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Abstract

We introduce the area of remote physical device fingerprinting, or fingerprinting a physical
device, as opposed to an operating system or class of devices, remotely, and without the finger-
printed device’s known cooperation. We accomplish this goal by exploiting small, microscopic
deviations in device hardware: clock skews. Our techniques do not require any modification to
the fingerprinted devices. Our techniques report consistent measurements when the measurer is
thousands of miles, multiple hops, and tens of milliseconds away from the fingerprinted device,
and when the fingerprinted device is connected to the Internet from different locations and via
different access technologies. Further, one can apply our passive and semi-passive techniques
when the fingerprinted device is behind a NAT or firewall, and also when the device’s system
time is maintained via NTP or SNTP. One can use our techniques to obtain information about
whether two devices on the Internet, possibly shifted in time or IP addresses, are actually the
same physical device. Example applications include: computer forensics; tracking, with some
probability, a physical device as it connects to the Internet from different public access points;
counting the number of devices behind a NAT even when the devices use constant or random IP
IDs; remotely probing a block of addresses to determine if the addresses correspond to virtual
hosts, e.g., as part of a virtual honeynet; and unanonymizing anonymized network traces.
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network spectroscopy, clock skew.
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1 Introduction

There are now a number of powerful techniques for remote operating system fingerprinting, i.e.,
techniques for remotely determining the operating systems of devices on the Internet [2, 3, 5, 37].
We push this idea further and introduce the notion of remote physical device fingerprinting, or
remotely fingerprinting a physical device, as opposed to an operating system or class of devices,
without the fingerprinted device’s known cooperation. We accomplish this goal to varying degrees
of precision by exploiting microscopic deviations in device hardware: clock skews. Our techniques
do not require any modification to the fingerprinted devices. Our techniques report consistent
measurements when the measurer is thousands of miles, multiple hops, and tens of milliseconds
away from the fingerprinted device, and when the fingerprinted device is connected to the Internet
from different locations and with different access technologies. Omne can apply our passive and
semi-passive techniques when the fingerprinted device is behind a NAT or firewall, and when the
device’s system time is maintained via NTP [26] or SNTP [25].

One can use our techniques to obtain information about whether two devices on the Internet
(possibly shifted in time or IP addresses) are actually the same physical device. One application is
computer forensics, e.g., to argue whether a given machine was involved in a recorded attack, even
if the attack machine was connected from a public wireless hotspot. In combination with existing
operating system fingerprinting tools and other heuristics, one can use our techniques to track, with
some probability, physical devices like laptops even as those devices move from one access location
to another. One can use our techniques to count the number of hosts behind a NAT, even if not
all of the hosts are active at the same time, even if all of the hosts run the same operating system,
and even if the hosts use random or constant IP IDs to foil Bellovin’s attack [7]. One can use our
techniques to infer whether a set of IP addresses correspond to virtualized hosts, which could be
useful in remotely determining whether a set of IP addresses correspond to a virtual honeynet. One
can also use our techniques to catalyze the unanonymization of anonymized network traces.

CLASSES OF FINGERPRINTING TECHNIQUES. We consider three main classes of remote physical
device fingerprinting techniques: passive, active, and semi-passive. The first two have standard
definitions — to apply a passive fingerprinting technique, the fingerprinter (measurer, attacker,
adversary) must be able to observe traffic from the device (the fingerprintee) that the attacker
wishes to fingerprint, whereas to apply an active fingerprinting technique, the fingerprinter must
have the ability to initiate connections to the fingerprintee. Our third class of techniques, which we
refer to as semi-passive fingerprinting techniques, assumes that after the fingerprintee initiates a
connection, the fingerprinter has the ability to interact with the fingerprintee over that connection;
e.g., the fingerprinter is a website with which the device is communicating, or is an ISP in the
middle capable of modifying packets en route.

Each class of techniques has its own advantages and disadvantages. For example, passive tech-
niques are completely undetectable to the fingerprinted device, passive and semi-passive techniques
can be applied even if the fingerprinted device is behind a NAT or firewall, and semi-passive and ac-
tive techniques can potentially be applied over longer periods of time; e.g., after a laptop connects to
a website and the connection terminates, the website can still continue to run active measurements.

METHODOLOGY. For all our methods, we stress that the fingerprinter does not require any modifi-
cation to or cooperation from the fingerprintee; e.g., we tested our techniques with default Red Hat
9.0, Debian 3.0, FreeBSD 5.2.1, OpenBSD 3.5, OS X 10.3.5, Windows XP SP2, and Windows for
Pocket PC 2002 installations.! In Table 1 we summarize our preferred methods for fingerprinting

LOne can apply our techniques to the default installs of other versions of these operating systems; here we just
mention the most recent stable versions of the operating systems that we analyzed.



Technique and section ‘ Class ‘ NTP ‘ Red Hat 9.0 ‘ OS X 10.3.5 ‘ Windows XP

TCP timestamps, §4 passive Yes Yes Yes No
TCP timestamps, §4 semi-passive | Yes Yes Yes Yes
ICMP tstamp requests, §5 active No Yes No Yes (SP1 only)

Table 1. This table summarizes our main clock skew-based physical device fingerprinting techniques. A
“Yes” in the NTP column means that one can use the attack regardless of whether the fingerprintee maintains
its system time with NTP [26]. One can use passive and semi-passive techniques when the fingerprintee is
behind a NAT or current generation firewall.

the most popular operating systems.

Our preferred passive and semi-passive techniques exploit the fact that most modern TCP stacks
implement the TCP timestamps option from RFC 1323 [18] whereby, for performance purposes,
each party in a TCP flow includes information about its perception of time in each outgoing
packet. A fingerprinter can use the information contained within the TCP headers to estimate a
device’s clock skew and thereby fingerprint a physical device. We stress that one can use our TCP
timestamps-based method even when the fingerprintee’s system time is maintained via NTP [26].
While most modern operating systems enable the TCP timestamps option by default, Windows
2000 and XP machines do not. Therefore we developed a trick to convince Microsoft Windows 2000
and XP machines to use the TCP timestamps option in Windows-initiated flows; the trick involves
an intentional violation of RFC 1323 on the part of a semi-passive or active adversary. In addition
to our TCP timestamps-based approach, we consider passive fingerprinting techniques that exploit
the difference in time between how often other periodic activities are supposed to occur and how
often they actually occur, and we show how one might use a Fourier transform on packet arrival
times to infer a device’s clock skew. Since we believe that our TCP timestamps-based approach is
currently our most general passive technique, we focus on the TCP timestamps approach in this
paper.

An active adversary could also exploit the ICMP protocol to fingerprint a physical device.
Namely, an active adversary could issue ICMP Timestamp Request messages to the fingerprintee
and record a trace of the resulting ICMP Timestamp Reply messages. If the fingerprintee does not
maintain its system time via NTP or does so only infrequently and if the fingerprintee replies to
ICMP Timestamp Requests, then an adversary analyzing the resulting ICMP Timestamp Reply
messages will be able to estimate the fingerprintee’s system time clock skew. Default Red Hat
9.0, Debian 3.0, FreeBSD 5.2.1, OpenBSD 3.5, and Windows 2000 and XP and Pocket PC 2002
installations all satisfy the above preconditions.

PARAMETERS OF INVESTIGATION. Toward developing the area of remote physical device finger-
printing via remote clock skew estimation, we must address the following set of interrelated ques-
tions:

(1) For what operating systems are our remote clock skew estimation techniques applicable?

(2) Can one expect two machines to have measurably different clock skews? Specifically, what is
the distribution of clock skews across multiple fingerprintees and what is the resolution of our
clock skew estimation techniques?

(3) For a single fingerprintee, can one expect the clock skew estimate of that fingerprintee to be
relatively constant over long periods of time, and through reboots, power cycles, and periods
of down time?

(4) What are the effects of a fingerprintee’s access technology (e.g., wireless, wired, dialup, cable



modem) on the clock skew estimates for the device?

(5) How are the clock skew estimates affected by the distance between the fingerprinter and the
fingerprintee?

(6) Are the clock skew estimates independent of the fingerprinter? l.e., when multiple fingerprint-
ers are measuring a single fingerprintee at the same time, will they all output (approximately)
the same skew estimates?

(7) How much data do we need to be able to remotely make accurate clock skew estimates?

Question (6) is pertinent because common fingerprinters will probably use NTP-based time syn-
chronization when capturing packets, as opposed to more precise CDMA- or GPS-synchronized
timestamps. Answers to the above questions will help determine the efficacy of our physical device
fingerprinting techniques.

EXPERIMENTS AND HIGH-LEVEL RESULTS. To understand and refine our techniques, we conducted
experiments with machines that we controlled and that ran a variety of operating systems, including
popular Linux, BSD, and Microsoft distributions. In all cases we found that we could use at
least one of our techniques to estimate clock skews of the machines, and that we required only a
small amount of data, though the exact data requirements depended on the operating system in
question. For the most popular operating systems we observed that when the system did not use
NTP- or SNTP-based time synchronization, then the TCP timestamps-based and the ICMP-based
techniques yielded approximately the same skew estimates. Furthermore, for the most popular
operating systems we observed that our TCP timestamps-based skew estimates were approximately
the same regardless of whether or not a host used NTP-based time synchronization. These results,
coupled with details that we describe in the body, motivated us to use the TCP timestamps-based
method in most of our experiments. We survey some of our experiments here.

To understand the effects of topology and access technology on our skew estimates, we fixed the
location of the fingerprinter and applied our TCP timestamps-based technique to a single laptop
in multiple locations, on both North American coasts, from wired, wireless, and dialup locations,
and from home, business, and campus environments (Table 5). All clock skew estimates for the
laptop were close — the difference between the maximum and the minimum skew estimate was
only 0.67 ppm, or 0.67 microseconds per second. We also simultaneously measured the clock skew
of the laptop and another machine from multiple PlanetLab nodes throughout the world, as well as
from a machine of our own with a CDMA-synchronized Dag card [1, 12, 15, 24] for taking network
traces with precise timestamps (Table 6 and Table 7). With the exception of the measurements
taken by a PlanetLab machine in India (over 300 ms round trip time away), for each experiment,
all the fingerprinters (in North America, Europe, and Asia) reported skew estimates within only
0.56 ppm of each other. These experiments suggest that, except for extreme cases, the results of
our clock skew estimation techniques are independent of access technology and topology.

Toward understanding the distribution of clock skews across machines, we applied the TCP
timestamps technique to the devices in a trace collected on one of the U.S.’s Tier 1 OC-48 links
(Figure 3). We also measured the clock skews of 69 (seemingly) identical Windows XP SP1 machines
in one of our institution’s undergraduate computing facilities (Figure 4). The latter experiment,
which ran for 38 days, as well as other experiments, show that the clock skew estimates for any given
machine are approximately constant over time, but that different machines can have detectably
different clock skews. Lastly, we use the results of these and other experiments to argue that the
amount of data (packets and duration of data) necessary to perform our skew estimation techniques
is low, e.g., see Tables 3 and 5.

APPLICATIONS AND ADDITIONAL EXPERIMENTS. To test the applicability of our techniques, we



applied our techniques to a honeyd [33] virtual honeynet consisting of 100 virtual Linux 2.4.18 hosts
and 100 virtual Windows XP SP1 hosts. Our experiments showed with overwhelming probability
that the TCP flows and ICMP timestamp responses were all handled by a single machine as opposed
to 200 different machines. We also applied our techniques to a network of five virtual machines
running under VMware Workstation [4] on a single machine. In this case, the clock skew estimates
of the virtual machines are significantly different from what one would expect from real machines
(the skews were large and not constant over time; Figure 9). An application of our techniques, or
natural extensions, might therefore be to remotely detect virtual honeynets.

Another applications of our techniques is to count the number of hosts behind a NAT, even
if those hosts use random or constant IP IDs to counter Bellovin’s attack [7], even if all the
hosts run the same operating system, and even if not all of the hosts are up at the same time.
Furthermore, when both our techniques and Bellovin’s techniques are applicable, we expect our
approach to provide a much higher degree of resolution. One could also use our techniques for
forensics purposes, e.g., to argue whether or not a given laptop was connected to the Internet from
a given access location. One could also use our techniques to help track laptops as they move,
perhaps as part of a Carnivore-like project (here we envision our skew estimates as one important
component of the tracking; other components could be information gleaned from existing operating
system fingerprinting techniques, usage characteristics, and other heuristics). One can also use our
techniques to catalyze the unanonymization of prefix-preserving anonymized network traces [38, 39].

PROTECTING AGAINST OUR CURRENT ATTACKS AND FUTURE DIRECTIONS. Although the phys-
ical device fingerprinting techniques that we introduce in this paper will likely remain applicable
to current generation systems, we suspect that future generation security systems might try to
resist some of our fingerprinting techniques. To aid the developers of future systems, we explore
some possible mechanisms for protecting against our current fingerprinting techniques. As a sim-
ple solution, a device might simply ignore ICMP Timestamp Requests and not enable the TCP
timestamps option in outgoing TCP packets. A device might also choose to maintain its system
time via NTP and somehow reduce the skew in its TCP timestamps clock. A device might also
randomize or mask the TCP timestamps that it includes in each outgoing TCP packet. We then
propose several possible research directions for fingerprinting physical devices that implement some
of our protection mechanisms.

2 Background and related work

It has long been known that seemingly identical computers can have disparate clock skews. The
NTP [26] specification describes a method for reducing the clock skews of devices’ system clocks,
though over short periods of time an NTP-synchronized machine may still have slight clock skew.
In 1998 Paxson [31] initiated a line of research geared toward eliminating clock skew from network
measurements, and one of the algorithms we use is based on a descendent of the Paxson paper
by Moon, Skelly, and Towsley [27, 28]. Further afield, though still related to clock skews, Pasztor
and Veitch [30] have created a software clock on a commodity PC with high accuracy and small
clock skew. One fundamental difference between our work and previous work is our goal: whereas
all previous works focus on creating methods for eliminating the effects of clock skews, our work
exploits and capitalizes on the effects of clock skews.

Well-known operating system fingerprinting tools include nmap [2], xprobe2 [5], pOf [3], and
RING [37]. The nmap and pOf tools use TCP timestamps to remotely obtain the uptimes of some
systems, per [22]. Anagnostakis et al. [6] use ICMP Timestamp Requests to study router queuing
delays. With respect to tracking physical devices, it is well known that a network card’s MAC



address is supposed to be unique and therefore could serve as a fingerprint of a device assuming
that the adversary can observe the device’s MAC address and that the owner of the card has not
changed the MAC address. The main advantage of our techniques over a MAC address-based
approach is that our techniques are mountable by adversaries thousands of miles and multiple hops
away. One could also use cookies or any other persistent data to track a physical device, but such
persistent data may not always be available to an adversary, perhaps because the user is privacy-
conscious and tries to minimize storage and transmission of such data, or because the user never
communicates that data unencrypted. The amateur radio community has independently developed
a tool for fingerprinting radios that exploits a radio’s frequency characteristics [34].

Our work in Section 11 builds on previous network spectroscopy research in detecting link-layer
technologies (ATM, DSL, cable modems) by delay quantization of IP packet traffic [10], and on
operating system fingerprinting by DNS update traffic [11]. In [9] we use traceroute delays to
fingerprint routers. Partridge et al. [29] use Lomb periodograms to detect the presence of traffic
that is otherwise not observed on a network via the spikes in the spectral density that correspond to
intervals occupied by missing packets. Hussain et al. [17] use the power distribution in the Fourier
spectrum of autocorrelation functions of binned packet traffic to distinguish between multiple-
source and single-source denial-of-service attacks. In Section 11 we propose using a full precision
(without binning) Fourier transform of packet arrival times to extract clock skews from periodic
processes.

An extended abstract of this paper appears at the 2005 IEEE Symposium on Security and
Privacy [20] and the journal version of this paper appears in the IEEE Transactions on Dependable
and Secure Computing [21].

3 Clocks and clock skews

When discussing clocks and clock skews, we build on the nomenclature from the NTP specifica-
tion [26] and from Paxson [31]. A clock C is designed to represent the amount of time that has
passed since some initial time i[C]. Clock C’s resolution, r[C], is the smallest unit by which the
clock can be incremented, and we refer to each such increment as a tick. A resolution of 10 ms
means that the clock is designed to have 10 ms granularity, not that the clock is always incremented
exactly every 10 ms. Clock C’s intended frequency, Hz[C], is the inverse of its resolution; e.g., a
clock with 10 ms granularity is designed to run at 100 Hz. For all ¢ > i[C], let R[C](¢) denote the
time reported by clock C at time ¢, where ¢t denotes the true time as defined by national standards.
The offset of clock C, off[C], is the difference between the time reported by C and the true time,
i.e., off[C](t) = R[C](t) — ¢ for all t > i[C]. A clock’s skew, s[C], is the first derivative of its offset
with respect to time, where we assume for simplicity that R[C] is a differentiable function in ¢. We
report skew estimates in microseconds per second (ps/s) or, equivalently, parts per million (ppm).
As we shall show, and as others have also concluded [31, 28, 36], it is often reasonable to assume
that a clock’s skew is constant. When the clock in question is clear from context, we shall remove
the parameter C from our notation; e.g., s|C] becomes s.

A given device can have multiple, possibly independent, clocks. For remote physical device
fingerprinting, we exploit two different clocks: the clock corresponding to a device’s system time,
and a clock internal to a device’s TCP network stack, which we call the device’s TCP timestamps
option clock or TSopt clock. We do not consider the hardware bases for these clocks here since our
focus is not on understanding why these clocks have skews, but on exploiting the fact these clocks
can have measurable skews on popular current generation systems.

THE SYSTEM CLOCK. To most users of a computer system, the most visible clock is the device’s



Operating system Hz[Cicp)
Debian 3.0 (Linux kernel 2.2.20-idepci) | 100 Hz
FreeBSD 5.2.1 100 Hz
OpenBSD 3.5 2 Hz
0S X 10.3.5 2 Hz
Red Hat 9.0 (Linux kernel 2.4.20-8) 100 Hz
Windows XP SP2 10 Hz
Windows Pocket PC 2002 10 Hz

Table 2. Hz|[Cy,] values for the TCP timestamps option clock on several popular operating systems. All
the entries, except for OS X 10.3.5 and Windows Pocket PC 2002, are for the operating systems on a 32-bit
Intel Pentium processor. The OS X 10.3.5 entry is for the operating system on an Apple G4. The Windows
Pocket PC 2002 entry is for the operating system on an HP iPAQ h5450.

system clock, Csys, which is designed to represent the real time as defined by national standards.
Although the system clocks on professionally administered machines are often approximately syn-
chronized with true time via NTP [26] or, less accurately, via SNTP [25], we stress that it is much
less likely for the system clocks on non-professionally managed machines to be externally synchro-
nized. This lack of synchronization is because the default installations of most of the popular
operating systems that we tested do not synchronize the hosts’ system clocks with true time or, if
they do, they do so only infrequently. For example, default Windows XP Professional installations
only synchronize their system times with Microsoft’s NTP server when they boot and once a week
thereafter. Default Red Hat 9.0 Linux installations do not use NTP by default, though they do
present the user with the option of entering an NTP server. Default Debian 3.0, FreeBSD 5.2.1,
and OpenBSD 3.5 systems, under the configurations that we selected (e.g., “typical user”), do not
even present the user with the option of enabling ntpd. For such a non-professionally-administered
machine, if an adversary can learn the values of the machine’s system clock at multiple points in
time, the adversary will be able to infer information about the device’s system clock skew, s[Csys].

THE TCP TIMESTAMPS OPTION CLOCK. RFC 1323 [18] specifies the TCP timestamps option to
the TCP protocol. A TCP flow will use the TCP timestamps option if the network stacks on both
ends of the flow implement the option and if the initiator of the flow includes the option in the
initial SYN packet. All modern operating systems that we tested implement the TCP timestamps
option. Of the systems we tested, Microsoft Windows 2000 and XP are the only ones that do not
include the TCP timestamps option in the initial SYN packet (Microsoft Windows Pocket PC 2002
does include the option when initiating TCP flows). In Section 4 we introduce a trick for making
Windows 2000- and XP-initiated flows use the TCP timestamps option.

For physical device fingerprinting, the most important property of the TCP timestamps option
is that if a flow uses the option, then a portion of the header of each TCP packet in that flow will
contain a 32-bit timestamp generated by the creator of that packet. The RFC does not dictate
what values the timestamps should take, but does say that the timestamps should be taken from a
“virtual clock” that is “at least approximately proportional to real time [18];” the RFC 1323 PAWS
algorithm does stipulate (Section 4.2.2) that the resolution of this virtual clock be between 1 ms and
1 second. We refer to this “virtual clock” as the device’s TCP timestamps option clock, or its T'Sopt
clock Cicp. There is no requirement that a device’s TSopt clock and its system clock be correlated.
Moreover, for popular operating systems like Windows XP, Linux, and FreeBSD, a device’s T'Sopt
clock may be unaffected by adjustments to the device’s system clock via NTP. Table 2 lists the



intended frequencies, Hz[Cip], for several popular operating systems.? Most systems reset their

TSopt clock to zero upon reboot; on these systems i[Cicp) is the time at which the system booted.
If an adversary can learn the values of a device’s TSopt clock at multiple points in time, then the
adversary may be able to infer information about the device’s T'Sopt clock skew, s[Cicp].

4 Exploiting the TCP Timestamps Option

In this section we consider (1) how an adversary might obtain samples of a device’s TSopt clock at
multiple points in time and (2) how an adversary could use those samples to fingerprint a physical
device. We consider the efficacy of and the data requirements for our approach in later sections.
We assume for now that there is a one-to-one correspondence between physical devices and IP
addresses, and defer to Section 9 a discussion of how to deal with multiple active hosts behind a
NAT; in this section we do consider NATs with a single active device behind them.

THE MEASURER. The measurer can be any entity capable of observing TCP packets from the
fingerprintee, assuming that those packets have the TCP timestamps option enabled. The measurer
could therefore be the fingerprintee’s ISP, or any tap in the middle of the network over which
packets from the device travel; e.g., we apply our techniques to a trace taken on a major Tier 1
ISP’s backbone OC-48 links. The measurer could also be any system with which the fingerprintee
frequently communicates; prime examples of such systems include a search engine like Google, a
news website, and a click-through ads service that displays content on a large number of websites.
If the measurer is active, then the measurer could also be the one to initiate a TCP flow with
the fingerprintee, assuming that the device is reachable and has an open port. If the measurer is
semi-passive or active, then it could make the flows that it observes last abnormally long, thereby
giving the measurer samples of the fingerprintee’s clock over extended periods of time.

A TRICK FOR MEASURING WINDOWS 2000 AND XP MACHINES. We seek the ability to measure
TSopt clock skews of Windows 2000 and XP machines even if those machines are behind NATSs
and firewalls. More generally, we are interested in measuring the TSopt clock skews of Windows
machines when we are limited to analyzing flows initiated by the Windows machines. Unfortunately,
because Windows 2000 and XP machines do not include the TCP timestamps option in their initial
SYN packets, the TCP timestamps RFC [18] mandates that none of the subsequent packets in
Windows-initiated flows can include the TCP timestamps option. Thus, assuming that all parties
correctly implement the TCP RFCs, a passive adversary will not be able to exploit the TCP
timestamps option with Windows 2000/ XP-initiated flows.

If the adversary is semi-passive, we observe the following trick. Assume for simplicity that
the adversary is the device to whom the Windows machine is connecting. After receiving the
initial SYN packet from the Windows machine, the adversary will reply with a SYN/ACK, but
the adversary will break the RFC 1328 specification and include the TCP timestamps option in
its reply. After receiving such a reply, our Windows 2000 and XP machines ignored the fact that
they did not include the TCP timestamps option in their initial SYN packets, and included the

2We do not generalize the Debian and Red Hat columns to all Linux distributions since Knoppix 3.6 with the
2.6.7 experimental kernel has 1 ms resolution. It is worth elaborating on our claim that Pocket PC 2002 systems
have TSopt clocks with 100 ms resolution, or intended frequencies of 10 Hz. In experiments with five HP iPAQ h5450
PDASs running Windows Pocket PC 2002, using our techniques from Section 4 we measured TSopt clock frequencies
between 8.4 and 9.6 Hz. Despite these measurements, we believe that the intended frequency for Pocket PC 2002
devices is 10 Hz since (1) the intended frequency for Windows 2000 and XP machines is 10 Hz and (2) we assume
that the large difference between 10 Hz and the frequencies that we measured is due to the fact that the PDAs likely
have cheaper clocks than our laptop and desktop systems.



TCP timestamps option in all of their subsequent packets. An adversary can therefore apply our
techniques to estimate the TSopt clock skews of Windows machines even if they are behind NAT's
or firewalls.

As an extension, we note that the adversary does not have to be the device to whom the Windows
machine is connecting. Rather, the adversary simply needs to be able to mount a “device-in-the-
middle” attack and modify packets such that the Windows machine receives one with the TCP
timestamps option turned on. If the adversary is the device’s ISP, then the adversary could rewrite
the Windows machine’s initial SYN packets so that they include the TCP timestamps option. The
SYN/ACKs from the legitimate recipients will therefore have the TCP timestamps option enabled
and from that point forward the Windows machine will include the TCP timestamps option in all
subsequent packets in the flows.

We applied this technique to Windows XP machines on a residential cable system with a LinkSys
Wireless Access Point and a NAT, as well as to Windows XP SP2 machines using the default XP
SP2 firewall, and to Windows XP SP1 machines with the Windows ZoneAlarm firewall. While
current firewalls do not detect this trick, future firewalls might.

ESTIMATING THE TSOPT CLOCK SKEW. Let us now assume that an adversary has obtained a
trace 7 of TCP packets from the fingerprintee, and let us assume for simplicity that all | 7| packets
in the trace have the TCP timestamps option enabled. Toward estimating a device’s TSopt clock
skew s[Cicp| we adopt the following additional notation. Let ¢; be the time in seconds at which the
measurer observed the i-th packet in 7 and let T; be the Cicp timestamp contained within the i-th
packet. Define

r, = t;—1t1

v = T;—-1T

w; = wv;/Hz

Yi = Wi — X
Or = {(xy) ie{l,....|T|}}.

The unit for w; is seconds; y; is the observed offset of the i-th packet; O7 is the the offset-set
corresponding to the trace 7. We discuss below how to compute Hz if it is not known to the
measurer in advance. As an example, Figure 1 shows the offset-sets for two devices in a two-hour
trace of traffic from an Internet backbone OC-48 link on 2004-04-28 (we omit IP addresses for
privacy reasons). Respectively shifting the clocks by ¢; and T3 for z; and v; is not necessary for
our analysis but makes plots like in Figure 1 easier to read.

If we could assume that the measurer’s clock is accurate and that the ¢ values represent true
time, and if we could assume that there is no delay between when the fingerprintee generates the
i-th packet and when the measurer records the i-th packet, then y; = off(z; + ¢1). Under these
assumptions, and if we make the additional assumption that R is differentiable, then the first
derivative of y, which is the slope of the points in O7, is the skew s of Ci,,. Since we cannot
generally make these assumptions, we are left to approximate s from the data.

Let us consider plots like those in Figure 1 more closely. We first observe that the large band
corresponds to a device where the T'Sopt clock has low resolution (r = 100 ms) and that the narrow
band corresponds to a device with a higher resolution (r = 10 ms). The width of these bands, and
in particular the wide band, means that if the duration of our trace is short, we cannot always
approximate the slope of the points in O by computing the slope between any two points in the
set. Moreover, as Paxson and others have noted in similar contexts [31, 28], variable network delay
renders simple least-squares linear regression insufficient. Figure 2 shows the offset-sets for two
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hosts in the same /24 that have variable delay. Consequently, to approximate the skew s from O,
we borrow a linear programming solution from Moon, Skelly, and Towsley [27, 28], which has as
its core Graham’s convex hull algorithm on sorted data [16]; see also [13, 23].

The linear programming solution outputs the equation of a line ax + § that upper-bounds the
set of points O7. We use an upper bound because network and host delays are all positive. The
slope of the line, «, is our estimate of the clock skew of Cic,. In detail, the linear programming
constraints for this line are that, for all ¢ € {1,...,|7|},

which means that the solution must upper-bound all the points in O7. The linear programming

solution then minimizes the average vertical distance of all the points in O from the line; i.e., the
linear programming solution is one that minimizes the objective function
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1
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Although one can solve the above using standard linear programming techniques, as Moon, Skelly,
and Towsley [27, 28] note, there exist techniques to solve linear programming problems in two
variables in linear time [13, 23]. We use a linear time algorithm in all our computations.

It remains to discuss how to infer Hz if the measurer does not know it in advance. One solution
involves computing the slope of the points

T = {(xs,v) s i€{l,...,|7T|}

and rounding to the nearest integer. One can compute the slope of this set by adapting the above
linear programming problem to this set.

AN EQUIVALENT VIEW. If A is the slope of the points in the above set Z, derived using the
linear programming algorithm, then one could also approximate the skew of Cic, as A/Hz —1. We
can prove that, when using the linear programming method for slope estimation, both approaches
produce the same skew estimate. We use the offset-set approach since these sets naturally yield



figures where the skews are clearly visible; e.g., Figure 1.

5 Exploiting ICMP Timestamp Requests

We now consider how an adversary might obtain samples of a device’s system clock and how an
adversary could use those samples to fingerprint a physical device.

THE MEASURER. To exploit a device’s system time clock skew, the measurer could be any website
with which the fingerprintee communicates, or any other device on the Internet provided that
the measurer is capable of issuing ICMP Timestamp Requests (ICMP message type 13) to the
fingerprintee. The measurer must also be capable of recording the fingerprintee’s subsequent ICMP
Timestamp Reply messages (ICMP message type 14). The primary limitation is that the device
must not be behind a NAT or firewall that filters ICMP.

ESTIMATING THE SYSTEM CLOCK SKEW. Let us now assume that an adversary has obtained a
trace 7 of ICMP Timestamp Reply messages from the fingerprintee. The ICMP Timestamp Reply
messages will contain two 32-bit values generated by the fingerprintee. The first value is the time
at which the corresponding ICMP Timestamp Request packet was received, and the second value
is the time at which the ICMP Timestamp Reply was generated; here time is according to the
fingerprintee’s system clock, Css, and is reported in milliseconds since midnight UTC. Windows
machines report the timestamp in little endian format, whereas all the other machines that we
tested report the timestamp in big endian notation. The remaining notation and the method for
skew estimation is now identical to what we presented in Section 4, with two minor exceptions.
First, the adversary does not have to compute Hz since RFC 792 [32] requires that Hz be 1000
(or, if not, that a special bit be set to indicate non-compliance). Second, since the time reported
in the ICMP Timestamp Reply is in milliseconds since midnight UTC, we expect the timestamps
reported in the ICMP Timestamp Reply messages to reset approximately once a day; we adjust
the v values accordingly. The only thing special that our attack exploits about ICMP is the fact
that ICMP has a message type that will reveal a device’s system time; our techniques would work
equally well with any other protocol that leaks information about a device’s system or other clock.

BRIEF COMPARISON WITH TCP TIMESTAMPS. For much of the rest of this paper, we focus on
our TCP timestamps-based approach for physical device fingerprinting rather than our ICMP-
based approach. We do so not because we consider the ICMP-based approach to be inferior.
Rather, we focus on the TCP timestamps-based approach because most systems have TSopt clocks
that operate at lower frequencies than the 1000 Hz clocks included in the ICMP timestamp reply
messages, which means that it should require less data for an active adversary to mount our ICMP
fingerprinting technique than to mount our TCP timestamps technique. Our positive results for
the TCP timestamps-based fingerprinting techniques imply that the ICMP-based fingerprinting
technique will be effective and will have low data requirements. Focusing on our TCP timestamps
based approach also allows us to experiment with machines behind NATs and firewalls. Lastly,
for popular operating systems, if a system does not externally synchronize its system time, then
the system’s TSopt and system clocks will be highly correlated (Section 8), which means that the
distribution of system clock skews for machines not using NTP will be similar to the distribution
of TSopt clocks skews.
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min pkts/hour | min duration/hour | total sources sources with entropy

(minpkts) (mindur, minutes) (IS)) stable skews (|S’]) | (bits)
0 10 18335 8225 4.87

0 30 13517 6859 5.39

0 50 7246 4120 5.87
500 10 4356 2583 5.99
500 30 4016 2446 6.11
500 50 3368 2104 6.18
2000 10 1730 1116 6.22
2000 30 1629 1077 6.32
2000 50 1489 1009 6.41

Table 3. Entropy estimates from BBy when ppmvar = 1 ppm. Trace recorded on an OC-48 link of a U.S.
Tier 1 ISP, 2004-04-28 19:30-21:30PDT.

6 Distribution and stability of TSopt clock skew measurements

We now address two fundamental properties that must hold in order for remote clock skew esti-
mation to be an effective physical device fingerprinting technique. First, we show that there is
variability in different devices’ clock skews, meaning that it is reasonable to expect different devices
on the Internet to have measurably different clock skews. Second, we give evidence to suggest
that clock skews, as measured by our techniques, are relatively constant over time. These two
facts provide the basis for our use of remote clock skew estimation as a physical device fingerprint-
ing technique since they imply that an adversary can gain (sometimes significant) information by
applying our techniques to measure a device’s or set of devices’ clock skews.

The novelty here is not in claiming that these properties are true. Indeed, it is well known that
different computer systems can have different clock skews, and others [31, 28, 30, 36] have argued
that a given device generally has a constant clock skew. Rather, the contribution here is showing
that these properties survive our remote clock skew estimation techniques and, in the case of our
analyses of the distribution of clock skews, measuring the bits of information (entropy) a passive
adversary might learn by passively measuring the T'Sopt clock skews of fingerprintees.

DISTRIBUTION OF CLOCK SKEWS: ANALYSIS OF PASSIVE TRACES. Our first experiment in this
section focuses on understanding the distribution of clock skews across devices as reported by
our TCP timestamps-based passive fingerprinting technique. For this experiment we analyzed
a passive trace of traffic in both directions of a major OC-48 link; CAIDA collected the trace
between 19:30 and 21:30 PDT on 2004-04-28. Since the OC-48 link runs North-South, let BBy
denote the Northbound trace, and let BBs denote the Southbound trace (BB stands for backbone).
CAIDA obtained the traces using different Dag [15] cards in each direction; these cards’ clocks
were synchronized with each other, but not with true time. This latter property does not affect
the following discussion because (1) the clock skews of the Dag cards appear to be constant and
therefore only shift our skew estimates by a constant amount and (2) here we are only interested
in the general distribution of the clock skews of the sources in the traces.

Let minpkts and mindur be positive integers. For simplicity, fix BB = BBy or BBs. Also assume
for simplicity that BB only contains TCP packets with the TCP timestamps option turned on.
Recall that the trace BB lasts for two hours. At a high-level, our analysis considers the set S of
sources in BB that have > minpkts packets in both the first and the second hours, and where the
differences in time between the source’s first and last packets in each hour are > mindur minutes.

For each source in S, we apply our clock skew estimation technique from Section 4 to the full
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Figure 3. Histogram of TSopt clock skew es- Figure 4. TSopt clock offset-sets for 69 Micron
timates for sources in BBy. Trace recorded on 448MHz Pentium II machines running Windows
an OC-48 link of a U.S. Tier 1 ISP, 2004-04-28 XP Professional SP1. Trace recorded on host2,
19:30-21:30PDT. Here minpkts = 2000 packets, three hops away, 2004-09-10 08:30PDT to 2004-
mindur = 50 minutes, and ppmvar = 1 ppm. 09-14 08:30PDT.

trace, the first hour only, and the second hour only. Let ppmvar be a positive number, and let &’
be the subset of S corresponding to the sources whose skew estimates for the full trace, the first
hour, and the second hour are all within ppmvar ppm of each other, and whose intended frequency
Hz is one of the standard values (1, 2, 10, 100, 512, 1000). If ppmvar is small, then we are inclined
to believe that the skew estimates for the sources in S’ closely approximate the true skews of the
respective sources. Table 3 shows values of |S| and |S’| for different values of minpkts and mindur
and BB = BBy and when we arbitrarily choose ppmvar = 1 ppm.

The value |S’|/|S| gives an indication of the ratio of sources for which we can accurately (within
ppmvar ppm) measure the clock skew. For example, more than 50% of the sources in S are also in &’
when we consider sources that are active for at least 30 minutes in each hour (mindur = 30). When
we add the constraint that each source in § send at least 500 packets per hour, the percentage of
sources in S’ increases to 60%. While useful, this ratio provides little information about the actual
distribution of the clock skew estimates. Much more (visually) telling are images such as Figure 3,
which shows a histogram of the skew estimates (for the full two hour trace) for all the sources in
S’ when minpkts = 2000, mindur = 50 minutes, and ppmvar = 1 ppm. (The true histogram may
be shifted horizontally based on the clock skew of the Dag cards, but a horizontal shift does not
affect the general shape of the distribution.) Empirically, for any given values for minpkts, mindur,
and ppmvar, we can compute the entropy of the distribution of clock skews. Doing so serves as a
means of gauging how many bits of information an adversary might learn by passively monitoring a
device’s clock skew, assuming that devices’ clock skews are constant over time, which is something
we address later. To compute the entropy, we consider bins of width ppmvar, and for each source
s in S, we increment the count of the bin corresponding to devices with clock skews similar to
the skew of s (here we use the skew estimate computed over full two hours). We then allocate
another bin of size |S| — |S’[; this bin counts the number of sources that do not have consistent
clock skew measurements. We apply the standard entropy formula [35] to compute the entropy
of this distribution of bins, the results of which appear in the last column of Table 3. As one
might expect, the amount of information available to an adversary increases as minpkts and mindur
increase.

Assuming that clock skews are constant over time, our results suggest that a passive adversary
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measured total max skew difference
frequency | sources | (in ppm) for lower
(Hz) 50% 5%  90%

2 93 2.49 | 19.81 | 43.50

10 328 2.76 | 11.12 | 94.85
100 860 0.10 | 0.24 | 0.76
512 41 0.10 | 0.30 2.39
1000 74 0.08 | 0.13 | 0.35

Table 4. Stability of clock skews in BBy for common values of Hz[Cy]. Trace recorded on an OC-48 link
of a U.S. Tier 1 ISP, 2004-04-28 19:30-21:30PDT. Here minpkts = 2000 packets and mindur = 50 minutes.

could learn at least six bits of information about a physical device by applying our techniques from
Section 4. We anticipate that more bits of information will be available to an active adversary
since an active adversary might be able to force the fingerprintee to send packets more frequently
or over longer periods of time. Additionally, these entropy estimates will be higher for devices with
high intended TSopt clock frequencies Hz[Cicp] (see Table 4 and the discussion below). The latter
observation suggests that high Hz[Cic,] values for the purposes of RTT estimation and optimizing
TCP performance may imply a slight trade-off in privacy. Similarly, since the T'Sopt clock frequen-
cies on some systems are derived from the kernels’ HZ variables, high HZ values for the purpose of
increasing the performance of some applications [14] may also imply a slight trade-off in privacy.

We can use our two-hour OC-48 traces to evaluate the stability and accuracy of our TSopt
clock skew measurements over the course of the two hours. Table 4 considers hosts that transmit
more than minpkts = 2000 packets in both the first and the second hours of BBy and which also
transmit for at least mindur = 50 minutes in both hours. The rows in Table 4 are broken down
into (our estimates of the) intended frequencies for this subset of devices. For each device, we use
our technique from Section 4 to estimate the clock skew of the device over the whole trace, just the
first hour, and just the second hour, and then we compute the maximum difference among these
three estimates. The last three columns in Table 4 show the maximum such difference for the lower
n-th percentile; e.g., for 90% of the hosts with Hz[Cip] = 100 Hz, minpkts = 2000 packets, and
mindur = 50 minutes, our skew estimation technique reported clock skews that differed by at most
0.76 ppm between the first hour, the second hour, and the whole trace. Table 4 suggests that our
clock skew estimates are generally more accurate for devices with higher intended frequencies; this
result is as one would expect since higher frequency clocks have finer granularity than low frequency
clocks. (The low number of sources with Hz[Cic,] = 10 in Table 4 is consistent with our observation
from Section 4 that Windows machines do not typically initiate flows with the TCP timestamps
option enabled.)

DISTRIBUTION OF CLOCK SKEWS: EXPERIMENTS WITH A HOMOGENEOUS LAB. One observation
on the above analysis is that we applied it to a wide variety of machines running a wide variety
of operating systems. Here we investigate whether the distribution shown in Figure 3 is due to
operating system differences or to actual physical differences on the devices. We conducted an
experiment with 69 (apparently) homogeneous machines in one of UCSD’s undergraduate comput-
ing laboratories. All the machines were Micron PCs with 448MHz Pentium II processors running
Microsoft Windows XP Professional Service Pack 1. Our measurer, host2, was a Dell Precision
410 with a 448MHz Pentium III processor and running Debian 3.0 with a recompiled 2.4.18 kernel,;
host2 is located within the University’s computer science department and is 3 hops and a half a
millisecond away from the machines in the undergraduate laboratory.

To create the requisite trace of TCP packets from these machines, we repeatedly opened and
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then closed connections from host2 to each of these machines. Each open-then-close resulted in the
Windows machines sending two packets to host2 with the TCP timestamps option turned on (the
Windows machine sent three packets for each flow, but the TCP timestamp was always zero in the
first of these three packets). Because of our agreement with the administrators of these machines,
we were only able to open and close connections with these Windows machines at random intervals
between zero and five minutes long. Thus, on average we would expect to see each machine send
host2 48 TCP packets with the TCP timestamps option turned on per hour. The experiment lasted
for 38 days, beginning at 19:00PDT 2004-09-07 and ending at approximately 20:30PDT 2004-10-15.
Figure 4 shows a plot, similar to Figure 1, for the 69 Micron machines as measured by host2
but sub-sampled to one out of every two packets. Note that the plot uses different colors for the
observed offsets for different machines (colors are overloaded). Since the slopes of the sets of points
for a machine corresponds to the machine’s skew, this figure clearly shows that some machines in
the lab have measurably different clock skews. Thus, we can easily distinguish some devices by their
clock skews (for other devices, we cannot). Because Windows XP machines reset their TSopt clocks
to zero when they reboot, some of the diagonal lines seem to disappear several days into the figure.
Our algorithms handle reboots by recalibrating the initial observed offset, though this recalibration
is not visible in Figure 4. The time in Figure 4 begins on 8:30PDT 2004-09-10 (Friday) specifically
because the administrators of the lab tend to reboot machines around 8:00PDT, and beginning
the plot on Friday morning means that there are fewer reboots in the figure. We consider this
experiment in more detail below, where our focus is on the stability of our clock skew estimates.

STABILITY OF CLOCK SKEWS. We now consider the stability of the T'Sopt clock skews for the
devices in the above-mentioned undergraduate laboratory. Recall that our experiment began at
19:00PDT 2004-09-07 and that the experiment ran for 38 days; see also Figure 4. Consider a single
machine in the laboratory. We divide the trace for this machine into 12- and 24-hour periods,
discarding 12-hour periods with less than 528 packets from the device, and discarding 24-hour
periods with less than 1104 packets from the device (doing so corresponds to discarding 12-hour
periods when the device is not up for at least approximately 11 hours, and discarding 24-hour
periods that the device is not up for at least 23 hours). We compute the device’s clock skew for
each non-discarded period, and then compute the difference between the maximum and minimum
estimates for the non-discarded periods. This value gives us an indication of the stability of the
device’s clock skew.

For 12-hour periods, the maximum difference for a single device in the lab ranged between 1.29
ppm and 7.33 ppm, with a mean of 2.28 ppm. For 24-hour periods, the maximum difference for a
single device ranged between 0.01 ppm and 5.32 ppm, with a mean of 0.71 ppm. There seems to
have been some administrator function at 8:00PDT on 2004-09-10 that slightly adjusted the TSopt
clock skews of some of the machines. If we conduct the same analysis for the trace beginning
at 8:30PDT 2004-09-10 and ending on 2004-10-15, for 24-hour periods, the range for maximum
difference for each device in the lab dropped to between 0.00 ppm and 4.05 ppm. Over 24-hour
periods beginning 8:30PDT 2004-09-10, and over all 69 hosts, our minimum skew estimate was
—5.94 ppm and our maximum skew estimate was 49.28 ppm. See the table in Appendix A for a
complete summary.

The current results strongly support our claim that modern processors have relatively stable
clock skews. Moreover we believe that if the administrators of the lab allowed us to exchange more
packets with the 69 fingerprintees, we would have found the clock skews to be even more stable.
In Section 7 we apply our clock skew estimates to a single computer at multiple locations and on
multiple dates, and the skew estimates again are close (Table 5); our results below further support
our claim of the stability of clock skews over time.
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Laptop location Start time (PDT) | Duration | Packets | Wireless | NAT | Skew est.

San Diego, CA, home cable | 2004-07-09, 22:00 | 3 hours 181 Yes, WEP | Yes | —58.17 ppm
SD Supercomputer Center 2004-07-10, 10:00 | 3 hours 182 Yes No | —58.00 ppm
CSE Dept, UCSD 2004-07-12, 12:00 | 3 hours 180 Yes No | —58.24 ppm
San Diego, CA, home cable | 2004-07-12, 21:00 | 3 hours 180 Yes Yes | —58.21 ppm
Clinton, CT, home cable 2004-07-26, 06:00 | 3 hours 182 No Yes | —58.19 ppm
San Diego, CA, home cable | 2004-09-14, 21:00 30 min 1795 Yes Yes | —58.22 ppm
SD Supercomputer Center 2004-09-22, 12:00 | 30 min 1765 Yes Yes | —58.13 ppm
San Diego dialup, 33.6kbps | 2004-10-18, 10:00 30 min 1749 No No | —57.57 ppm
SD Public Library 2004-10-18, 14:45 30 min 946 Yes Yes | —57.63 ppm

Table 5. TCP timestamps-based skew estimates of laptop running Red Hat Linux 9.0 when connected to
host1 from multiple locations and when not running ntpd. The traces were recorded at host1.

7 Access technology-, topology-, and measurer-independent mea-
surements

Here we consider our experiments which suggest that clock skew estimates are relatively independent
of the fingerprintee’s access technology, the topology between the fingerprintee and the measurer,
and the measurer’s machine.

LAPTOPS IN MULTIPLE LOCATIONS. Our first set of experiments along these lines measures laptop
connected to the Internet via multiple access technologies and locations (Table 5). For all these
experiments, laptop is a Dell Latitude C810 notebook with a 1.133GHz Pentium III Mobile pro-
cessor and running a default installation of Red Hat 9.0 (Linux kernel 2.4.20-8). The measurer in
all these experiments, host1, is a Dell Precision 340 with a 2GHz Intel Pentium 4 processor located
within the UCSD Computer Science and Engineering department and running Debian 3.0 with a
recompiled 2.4.18 Linux kernel; host1 is also configured to synchronize its system time with true
time via NTP.

For all experiments, we establish a TCP connection between laptop and hostl, and then
exchange TCP packets over that connection. On host1, we record a trace of the connection using
tcpdump. We then use our techniques from Section 4 to estimate the skew of laptop’s T'Sopt clock.
As the horizontal line in Table 5 indicates, we divide our experiments into two sets. In the first
set, our experiments last for three hours and exchange one TCP packet every minute (we do this
by performing a sleep(60) on host1). For the second set of experiments, the connections last for
30 minutes, and a packet is exchanged at random intervals between 0 and 2 seconds, as determined
by a usleep on hostl. With few exceptions, the packets from laptop are all ACKs with no data.

We conduct experiments when the laptop is connected to the Internet via residential cable
networks on both coasts (Table 5). For our residential experiments, we use a 802.11b wireless
connection with 128-bit WEP encryption, a standard (unencrypted) 802.11b wireless connection,
and a standard 10Mbps 10baseT wired connection. We also conducted experiments with our laptop
connected to the San Diego Supercomputer Center’s 802.11b wireless network, from the UCSD
Computer Science and Engineering wireless network, and from the San Diego Public Library’s
wireless network. As the final column in the table shows, the skew estimates are all within a
fraction of a ppm of each other. (If we subsample the first set of experiments to one packet every 3
minutes, then the difference between the skew estimates for any two measurements in the first set
is at most 0.45 ppm.)

PLANETLAB AND TOPOLOGY QUESTIONS. Although the above results strongly suggest that skew
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laptop, 2004-09-17, 08:00-10:00 PDT | laptop, 2004-10-08, 08:00-10:00 PDT
Measurer Skew estimate  Dist. from measurer | Skew estimate  Dist. from measurer
hostl —58.23 ppm 7 hops 2.77 ms —58.03 ppm 8 hops 1.16 ms
San Diego, CA —58.07 ppm 7 hops 1.21 ms —58.03 ppm 8 hops 1.15 ms
Berkeley, CA —58.17 ppm | 10 hops 4.02 ms —58.02 ppm | 12 hops 5.06 ms
Seattle, WA —58.15 ppm 8 hops 14.74 ms —58.01 ppm 9 hops 15.12 ms
Toronto, Canada —58.31 ppm | 16 hops  44.43 ms
Princeton, NJ —57.97 ppm | 13 hops  37.59 ms —57.91 ppm | 14 hops  36.97 ms
Boston, MA —57.93 ppm | 12 hops  35.82 ms —58.10 ppm | 13 hops  41.09 ms
Cambridge, UK —58.06 ppm | 20 hops  84.19 ms —58.18 ppm | 21 hops  86.45 ms
ETH, Switzerland —58.38 ppm | 20 hops  90.51 ms —58.40 ppm | 21 hops  84.07 ms
IIT, India —59.60 ppm | 16 hops 199.27 ms
Equinix, Singapore | —58.10 ppm | 18 hops  99.50 ms —58.05 ppm | 15 hops  93.55 ms
CAIDA test lab —57.98 ppm 5 hops 0.24 ms

Table 6. Skew estimates of laptop, running Red Hat 9.0 with ntpd, for traces taken simultaneously at
multiple locations. On 2004-09-17 the laptop was connected to the SDSC wireless network, and on 2004-10-
08 the laptop was connected to the CAIDA wired network. The Toronto and India lines have empty cells
because the PlanetLab machines at those locations were down during the experiment. The Boston machine
on 2004-10-08 was a different PlanetLab machine than the one on 2004-09-17. The empty cell for the CAIDA
test lab is because the lab is only reachable from CAIDA’s wired network.

host1, 2004-09-16, 16:00-18:00 PDT | host1, 2004-10-19, 08:00-10:00 PDT
Measurer Skew estimate Dist. from measurer | Skew estimate Dist. from measurer
host1l —12.98 ppm localhost —13.15 ppm localhost
San Diego, CA —12.78 ppm 1 hop 5.45 ms —13.21 ppm 1 hop 1.48 ms
Berkeley, CA —12.93 ppm | 12 hops  6.57 ms —12.72 ppm | 12 hops  3.81 ms
Seattle, WA —12.65 ppm | 10 hops 18.91 ms —13.25 ppm | 10 hops  15.74 ms
Toronto, Canada —12.85 ppm | 18 hops 47.94 ms
Princeton, NJ —13.07 ppm | 15 hops 41.73 ms —13.21 ppm | 15 hops 34.48 ms
Boston, MA —12.94 ppm | 14 hops 44.32 ms —12.82 ppm | 14 hops 39.68 ms
Cambridge, UK —13.02 ppm | 22 hops 84.28 ms —13.25 ppm | 22 hops 88.19 ms
ETH, Switzerland —12.83 ppm | 22 hops 88.33 ms —12.99 ppm | 22 hops 85.71 ms
IIT, India —13.62 ppm | 19 hops 181.02ms | —12.25 ppm | 17 hops 198.73 ms
Equinix, Singapore | —12.98 ppm | 20 hops 104.24 ms | —12.69 ppm | 17 hops 158.82 ms

Table 7. Skew estimates of host1 for traces taken simultaneously at multiple locations. If we expand the
measurement window of hostl to 16:00-20:00 PDT, then the skew estimate from India becomes —12.98
ppm. The Toronto line has an empty cell because the PlanetLab machines at that location were down
during the experiment. The Boston machine on 2004-10-19 was a different PlanetLab machine than the one

on 2004-09-16.
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estimates are independent of access technology, the above experiments do not stress-test the topol-
ogy between the fingerprinter and the fingerprintee. Therefore, we conducted the following set
of experiments. We selected a set of PlanetLab nodes from around the world that reported, via
ntptrace, approximately accurate system times. We chose PlanetLab machines located at UC San
Diego, UC Berkeley, U. of Washington, U. of Toronto (Canada), Princeton, MIT, U. of Cambridge
(UK), ETH (Switzerland), IIT (India), and Equinix (Singapore). These PlanetLab machines, along
with host1 and (in one case) CAIDA’s test machine with a CDMA-synchronized Dag card, served
as our fingerprinters. Our fingerprintees were laptop and hostl, where laptop was connected
both to the SDSC wireless and to the CAIDA wired networks.

For each of our experiments, and for each of our chosen PlanetLab nodes, we created a flow
between the node and the fingerprintee. Over each flow our fingerprintee sent one packet at ran-
dom intervals between 0 and 2 seconds; here the fingerprintee executed usleep with appropriate
parameters. We then recorded the flows on the PlanetLab machines using plabdump, the tcpdump
equivalent for PlanetLab machines. On host1 we recorded the corresponding flow using tcpdump.
And on the machine with the Dag card we used Coral [19] (that machine was only reachable when
laptop was connected directly to CAIDA’s wired network). We then computed the skew using
the techniques from Section 4. The results are shown in Table 6 and Table 7. Notice that the
skew estimates are in general within a fraction of a ppm of each other, suggesting that our skew
estimates are independent of topology.

For distance measurements for Table 6 and Table 7, we used traceroute to determine hop count,
and then used mean time between when tcpdump recorded a packet on the measured device and
the time between when plabdump recorded the packet on the measurer. This distance estimate also
includes the time spent in the application layers on the machines, but should give a rough estimate
of the time it takes packets to go from the fingerprintee to the measurer.

The results of these experiments suggest that our TSopt clock skew estimation technique is
generally independent of the topology and distance between the fingerprinter and the fingerprintee.
Furthermore, these results suggest that our skew estimation technique is independent of the ac-
tual fingerprinter, assuming that the fingerprinter synchronizes its system time with NTP [26] or
something better [36].

8 Effects of operating system, NTP, and special cases

OPERATING SYSTEMS AND NTP ON FINGERPRINTEE. In Table 8 we show skew estimates for the
same physical device, laptop, running both Red Hat 9.0 and Windows XP SP2, and both with and
without NTP-based system clock synchronization. (For this experiment, laptop sent one packet
to the measurer, host1, at random intervals between 0 and 2 seconds; laptop was connected to
the SDSC wireless network, and was 7 hops away from host1; host1 also sent a ICMP Timestamp
Request to laptop at random intervals between 0 and 60 seconds.) The table shows that, for the
listed operating systems, the system clock and the TSopt clock effectively have the same clock skew
when the device’s system time is not synchronized with NTP, and that the TSopt clock skew is
independent of whether the device’s system clock is maintained via NTP. Although not shown in
the figure, our experiments with OpenBSD 3.5 on another machine suggest that the T'Sopt clock
and system clock on default OpenBSD 3.5 installations have the same skew (approximately 68
ppm). On the other hand, at least with this test machine, the TSopt clock and system clock on
a default FreeBSD 5.2.1 system have different skews (the TSopt clock skew estimate is about the
same as with OpenBSD, but the system clock skew estimate is approximately 80 ppm). When we
turn on ntpd under FreeBSD 5.2.1, the TSopt clock skew remained unchanged.
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Start time Operating system
2004-09-22, 12:00 PDT Red Hat 9.0
2004-09-17, 08:00 PDT Red Hat 9.0

2004-09-22, 21:00 PDT | Windows XP SP2
2004-09-23, 21:00 PDT | Windows XP SP2

NTP | skew estimate skew estimate
(TCP tstamps) | (ICMP tstamps)
No —58.20 ppm —58.16 ppm
Yes —58.16 ppm —0.14 ppm
No —85.20 ppm —85.42 ppm
Yes —84.54 ppm 1.69 ppm

Table 8. Experiments for the same physical device, laptop, running different operating systems and with
NTP synchronization both on and off. For all experiments, laptop was located on the SDSC wireless network.
All traces last for six hours. Additionally, laptop was up for an hour before the Windows measurements.
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Figure 5. TSopt clock offset-sets for laptop run-
ning Red Hat 9.0, starting shortly after laptop
boots; power removed toward end of trace. Mea-
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POWER OPTIONS FOR LAPTOPS. We also consider how the clock skews of devices are affected by
the power options of laptops. In the case of Red Hat 9.0, when laptop is running with the power
connected, if we switch to battery power, there is a brief jump in the TSopt clock offset-set for the
device, and then the device continues to have the same (within a fraction of a ppm) clock skew; see
Figure 5. For laptop running Windows XP SP2, if the laptop is idle from user input but continues
to maintain a TCP flow that we can monitor, then the TSopt clock skew changes after we switch
to battery power; see Figure 6. If we repeat this experiment several times, and if we boot with
only battery power, we find that the clock skews with battery power are in all cases similar. When
booting with outlet power, the clock skew on laptop running Windows XP initially begins with a
large magnitude, and then stabilizes to a skew like that in Table 8 until we disconnect the power;
the initially large skew may be due to the laptop recharging its batteries. We have not sampled a
large enough set of laptops to determine whether the clock skews with battery power are a simple
function of the clock skews with outlet power, though the skews with battery power seem to be
consistent for a single laptop.

TEMPERATURE. Although our experiments do not suggest a significant (beyond a fraction of a
ppm) variation in laptop’s skew when the surrounding temperature varies (from a temperature-
controlled machine room to an un-airconditioned room during the summer), we did not rigorously
investigate the effects of temperature on our clock skew estimates. We acknowledge that such a
study would help provide greater insights into the efficacy of our techniques. If a rigorous study
finds that temperature variations do cause remotely-detectable changes in modern devices’ TSopt
clock skews, then the information leakage about the environment surrounding a device might be
useful to certain adversaries.

9 Applications

We now consider some applications of our techniques, though we emphasize that we consider our
most important results to be the foundations we introduced in the previous sections that make the
following applications possible.

VIRTUALIZATION AND VIRTUAL HONEYNETS. We created a honeyd [33] version 0.8b virtual hon-
eynet consisting of 100 Linux 2.4.18 virtual hosts and 100 Windows XP SP1 virtual hosts. Our
server in this experiment, host3, is identical to host1, has 1GB of RAM, and maintains its system
time via NTP. We ran honeyd with standard nmap and xprobe2 configuration files as input; honeyd
used the information in these files to mimic real Linux and Windows machines. We ran nmap and
xprobe?2 against the virtual hosts to verify that nmap and xprobe2 could not distinguish the virtual
hosts from real machines.

We applied our TCP timestamps- and ICMP-based skew estimation techniques to all 200 virtual
hosts. Our fingerprinter in this experiment was on the same local network. We observed several
methods for easily distinguishing between honeyd virtual hosts and real machines. First, we noticed
that unlike real Linux and Windows machines, the virtual hosts always returned ICMP Timestamp
Replies with zero in the transmit timestamp field. Additionally, we observed that the honeyd
Windows XP virtual hosts had TSopt clocks Cicp with Hz[Cicp] = 2, whereas all of the real Windows
XP machines that we tested had Hz[Ci,] = 10. The lesson here is that although the nmap and
xprobe2 configuration files provide enough information for the respective programs to effectively
fingerprint real operating systems, the configuration files do not provide enough information for
honeyd to be able to correctly mimic all aspects of the Linux and Windows protocol stacks.

Even if honeyd completely mimicked the network stacks of real Linux 2.4.18 and Windows XP
SP1 machines, we could still use our remote physical device fingerprinting techniques to distinguish
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between our 200 virtual hosts and 200 real machines. Our TSopt clock skew estimates for all 200
virtual hosts were approximately zero and the system clock skew estimates for all 200 virtual hosts
were approximately the same positive value. Given our discussion in Section 6 of the distribution
of clock skews, this lack of variability in clock skews between virtual hosts is not what one would
expect from real machines. Furthermore, the T'Sopt and system clocks between all the virtual hosts
of the same operating system were highly correlated; e.g., Figure 7 shows the TSopt offset-sets for
all 100 Windows XP SP1 virtual hosts 241 minutes into our experiment. In Figure 7 we connect
the points in the offset-sets for each virtual host to highlight the correlation between the hosts.
Recall that we observed no such correlation in our experiment with 69 real Windows XP machines
(Figure 4). We communicated our results to the author of honeyd and, in response, version 1.0
of honeyd randomly assigns TSopt clock skews to each virtual host using a Gaussian distribution
around the server’s system time. This decision may affect other components of the system, e.g.,
if the server runs ntpd, changes to the server’s system time may appear as global changes to the
distribution of the virtual hosts’ clocks. Version 1.0 of honeyd still issues ICMP Timestamp Replies
with zero transmit timestamps. Furthermore, the system clocks on version 1.0 honeyd virtual hosts
are still highly synchronized and are too fast by several orders of magnitude (Figure 8; the vertical
axis is correctly labeled in weeks).

To experiment with real virtualization technologies, we installed VMware Workstation 4.5.2 on
host3, but this time host3 ran Red Hat 9.0. We then installed five default copies of Red Hat
9.0 under VMware. We applied our skew estimation techniques to these five virtual machines, as
well as to host3. The results show that the five virtual machines do not have constant (or near
constant) clock skews, shown by the non-linearity of the points in Figure 9. Furthermore, the
overall magnitude of the clock skews on these virtual machines (greater than 400 ppm) is larger
than we would expect for physical desktop machines. We feel confident that these observations and
natural extensions could prove useful in distinguishing virtual honeynets from real networks.

COUNTING THE NUMBER OF DEVICES BEHIND A NAT. Another natural application of our tech-
niques is to count the number of devices behind a NAT. To briefly recall previous work in this area,
Bellovin [7] showed that an adversary can exploit the IP ID field to count the number of devices
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behind a NAT, but his approach is limited in three ways: (1) the IP ID field is only 16-bits long;
(2) recent operating systems now use constant or random IP ID fields; and (3) his technique cannot
count the total number of devices behind a NAT if not all of them are active at the same time. Our
suggested approach to this problem has two phases. First, partition the trace into (candidate) sets
corresponding to different sequences of time-dependent TCP timestamps; creating such a partition
is relatively easy to do unless two machines have approximately the same TSopt clock values at
some point in time, perhaps because the machines booted at approximately the same time. Then
apply our clock skew estimation techniques to each partition, counting hosts as unique if they have
measurably different clock skews. If two devices have approximately the same TSopt clock values
at some point in time but have measurably different clock skews, then one can detect and correct
this situation in the analysis of the partition’s offset-set.

FORENSICS AND TRACKING INDIVIDUAL DEVICES. The utility of our techniques for forensics pur-
poses follows closely from our claims (1) that there is variability in the clock skews between different
physical devices (Section 6), (2) that the clock skew for a single device is approximately constant
over time (Section 6), and (3) that our clock skew estimates are independent of access technology,
topology, and the measurer (Section 7). For forensics, we anticipate that our techniques will be
most useful when arguing that a given device was not involved in a recorded event. With respect to
tracking individual devices, we stress that our techniques do not provide unique serial numbers for
devices, but that our skew estimates do provide valuable bits of information that, when combined
with other sources of information such as operating system fingerprinting results, can help track
individual devices on the Internet.

DHCP. The use of DHCP can cause significant problems for many forms of network mapping since
the measurer may not be able to uniquely identify a node by its IP address and therefore has to deal
with a mix of measurements coming from different hosts, e.g., [8]. The use of DHCP thus renders
conclusions about any kind of network statistics tenuous because one is unable to say whether the
measured phenomena represents a certain fraction of hosts; the measurement is influenced by the
dynamics of hosts joining and leaving the network. Any technique that can help disambiguate hosts
behind a DHCP server therefore has both network mapping and security applications. One might
be able to use our techniques to help remotely track (with some probability) the assignment of IP
addresses within an address block to physical machines via DHCP.

UNANONYMIZING ANONYMIZED DATA SETS. It is common for organizations that provide network
traces containing payload data to anonymize the IP addresses in the traces using some prefix-
preserving anonymization method [38, 39]. If an organization makes available both anonymized and
unanonymized traces from the same link, one can use our techniques to catalyze the unanonymiza-
tion of the anonymized traces. Such a situation is not hypothetical: in addition to the 2004-04-28
trace that we used in Section 6, CAIDA took another trace from the same link on 2004-04-21, but
the 2004-04-21 trace included payload data and was therefore anonymized.

To study how one might use our clock skew estimation techniques to help unanonymize anonymized
traces, on 2005-01-13 and 2005-01-21 CAIDA took two two-hour traces from a major OC-48 link
(the same link from which CAIDA captured the 2004-04-28 trace). We anonymized the 2005-01-13
trace and experimented with our ability to subsequently unanonymize it. Given the value of a
device’s TSopt clock and knowledge of that clock’s intended frequency Hz, we can compute the
approximate uptime of the device. (Prior to our work, one method for inferring Hz from a passive
trace would be to use a program like pOf [3].) As a first attempt at unanonymizing the 2005-01-
13 trace, we paired anonymized IP addresses from 2005-01-13 with IP addresses from 2005-01-21
when our uptime estimate of a host in 2005-01-21 is eight days higher (plus or minus five minutes)
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than the uptime of a host in 2005-01-13 and when both hosts have the same TTLs and intended
frequencies. Our program produced 4613 pairs of candidate anonymous to real mappings, of which
2660 (57.66%) were correct. To reduce the number of false matches, especially for small uptimes,
we modified our program to filter out pairs that have TSopt clock skews different by more than
3 ppm. We also incorporated our clock skew estimates into our uptime estimates. These changes
reduced the number of candidate mappings to 2170, of which 1902 (87.65%) were correct; the
fraction of false positives was reduced by over 3.4 (from 42.34% to 12.35%). There are a total of
11862 IP addresses in both the 2005-01-13 and 2005-01-21 traces that have the TCP timestamps
option enabled. Since the anonymization is prefix-preserving, given the candidate mappings one
can begin to unanonymize address blocks. We are unaware of any previous discussion of the prob-
lems to prefix-preserving anonymization caused by leaking information about a source via the TCP
timestamps option.

INTENTIONAL CLOCK SKEW ABNORMALITIES. Most users would likely not notice if their devices
had large or non-constant TSopt clock skews. A hardware vendor wishing to track physical devices
with few false positives could therefore design their devices to have large or otherwise abnormal
clock skews. A user could also use his or her device’s T'Sopt clock as a covert channel by intentionally
varying the device’s TSopt clock skew in a controlled manner. This observation confirms McDanel’s
conjecture [22] that it may be possible to embed covert information in the TCP timestamps option
field of a device’s outgoing packets. We consider the applications in this subsection to be mostly
of academic interest.

10 Potential countermeasures

The primary focus of this paper is on developing techniques to fingerprint current generation
physical devices when running current generation operating systems. Although (by definition) the
techniques we describe above will remain applicable to current generation systems, we suspect that
future generation security systems might incorporate countermeasures to some of the fingerprinting
techniques that we uncover. We explore some possible protection mechanisms in this section.

The surest way for a device to protect itself against our ICMP-based fingerprinting technique
(Section 5) would be for the device to not reply to ICMP Timestamp Requests. Another solution
might be for the device to synchronize its system time via NTP. Although synchronizing a device’s
system time with NTP would address our current ICMP-based fingerprinting technique, we caution
that this solution might still be susceptible to more sophisticated fingerprinting techniques that
exploit detectable clock skews between NTP adjustments (or the NTP server could be the adversary
wishing to fingerprint different devices).

Similar to an observation above, the surest way for a device to protect itself against our TCP
timestamps-based fingerprinting technique (Section 4) would be for the device to not enable the
TCP timestamps option in outgoing packets. If there are circumstances that make this solu-
tion undesirable (e.g., because the use of TCP timestamps improves RTT estimation and TCP
performance), another approach for protecting against our TCP timestamps-based fingerprinting
technique would be to reduce a device’s clock skew. An operating system might reduce its clock
skew by, at boot, making a more precise estimation of the oscillator frequencies supplying the hard-
ware basis for its clocks. An operating system might also incorporate the techniques for precise
software clocks from Pésztor and Veitch [30] and Veitch, Babu, and Pésztor [36]. An operating
system might also pick a random multiplication factor at boot and multiply its TCP timestamps
by that factor in order to mask its clock skew.

Although the above suggestions may protect against our current TCP timestamps-based finger-
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Figure 10. TSopt clock skew estimate for a
source in BBs. Trace recorded on an OC-48 link
of a U.S. Tier 1 ISP, 2004-04-28 19:30-21:30PDT.
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ming: 175.2 ppm. Clock skew estimate via the
Fourier transform: 175.6 ppm.

printing technique, the above techniques may still leak some information about a device in the TCP
timestamps option field of each outgoing packet. To address this concern, from RFC 1323 [18] we
conclude that two parties in a TCP flow do not actually need to know each other’s TCP timestamps.
Consequently, a device could encrypt its timestamps using a secret key, assuming an appropriate
encryption mechanism for 32-bit blocks. The device could also maintain a table mapping the (pos-
sibly random) 32-bit values that it includes in the TCP timestamps fields of outgoing packets to its
internal representation of real timestamps; the table should only need to be as large as the device’s
TCP retransmission window. We have not evaluated the performance of these recommendations.
We do remark that the recommendations in this paragraph break strict compliance with RFC 1323
since the RFC says: “The timestamp value to be sent in TSval is to be obtained from a (virtual)
clock that we call the ‘timestamp clock’. Its values must be at least approximately proportional to
real time, in order to measure actual RTT [18].”

11 Other measurement techniques

In Section 10 we argue that although the techniques we explore in this paper will likely remain
applicable to current generation systems, future generation security systems might try to resist
some of our techniques; e.g., future generation systems might incorporate some of the protection
mechanisms from Section 10. In anticipation of these future systems, we consider possible avenues
for clock-based physical device fingerprinting when information about a system’s TSopt clock or
system clock is not readily available to an adversary; we do not consider here but recognize the pos-
sibility of fingerprinting techniques that profile other aspects of a device’s hardware, e.g., processor
speed or memory. These directions assume that new operating systems mask or do not include the
TSopt clock values in the TCP headers and do not reply to ICMP Timestamp Requests, but that
the systems’ underlying clocks still have non-negligible skews. The techniques we propose in this
section are less refined than the techniques elsewhere in this paper; we envision the techniques here
as starting points for more sophisticated techniques.
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FOURIER TRANSFORM. Some systems send packet at 10 or 100 ms intervals, perhaps due to
interrupt processing or other internal operating system feature on one side of a flow. When this
condition holds, we can use the Fourier transform to extract information about the system’s clock
skew. Figure 10 plots the TSopt clock offset-sets for a device in BBg with a 2 Hz TSopt clock.
The five diagonal bands suggests that the machine clusters packet transmissions at approximately
100 ms intervals, and we can use the Fourier transform on packet arrival times to estimate the
frequency at which the device actually transmits packets (here packet arrival times refers to the
times at which the monitor records the packets). For the source shown in Figure 10, after computing
the Fourier transform, the frequency with the highest amplitude was 25.00439, which implies a skew
of 25.00439/25 — 1, or 175.6 ppm. Moreover the top 19 frequencies output by the Fourier transform
all imply skews between 171.0 ppm and 179.3 ppm. These values are all close to the 175.2 ppm
output by our TCP timestamps-based approach but do not make any use of the TCP timestamps
contained with the packets.

Although our Fourier-based technique does not require knowledge of a device’s T'Sopt or system
clocks, our Fourier-based solution is currently not automated. This lack of automation, coupled
with the fact that current generation systems readily relinquish information about their TSopt and
system clocks, means that our Fourier-based solution is currently less attractive than the techniques
we described in Sections 4 and 5. If in the future operating system designers decide to address
the information leakage concerns we raise with respect to the TCP timestamps option and ICMP
Timestamp Requests, then the technique we mention here may become more relevant.

PERIODIC USER-LEVEL ACTIVITIES. Toward estimating the system clock skew of devices that do
not synchronize their system times with NTP, we note that many applications perform certain
operations at semi-regular intervals. For example, one can configure most mail clients to poll
for new mail every n minutes. As another example, Broido, Nemeth, and claffy show that some
Microsoft Windows 2000 and XP systems access DNS servers at regular intervals [11]. It may be
possible to infer information about a device’s system clock skew by comparing differences between
actual intervals of time between these periodic activities and what the application intends for those
intervals of time to be.

12 Conclusions

In this study we verified the ability and developed techniques for remote physical device finger-
printing that exploit the fact that modern computer chips have small yet non-trivial and remotely
detectable clock skews. We showed how our techniques apply to a number of different goals, ranging
from remotely distinguishing between virtual honeynets and real networks to counting the num-
ber of hosts behind a NAT. Although the techniques we described will likely remain applicable to
current generation systems, we suspect that future generation security systems might offer coun-
termeasures to resist some of the fingerprinting techniques that we uncover. In anticipation of such
developments, we discussed possible avenues for physical device fingerprinting when information
about a system’s TSopt clock or system clock are not readily available to the adversary. Our re-
sults compellingly illustrate a fundamental reason why securing real-world systems is so genuinely
difficult: it is possible to extract security-relevant signals from data canonically considered to be
noise. This aspect renders perfect security elusive, and even more ominously suggests that there
remain fundamental properties of networks that we have yet to integrate into our security models.
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A Experiment with undergraduate computing facility

This table accompanies the discussion in Section 6 and summarizes information about the clock
skew estimates for the 69 machines in the undergraduate computing facility from 8:30PDT 2004-
09-10 to 2004-10-15.

host TP 12 hour periods 24 hour periods
(last byte) | # periods min skew est A max | # periods min skew est A max
191 39 —9.37 ppm | 5.49 ppm 10 —5.22 ppm | 0.44 ppm
167 26 —6.47 ppm | 1.85 ppm 6 —5.94 ppm | 0.78 ppm
189 34 —1.81 ppm | 6.07 ppm 8 0.91 ppm 2.62 ppm
156 34 1.09 ppm 2.65 ppm 10 2.02 ppm 0.56 ppm
158 30 3.41 ppm 5.17 ppm 7 4.17 ppm 3.20 ppm
152 25 3.47 ppm 2.07 ppm 4 4.76 ppm 0.35 ppm
163 39 3.51 ppm 4.13 ppm 10 6.02 ppm 0.65 ppm
161 30 6.83 ppm 2.77 ppm 7 7.40 ppm 0.66 ppm
195 30 7.35 ppm 1.59 ppm 8 7.96 ppm 0.55 ppm
142 34 8.46 ppm 3.13 ppm 6 10.47 ppm | 0.25 ppm
187 35 8.67 ppm 5.65 ppm 9 9.04 ppm 4.05 ppm
173 20 8.71 ppm 1.50 ppm 3 9.33 ppm 0.27 ppm
183 23 9.86 ppm 2.10 ppm 6 10.74 ppm | 0.71 ppm
165 24 10.20 ppm 1.56 ppm 6 10.82 ppm 0.73 ppm
170 21 11.41 ppm 3.51 ppm 3 13.31 ppm | 0.54 ppm
184 25 13.73 ppm 4.19 ppm 6 14.88 ppm 1.52 ppm
179 25 14.21 ppm 1.90 ppm 6 15.35 ppm | 0.47 ppm
177 17 14.36 ppm 1.60 ppm 1 15.07 ppm 0.00 ppm
139 32 14.41 ppm 4.83 ppm 8 17.71 ppm 0.63 ppm
147 30 14.59 ppm 4.19 ppm 7 17.89 ppm 1.02 ppm
171 21 14.62 ppm 1.74 ppm 4 14.83 ppm | 0.54 ppm
148 27 15.51 ppm 5.71 ppm 7 20.03 ppm 0.70 ppm
168 39 15.77 ppm 2.77 ppm 11 17.05 ppm | 0.63 ppm
136 19 16.35 ppm 2.61 ppm 3 16.84 ppm | 0.79 ppm
137 23 16.61 ppm 3.17 ppm 4 18.99 ppm 0.32 ppm
182 22 16.61 ppm 2.09 ppm 4 17.59 ppm | 0.64 ppm
166 30 16.87 ppm 1.93 ppm 7 17.37 ppm 0.61 ppm
196 26 17.28 ppm 1.79 ppm 3 18.09 ppm | 0.06 ppm
134 29 17.59 ppm 1.92 ppm 6 18.20 ppm 0.45 ppm
155 33 17.73 ppm 3.20 ppm 9 18.52 ppm 1.45 ppm
160 35 17.73 ppm 2.34 ppm 9 18.69 ppm | 0.84 ppm
174 13 18.51 ppm 2.29 ppm 1 19.40 ppm | 0.00 ppm
149 34 18.57 ppm 2.64 ppm 8 19.88 ppm | 0.31 ppm
164 32 18.75 ppm 1.79 ppm 8 18.82 ppm 0.79 ppm
172 24 19.05 ppm 2.62 ppm 6 20.14 ppm 0.42 ppm
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host IP

12 hour periods

24 hour periods

(last byte) | # periods min skew est A max | # periods min skew est A max
141 32 19.17 ppm 4.35 ppm 7 21.69 ppm | 0.62 ppm
175 14 19.28 ppm 1.72 ppm 2 20.15 ppm 0.27 ppm
181 28 19.92 ppm 2.08 ppm 7 20.51 ppm 0.46 ppm
180 23 20.23 ppm 3.75 ppm 3 22.69 ppm | 0.52 ppm
194 37 20.29 ppm 1.93 ppm 9 20.98 ppm 0.69 ppm
151 28 21.60 ppm 3.71 ppm ) 23.94 ppm 0.61 ppm
140 27 25.04 ppm 3.77 ppm 5 27.61 ppm | 0.42 ppm
193 38 25.24 ppm 4.54 ppm 11 25.34 ppm 3.37 ppm
145 24 25.40 ppm 1.85 ppm 4 26.26 ppm 0.66 ppm
144 26 25.46 ppm 1.48 ppm 3 26.32 ppm | 0.14 ppm
138 26 25.61 ppm 3.05 ppm ) 25.92 ppm 0.37 ppm
153 29 26.34 ppm 3.41 ppm 6 28.42 ppm | 0.43 ppm
197 32 26.61 ppm 2.94 ppm 7 27.26 ppm 1.63 ppm
143 25 27.27 ppm 1.86 ppm 4 27.99 ppm 0.13 ppm
162 26 27.49 ppm 1.89 ppm 4 28.64 ppm 0.32 ppm
150 31 27.83 ppm 2.91 ppm 7 28.57 ppm 0.45 ppm
199 25 28.27 ppm 2.88 ppm 4 29.62 ppm 0.85 ppm
178 17 28.42 ppm 2.09 ppm 6 29.62 ppm 0.44 ppm
185 38 28.53 ppm 2.54 ppm 10 29.23 ppm 1.12 ppm
132 24 28.89 ppm 1.58 ppm 7 29.47 ppm 0.74 ppm
135 31 29.97 ppm 3.07 ppm ) 30.34 ppm 1.52 ppm
198 39 30.26 ppm 3.76 ppm 12 30.96 ppm 2.82 ppm
131 16 30.61 ppm 3.32 ppm 2 33.00 ppm 0.83 ppm
169 27 31.43 ppm 1.73 ppm 4 31.86 ppm | 0.24 ppm
159 31 31.51 ppm 3.35 ppm 7 33.66 ppm 0.56 ppm
188 41 31.58 ppm 4.35 ppm 11 34.62 ppm | 0.95 ppm
154 33 31.75 ppm 3.77 ppm 8 33.80 ppm 0.50 ppm
133 24 31.85 ppm 1.59 ppm 8 32.33 ppm | 0.47 ppm
146 29 36.91 ppm 7.78 ppm 7 43.15 ppm | 0.79 ppm
186 33 37.96 ppm 5.08 ppm 8 41.33 ppm 0.75 ppm
157 32 37.98 ppm 2.25 ppm 6 38.90 ppm 0.15 ppm
176 16 38.00 ppm 2.30 ppm 2 39.77 ppm 0.02 ppm
192 20 46.38 ppm 1.66 ppm 7 47.04 ppm | 0.45 ppm
190 28 47.81 ppm 2.19 ppm 6 49.03 ppm 0.25 ppm
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