portion of the interval �p. We say \pos-
sibly" here since the plan P is only partially speci-
�ed: many step orderings and values for free vari-
ables may be consistent with P , yet allow threats to
occur. zeno resolves all threats using the standard
techniques of promotion and demotion, i.e., posting
ordering constraints on time points (Chapman 1987),
and confrontation, i.e., posting a new subgoal that
prevents ek from interfering (Collins & Pryor 1992;
Penberthy & Weld 1992; Weld 1994). If no resolution
is possible, zeno backtracks.
Linking and threat prevention introduce constraints

on the plan. For example, when achieving a goal of

2It is an error for �g to be anything but a closed interval
of time [t1; t2] or a time point t1, by the de�nition of goals.

3More exactly, �e must begin before or coincident with
the start of �g. Although �e may overlap �g, this is not
required, since zeno's threat resolution mechanism ensures
that ' persists if there is a gap between �e and �g.

the form fuel(t,x)= �g(t) with an e�ect fuel(t,y)=
�e(t), zeno must ensure that x � y and that �g(t) =
�e(t). This ensures that any interpretation for the vari-
ables x and y are consistent with the e�ect \achieving"
the goal. It also connects the precondition constraints
on �g(t) to the e�ect constraints on �e(t). Similarly, if
fuel(t,x)= �g(t) were de�ned by an e�ect that speci-
�ed the derivative of fuel() over [t0; t1] to be �, zeno
must also constrain �g(t) accordingly, e.g., by de�ning
�g(t) = �g(t0) + � � (t � t0) and posting t0 � t � t1.

Integrated Constraint Management

Since zeno relies on constraint satisfaction for all tem-
poral and metric aspects reasoning, sound and e�cient
algorithms are essential. Specialized routines coop-
erate to handle the di�erent types of constraints in
C: codesignations, linear equalities, linear inequalities,
and nonlinear equations.
Codesignations are handled as they were in

ucpop (Weld 1994). A simple algorithm maintains
equivalence classes of all logical variables, then deter-
mines whether the noncodesignations are inconsistent
with the classi�cation.
Mathematical formulae posted by zeno are parsed

dynamically into a set of linear equations
P

i aixi = b,
inequalities

P
i aixi � b, and pairwise nonlinear equa-

tions xiyi = c. These canonical forms are identical to
the matrix representation of equations used in linear
algebra and operations research (Karlo� 1991).
Linear equations are solved by Gaussian elimination,

linear inequalities by the Simplex algorithm, and non-
linear equations are delayed until they become linear
via the solution of other equations and inequalities.
To ensure sound constraint handling, each equality,
xi = c, that is derived by one algorithm is passed to
all other algorithms (Nelson & Oppen 1979).
Determining an inconsistency using Gaussian elim-

ination is straightforward; if a constraint c = 0 is de-
tected during elimination, where c is non-zero constant,
then the equations are inconsistent. Finding inconsis-
tencies in linear inequalities is a bit trickier.
Recall that linear programming is the task of mini-

mizing a cost function while satisfying a set of linear
inequalities (Karlo� 1991). The Simplex algorithm op-
erates in two phases. First, it constructs a polytope,
i.e., a convex region in <n, that exactly covers the set
of solutions to the linear inequalities. In the second
phase, it walks along vertices of the polytope in search
of values that minimize the cost function. For zeno,
the optimization aspect is irrelevant. Instead, zeno
uses the �rst phase to determine simply whether the
polytope is malformed. If the polytope vanishes to the
null vector ~0, no solutions exist and the constraints
are inconsistent. While exponential in the worst case,
the expected time for phase I is linear in the num-
ber of variables.4 For maximum speed, zeno uses Jaf-

4In our experience, the Simplex algorithm is never the
bottleneck; if larger problems cause this to be the case we



far et.al.'s (Ja�ar et al. 1992) dynamic programming
version of the algorithm optimized for incremental up-
dates. This version retains the polytope from n equa-
tions, then modi�es it when the n + 1st inequality is
added.
The above algorithms determine whether the set

of constraints are consistent. However, they are not
amenable to the numerous temporal queries required
by the zeno algorithm. When linking e�ects to goals
or checking for threats, zeno must determine whether
two or more intervals overlap. These intervals, in
turn, are speci�ed as constraints on two end points.
For example, the half-open interval [t1; t2) represents
all time points t such that t1 � t < t2. To expe-
dite temporal queries, zeno caches temporal relations
with Warshall's transitive closure algorithm (Warshall
1962). For each time point t, this cache speci�es all
time points t� less than or equal to t, all time points
t� greater than or equal to t, and all time points t6=
distinct from t. This can be e�ciently implemented
using boolean operations on bit vectors, where each
time point is represented by a unique index.

Formal Properties

Assuming that all interval, metric e�ects are piecewise
linear, that nontemporal types are static and �nite,
and that nonlinear equations can be linearized, then
zeno is both sound i.e., all plans returned by zeno will
work, and complete i.e., if a plan exists, zeno will �nd
it. The soundness proof introduces a loop invariant
maintained by all control paths of zeno. The halting
conditions, in combination with the invariant, guaran-
tee that every plan returned by zeno will work. The
completeness proof uses induction on the number of
steps in a plan. The base case (0-step plans) is true for
all consistent problem descriptions. The inductive case
uses an n� 1 step plan to guide zeno as it builds an
n step plan.5 zeno's proofs occupy many more pages
than allowed in this paper; see (Penberthy 1993) for
details.

Performance

zeno has been tested on numerous problems. Our
empirical results (Penberthy 1993) show that zeno's
performance is on a par with state-based planners,
e.g., ucpop and prodigy, in domains that don't in-
volve interval goals, continuous change and metric rela-
tionships (which those planners can't handle). zeno's
speed only degrades when a planning problem demands
zeno's advanced features. Yet even in these domains
performance is tolerable, i.e., the current implementa-
tion is suitable for experimental research use. Further
work on search control and abstraction is needed before
zeno can handle large-scale, practical problems.

could switch to Karmarkar's linear programming algorithm
which is guaranteed polynomial (Karlo� 1991).

5This clairvoyant proof technique was �rst used by Mc-
Dermott (McDermott 1991) to prove his total-order plan-
ner complete.

Figure 4 shows how zeno performs6 on three such
problems: Allen's door latch example (Allen et al.

1991), the airplane example of this paper and the met-
ric blocks world problem from �gure 9.3 of (Wilkins
1988b). A simple predicate ordering, e.g., see (Sacer-
doti 1974), was used on all but the door latch problem
to guide subgoal selection. Iterative-deepening, depth-
�rst search (Korf 1985) handled all other nondetermi-
nistic choices.

problem cpu time (sec)
Door latch 0:04 � 0:00
Airplane routing 151:56 � 27:56
sipe example 1:42 � 0:24

Figure 4: Execution times for the zeno planner.

Related Work

Because of our interest in formal properties, zeno

is closest in spirit to the work of Allen(Allen 1991),
Chapman(Chapman 1987), McAllester(McAllester &
Rosenblitt 1991) and Pednault(Pednault 1986). Allen
and Pelavin (Allen et al. 1991) describe an elegant the-
ory of temporal planning based on �rst order logic and
an interval model of time. In contrast, we model time
using the real numbers; this allows metric duration and
continuous change.
Numerous systems with some of zeno's features

have been implemented in the past twenty years and
we have drawn insight from many of them. Drab-
ble's excalibur (Drabble 1993) �rst generates a plan
that ignores metric constraints, then tests it through
qualitiative simulation; failed tests invoke heuristic re-
planning. Simmons' gordius (Simmons 1988) han-
dles actions with conditional and metric e�ects, but
uses a state-based model of time and is incomplete.
Our approach is considerably simpler than that of
sipe (Wilkins 1990) and deviser (Vere 1983) { zeno
avoids parallel links, complex traversal schemes, and
heuristic plan evaluation. Similarly, we believe that
zeno's treatment of simultaneous and metric e�ects
is more general than sipe's. While oplan (Currie &
Tate 1991) uses ideas from operations research to op-
timize resource usage, they use di�erent techniques for
temporal management. In contrast, zeno uses an in-
tegrated approach for both temporal and other metric
constraints, but makes no claim of e�cient resource
handling.
(Ja�ar et al. 1992) developed the incremental algo-

rithms and the idea of using Gaussian elimination and
Simplex phase I iteration to manage linear equations
and inequalities. Our restrictions on the use of metric
variables in zeno's logic are derived from the innova-
tive approaches of (Nelson & Oppen 1979) and (Hen-
drix 1973).

6The experiments were performed on an IBM RS/6000
running Allegro Common Lisp; 95% con�dence intervals
were calcuated from 10 runs per problem.



Conclusion

zeno is a least commitment, re�nement planning algo-
rithm capable of handling simultaneous actions, con-
tinuous change, metric reasoning and deadline goals.
Both actions and goals are described in a rich logic
supporting universal quanti�cation, disjunction, con-
junction, metric functions, logic functions and formal
objects. The algorithm is sound i.e., all plans returned
as solutions are guaranteed to work. The algorithm
is also complete i.e., if a plan exists, then zeno will
�nd it. A full, working implementation of the pro-
gram has performance similar to existing state-based
planners on comparable domains, but cannot be said
to have heuristic adequacy. We strive for a system
with the performance of sipe (Wilkins 1988a) and the
formal properties of zeno. Since metering tools show
that the bulk of zeno's time is spent updating and
querying its temporal cache, we hope to integrate op-
timized temporal reasoners, such as (Dechter, Meiri,
& Pearl 1991),(Dean 1989) or (Williamson & Hanks
1993), into zeno's hierarchy of constraint reasoners.
As it stands, we believe that zeno represents a �rst
step towards bridging the gap between formal and em-
pirical approaches to automated planning with expres-
sive temporal languages.

Acknowledgments

We thank Tony Barrett, Alan Borning, Ernie Davis,
Denise Draper, Oren Etzioni, Keith Golden, Steve
Hanks, Nick Kushmerick, Edwin Pednault, Ying Sun,
Mike Williamson, and the anonymous reviewers for
helpful comments.

References

Allen, J., Kautz, H., Pelavin, R., and Tenenberg, J.
1991. Reasoning about Plans. San Mateo, CA: Mor-
gan Kaufmann.

Allen, J. 1991. Planning as temporal reasoning. In
Proceedings of the Second International Conference

on Principles of Knowledge Representation and Rea-

soning, 3{14.

Chapman, D. 1987. Planning for conjunctive goals.
Arti�cial Intelligence 32(3):333{377.

Collins, G., and Pryor, L. 1992. Achieving the func-
tionality of �lter conditions in a partial order planner.
In Proc. 10th Nat. Conf. on A.I.

Currie, K., and Tate, A. 1991. O-plan: the open
planning architecture. Arti�cial Intelligence 52(1):49{
86.

Dean, T. 1989. Using Temporal Hierarchies to E�-
ciently Maintain Large Temporal Databases. Journal
of the ACM 36(4):687{718.

Dechter, R., Meiri, I., and Pearl, J. 1991. Temporal
constraint networks. Arti�cial Intelligence 49:61{96.

Drabble, B. 1993. Excalibur: a program for planning
and reasoning with processes. Arti�cial Intelligence

62:1{40.

Hendrix, G. 1973. Modeling simultaneous actions
an continuous processes. Arti�cial Intelligence 4:145{
180.

Ja�ar, J., Michaylov, S., Stuckey, P., and Yap, R.
1992. The CLP(R) Language and System. ACM

Transactions on Programming Languages and Sys-

tems 14(3):339{395.

Karlo�, H. 1991. Linear Programming. Boston:
Birkh�auser.

Korf, R. 1985. Depth-�rst iterative deepening: An
optimal admissible tree search. Arti�cial Intelligence
27(1):97{109.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. 9th Nat. Conf. on A.I.,
634{639.

McDermott, D. 1991. Regression planning. Interna-
tional Journal of Intelligent Systems 6:357{416.

Nelson, G., and Oppen, D. C. 1979. Simpli�cation by
cooperating decision procedures. ACM Transactions

on Programming Languages and Systems 1(2):245{
257.

Pednault, E. 1986. Toward a Mathematical Theory

of Plan Synthesis. Ph.D. Dissertation, Stanford Uni-
versity.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc.

3rd Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning, 103{114. Available via FTP
from pub/ai/ at cs.washington.edu.

Penberthy, J. 1993. Planning with Continuous

Change. Ph.D. Dissertation, University of Washing-
ton. Available as UW CSE Tech Report 93-12-01.

Sacerdoti, E. 1974. Planning in a hierarchy of ab-
straction spaces. Arti�cial Intelligence 5:115{135.

Simmons, R. 1988. Combining associational and
causal reasoning to solve interpretation and planning
problems. AI-TR-1048, MIT AI Lab.

Vere, S. 1983. Planning in time: Windows and dura-
tions for activities and goals. IEEE Trans. on Pattern
Analysis and Machine Intelligence 5:246{267.

Warshall, S. 1962. A theorem on boolean matrices.
Journal of the ACM 9(1).

Weld, D. 1994. An introduction to least-commitment
planning. AI Magazine. Available via FTP from
pub/ai/ at cs.washington.edu.

Wilkins, D. 1988a. Causal reasoning in planning.
Computational Intelligence 4(4):373{380.

Wilkins, D. E. 1988b. Practical Planning. San Mateo,
CA: Morgan Kaufmann.

Wilkins, D. 1990. Can AI planners solve practical
problems? Computational Intelligence 6(4):232{246.

Williamson, M., and Hanks, S. 1993. Exploiting do-
main structure to achieve e�cient temporal reason-
ing. In Proc. 13th Int. Joint Conf. on A.I., 152{157.


