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Abstract. Serpent is a 32-round AES block cipher finalist. In this paper
we present several attacks on reduced-round variants of Serpent that re-
quire less work than exhaustive search. We attack six-round 256-bit Ser-
pent using the meet-in-the-middle technique, 512 known plaintexts, 2246

bytes of memory, and approximately 2247 trial encryptions. For all key
sizes, we attack six-round Serpent using standard differential cryptanaly-
sis, 283 chosen plaintexts, 240 bytes of memory, and 290 trial encryptions.
We present boomerang and amplified boomerang attacks on seven- and
eight-round Serpent, and show how to break nine-round 256-bit Serpent
using the amplified boomerang technique, 2110 chosen plaintexts, 2212

bytes of memory, and approximately 2252 trial encryptions.

1 Introduction

Serpent is an AES-candidate block cipher invented by Ross Anderson, Eli Biham,
and Lars Knudsen [ABK98], and selected by NIST as an AES finalist. It is
a 32-round SP-network with key lengths of 128 bits, 192 bits, and 256 bits.
Serpent makes clever use of the bitslice technique to make it efficient in software.
However, because of its conservative design and 32 rounds, Serpent is still three
times slower than the fastest AES candidates [SKW+99].

In the Serpent submission document [ABK98], the authors give upper bounds
for the best differential characteristics through the cipher. However, no specific
attacks on reduced-round versions of the cipher are presented. In this paper we
consider four kinds of attacks on reduced-round variants of Serpent: differential
[BS93], boomerang [Wag99], amplified boomerang [KKS00], and meet-in-the-
middle. To the best of our knowledge, these are the best published attacks against
reduced-round versions of Serpent.1

The current results on Serpent are as follows (see Table 1):

1. A meet-in-the-middle attack on Serpent reduced to six rounds, requiring 512
known plaintext/ciphertext pairs, 2246 bytes of random-access memory, and
work equivalent to approximately 2247 six-round Serpent encryptions.

? Part of this work was done while working for Counterpane Internet Security, Inc.
1 Dunkelman cryptanalyzed a Serpent variant with a modified linear transformation

in [Dun99].

Third AES Candidate Conference, pp. 195–211, 2000.
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Rounds Key Size Complexity Comments
[Data] [Work] [Space]

— — — — — no previous results
6 256 512 KP 2247 2246 meet-in-the-middle (§6)
6 all 283 CP 290 240 differential (§3.2)
6 all 271 CP 2103 275 differential (§3.3)
6 192 & 256 241 CP 2163 245 differential (§3.4)
7 256 2122 CP 2248 2126 differential (§3.5)
8 192 & 256 2128 CPC 2163 2133 boomerang (§4.2)
8 192 & 256 2110 CP 2175 2115 amp. boomerang (§5.3)
9 256 2110 CP 2252 2212 amp. boomerang (§5.4)

KP — known plaintext, CP — chosen plaintext, CPC — chosen plaintext/ciphertext.

Table 1. Summary of attacks on Serpent. Work is measured in trial encryptions; space
is measured in bytes.

2. A differential attack on Serpent reduced to six rounds, requiring 283 chosen
plaintexts, 240 bytes of sequential-access memory, and work equivalent to
approximately 290 six-round Serpent encryptions.

3. A differential filtering attack on Serpent reduced to seven rounds, requiring
2122 chosen plaintexts, 2126 bytes of sequential-access memory, and work
equivalent to approximately 2248 six-round Serpent encryptions.

4. A boomerang attack on Serpent reduced to eight rounds, requiring all 2128

plaintext/ciphertext pairs under a given key, 2133 bytes of random-access
memory, and work equivalent to approximately 2163 eight-round Serpent
encryptions.2

5. An amplified-boomerang key-recovery attack on Serpent reduced to eight
rounds, requiring 2110 chosen plaintexts, 2115 bytes of random-access mem-
ory, and work equivalent to approximately 2175 eight-round Serpent encryp-
tions.

6. An amplified-boomerang key-recovery attack on Serpent reduced to nine
rounds, requiring 2110 chosen plaintexts, 2212 bytes of random-access mem-
ory, and work equivalent to approximately 2252 nine-round Serpent encryp-
tions.

The remainder of this paper is organized as follows: First, we discuss the
internals of Serpent and explain the notation we use in this paper. We then
use differential, boomerang, and amplified boomerang techniques to break up
to nine rounds of Serpent. Subsequently we discuss a six-round meet-in-the-
middle attack on Serpent. We then discuss some observations on the Serpent key
schedule. We conclude with a discussion of our results and some open questions.

2 Because this eight-round boomerang attack requires the entire codebook under a
single key, one can consider this attack a glorified distinguisher that also recovers
the key.
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2 Description of Serpent

In this document we consider only the bitsliced version of Serpent. The bitsliced
and non-bitsliced versions of Serpent are functionally equivalent; the primary
difference between the bitsliced and non-bitsliced versions of Serpent are the
order in which the bits appear in the intermediate stages of the cipher. Full
details of the bitsliced and non-bitsliced version of Serpent are in [ABK98].

2.1 The Encryption Process

Serpent is a 32-round block cipher operating on 128-bit blocks. In the bitsliced
version of Serpent, one can consider each 128-bit block as the concatenation of
four 32-bit words.

Let Bi represent Serpent’s intermediate state prior to the ith round of en-
cryption. Notice that B0 = P and B32 = C, where P and C are the plaintext
and ciphertext, respectively.

Let Ki represent the 128-bit ith round subkey and let Si represent the ap-
plication of the ith round S-box. Let L be Serpent’s linear transformation. Then
the Serpent round function is defined as:

Xi ← Bi ⊕Ki

Yi ← Si(Xi)
Bi+1 ← L(Yi) i = 0, . . . , 30
Bi+1 ← Yi ⊕Ki+1 i = 31

Serpent uses eight S-boxes S0, . . . , S7. The indices to S are reduced modulo
8; i.e., S0 = S8 = S16 = S24. The Serpent S-boxes take four input bits and
produce four output bits. Consider the application of an S-box Si to the 128 bit
block Xi. Serpent first separates Xi into four 32-bit words x0, x1, x2, and x3. For
each of the 32-bit positions, Serpent constructs a nibble from the corresponding
bit in each of the four words, with the bit from x3 being the most significant
bit. Serpent then applies the S-box Si to the constructed nibble and stores the
result in the respective bits of Yi = (y0, y1, y2, y3).

The linear transform L on Yi = (y0, y1, y2, y3) is defined as

y0 ← y0 ≪ 13
y2 ← y2 ≪ 3
y1 ← y0 ⊕ y1 ⊕ y2

y3 ← y2 ⊕ y3 ⊕ (y0 � 3)
y1 ← y1 ≪ 1
y3 ← y3 ≪ 7
y0 ← y0 ⊕ y1 ⊕ y3

y2 ← y2 ⊕ y3 ⊕ (y1 � 7)
y0 ← y0 ≪ 5
y2 ← y2 ≪ 22

Bi+1 ← (y0, y1, y2, y3)
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where ≪ denotes a left rotation and � denotes a left shift.
When discussing the internal state of the Serpent, we will often refer to

diagrams such as

x0
x1
x2
x3

where Xi is the internal state under inspection and Xi = (x0, x1, x2, x3). As
suggested by this diagram, we will occasionally refer to an active S-box as a
“column.”

2.2 The Key Schedule

Serpent’s key schedule can accept key sizes up to 256 bits. If a 256-bit key is
used, Serpent sets the eight 32-bit words w−8, w−7, . . . , w−1 to the key. If not,
the key is converted to a 256-bit key by appending a ‘1’ bit followed by a string
of ‘0’s.

Serpent computes the prekeys w0, w1, . . . , w131 using the recurrence

wi ← (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i)≪ 11

where φ is 0x9e3779b9.
Serpent then computes the 128-bit subkeys Kj by applying an S-box to the

prekeys w4j , . . . , w4j+3:

K0 ← S3(w0, w1, w2, w3)
K1 ← S2(w4, w5, w6, w7)
K2 ← S1(w8, w9, w10, w11)
K3 ← S0(w12, w13, w14, w15)
K4 ← S7(w16, w17, w18, w19)

...
K31 ← S4(w124, w125, w126, w127)
K32 ← S3(w128, w129, w130, w131)

3 Differential Cryptanalysis

Differential cryptanalysis, first publicly discussed by Biham and Shamir [BS93],
is one of the most well-known and powerful cryptanalytic techniques. Although
the original Serpent proposal provided theoretical upper bounds for the highest
probability characteristics through reduced-round Serpent variants [ABK98], the
Serpent proposal did not present any empirical results describing how successful
differential cryptanalysis would be against Serpent in practice.
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In this section we consider actual differential attacks against reduced-round
Serpent variants. Although there may exist other high-probability differentials
through several rounds of Serpent, we focus on a particular five-round charac-
teristic, B′1 → Y ′5 , with probability p = 2−80. This characteristic spans Serpent’s
second through sixth rounds (rounds i = 1, . . . , 5). For completeness, this char-
acteristic is illustrated in Appendix A.1. Notationally, we use X ′ to represent
the xor difference between two values X and X∗.

3.1 Basic Six-Round Differential Attack

We can use the above-mentioned five-round, probability 2−80, characteristic to
attack rounds one through six of 192- and 256-bit Serpent.

To sketch our attack: we request 282 plaintext pairs with an input difference
B′1. For each last round subkey guess, we initialize a count variable to zero. Then,
for each unfiltered pair, we peel off the last round and look for our expected out-
put difference from the fifth round. If we observe our expected output difference,
we increment our counter. If we count three or more right pairs, we note this
subkey as likely to be correct.

If we apply the linear transformation L to the intermediate difference Y ′5
(Appendix A.1), we get the following expected input difference to the sixth
round:

B′6

We can immediately identify all but approximately 2−47 of our ciphertext pairs
as wrong pairs because their differences B′7 cannot correspond to our desired
difference B′6.

After filtering we are left with approximately 235 ciphertext pairs. Our attack
thus requires approximately 236 × 2116 partial decryptions, or work equivalent
to approximately 2150 six-round Serpent encryptions. If we retain only our unfil-
tered ciphertext pairs, this attack requires approximately 240 bytes of sequential
memory. The signal-to-noise ratio of this attack is 283.

3.2 Improved Six-Round Differential Attack

By counting on fewer than 116 bits of the last round subkey, we can considerably
improve the six-round differential attack in the previous section. For example, if
we count on two sets of 56 bits, our work is reduced to about 290 Serpent six-
round encryptions. This allows us to break six rounds of 128-, 192-, and 256-bit
Serpent using less work than exhaustive search.
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3.3 Bypassing the First Round

We can use structures to bypass the first round of our five-round characteristic
B′1 → Y ′5 . This gives us an attack that requires fewer chosen plaintexts but
more work than the attack in Section 3.2. In this attack we use the four-round,
probability 2−67, characteristic B′2 → Y ′5 . We request 247 blocks of 224 plaintexts
such that each block varies over all possible inputs to the active S-boxes in B′1.
This gives us 270 pairs with our desired input difference to the second round.
We expect eight pairs with our desired difference Y ′5 .

We can mount the attack in Section 3.2 by looking for the last round subkey
suggested seven or more times. In this attack we must consider a total of 294

possible ciphertext pairs. As with Section 3.2, we can immediately identify all
but 2−47 of these pairs as wrong pairs. This attack requires work equivalent to
approximately 2102 Serpent six-round encryptions and approximately 275 bytes
of random-access memory.

3.4 Additional Six-Round Differential Attack

We can modify our basic six-round differential attack by guessing part of the
last round subkey and looking at the eight passive S-boxes in B′5. In order to do
this, we must guess 124 bits of the last round subkey.

In this attack we request 240 chosen-plaintext pairs with our input difference
B′1. This gives us 29 pairs with difference B′5 entering the fifth round. For a
correct 124-bit last round subkey guess, we expect to count 29 pairs with passive
S-boxes in Y ′5 corresponding to the passive S-boxes in B′5. For an incorrect last
round subkey guess, the number of occurrences of pairs with passive differences
in our eight target S-boxes is approximately normal with mean 28 and standard
deviation 24. Since 29 is 16 standard deviations to the right of 28, we expect no
false positives.

This attack requires 245 bytes of sequential memory and work equivalent to
approximately 2163 Serpent six-round encryptions.

3.5 Seven-Round Differential Filtering Attack

We can use our filtering scheme in Section 3.1 to distinguish six rounds of Ser-
pent from a random permutation. In this distinguishing attack we request 2121

plaintext pairs with our desired input difference B′1. We expect approximately
241 right pairs. Since our filter passes ciphertext pairs with a probability 2−47,
we expect approximately 274 + 241 ciphertext pairs to pass our filter.

In a random permutation, the number of unfiltered pairs is approximately a
normal distribution with mean 274 and standard deviation 237. Since 274 + 241

is 16 standard deviations to the right of the random distribution’s mean of 274,
we can distinguish six-round Serpent from a random permutation. For a random
distribution, the probability of observing 274 + 241 or more unfiltered pairs is
approximately 2−190.
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We can extend this six-round distinguishing attack to a seven-round key re-
covery attack on rounds one through seven by guessing the entire last round
subkey K8 and performing our six-round distinguishing attack. This attack re-
quires approximately 2126 bytes of sequential memory 2248 Serpent seven-round
encryptions.

4 Boomerang Attacks

4.1 Seven-Round Boomerang Distinguisher

In addition to being able to perform traditional differential attacks against Ser-
pent, we can also use Wagner’s boomerang attack [Wag99] to distinguish seven
rounds of Serpent from a random permutation.

Let us consider a seven-round variant of Serpent corresponding to the second
through eighth rounds of the full 32-round Serpent (i.e., rounds i = 1, . . . , 7).
Call the first four rounds of this seven-round Serpent E0 and call the final three
rounds E1. Our seven-round Serpent is thus E = E1 ◦E0. We can now apply the
boomerang technique to this reduced-round Serpent.

Notice that if we only consider the first four rounds of the five-round charac-
teristic in Appendix A.1, we have a four-round characteristic B′1 → Y ′4 through
E0 with probability 2−31. Also notice that there exist three-round characteristics
through E1 with relatively high probability. Appendix A.2 illustrates one such
characteristic, B′5 → Y ′7 , with probability 2−16.

To use the terminology in [Wag99], let ∆ = B′1, let ∆∗ = Y ′4 , let ∇ = Y ′7 and
let ∇∗ = B′5. We then use ∆ → ∆∗ as our differential characteristic for E0 and
∇ → ∇∗ as our differential characteristic for E−1

1 .
In the boomerang distinguishing attack, we require approximately 4 · 294

adaptive-chosen plaintext/ciphertext queries, or approximately 294 quartets P ,
P ′, Q, and Q′ and their respective ciphertexts C, C ′, D, and D′. More specifi-
cally, in our distinguishing attack we request the ciphertext C and C ′ for about
294 plaintexts P and P ′ where P ⊕ P ′ = ∆. From C and C ′ we compute the
ciphertexts D = C ⊕∇ and D′ = C ′ ⊕∇. We then apply the inverse cipher to
D and D′ to obtain Q and Q′. For any quartet P , P ′, Q, and Q′, we expect the
combined properties P ⊕ P ′ = Q⊕Q′ = ∆ and C ⊕D = C ′ ⊕D′ = ∇ to hold
with probability 2−94.

4.2 Eight-Round Boomerang Key Recovery Attack

We can extend our seven-round boomerang distinguisher to an eight-round key
recovery attack on 192- and 256-bit Serpent reduced to rounds i = 1, . . . , 8 (or
rounds i = 9, . . . , 16 or rounds i = 17, . . . , 24). The basic idea is that we peel
off the last round by guessing the last round subkey and look for our property
in the preceding seven rounds.

A difficulty arises because the boomerang attack makes adaptive chosen
plaintext and ciphertext queries. Suppose we encrypt P and P ′ to get C and
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C ′. To get D and D′, we must peel off one round from each ciphertext C and
C ′, xor the result with ∇, and then re-encrypt the last round with the guessed
subkey. To do this, we will have to guess the 68 bits of the last round subkey
corresponding to the 17 active S-boxes of B′8. Assume we consider 294 plaintext
pairs P and P ′. For each of these pairs, we will have to compute 268 different
pairs Q and Q′ (for each of the 268 possible last round subkeys). Unfortunately,
this means we will likely end up working with the entire codebook of all 2128

possible plaintext/ciphertext pairs.
If we are willing to work with the entire codebook of 2128 plaintexts and

ciphertexts, then we can extract the last round subkey in the following manner.
We request the ciphertexts C and C ′ of 296 plaintext pairs with an input dif-
ference ∆. Then for each of our 268 possible last round subkeys and for each
of our 296 ciphertext pairs, we compute the boomerang ciphertexts D and D′.
We then request the plaintexts Q and Q′ corresponding to these ciphertexts. If
we correctly guess the last round subkey, we should expect to see the plaintext
difference Q⊕Q′ = ∆ with probability 2−94. That is, for the correct subkey we
should expect to see the difference Q ⊕Q′ = ∆ approximately four times. (Or,
put yet another way, if we guess the correct subkey, we should generate about
four right quartets.)

This attack requires 268×297 partial decryptions and encryptions, or approx-
imately 2163 eight-round Serpent encryptions. This attack also requires access to
the entire codebook, and thus 2128 plaintexts and 2133 bytes of random-access
memory.

5 Amplified Boomerang Attacks

In [KKS00] we introduced a new class of cryptanalytic attacks which we call
“amplified boomerangs.” Amplified boomerang attacks are similar to traditional
boomerang attacks but require only chosen plaintexts. The chosen-plaintext–
only requirement makes the amplified boomerang attacks more practical than
the traditional boomerang attacks in many situations. In [KKS00] we describe
a seven-round boomerang amplifier distinguishing attack and an eight-round
boomerang amplifier key recovery attack requiring 2113 chosen plaintext pairs,
2119 bytes of random-access memory, and roughly 2179 Serpent eight-round en-
cryptions.

5.1 Amplified Seven-Round Distinguisher

In this section we review the seven-round amplified boomerang distinguishing
attack presented in [KKS00]. We request 2112 plaintext pairs with our input
difference ∆. After encrypting with the first half of the cipher E0, we expect
roughly 281 pairs to satisfy the first characteristic ∆→ ∆∗. There are approx-
imately 2161 ways to form quartets using these 281 pairs. We expect there to
be approximately 233 quartets (Y 0

4 , Y
1
4 ) and (Y 2

4 , Y
3
4 ) such that Y 0

4 ⊕ Y 2
4 = ∇∗.

However, because (Y 0
4 , Y

1
4 ) and (Y 2

4 , Y
3
4 ) are right pairs for the first half of the
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cipher, and Y 0
4 ⊕ Y 1

4 = Y 2
4 ⊕ Y 3

4 = ∆∗, we have that Y 1
4 ⊕ Y 3

4 must also equal
∇∗. In effect, the randomly occurring difference between Y 0

4 and Y 2
4 has been

“amplified” to include Y 1
4 and Y 3

4 .
At the input to E1 we expect approximately 233 quartets with a difference

of (∇∗,∇∗) between the pairs. This gives us approximately two quartets after
the seventh round with an output difference of (∇,∇) across the pairs. We can
identify these quartets by intelligently hashing our original ciphertext pairs with
our ciphertext pairs xored with (∇,∇) and noting those pairs that collide.
For a random distribution, the probability of observing a single instance of our
cross-pair difference (∇,∇) is approximately 2−33.

5.2 Amplified Eight-Round Key Recovery Attack

In [KKS00] we extended the previous distinguishing attack to an eight-round key-
recovery attack on rounds one through eight of Serpent requiring 2113 chosen-
plaintext pairs, 2119 bytes of random-access memory, and work equivalent to
approximately 2179 eight round Serpent encryptions. In this attack we guess 68
bits of Serpent’s last round key K9. For each key guess, we peel off the last round
and perform the previous distinguishing attack.

5.3 Experimental Improvements to the Eight-Round Attack

We can improve our eight-round boomerang amplifier attack by observing that
we do not need to restrict ourselves to using only one specific cross-pair difference
(∇∗,∇∗) after E0. That is, rather than considering only pairs of pairs with a
cross-pair difference of (∇∗,∇∗) after E0, we can use pairs of pairs with a cross-
pair difference of (x, x) after E0, for any x, provided that both pairs follow the
characteristic x→ ∇ through E1 with sufficiently high probability.

Experimentally, we find that
∑
x Pr[x → ∇ through E1]2 is approximately

2−23.3 Consequently, if we request 2109 chosen-plaintext pairs with our input
difference ∆ to E0, we should expect approximately 16 pairs of pairs with a
cross-pair difference of (∇,∇) after E1. This reduces the work of our attack
in Section 5.2 to approximately 2175 eight-round Serpent encryptions. As noted
in [Wag99], this observation can also be used to improve the standard boomerang
attack.

5.4 Amplified Nine-Round Key Recovery Attack

We can further extend the above eight-round attack to break nine rounds of 256-
bit Serpent using less work than exhaustive search. To do this, let us consider
a nine-round Serpent variant corresponding to rounds zero through eight of
3 We generated 228 pairs of ciphertext pairs with a cross-pair difference (∇,∇). We

decrypted each pair through E−1
1 and counted the number of pairs with a cross pair

difference (x, x) for any x. We observed 35 such pairs of pairs.
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Serpent. Let us still refer to rounds one through four as E0 and rounds five
through seven as E1.

If we apply the inverse linear transformation to ∆ we get

Y ′0

where Y ′0 has 24 active S-boxes. We request 214 blocks of 296 chosen plaintexts
such that each block varies over all the possible inputs to the active S-boxes in
Y ′0 . This gives us 2109 pairs with our desired difference ∆ into E0 and 16 pairs
of pairs with a cross-pair difference (∇,∇) after E1. In order to identify our
amplified boomerang, we must guess 96 bits of the first round subkey K0 and
68 bits of the last round subkey K9.

We first guess the 96 bits of K0 corresponding to the 24 active S-boxes in Y ′0 .
For each 96 bit key guess and for each plaintext P , we encrypt P one round to Y0.
We store P with satellite data Y0 in HASH0[K0] and we store Y0 with satellite
data P in HASH1[K0]. This step takes approximately 2212 bytes of random-
access memory and work equivalent to 2203 Serpent eight-round encryptions.

Next, for each 68-bit key guess of K9, we want to establish a list of all pairs
(P 0, P 2) that have difference ∇ as the output of the eighth round. To do this,
for each ciphertext C0, we decrypt up one round to X0

8 , compute X2
8 = X0

8⊕B′8,
and store (X0

8 , X
2
8 ) or (X2

8 , X
0
8 ) in a hash table (where the order of X0

8 and X2
8

depends on whether X0
8 is less than X2

8 ). The satellite data in our hash table
entry includes the plaintext P 0 corresponding to C0. If a collision occurs in
our hash table, we have found two plaintexts P 0 and P 2 that have our desired
difference ∇ after the eighth round. We store these pairs (P 0, P 2) in LIST2[K9]
and HASH2[K9]. This step takes approximately 2184 bytes of random-access
memory and work equivalent to 2175 Serpent eight-round encryptions.

The following algorithm counts the number of occurrences of our boomerang
amplifier through E1 ◦ E0. This algorithm can be thought of as sending a
boomerang from the ciphertext to the plaintext and back again:

for each 96-bit subkey guess of K0 do
for each 68-bit subkey guess of K9 do

count ← 0
for each pair (P 0, P 2) in LIST2[K9] do

lookup Y 0
0 , Y 2

0 corresponding to P 0, P 2 in HASH0[K0]
Y 1

0 ← Y 0
0 ⊕ Y ′0 , Y 3

0 ← Y 2
0 ⊕ Y ′0

lookup P 1, P 3 corresponding to Y 1
0 , Y 3

0 in HASH1[K0]
if (P 1, P 3) in HASH2[K9] then

count ← count + 1
if count ≥ 15 then

save key guess for K0, K9

For each subkey guess guess of K9, we expect LIST2[K9] will contain approxi-
mately 2219 × 2−128 = 291 pairs. Consequently, we expect the inner loop of the
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above algorithm to execute 2255 times. This attack requires work equivalent to
approximately 2252 Serpent nine-round encryptions.

6 Meet-in-the-Middle Attacks

Although not as powerful as our previous attacks, we can use the meet-in-the-
middle technique to attack six-round Serpent. In the meet-in-the-middle attack,
we try to determine the value of a set of intermediate bits in a cipher by guessing
key bits from both the plaintext and ciphertext sides. The attack looks for key
guesses that match on the predicted values of the intermediate bits.

We did a computer search for the best meet-in-the-middle attacks that isolate
a set of bits in one column of an intermediate state of Serpent. Table 2 summa-
rizes our results. Although we can also use the meet-in-the-middle technique to
predict bits in more than one column of an intermediate state of Serpent, doing
so requires additional key guesses and is thus undesirable.

Rounds b s Key guess from top Key guess from bottom

6 1 B3 236 239
5 2 B2 152 223
5 3 B2 176 224
5 4 B2 204 225
6 1 X3 237 238
5 2 X2 154 221
5 3 X2 179 221
5 4 X2 208 221
5 1 Y2 200 104
5 2 Y2 200 178
5 3 Y2 208 198
5 4 Y2 208 221

Table 2. Meet-in-the-middle requirements to determine b intermediate bits of internal
state s in a given number round Serpent variant.

The clearest way to illustrate the meet-in-the-middle attack on Serpent is
through diagrams similar to those used in Section 3 and Appendix A. The plain-
text in this attack on six-round Serpent is B0 and the ciphertext is B6. The bit
we are trying to predict is the eighth most significant bits of x3 where x3 is the
fourth word of X3, X3 = (x0, x1, x2, x3).

The 237 key bits guessed from the plaintext side are

K0
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K1

K2

K3

and the 238 key bits guessed from the ciphertext side are

K4

K5

K6

where the shaded cells denote the bits we guess.
The attack proceeds as follows. We obtain 512 known plaintexts and their

corresponding ciphertexts. For each plaintext key guess, we compute the target
bit of X3 for each of our 512 plaintexts. We concatenate these bits for each
plaintext into a 512-bit value. We then store this 512-bit value, along with the
associated key guess, in a hash table.

For each ciphertext key guess, we proceed along the same lines and compute
the target bit of X3 for each of our 512 ciphertexts. We concatenate these bits
for each ciphertext into a 512-bit value and look for this value in our hash table.
If we find such a value, then the plaintext and ciphertext keys suggested by the
match will likely be correct. This attack requires approximately 2246 bytes of
random-access memory and work equivalent to 2247 six-round encryptions.

7 Key Schedule Observations

This section addresses some observations we have about the Serpent key sched-
ule. We currently do not know of any cryptanalytic attacks that use these ob-
servations.
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As described in Section 2, the prekeys w0, w1, . . . , w131 are computed using
the recurrence

wi ← (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i)≪ 11 (1)

where w−8, . . . , w−1 is the initial 256 bit master key. If we ignore the rotation
and the internal xor with φ and i, we get the linear feedback construction

wi ← wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 (2)

Let us now consider two keys K and K∗ that have a difference K ′ = K⊕K∗.
The prekeys for K and K∗ expand to w0, . . . , w131 and w∗0 , . . . , w

∗
131, respec-

tively. By virtue of Equation 2, the prekey differences for K ′ can be computed
using the recurrence

w′i = wi ⊕ w∗i = w′i−8 ⊕ w′i−5 ⊕ w′i−3 ⊕ w′i−1 (3)

for i = 0, . . . , 131. If we use the original recurrence (Equation 1) to compute the
prekeys rather than Equation 2, the recurrence for w′i becomes

w′i = (w′i−8 ⊕ w′i−5 ⊕ w′i−3 ⊕ w′i−1)≪ 11 (4)

for i = 0, . . . , 131.
For any key K, the ith round subkey Ki is computed from the four prekeys

w4i, w4i+1, w4i+2, w4i+3. The same can be said for the key K∗. If for any given
round i the four prekeys for K are equivalent to the corresponding four prekeys
for K∗, then the subkeys Ki and K∗i will be equivalent; this occurs when the
prekey differences w′4i, w

′
4i+1, w

′
4i+2, w

′
4i+3 are zero.

Let us now observe some situations where the prekey differences for the ith
round subkey are zero. As a simple example, let us consider Figure 1. The shaded
cells in Figure 1 depict prekeys that are different for K and K∗. The unshaded
areas are equivalent between the keys. Notice that six out of the 33 128-bit
subkeys are equivalent.

There is a heavy restriction on Figure 1: all the differences must be the
same. That is, when Equation 2 is used for the prekey computation, it must
be that w′−5 = w′−3 = w′−1 = · · · = w′127 = k for some constant k. If we
consider the original prekey recursion (Equation 4), this example works only
when k = 0xFFFFFFFF. Furthermore, when the non-zero prekey differences are
0xFFFFFFFF, six out of 33 subkeys are equivalent and five out of 33 subkeys have
complementary prekeys.

8 Conclusions

In this paper we consider several attacks on Serpent. We show how to use differ-
ential, boomerang, and amplified boomerang techniques to recover the key for
Serpent up to nine rounds. We also show how to break six rounds of Serpent
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w′−8 . . . w
′
15

w′16 . . . w
′
39

w′40 . . . w
′
63

w′64 . . . w
′
87

w′88 . . . w
′
111

w′112 . . . w
′
131

Fig. 1. Difference propagation in the key schedule when w′−5 = w′−3 = w′−1 =
0xFFFFFFFF.

using a meet-in-the-middle attack. We then provide key schedule observations
that may someday be used as the foundation for additional attacks.

Although these attacks do not come close to breaking the full 32-round cipher,
we feel that these results are worth reporting for several reasons. Specifically,
the results and observations in this paper provide a starting point for additional
research on Serpent. These results also provide a security reference point for
discussions about modifying the number of rounds in Serpent.

In conjunction with the previous observation, we would like to point out
that there are several avenues for further research. Although our current pa-
per addresses differential attacks against Serpent, we have not yet tried lin-
ear and differential-linear attacks. We are also attempting to mount additional
boomerang variants against Serpent. We expect that all these attacks, while
quite capable of breaking reduced-round versions of Serpent, will fail to break
the entire 32-round Serpent. In order to break a substantial portion of Serpent’s
32 rounds, we suspect that entirely new attacks may need to be invented.
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A Differential Characteristics

A.1 Five-Round Characteristic

The following is an example of a five-round differential characteristic with prob-
ability p = 2−80. We used this characteristic in Section 3. This characteristic
passes between rounds i = 1 mod 8 and i = 5 mod 8. We used only the first four
rounds of this five-round characteristic for our boomerang attack in Section 4.

We illustrate this characteristic by showing five one-round characteristics that
can be connected with the Serpent linear transformation L. The shaded bits in
the figures denote differences in the pairs. We feel that these figures provide an
intuitive way to express Serpent’s internal states.

The first-round characteristic, B′1 → Y ′1 , has probability 2−13:

B′1

Y ′1

The second-round characteristic has probability 2−5:

B′2

Y ′2
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The third-round characteristic has probability 2−3:

B′3

Y ′3

The fourth-round characteristic has probability 2−10.

B′4

Y ′4

The fifth-round characteristic has probability 2−49.

B′5

Y ′5

A.2 Boomerang Characteristic

The following is an example of a three-round characteristic with probability
p = 2−16. We used this characteristic in Section 4. This characteristic passes
between rounds i = 5 mod 8 and i = 7 mod 8.
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The fifth-round characteristic has probability 2−10:

B′5

Y ′5

The sixth-round characteristic has probability 2−2:

B′6

Y ′6

The seventh-round characteristic has probability 2−4:

B′7

Y ′7

If we apply the linear transformation L to Y ′7 , we get:

B′8


