
Amplified Boomerang Attacks Against

Reduced-Round MARS and Serpent

John Kelsey1, Tadayoshi Kohno2?, and Bruce Schneier1

1 Counterpane Internet Security, Inc.
e-mail: {kelsey,schneier}@counterpane.com

2 Reliable Software Technologies
e-mail: kohno@rstcorp.com

Abstract. We introduce a new cryptanalytic technique based on Wag-
ner’s boomerang and inside-out attacks. We first describe this new attack
in terms of the original boomerang attack, and then demonstrate its use
on reduced-round variants of the MARS core and Serpent. Our attack
breaks eleven rounds of the MARS core with 265 chosen plaintexts, 270

memory, and 2229 partial decryptions. Our attack breaks eight rounds
of Serpent with 2114 chosen plaintexts, 2119 memory, and 2179 partial
decryptions.

1 Introduction

MARS [BCD+98] and Serpent [ABK98] are block ciphers that have been pro-
posed as AES candidates [NIST97a,NIST97b]. More recently, both were chosen
as AES finalists. We have spent considerable time in the last few months crypt-
analyzing both ciphers, with the bulk of our results appearing in [KS00,KKS00].
During our work on MARS, we developed a new class of attack based on David
Wagner’s boomerang and inside-out attacks [Wag99]. In this paper, we present
this new class of attack, first in the abstract sense, and then in terms of specific
attacks on reduced-round variants of the MARS core and of Serpent.

The MARS core provides an excellent target for these attacks. We know of no
good iterative differential characteristics, nor of any good differentials of any use-
ful length. However, there is a three-round characteristic and a three-round trun-
cated differential each with probability one. Since these attacks allow concate-
nation of short differentials that don’t connect in the normal sense of differential
attacks, they are quite useful against the MARS core. Similarly, Serpent provides
an excellent target for these attacks, because the main problem in mounting a
differential attack on Serpent is keeping the differential characteristics used from
spreading out to large numbers of active S-boxes; using boomerangs, amplified
boomerangs, and related ideas, we can make use of differentials with relatively
few active S-boxes, and connect them using the boomerang construction.

The underlying “trick” of the boomerang attack is to mount a differential at-
tack with first-order differentials that don’t normally connect through the cipher;

? Part of this work was done while working for Counterpane Internet Security, Inc.



these first-order differentials are connected by a second-order differential rela-
tionship in the middle of the cipher, by way of some adaptive-chosen-ciphertext
queries. The underlying “trick” of the boomerang-amplifier attack is to use large
numbers of chosen plaintext pairs to get that second-order differential relation-
ship to appear in the middle of the cipher by chance. Extensions allow us to use
structures of structures to get the second-order differential relationship in the
middle for many pairs of texts at once.

1.1 Impact of the Results

The most important impact of our results is the introduction of a new crypt-
analytic technique. This technique belongs to the same general class as the
boomerang and miss-in-the-middle attacks; the attacker builds structures of a
certain kind from right pairs for differentials through part of the cipher. Other
members of this class of attacks are known to us, and research is ongoing into
their uses and limitations.

Additionally, we provide the best known attack on the MARS core, breaking
up to eleven rounds faster then brute-force search. This attack does not threaten
full MARS; even if the cryptographic core had only eleven rounds, we know of
no way to mount an attack on the core through the key addition/subtraction
and unkeyed mixing layers present in the full MARS.

We also demonstrate this powerful new attack on a reduced-round variant of
Serpent. Again, this attack does not threaten the full 32-round Serpent.

The attacks described in this paper are summarized below. However, these
specific attacks are not the focus of the paper; instead, the focus is the new
cryptanalytic technique.

Summary of Results
Cipher Texts Memory Work
(rounds) (chosen plaintexts) (bytes) (decryptions)

MARS Core (11) 265 269 2229 partial
Serpent (8) 2114 2119 2179 8-round

2 Boomerangs, Inside-Out Attacks, and the

Boomerang-Amplifier

2.1 Preliminaries

In [Wag99], Wagner introduces two new attacks: the boomerang attack and the
inside-out attack. An understanding of both attacks is necessary to understand
our new attack. In order to build on these concepts later, we briefly review the
concepts from [Wag99].

Most of the attacks in this section make use of a block cipher E composed of
two halves, e0, e1. That is, E(X) = e0(e1(X)). We also use the following notation

2



to describe plaintext i as it is encrypted under E:

Xi ← plaintext

Yi ← e0(Xi)

Zi ← e1(Yi) (ciphertext)

An important side-note: A normal differential always has the same probabil-
ity through a cipher (or subset of cipher rounds) going forward and backward;
by contrast a truncated differential can have different probabilities going forward
and backward.

2.2 The Inside-Out Attack

Consider a situation in which we have probability one truncated differentials
through both e1 and through e−1

0 , both with the same starting difference. That
is, we have

∆0 → ∆1 through e1

∆0 → ∆2 through e−1

0

In this case, we can mount an attack to distinguish E from a random per-
mutation as follows:

1. Observe enough known plaintext/ciphertexts pairs that we expect R pairs
of texts with the required difference in the middle. That is, we expect about
R pairs (i, j) for which Yi ⊕ Yj = ∆0.

2. Identify the pairs of inputs where Xi ⊕Xj = ∆2.
3. Identify the pairs of outputs where Zi ⊕ Zj = ∆1.
4. Count the number of pairs that overlap (that is, the pairs that are right pairs

in both input and output); if this count is substantially higher than would
be expected from a random permutation, we distinguish E from a random
permutation.

Suppose we had the following probabilities for a random i, j pair:

Pr[Xi ⊕Xj = ∆2] = p0

Pr[Zi ⊕ Zj = ∆1] = p1

That is, the probability of a randomly selected pair fitting the truncated differ-
ence ∆2 is p0, and its probability of fitting ∆1 is p1. In this case, we have:

N = Number of total plaintext/ciphertext pairs.

N0 = N ∗ p0 = Expected number of counted right input pairs for random perm.

N1 = N ∗ p0 ∗ p1 = Expected number of those right input pairs

counted as right output pairs.

3



The number of pairs that are right pairs for both input and output is then
binomially distributed, and can be approximated with a normal distribution
with µ = N1 and σ ≈

√
N1. When we have a right pair in the middle (that is,

when Yi ⊕ Yj = ∆0), then i, j must be a right pair for both inputs and outputs.
We expect R right pairs in the middle; that means that for E, we expect about
N1 + R right pairs for both input and output, while for a random permutation,
we expect only about N1. When R is much larger than

√
N1, this becomes

detectable with reasonably high probability. (For very low probabilities, we can
use R > 16

√
N1, which has an astronomically low probability.)

This gives us a way to attack a cipher even when there are no good differ-
entials through the whole cipher, by waiting for the required difference to occur
at random in the middle of the cipher. This idea can be extended to deal with
differentials with lower probabilities; see [Wag99] for details.

2.3 Boomerangs

Another fundamental idea required to understand the boomerang-amplifier at-
tack is the boomerang attack. Consider the same cipher E(X) = e1(e0(X)), but
now suppose that there are excellent differentials through e0, e−1

0 , and e−1

1 . For
this discussion, we assume that these are normal differentials and that they have
probability one. The attack works with lower-probability differentials, and with
truncated differentials; for a full discussion of the additional complexities these
raise, see [Wag99].

We thus have the following differentials:

∆0 → ∆1 through e0 and e1

with probability one. Now, despite the fact that ∆1 6= ∆0 and despite a lack
of any high-probability differential through E, we can still distinguish E from a
random permutation as follows:

1. Request a right pair for e0 as input, X0, X1, s.t. X0 ⊕X1 = ∆0.
2. After e0, these have been encrypted to Y0, Y1, and have the relationship Y0⊕

Y1 = ∆1. After e1, these have been encrypted to Z0, Z1, with no predictable
differential relationship.

3. We make two right pairs for e−1

1 from this pair, by requesting the decryption
of Z2 = Z0 ⊕∆1 and Z3 = Z1 ⊕∆1.

4. Z2, Z3 are decrypted to Y2, Y3, with the relationships Y2 ⊕ Y0 = ∆0 and
Y3 ⊕ Y1 = ∆0.

5. This determines the differential relationship between Y2 and Y3.

Y0 ⊕ Y1 = ∆1; Y0 ⊕ Y2 = ∆0; Y1 ⊕ Y3 = ∆0

thus: Y2 ⊕ Y3 = ∆1

6. Because Y2⊕Y3 = ∆1, we have a right output pair for e0. Since we’re dealing
with a normal differential, we know that the differential must go the other
direction, so that X2 ⊕X3 = ∆0.

4



E0

E1

E0

E1

E0

E1

E0

E1

XlXj

XkXi

ZlZj

ZkZi

∆0∆0

∆1∆1 ∆0

∆0

∆1

∆1

Fig. 1. The Boomerang Attack

7. A single instance of this working for a random permutation has probabil-
ity 2−128 for a 128-bit block cipher, so this can be used very effectively to
distinguish E from a random permutation.

Note that the really powerful thing about this attack is that it allows a
differential type attack to work against a cipher for which there is no good
differential through the whole cipher.

2.4 Turning the Boomerang into a Chosen-Plaintext Attack

We can combine the ideas of the inside-out and boomerang attacks to turn the
boomerang attack into an attack that requires only chosen plaintext queries;
unlike the boomerang attack, this new attack does not require adaptive-chosen-
ciphertext queries. Note that we’re dealing with the same cipher E(X) = e1(e0(X)).

Suppose we are dealing with a 128-bit block cipher, and are thus dealing with
128-bit differences. We request 265 random chosen plaintext pairs X2i, X2i+1 such
that X2i ⊕X2i+1 = ∆0. Since we are dealing with probability one differentials,
this gives us 265 pairs Y2i, Y2i+1 such that Y2i ⊕ Y2i+1 = ∆1. We expect about
two pairs (i, j) for which Y2i ⊕ Y2j = ∆0. When we have an i, j pair of this kind

5



E0

E1

E0

E1

E0

E1

E0

E1

XlXj

XkXi

ZlZj

ZkZi

∆0∆0

∆1∆1 ∆0

∆0

∆1

∆1

Fig. 2. The Boomerang-Amplifier Attack

we have the boomerang property:

Y2i ⊕ Y2i+1 = ∆1; Y2j ⊕ Y2j+1 = ∆1; Y2i ⊕ Y2j = ∆0

thus: Y2i+1 ⊕ Y2j+1 = ∆0

and so: Z2i ⊕ Z2j = ∆1; Z2i+1 ⊕ Z2j+1 = ∆1

There are about 2129 possible i, j pairs. The probability that any given pair
will satisfy the last two equations is 2−256. We can thus use the above technique
to distinguish E from a random permutation.

We call this attack a boomerang-amplifier attack, because the boomerang
structure “amplifies” the effect of a low-probability event (Y2i⊕Y2j = ∆0) enough
that it can be easily detected. By contrast, the inside-out attack amplifies such
a low-probability event by detecting a signal from both input and output of the
cipher.

2.5 Comparing Boomerangs and Boomerang Amplifiers

It is worthwhile to compare boomerang-amplifiers with the original boomerangs,
in terms of attacks made possible. All else being equal, boomerangs require far
fewer total queries than boomerang amplifiers, because in a boomerang-amplifier
attack, we have to request enough right input pairs to expect the internal collision
property that allows us to get the desired relationship between the pairs. Thus,

6



E0

E1

E0

E1

E0

E1

E0

E1

XlXj

XkXi

ZlZj

ZkZi

∆0∆0

∆1∆1 ∆0

∆0

∆1

∆1

E0

E1

E0

E1

E0

E1

E0

E1

XlXj

XkXi

ZlZj

ZkZi

∆0∆0

∆1∆1 ∆0

∆0

∆1

∆1

(a) (b)

Fig. 3. Comparing Boomerangs and Boomerang-Amplifiers; Note Direction of Arrows

in the example above, we’re trading off 265 chosen plaintext queries for two
adaptive chosen ciphertext queries.

This might not look all that useful. However, there are three things that
make this useful in many attacks:

1. When mounting an attack, we often need to guess key material on one
end or the other of the cipher. With a chosen-plaintext/adaptive chosen-
ciphertext attack model, we must increase our number of requested plain-
texts/ciphertexts when we have to guess key material on either end. With
a chosen-plaintext only attack, we can guess key material at the end of the
cipher, and not have to increase our number of chosen plaintexts requested.

2. We can use the boomerang-amplifier, not just on pairs, but on k-tuples of
texts.

3. We can use the boomerang-amplifier to get pairs (or k-tuples) of texts though
part of the cipher, and then cover the remaining rounds of the cipher with
truncated differentials or differential-linear characteristics. In this way, we
can use truncated differentials that specify only a small part of the block,
and couldn’t be used with a standard boomerang attack.

2.6 Boomerang-Amplifiers with 3-Tuples

Consider a method to send 3-tuples of texts through e0 with the property that
when X0,1,2 are chosen properly, Yi, Y

∗

i , Y ∗∗

i have some simple xor relationship,

7



such as Y ∗

i = Yi⊕t∗ and Y ∗∗

i = Yi⊕t∗∗. We can carry out a boomerang-amplifier
attack using these 3-tuples. Consider:

E0

E1

E0

E1

E0

E1

E0

E1

E0

E1

E0

E1

X∗∗

jX∗∗

i

X∗

jX∗

i

XjXi

Z∗∗

jZ∗∗

i

Z∗

jZ∗

i

ZjZi

∆b∆b

∆a∆a

∆d∆d

∆c∆c

∆0

∆0

∆0

∆1

∆1

∆1

Fig. 4. A Boomerang-Amplifier with 3-Tuples

1. Request 265 such 3-tuples, Xi, X
∗

i , X∗∗

i .
2. We expect about one instance where Yi⊕Yj = ∆0, by the birthday paradox.
3. For that instance, we get three right pairs through the cipher:

(Zi, Zj); (Z
∗

i , Z∗

j ); (Z∗∗

i , Z∗∗

j )

This happens because:

Yi ⊕ Yj = ∆0; Y
∗

i = Yi ⊕ t∗; Y ∗

j = Yj ⊕ t∗

Thus: Y ∗

i ⊕ Y ∗

j = Yi ⊕ Yj ⊕ t∗ ⊕ t∗ = Yi ⊕ Yj = ∆0

The same idea works in a boomerang attack, but is of no apparent use. However,
in a boomerang-amplifier attack, we are able to use this trick to get through more
rounds. Because we’re doing a chosen-plaintext attack, we can look for patterns
that are apparent from k-tuples of right pairs, even through several more rounds
of the cipher. Conceptually, we can use this to increase the “amplification” on
the attack.

8



2.7 Detecting the Effects of the Boomerang-Amplifiers

A boomerang 4-tuple (Xi,j,k,l, Zi,j,k,l) has the property that Xi,j and Xk,l are
right input pairs, and Zi,k and Zj,l are right output pairs. When we mount a
boomerang-amplifier attack, we know that Xi,j and Xk,l are right pairs, because
we have chosen them to be right pairs. We thus detect a right pair of pairs by
noting that Zi,k and Zj,l are right output pairs.

There is a straightforward trick for speeding up searches for these right pairs
of pairs among large sets of pairs. It is easy to see that

Zi ⊕ Zk = ∆2

Zj ⊕ Zl = ∆2

Zi ⊕ Zj = Zi ⊕ Zl ⊕∆2

= Zk ⊕ Zl

This means that we can build a sorted list of the output pairs from a large set of
input pairs, in which each entry in the list contains the xor of the ciphertexts
from one pair. When both Zi,k and Zj,l are right output pairs, then Zi ⊕ Zj =
Zk ⊕Zl. A variant of this technique works even when the output differences are
truncated differences; in that case, the differential relationship works only in the
fixed bits of the difference.

When we apply boomerang-amplifiers to larger blocks of texts, we must find
other ways to detect them. For example, below we describe an attack in which
we concatenate a differential-linear characteristic with probability one to the
differences after several rounds resulting from right pairs in the middle. This
means that each right pair in the middle gives us one bit that has to take on
a certain value; we request batches of over 256 entries, and look for right pairs
of batches. Each batch of N texts results, as ciphertext, in an N-bit string. We
build a sorted list of these strings, and find the matches, which must come from
right pairs of batches.

Alternatively, we can simply build sorted lists of all the Zi and all the Zi⊕∆1,
and then look for matches.

3 Amplified Boomerangs and the MARS Core

3.1 The MARS Core

MARS [BCD+98] is a heterogenous, target-heavy, unbalanced Feistel network
(to use the nomenclature from [SK96]). At the center are 16 core rounds: eight
forward core rounds and eight backward core rounds. Surrounding those rounds
are 16 keyless mixing rounds: eight forward mixing rounds before the core, and
eight backward mixing rounds after the core. Surrounding that are two whitening
rounds: one at the beginning of the cipher and another at the end.

The design of MARS is fundamentally new; the whitening and unkeyed mix-
ing rounds jacket the cryptographic core rounds, making any attacks on the core

9



rounds more difficult. The core rounds, by contrast, must provide the underly-
ing cryptographic strength, by giving a reasonable approximation of a random
permutation family. This can be seen by considering the fact that if the cryp-
tographic core is replaced by a known random permutation, there is a trivial
meet-in-the-middle attack. Related results can be found in [KS00]. It thus makes
sense to consider the strength of the MARS core rounds alone, in order to try
to evaluate the ultimate strength of MARS against various kinds of attack.

Both forward and backward core rounds use the same E function, which
takes one 32-bit input and two subkey words, and provides three 32-bit words.
The only difference between forward and backward rounds is the order in which
the outputs are combined with the words. For more details of the MARS core
rounds, see [BCD+98,KS00].

Notation and Conventions The notation we use here for considering the
MARS core rounds differs from the notation used in [BCD+98]. One forward
core round may be represented as follows:

1. (Ai−1, Bi−1, Ci−1, Di−1) are the four 32-bit words input into round i.

2. (Ai, Bi, Ci, Di) are the four 32-bit output words from round i.

3. The two round keys are K+

i and K×

i .

4. K+

i has 32 bits of entropy; K×

i has just under 30 bits of entropy, because it
is always forced to be congruent to 3 modulo 4. The full round thus has 62
bits of key material.

5. One forward core round may be expressed as:

F×

i = ((Ai−1 ≪ 13)×K×

i ) ≪ 10

F+

i = (Ai−1 + K+

i ) ≪ (F×

i ≫ 5)

F s
i = (S[low nine bits (Ai−1 + K+

i )]⊕ (F×

i ≪ 5)⊕ F×

i ) ≪ F×

i

Di = Ai−1 ≪ 13

Ai = Bi−1 + F s
i

Bi = Ci−1 + F+

i

Ci = Di−1 ⊕ F×

i

We find this notation easier to follow than the original MARS paper’s nota-
tion, and so will use it for the remainder of this paper. On pages 12–13 of the
original MARS submission document, these values are referred to as follows:

– F s is referred to as either out1 or L.

– F+ is referred to as either out2 or M .

– F× is referred to as either out3 or R.

– K+ is referred to as K.

– K× is referred to as K ′.

10



Useful Properties The MARS core function is difficult to attack for many
rounds. However, there are a number of useful properties which we have been
able to use to good effect in analyzing the cipher. These include:

1. For A = 0, F× is always zero, F s is S[low nine bits of K+], and F+ is always
K+.

2. There is a three-round truncated differential (0, 0, 0, δ0) → (δ1, 0, 0, 0) with
probability one.

3. The multiply operation can only propagate changes in its input toward its
higher-order bits. This leads to a number of probability one linear charac-
teristics for small numbers of rounds, one of which we will use in an attack,
below.

Showing Differentials and Truncated Differentials In the remainder of
this section, we will represent differentials as 4-tuples of 32-bit words, such as
(0, 0, 0, 231). We will represent truncated differentials in the same way, but with
variables replacing differences that are allowed to take on many different values,
as in (0, 0, 0, x), which represents the a difference of zero in the first three words
of the block, and an unknown but nonzero difference in the last word of the
block. Differences within a word will be shown as sequences of known zero or
one bits, “dont care” bits, or variables. Thus, to show a word whose high 15
bits are zeros, whose 16th bit may take on either value, and whose low 16 bits
we don’t care about, we would use (015, a, ?16). If we have a difference in which
the first three words are zero, and the last word has its high 15 bits zero, its
16th bit able to take on either value, and with all other bits unimportant for the
difference, we would show this as (0, 0, 0, (015, a, ?16)).

Sending a Counter Through Three Rounds of the MARS Core Here is
one additional property of the MARS core that turns out to be very useful: We
can send a counter through three rounds of MARS core by choosing our inputs
correctly.

Consider a set of inputs (0, t, u, i), where t, u are random 32-bit words, and
i is a counter that takes on all 232 possible values. After three rounds, this goes
to (i + v, w, x, y), where v, w, x, y are all 32-bit functions of t, u.

When t, u are held constant, we get a set of 232 texts whose A3 values run
through all possible values in sequence. We don’t know the specific values, but
for any additive difference, δ, we can identify 232 pairs with that difference after
three rounds.

Similarly, we can choose a restricted set of i values. For example, if we run i

through all values between 0 and 255, we get 128 different pairs with a difference
of 128. This will prove useful in later attacks.

In 3.3, the property described here will be exploited to mount a far more
powerful attack on the MARS core.

11



3.2 Attacking MARS with a Simple Amplified Boomerang

The MARS core has a three-round differential characteristic with probability
one: (0, 0, 0, 231) → (231, 0, 0, 0). It also has a three-round truncated differential
with probability one: (0, 0, 0, α)→ (β, 0, 0, 0). We can use these two characteris-
tics to mount a boomerang-amplifier attack through six rounds of the cipher.

We request about 248 input pairs X2i, X2i+1, such that X2i ⊕ X2i+1 =
(0, 0, 0, 231). As we described above, these pairs are encrypted to pairs Y2i, Y2i+1

such that Y2i ⊕ Y2i+1 = (231, 0, 0, 0).
After we have about 248 such pairs, we expect to have one pair (i, j) such that

Y2i⊕Y2j = (0, 0, 0, α) for any α 6= 0. For this pair, we can solve for Y2i+1⊕Y2j+1;
we get (0, 0, 0, α) in that difference as well.

We thus get two right input pairs after round three, and two right output
pairs from round six. Among 248 right input pairs, we have about 295 pairs of
right input pairs. Since the probability of randomly getting an output pair with
difference (β, 0, 0, 0) for any β 6= 0 is 2−96, and since we expect one 4-tuple with
two such output pairs, we will easily distinguish six rounds of MARS core from
a random permutation.

3.3 A Boomerang-Amplified Differential-Linear Attack on Eleven
Rounds

We can combine the above idea with two other properties of the MARS core
to build a much more powerful attack, which is properly classified as either a
boomerang-amplified differential-linear attack, or a boomerang-amplified truncated-
differential attack. Our attack consists of the following:

1. We choose inputs so that we get batches of 280 texts following the pattern

(s, t, u, v), (s + 1, t, u, v), (s + 2, t, u, v), ..., (s + 279, t, u, v)

We use the technique described in section 3.1 to do this.
2. We request 257 such batches, so that we can expect a pair of batches with

a truncated difference δ = (0, 0, 0, (?13, 017, ?2)) between each corresponding
pair of texts in the batch. That is, after round three, the first elements of
one pair of batches have the following relationship:

v∗ − v = δ

s∗ − s = t∗ − t = u∗ − u = 0

It follows by simple arithmetic that the ith elements of the pair of batches
have difference (0, 0, 0, δ). Note that this is an additive difference.

3. When we get this right pair of batches, we get 280 pairs with this additive
difference into the output of round three. This means we get 280 right pairs
in the output of round six.

4. We are then able to cover two more rounds with a linear characteristic with
p ≈ 1.

12



5. We guess our way past the last two full rounds, and past part of the third
round from the end. This gives us a part of the output from the eighth round.
This requires 62 bits for each full round, and 39 bits for the partial guess,
thus a total of 163 bits guessed.

6. For each of the 257 batches, we extract the linear characteristic from the
output of the eighth round of each of the 280 texts. We thus get a 280-bit
string from each batch, for each partial key guess.

7. For each key guess, we build a sorted list of these 280-bit strings, and find
the match. The probability of finding a match of a 280-bit string in 257 texts
is about 2−167; we are trying to find a match for 2163 different key guesses.
Thus, we expect to have no false matches, and we are vanishingly unlikely
to have more than a small number of false matches.

Getting the Right Difference Between the Batches Consider only the
first element in each batch. There are 257 such elements. We need one pair such
that after round three, it has a truncated difference of (0, 0, 0, (?13, 017, ?2)); that
is, with all but 15 of its bits zeros. The probability of a random pair of texts
having this difference is 2−113. There are about 2113 pairs of these texts, and so
we expect this difference to happen about once.

When this difference happens between the first elements of a pair of batches,
it is easy to see that it must also occur between the second elements, and the
third, and so on. We thus get a right pair of batches, yielding 280 right pairs in
the output from round three.

The Linear Characteristic/Truncated Differential Consider a single pair
of texts with the difference (0, 0, 0, (?12, a, 017, ?2)) at the output of round three,
where a is a single unknown bit. We care only about bit a in our attack. When
we originally developed this attack, we thought in terms of a differential-linear
characteristic with probability one. In this case, this is equivalent to a truncated
differential with only one bit specified. Here, we describe this in terms of the
truncated differential attack.

First, we note that with probability of very nearly one (1 − 2−17), a will
be unchanged for any given pair of corresponding texts after round six, in
the output truncated difference ((?12, a, ?19), 0, 0, 0). The probability that this
doesn’t change for any corresponding pair of texts in the right pair of batches
is about 0.998. (The number of times a changes is binomially distributed, with
n = 280, p = 2−17.)

In the seventh round, bit a is rotated to the low-order bit input into the
multiply operation; this means that bit ten of F×

7 is a. This is a “backward” core
round, so the output from the seventh round leaves us with truncated difference
((?21, a, ?10), ?, ?, ?). In the next round, the leftmost word is changed only by
being rotated. We thus get the following truncated difference in the output from
the eighth round: (?, ?, ?, (?7, a, ?23)).

This single bit appears as a constant in the differences for all 280 correspond-
ing pairs of the right pair of batches.

13



Guessing Key Material We guess the low nine bits of K+
9 , and the full 30-bit

K×

9 . This allows us to backtrack through f s
9 , and thus to recover bit a for all the

texts. We then guess our way past rounds ten and eleven by guessing 62 bits for
each round.

Required Resources for the Attack We attack eleven rounds of MARS core;
five forward and six backward.

We request 257 batches of 280 texts each, and thus must request a total of
about 265 chosen plaintexts. We get a batch of 265 ciphertexts back out, which
we must store and then examine to mount our attack.

We must guess our way past two full MARS core rounds (at a cost of 62 bits
each), plus part of a third MARS core round (at a cost of 39 bits). We thus must
guess a total of 163 bits. We must try 2163 times to find a match, once per key
guess.

For each key guess, we have to do the following steps:

1. Do the partial decryption on about 265 ciphertexts, and extract one bit per
ciphertext, at a cost of about 265 partial decryptions.

2. Arrange the resulting bits as 257 280-bit strings.
3. Sort the 280-bit strings, at a cost of about 57×257 ≈ 263 swapping operations’

work.

To simplify our analysis, we assume that the work of doing the 265 partial
decryptions dominates the work of sorting the 280-bit strings; we thus require
about 2163 × 265 = 2228 partial decryptions’ work to mount the attack.

The total memory required for the attack is 270 bytes, sufficient for 266 ci-
phertexts.

4 Boomerang-Amplifiers and Serpent

Serpent is a 32-round AES-candidate block cipher proposed by Ross Anderson,
Eli Biham, and Lars Knudsen [ABK98]. In this section we show how one can
apply the amplified boomerang technique to reduced-round Serpent variants.
Additional attacks against reduced-round Serpent can be found in [KKS00].
Unlike those used in MARS, the differentials used in our attacks on Serpent do
not have probability one.

4.1 Description of Serpent

Serpent is a 32-round block cipher operating on 128-bit blocks. The Serpent
design documentation describes two versions of Serpent: a bitsliced version and
a non-bitsliced version. Both versions are functionally equivalent. The difference
between the bitsliced and non-bitsliced versions of Serpent is the way in which
the data is represented internally. In this document we shall only consider the
bitsliced version of Serpent.

14



Let Bi represent Serpent’s intermediate state prior to the ith round of en-
cryption; B0 is the plaintext and B32 is the ciphertext. Let Ki represent the 128
bit ith round subkey and let Si represent the application of the ith round S-box.
Let L represent Serpent’s linear transformation (see [ABK98] for details). Then
the Serpent round function is defined as:

Xi ← Bi ⊕Ki

Yi ← Si(Xi)
Bi+1 ← L(Yi) i = 0, . . . , 30
Bi+1 ← Yi ⊕Ki+1 i = 31

In the bitsliced version of Serpent, one can consider each 128-bit block Xi as
the concatenation of four 32-bit words x0, x1, x2, and x3. Pictorially, one can
represent Serpent’s internal state Xi using diagrams such as the following:

x0

x1

x2

x3

Serpent uses eight S-boxes Si where the indices i are reduced modulo 8; e.g.,
S0 = S8 = S16 = S24. Each S-box takes four input bits and produces four output
bits. The input and output nibbles of the S-boxes correspond to the columns in
the preceding diagram (where the most significant bits of the nibbles are the
bits in the word x3).

We use X ′ to represent an xor difference between two values X and X∗.

4.2 Distinguishing Seven Rounds of Serpent

Let us consider a seven-round Serpent variant E1 ◦E0 where E0 corresponds to
rounds one through four of Serpent and E1 corresponds to rounds five through
seven of Serpent.

There are several relatively high-probability characteristics through both
halves of this seven round Serpent variant. Let us consider two such charac-
teristics B′

1 → Y ′

4

B′

1

Y ′

4

and B′

5 → Y ′

7

15



B′

5

Y ′

7

where B′

1 → Y ′

4 is a four-round characteristic through E0 with probability 2−31

and B′

5 → Y ′

7 is a three-round characteristic through E1 with probability 2−16.
Additional information on these characteristics can be found in [KKS00].

We can immediately combine these two characteristics to form a seven round
boomerang distinguishing attack requiring 295 chosen plaintext queries and 295

adaptive chosen ciphertext queries. Using the amplified boomerang technique,
however, we can construct a chosen-plaintext only distinguishing attack requiring
2113 chosen plaintext queries.

The details of the attack are as follows. We request 2112 plaintext pairs
with our input difference B′

1. After encrypting with the first half of the cipher
E0, we expect roughly 281 pairs to satisfy the first characteristic B′

1 → Y ′

4 .
There are approximately 2161 ways to form quartets using these 281 pairs. We
expect there to be approximately 233 quartets (Y 0

4 , Y 1
4 ) and (Y 2

4 , Y 3
4 ) such that

Y 0
4 ⊕Y 2

4 = L−1(B′

5). However, because (Y 0
4 , Y 1

4 ) and (Y 2
4 , Y 3

4 ) are right pairs for
the first half of the cipher, and Y 0

4 ⊕Y 1
4 = Y 2

4 ⊕Y 3
4 = Y ′

4 , we have that Y 1
4 ⊕Y 3

4

must also equal L−1(B′

5). In effect, the randomly occurring difference between
Y 0

4 and Y 2
4 has been “amplified” to include Y 1

4 and Y 3
4 .

At the input to E1 we expect approximately 233 quartets with a difference
of (B′

5, B
′

5) between the pairs. This gives us approximately two quartets after
the seventh round with an output difference of (Y ′

7 , Y ′

7) across the pairs. We can
identify these quartets by intelligently hashing our original ciphertext pairs with
our ciphertext pairs xored with (Y ′

7 , Y ′

7) and noting those pairs that collide. In
a random distribution, the probability of observing a single occurrence of the
cross-pair difference (Y ′

7 , Y ′

7) is approximately 2−33.

4.3 Eight-Round Serpent Key Recovery Attack

We can extend the previous distinguishing attack to an eight-round key-recovery
attack requiring 2113 chosen plaintext pairs, 2119 bytes of memory, and work
equivalent to approximately 2179 eight-round Serpent encryptions. This attack
covers rounds one through eight of Serpent. If we apply the linear transformation
L to Y ′

7 we get the difference:

B′

8

16



Given 2113 chosen plaintext pairs with our input difference B′

1, we expect
approximately eight pairs of pairs with cross-pair difference (Y ′

7 , Y ′

7) after the
seventh round. This corresponds to eight pairs of pairs with difference (B ′

8, B
′

8)
entering the eighth round. By guessing 68 bits of Serpent’s last round subkey K9,
we can peel off the last round and perform our previous distinguishing attack.

5 Conclusions

In this paper, we have introduced a new kind of attack that is closely related
to the boomerang attack of Wagner [Wag99]. We have applied this attack to
reduced-round versions of both the MARS core and of Serpent.

5.1 Related Attacks

There is a set of related attacks, including the miss-in-the-middle, boomerang,
and amplified boomerang attacks, which deal with pairs of differentials that reach
to the same point in the intermediate state of the cipher, but which don’t connect
as needed for conventional attacks. A miss-in-the-middle attack gives us three
texts in the middle that can’t fit a certain second-order differential relationship.
A boomerang or amplified boomerang gives us a 4-tuple that does fit a certain
second-order differential relationship. However, these are different from standard
higher-order differential attacks in that the second-order differential relationship
doesn’t continue to exist through multiple rounds. Instead, this relationship
serves only to connect pairs of texts with a first-order differential relationship in
the middle of the cipher.

In some sense, this is similar to the way structures are used with higher-order
differential relationships, in order to use first-order differentials more efficiently.
Thus, we might have two good differentials through the first round that will get
us to our desired input difference:

∆0 → ∆1

∆2 → ∆1

It’s a common trick to request X, X ⊕∆0, X ⊕∆2, X ⊕∆0 ⊕∆2, which will
give us four right pairs, two for each differential, for the price of only four texts.
We’re requesting a 4-tuple of texts with a second-order differential relationship,
but it doesn’t propagate past the first round. This is a second-order differential
attack in exactly the same sense as the boomerang and amplified boomerang
attacks are second-order differential attacks.

The boomerang and boomerang-amplifier attacks are, in some sense, a new
way of building structures of texts inside the middle of the cipher. These struc-
tures have a second order relationship, which allows the four texts to take part
in four right pairs. However, in the boomerang and boomerang-amplifier attacks,
two of the right pairs go through the first half of the cipher, and two go through
the second half of the cipher.

17



5.2 Applying the Attack to Other Algorithms

We have not yet applied this attack to other algorithms besides MARS and
Serpent. However, there is a common thread to situations in which the attack
works: We need to be able to get through many rounds with some differential
that has reasonably high probability. In the case of the MARS core, there are
probability one differentials for three rounds, simply due to the structure of the
cipher. In the case of Serpent, the probability of a differential characteristic is
primarily a function of the number of S-boxes in which the difference is active
across all rounds of the characteristic. Differences spread out, so that it is possible
to find reasonably good characteristics for three or four rounds at a time, but
not for larger numbers of rounds, since by then the differences have spread to
include nearly all the S-boxes.

Applying this general class of attack to other ciphers will be the subject of
ongoing research.

It is worth repeating, however, that this technique does not endanger either
Serpent or MARS. In the case of MARS, the cryptographic core is jacketed with
additional unkeyed mixing and key addition/subtraction layers, which would
make chosen-plaintext attacks like this one enormously more expensive (more
expensive than exhaustive search), even if our attack worked against the full
cryptographic core. In the case of Serpent, the large number of rounds prevents
our attack from working against the full cipher.

6 Acknowledgements

The “extended Twofish team” met for two week-long cryptanalysis retreats dur-
ing Fall 1999, once in San Jose and again in San Diego. This paper is a result
of those collaborations. Our analysis of MARS and Serpent has very much been
a team effort, with everybody commenting on all aspects. The authors would
like to thank Niels Ferguson, Mike Stay, David Wagner, and Doug Whiting for
useful conversations and comments on these attacks, and for the great time we
had together. The authors also wish to thank the reviewers, for useful comments
and suggestions, and Beth Friedman, for copyediting the final paper.

References

[ABK98] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Ad-
vanced Encryption Standard,” NIST AES Proposal, Jun 1998.

[BCD+98] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C.
Jutla, S.M. Matyas, L. O’Connor, M. Peyravian, D. Safford, and N. Zunic,
“MARS — A Candidate Cipher for AES,” NIST AES Proposal, Jun 98.

[BS93] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption

Standard, Springer-Verlag, 1993.
[Knu95b] L.R. Knudsen, “Truncated and Higher Order Differentials,” Fast Software

Encryption, 2nd International Workshop Proceedings, Springer-Verlag, 1995,
pp. 196–211.

18



[KS00] J. Kelsey and B. Schneier, “MARS Attacks! Cryptanalyzing Reduced-Round
Variants of MARS,” Third AES Candidate Conference, to appear.

[KKS00] T. Kohno, J. Kelsey, and B. Schneier, “Preliminary Cryptanalysis of
Reduced-Round Serpent,” Third AES Candidate Conference, to appear.

[LH94] S. Langford and M. Hellman, “Differential-Linear Cryptanalysis,” Advances

in Cryptology — CRYPTO ’94, Springer-Verlag, 1994.
[Mat94] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in

Cryptology — EUROCRYPT ’93 Proceedings, Springer-Verlag, 1994, pp.
386–397.

[NIST97a] National Institute of Standards and Technology, “Announcing Development
of a Federal Information Standard for Advanced Encryption Standard,” Fed-

eral Register, v. 62, n. 1, 2 Jan 1997, pp. 93–94.
[NIST97b] National Institute of Standards and Technology, “Announcing Request for

Candidate Algorithm Nominations for the Advanced Encryption Standard
(AES),” Federal Register, v. 62, n. 117, 12 Sep 1997, pp. 48051–48058.

[SK96] B. Schneier and J. Kelsey, “Unbalanced Feistel Networks and Block Cipher
Design,” Fast Software Encryption, 3rd International Workshop Proceedings,
Springer-Verlag, 1996, pp. 121–144.

[Wag99] D. Wagner, “The Boomerang Attack,” Fast Software Encryption, 6th Inter-

national Workshop, Springer-Verlag, 1999, pp. 156–170.

19


