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HAL (a space odyssey, 1968)

                   - David Stork (HAL’s Legacy, 1998) 
 

“Imagine, for example, a computer that could look at 
an arbitrary scene anything from a sunset over a fishing 
village to Grand Central Station at rush hour and 
produce a verbal description. 
This is a problem of overwhelming difficulty, relying as 
it does on finding solutions to both vision and 
language and then integrating them. 
I suspect that scene analysis will be one of the last 
cognitive tasks to be performed well by computers” 



Language grounding with vision 

•  Understanding the meaning of language with perceptual signals
•  What does red mean?

–  red --- having a color resembling that of blood
•  What does blood mean?

–  blood – the red fluid that circulates through the heart…

•  red := 

•  Not just words, but phrases and sentences.



Not just words, but descriptions 

•  “playing a soccer” vs. “playing a piano” 




“enjoying the ride” 



Automatic Image Captioning 

Can be useful for:
•  AI agent that can see and talk
•  automatic summary of your photo album
•  image search with complex natural language queries

–  e.g., find all images with a man with a backpack entering a red car 

•  equal web access for visually impaired

"In the middle of flickering pages of 
action comics, appears the logo 
'Marvel' in bold letters." 

- from the opening credit of 
“Daredevil”



Automatic Image Captioning 

Can be useful for:
•  AI agent that can see and talk
•  automatic summary of your photo album
•  image search with complex natural language queries

–  e.g., find all images with a man with a backpack entering a red car 

•  equal web access for visually impaired

In this painting, dozens of irises rise up in 
waves of color, like green and blue flames 
fanned by a wind that blows them, now 
flattens them, ... On the left, a solitary white 
iris commands the swirl of purple and green 
from its outpost ... 

- example from artbeyondsight.org



How to obtain rich annotations?

•  Label them all (by asking human workers)
–  Flickr 30K
–  MSR CoCo --- 100K images with 5 captions each 

•  Learn from data in the wild
–  Facebook alone has over 250 billion images as of Jun 2013, with 

350 million images added daily by over 1 billion users 
–  Flickr has over 2 billion images
–  Data available at a significantly larger scale
–  And significantly noisier



Example annotations 
in the CoCo dataset

•  the man, the young girl, and dog are on the surfboard. 
•  a couple of people and a dog in the water. 
•  people and a dog take a ride on a surfboard 
•  a man holding a woman and a dog riding the same surfboard. 
•  a man holding a woman by her inner thighs on top of a 

surfboard over a small dog in a pink life jacket in the ocean. 



•  Dad, daughter and doggie 
tandem surf ride 

•  I believe this was a world 
record with two humans and 7 
dogs...

•  Oh no… here we go
•  Surrounded by splash
•  Pulling through
•  Tada!
•  Nani having a good time 
•  Digging deep

Flickr captions are noisier (some better examples) 



Learning from data in the wild

After the sun has set (9) 

Sun is going to bed (21)   

The sky looks like it is on fire (58) 

The sun sets for another day (12) 

Rippled sky (44) 

Deja Image-caption corpus (NAACL 2015):
–  Of 750 million pairs of image-caption pairs from Flickr
–  Retain only those captions that are repeated verbatim by more than one user
–  Yielding 4 million images with 180K unique captions 



More precise
Fixed/small vocabulary
Fixed / formulaic language


More expressive 
Open vocabulary

Everyday people’s language 

Generation as whole sentence 
retrieval
•  Farhadi et al. (2010)
•  Ordonez et al. (2011)
•  Socher et al. (2013) 
•  Hodosh et al. (2013) 

Compose using retrieved text
•  Kuznetsova et al. (2012)
•  Mason (2013)
•  Feng and Lapata (2013) 

Compose using only 
detected words
•  Yao et al. (2010)
•  Kulkarni et al. (2011)
•  Yatkar et al (2014)
•  Thomason et al (2014)

•  Guadarrama et al (2013)

Compose using detected 
words + hallucinated 
words
•  Yang et al. (2011) 
•  Li et al. ( 2011)
•  Kuznetsova et al. (2012) 

•  Elliot and Keller (2013)
•  Mitchell et al (2012)

Deep learning variants
•  Kiros et al 2014   Donahue et al. 2015 
•  Fang et al 2015   Karpathy et al 2015 
•  Chen et al 2015   Mao et al 2014 
•  Xu et al 2015   Vinyals et al 2015 

Related Work

ACL 2012, 

ACL 2013,  

TACL 2014 



Plan for the talk 

•  BabyTalk
–  [CVPR 2011]

•  TreeTalk
–  [TACL 2014, ACL 2013, ACL 2012]



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”
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“This picture shows one person, one grass, one chair, and one potted 
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“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



Methodology Overview

Input Image

Extract Objects/stuff

a) dog

b) person

c) sofa

brown 0.32
striped 0.09
furry .04
wooden .2
Feathered .
04
        ...

brown 0.94
striped 0.10
furry .06
wooden .8
Feathered .
08
        ...

brown 0.01
striped 0.16
furry .26
wooden .2
feathered .06
        ...a) dog

b) person

c) sofa
Predict attributesPredict prepositions

a) dog

b) person

c) sofa

near(a,b) 1    
near(b,a) 1 
against(a,b) .11
against(b,a) .04 
beside(a,b) .24
beside(b,a) .17
        ...

near(a,c)  1  
near(c,a)  1   
against(a,c) .3
against(c,a) .05 
beside(a,c) .5
beside(c,a) .45
      ...

near(b,c)  1   
near(c,b)  1   
against(b,c) .67
against(c,b) .33 
beside(b,c) .0
beside(c,b) .19
      ...Predict labeling – vision potentials 
smoothed with text potentials
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<<null,person_b>,against,<brown,sofa_c>> 
<<null,dog_a>,near,<null,person_b>> 
<<null,dog_a>,beside,<brown,sofa_c>> Generate natural 

language description

This is a photograph of one 
person and one brown sofa and 
one dog. The person is against 
the brown sofa. And the dog is 
near the person, and beside the 
brown sofa. 



Conditional Random Fields (CRF)

Obj1%

Obj2%

Obj3%

A)r1%

A)r2%

A)r3%

Prep1%

Prep2%

Prep3%



Potential Functions for CRF 

ψ (object _ i)
ψ (attribute_i)
ψ (preposition _ ij)

ψ (attribute_ i ,object _ i)
ψ (object _ i,preposition _ ij,object _ j)

unary 
potentials

relational
( binary & 
ternary) 
potentials
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Practical challenge of relational potentials: 
! 

observing all possible combinations of variables unlikely 
(limited corpus with detailed visual annotations) 



Potential Functions for CRF

ψ (object _ i)
ψ (attribute_i)
ψ (preposition _ ij)

ψ (attribute_ i ,object _ i)
ψ (object _ i,preposition _ ij,object _ j)

unary 
potentials

relational
( binary & 
ternary) 
potentials

Practical challenge of relational potentials: 
! 

observing all possible combinations of variables unlikely 
(limited corpus with detailed visual annotations) 

visual 
potentials

textual 
potentials



 
Learning: mixture coefficients of 
different types of potentials (grid 
search) 
 
Inference: Tree Re-Weighted message 
passing (TRW-S) (Kolmogorov 2006)  
 

ψ (object _ i)
ψ (attribute_i)
ψ (preposition _ ij)

ψ (attribute_ i ,object _ i)
ψ (object _ i,preposition _ ij,object _ j)

unary 
potentials

relational
( binary & 
ternary) 
potentions



Template filling (traversing the graph and reading off 
the detected objects, attributes, and their spatial 
relations in sequence) 
 


Generation (aka “surface realization”) 



This is a picture of one 
sky, one road and one 
sheep. The gray sky is 
over the gray road. 
The gray sheep is by 
the gray road. 

Here we see one 
road, one sky and 
one bicycle. The road 
is near the blue sky, 
and near the colorful 
bicycle. The colorful 
bicycle is within the 
blue sky. 

This is a picture of two dogs. The first 
dog is near the second furry dog. 

Cherry-picked examples 

There are one road and one cat. 
The furry road is in the furry cat. 

This is a picture of one tree, 
one road and one person. 
The rusty tree is under the red 
road. The colorful person is 
near the rusty tree, and under 
the red road. 

Lemons



 
Computer vs Human Generated Caption 

                  “This picture shows one 
person, one grass, one chair, and one 
potted plant. The person is near the 
green grass, and in the chair. The green 
grass is by the chair, and near the potted 
plant.”

Computer:

Human (UIUC Pascal dataset):

A.  A Lemonaide stand is manned by a 
blonde child with a cookie. 

B.  A small child at a lemonade and 
cookie stand on a city corner.  

C.  Young child behind lemonade stand 
eating a cookie. 



                  “This picture shows one 
person, one grass, one chair, and one 
potted plant. The person is near the 
green grass, and in the chair. The green 
grass is by the chair, and near the potted 
plant.”

A.  A Lemonaide stand is manned by a 
blonde child with a cookie. 

B.  A small child at a lemonade and 
cookie stand on a city corner.  

C.  Young child behind lemonade stand 
eating a cookie. 

Computer:

Human (UIUC Pascal dataset):

(1) formulaic, robotic and unnatural
(2) limited semantic expressiveness, especially, no verb except “be” verb 

How can we reduce the 
gap between these two? 



“Butterfly and flower”

“Butterfly feeding on a flower” 

“Butterfly sipping nectar 
from the flower”

“A butterfly having lunch”

“A butterfly attracted to 
flowers”

How can we scale up the range of 
descriptive words and phrases?



“Butterfly feeding on a flower” 

“A butterfly having lunch”

How can we scale up the range of 
descriptive words and phrases?

Two Challenges:
!  recognition: we don’t have descriptive-verb recognizers at scale. 

e.g.,   “attracted_recognizer”, “feeding_on_recognizer”
!  formalism: not easy for humans to formalize all these variations of 

meanings in symbolic meaning representation and annotate them




“Butterfly feeding on a flower” 

“A butterfly having lunch”

How can we scale up the range of 
descriptive words and phrases?

Two Challenges:
!  recognition: we don’t have descriptive-verb recognizers at scale. 

e.g.,   “attracted_recognizer”, “feeding_on_recognizer”
!  formalism: not easy for humans to formalize all these variations of 

meanings in symbolic meaning representation and annotate them

Reflection on BabyTalk:

 {what can be described} = {what can be recognized} 

Humans decide



Web  
in 1995 



Web Today: Increasingly Visual   
-- social media, news media, online shopping 

•  Facebook.com%has%over%250%billion%images%uploaded%as%of%Jun%2013%
•  1.15%billion%users%uploading%350%million%images%a%day%on%average%
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Two Challenges:
!  recognition: we don’t have descriptive-verb recognizers at scale. 
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Reflection on BabyTalk:

 {what can be described} = {what can be recognized} 

Humans decide



“Butterfly feeding on a flower” 

“A butterfly having lunch”

How can we scale up the range of 
descriptive words and phrases?

Two Challenges:
!  recognition: we don’t have descriptive-verb recognizers at scale. 

e.g.,   “attracted_recognizer”, “feeding_on_recognizer”
!  formalism: not easy for humans to formalize all these variations of 

meanings in symbolic meaning representation and annotate them

Reflection on BabyTalk:

{what can be described} = {what can be recognized} 
Key Idea:

{what can be described}     {what can be recognized} U


Humans decide

Data decides

Distributional Hypothesis (Harris 1954) 

~ Farhadi et al. 2010



Plan for the talk 

•  BabyTalk
–  [CVPR 2011]

•  TreeTalk
–  [TACL 2014, ACL 2013, ACL 2012]



Given a query image (& an object)

� Harvest tree branches 

� Compose a new tree by combining tree branches

SBU Captioned Photo Dataset

1,000,000 (image, caption)

Operational Overview

(Ordonez et al. 2011)



Description Generation 

the dirty sheep meandered along a 
desolate road in the highlands of 
Scotland through frozen grass 

NP: the dirty sheep 

VP: meandered along a 
desolate road 

PP: in the highlands of Scotland

PP: through frozen grass

Object appearance

Object pose 

Scene appearance

Region 
appearance & 
relationship

Example Composition:



this dog was laying in the 
middle of the road on a 
back street in jaco

Closeup of my dog 
sleeping under my desk.

Detect: dog

Find matching 
detections by 
pose similarity

--- using color, texton, 
HoG and SIFT

Peruvian dog sleeping on 
city street in the city of 
Cusco, (Peru)

Contented dog just laying 
on the edge of the road in 
front of a house..

Retrieving 
VPs

~ Distributional Hypothesis (Harris 1954) 



Find matching regions 
by appearance + 
arrangement similarity 


--- using color, texton, HoG and SIFT

Mini Nike soccer ball all 
alone in the grass

Comfy chair under a tree.

I positioned the chairs 
around the lemon tree -- 
it's like a shrine

Cordoba - lonely 
elephant under an 
orange tree... 

Retrieving 
PPstuff

Detect: stuff 



SBU Captioned Photo Dataset 

1,000,000 (image, caption)

Operational Overview

Given a query image

� Harvest tree branches 

� Compose a new tree by combining tree branches



Target Image

A cow was staring at me

in the grass  in the countryside

Object (NP) Action (VP)

Stuff (PP)  Scene (PP)

Input to Sentence Composition := 



Target Image

A cow was staring at me

in the grass  in the countryside

Object (NP) Action (VP)

Stuff (PP)  Scene (PP)

1.  Select a subset of harvested phrases
2.  Decide the ordering of the selected phrases 

Sentence Composition := 

A cow 
in the grass 
was staring at me 
in the countryside 

A cow 
was staring at me 
in the grass 
in the countryside 



Target Image Object (NP) Action (VP)

Stuff (PP) Scene (PP)

1.  Select a subset of harvested phrases
2.  Decide the ordering of the selected phrases 

Sentence Composition := 

A cow 
in the grass 
was staring at me 
in the countryside 

A cow 
was staring at me 
in the grass 
in the countryside 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

Tree Structure --- Probabilistic Context Free Grammars (PCFG)



In the grass --- was staring at me --- a cow

Sentence Composition := 
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DT 
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NN 

NP 

in 

IN 

PP 

VP 

SINV 
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VP 
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A cow --- was staring at me --- in the countryside

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

S 

VP 

: global sentence 
structure

: global sentence 
structure

: local cohesion

: local cohesion



In the grass --- was staring at me --- a cow

Sentence Composition := 
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VBG 

VP 
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PRP 
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VBD 

VP 
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PP 
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: global sentence 
structure

Action (VP) Stuff (PP) Scene (PP)

a 

DT 
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NN 

NP 
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IN NP 

PP 

staring 
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VP 

me 

PRP 
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VBD 

VP 
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DT 

countryside 

NN 

NP 

in 

IN 

PP 
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DT 
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NN 

NP 

in 

IN 

PP 

: local cohesion

Object (NP)

! different from parsing because we must consider different 
choices of subtree selection and re-ordering simultaneously 



In the grass --- was staring at me --- a cow

Sentence Composition := 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

VP 

SINV 
: global sentence 
structure

Action (VP) Stuff (PP) Scene (PP)

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

: local cohesion

Object (NP)

! different from parsing because we must consider different 
choices of subtree selection and re-ordering simultaneously 

! finding the optimum selection+ordering = NP-hard (~= TSP) 

as Constraint Optimization 
using Integer Linear Programming 
 
--- Roth and Yih (2004), Clarke and Lapata (2006), 
Martins and Smith (2009), Woodsend and Lapata(2010)


(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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Operational Overview

Given a query image

� Harvest tree branches 

� Compose a new tree by combining tree branches

1,000,000 (image, caption)

� Prune trees



(Vintage)5 motorcycle5 (shot)5 (done)5 in5 black5 and5 white5
JJ5 NN5 NN5 VBN5 IN5 JJ5 JJ5CC5

NP, 5

NP5

CC-JJ 

VP 

NP5
PP 

S 

Image Caption Generalization 
via Tree Compression 

Optimization: F =Φ(Visual Salience) + Φ(Sequence Cohesion) 
                                      + Φ(Tree Structure)



motorcycle in black and white 
NN IN JJ JJ CC 

NP, NN 

NP 

CC-JJ 

VP, PP 

NP 
PP 

S 

Image Caption Generalization 
via Tree Compression 

(Vintage) (shot) (done) 

Optimization: F =Φ(Visual Salience) + Φ(Sequence Cohesion) 
                                      + Φ(Tree Structure)

•  sentence compression with light-weight parsing 
•  DP algorithm possible (modification to CKY parsing) 






Automatic Evaluation

0.14%

0.15%

0.16%

0.17%

0.18%

0.19%

0.2%

0.21%

0.22%

Sequence% Seq%+%Tree% Seq%+%Pruning% Seq%+%Tree%+%
Pruning%

Bleu@15
BLEU – N-gram precision (with 
modifications to handle degenerate cases)

Machine Translation: 
From Images to Text

Machine Caption   VS   Human Caption 
(forced choice w/ Amazon Mechanical Turk)  

#  ACL 2012 system (seq only):                   16% win 
#   Final system (seq + tree + pruning):      24% win 

~%ACL%2012%system%



The duck sitting in the water. The flower was so vivid 
and attractive. 

This window depicts the church. 

Blue flowers are running 
rampant in my garden. 

Good Examples

correct%choice%of%
an%ac[on%verb%

Highly%
expressive!%Interes[ng%

choice%of%
an%abstract%
verb!%



Scenes around the lake on my bike ride.

Mini Turing Test: our system wins in ~ 24 % cases! 

Blue flowers have no scent. Small white 
flowers have no idea what they are. 

Almost%poe[c,%situa[onally%relevant%

Spring in a white dress. 

This horse walking along the road as 
we drove by. 

Maybe the most common bird in the 
neighborhood, not just the most common 
water fowl in the neighborhood! 

The duck was having a feast. 



The couch is definitely bigger 
than it looks in this photo. 

My cat laying in my duffel bag. 
A high chair in 
the trees. 

Yellow ball suspended in water. 

Examples with Mistakes

Incorrect%Object%
Recogni[on%

Incorrect%Scene%
Matching% Incorrect%

Composi[on%



A cat looking for a home. 
The other cats are making 
the computer room. 

Examples with Mistakes

The castle known for being 
the home of Hamlet in the 
Shakespeare play. 

???�



Conclusion 



Web Imagery

BabyTalk(

TreeTalk(

“A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” 
“A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” 

semantic correspondence

How people write

{what can be described} = {what can be recognized} 

Data decides

{what can be described}     {what can be recognized} 

Humans decide

U


Distributional Hypothesis (Harris 1954) 

“Butterfly feeding on 
a flower”“Butterfly sipping nectar 

from the flower”

“Butterfly attracted to 
flowers”

$  Start with a precise (but small) set of {what to recognize}, 
and increase the set 

$  Start with a large (but noisy) set of {what to describe}, 
and decrease the noise



Web Imagery

BabyTalk(

TreeTalk(

“A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” 
“A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” “A bu!er"y having lunch” 

semantic correspondence 

How people write

{what can be described} = {what can be recognized} 

{what can be described}     {what can be recognized} U


“Butterfly feeding on 
a flower”“Butterfly sipping nectar 

from the flower”

“Butterfly attracted to 
flowers”

$  Start with a precise (but small) set of {what to recognize}, 
and increase the set 

$  Start with a large (but noisy) set of {what to describe}, 
and decrease the noise

World Knowledge 
from Language 

to Improve Vision 

World Knowledge 
from Imagery 

to Improve NLP



Future: Seeing beyond What’s in the Image 


•  What’s happening?
•  How / why did this happen?
•  What are the intent / goal of the participants?
•  Sentiment: are they happy?
•  Reaction: do we need to act on them (e.g., dispatching help)?
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