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ABSTRACT

The Secure Shell (SSH) protocol is one of the most popu-
lar cryptographic protocols on the Internet. Unfortunately,
the current SSH authenticated encryption mechanism is in-
secure. In this paper we propose several fixes to the SSH
protocol and, using techniques from modern cryptography,
we prove that our modified versions of SSH meet strong
new chosen-ciphertext privacy and integrity requirements.
Furthermore, our proposed fixes will require relatively lit-
tle modification to the SSH protocol or to SSH implemen-
tations. We believe that our new notions of privacy and
integrity for encryption schemes with stateful decryption al-
gorithms will be of independent interest.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection; E.3
[Data Encryption]: Standards; F.2 [Analysis of Algo-
rithms and Problem Complexity]: Miscellaneous

General Terms

Security, Theory.

Keywords

Authenticated Encryption, Secure Shell, SSH, Stateful De-
cryption, Security Proofs.

1. Introduction
Conceived as a secure alternative to traditional Unix tools

like rsh and rcp [27], the IETF standardization body’s Se-
cure Shell (SSH ) protocol [17]1 has become one of the most
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1SSH version 1.5 [27] and SSH version 2.0 [17] are very dif-
ferent (e.g., version 1.5 uses 32-bit CRCs for authenticity).
We focus our analysis on SSH version 2.0.
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popular and widely used cryptographic protocols on the In-
ternet. Because of its popularity and because of the insecu-
rity of programs like rsh and telnet, a number of institu-
tions only allow users to remotely access their facilities using
SSH. The cryptographic heart of the SSH protocol is its Bi-
nary Packet Protocol (BPP) [28]; the BPP is responsible for
the underlying symmetric encryption and authentication (or
the authenticated encryption) of all messages sent between
two parties involved in an SSH connection.

Although others have discussed specific properties of the
SSH BPP (e.g., problems with not using a MAC [26] or
problems with SSH’s use of CBC mode [10]), to the best
of our knowledge no one has performed a rigorous, provable
security-based analysis of the entire SSH BPP authenticated
encryption mechanism. Our goal was thus to thoroughly an-
alyze the SSH BPP authenticated encryption scheme and, in
the event that we found any problems, to present provably-
secure fixes to the protocol.

In order for our fixes to be as useful as possible to the In-
ternet community, when developing our fixes we considered
both (1) provable security and (2) efficiency. Additionally,
since retroactively modifying existing implementations is of-
ten very expensive, we required that our suggested modifi-
cations (3) not significantly alter the current SSH specifica-
tion. For the last point, we note that the creators of SSH
had the foresight to design the SSH BPP in a modular way:
in particular, it is relatively “easy” to change the SSH BPP’s
underlying encryption and message authentication modules.

Analysis and provably secure recommendations. The
SSH BPP specification states that SSH implementations
should use CBC mode encryption [11] with chained initial-
ization vectors (IVs); i.e., the IV used when encrypting a
message should be the last block of the previous ciphertext.
Unfortunately, CBC mode encryption with chained IVs is
insecure [23], and this insecurity extends to SSH (this ex-
tension was also reported by Dai [10]).

Since CBC mode encryption with chained IVs is insecure,
but CBC mode with random IVs is provably secure against
chosen-plaintext attacks [2], a natural fix to the SSH pro-
tocol might be to replace the use of chained-IV CBC mode
with randomized CBC mode. Unfortunately, we show that
doing so is not sufficient. In particular, since the SSH spec-
ification does not require the padding to be random, the re-
sulting SSH implementation may be vulnerable to a rather
serious reaction-attack (a privacy attack that works by mod-
ifying a sender’s ciphertexts and observing the receiver’s re-
sponse).



We next present several secure fixes to the SSH authenti-
cated encryption mechanism. For example, we suggest us-
ing randomized CBC mode encryption; the difference be-
tween this suggestion and the suggestion in the above para-
graph is that we require at least one full block of random
padding (this could, however, result in having to encipher
more blocks than the previous SSH alternative). We also
suggest another CBC variant that does not require addi-
tional random padding: CBC mode where the IV is gen-
erated by encrypting a counter with a different key. As
an additional alternative, we suggest replacing the under-
lying encryption scheme with a variant of counter (CTR)
mode [12, 22] in which both the sender and receiver main-
tain a copy of the counter. We also present a framework
within which to analyze other possible replacements.

One important advantage of these fixes over the current
SSH specification is provable security. Making reasonable
assumptions (e.g., that SSH’s underlying block cipher is se-
cure), we are able to show that our alternatives will pre-
serve privacy against adaptive chosen-plaintext and adaptive
chosen-ciphertext attacks. We also show that our alterna-
tives will resist forgery, replay, and out-of-order delivery at-
tacks. Finally, we argue that our alternatives, and especially
the latter two, also satisfy the other two requirements listed
above (efficiency and ease of modification). (We note that
our CTR mode construction addresses the concerns with
CTR mode raised in [8].)

Theoretical contributions. The previous notions of pri-
vacy [2] and integrity [19, 5] for authenticated encryption
schemes only address encryption schemes with stateless de-
cryption algorithms. The SSH BPP decryption algorithm
is, however, stateful. Motivated by a desire to analyze the
SSH BPP authenticated encryption scheme, and by the de-
sire to capture the potential “power” of stateful decryption
algorithms, we extend the previous notions of privacy and
integrity to encryption schemes with stateful decryption al-
gorithms. The aforementioned “power” refers to the fact
that if a scheme meets our new notions of security, then,
in addition to satisfying the existing notions of privacy [2]
and integrity [19, 5], the scheme will be secure against re-
play attacks and out-of-order delivery attacks — attacks not
captured under the previous models.

One alternative approach to our analysis would have been
to model the SSH BPP as a “secure channel” [9] since the no-
tion of secure channels can be applied to encryption schemes
with stateful decryption algorithms. We point out that the
combination of our notions is stronger than the notion of
secure channels: combining a secure key agreement protocol
with an authenticated encryption scheme that meets both of
our notions will yield a secure channel. Consequently, since
our fixes to the SSH BPP provably meet our strong notions,
the resulting SSH BPP is also a secure channel.

We acknowledge that one potential disadvantage of our
new notions of security is that they may be “too strong”
for some applications: some applications may not require
the strength associated with our notions (see [9, 20] for rea-
sons). For those applications, the notion of a secure chan-
nel might be more appropriate. Our notions are, however,
more appropriate for applications (like SSH) that do require
a higher level of protection such as protection against out-
of-order delivery attacks. Finally, we note that side-channel
attacks (such as those exploiting information leaked through
the length of packets or the interval of time between pack-

ets [25]) are not captured by our security models nor any
other provable security models that we are aware of.

Overview. After describing the SSH Binary Packet Pro-
tocol in Section 2, we present a simple attack against the
current SSH specification (Section 3). In Section 4 we show
that “fixing” the SSH BPP in the natural way may result in
an insecure protocol. Motivated by the lessons we learned
from Sections 3 and 4, we then present provably-secure fixes
to the SSH Binary Packet Protocol (Section 5). In Section 6
we present our provable security results in more detail (the
proofs are in the full version of this paper [4]). Finally, in
Section 7 we discuss our results and make recommendations
to the SSH and applied cryptographic communities. We
discuss the significance of our earlier attacks and the advan-
tages and disadvantages of switching to our proposed mod-
ifications. We also discuss the possibility of changing the
SSH BPP from an “Encrypt-and -MAC-based” construction
to an “Encrypt-then-MAC-based” construction and the pos-
sibility of modifying SSH to use a dedicated authenticated
encryption scheme such as XCBC [13] or OCB [24].

Background and related work. An authenticated en-
cryption scheme is a scheme designed to provide both pri-
vacy and integrity. From an API perspective, a symmetric
authenticated encryption scheme is equivalent to an encryp-
tion scheme except that the decryption algorithm can return
a special error code. There are two types of authenticated
encryption schemes: dedicated constructions (e.g., RPC [19],
XCBC [13], IACBC [18], and OCB [24]) and generic com-
position constructions, so named because they use standard
encryption and message authentication schemes as “black
boxes.” Analysis of the latter class was initiated in [5, 20].
The schemes of SSH, SSL and IPSEC fall in this class. The
idea of modeling data formats via encoding schemes that we
use here was introduced in [6]. An et. al. [1] consider generic
composition in the asymmetric setting and in particular ob-
tain results about the security of the transform which splits
a message into two sub-messages via a commitment scheme,
signs one of the sub-messages and encrypts the other.

2. The SSH Binary Packet Protocol

The SSH Binary Packet Protocol [28] is responsible for en-
crypting and authenticating all messages between two par-
ties involved in an SSH session. Before beginning the au-
thenticated encryption portion of an SSH session, a client
and a server first agree upon a set of shared symmetric keys
(a different set for each direction of a connection). The
client and the server also agree upon which encryption and
message authentication schemes they wish to use. All of the
encryption schemes recommended by [28] are based on CBC
mode encryption [11], and all of the recommended message
authentication schemes are based on HMAC [21].

The SSH authenticated encryption scheme works as shown
in Figure 1. Given a payload message (in bytes), the SSH
BPP encodes that message into an encoded packet consist-
ing of the following fields: a four-byte packet length field
containing the length of the remaining encoded packet (in
bytes), a one-byte padding length field, the payload mes-
sage, and (possibly random) padding. The length of the
total packet must be a multiple of the underlying block ci-
pher’s block length, and the padding must be at least four
bytes long. Although the SSH specification allows up to 255
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Figure 1: The SSH authenticated encryption
scheme. See Section 2 for details.

bytes of padding per encoded packet, both implementations
that we evaluated (openssh-2.9p2 and SSH Communica-
tions’ ssh-3.0.1) use the minimum padding necessary. The
resulting ciphertext is the concatenation of the encryption
of the above encoded packet and the MAC of the above en-
coded packet prepended with a 32-bit counter. In the follow-
ing discussions we try to make clear whether we are referring
to the intermediate ciphertext output by the underlying en-
cryption scheme or the ciphertext packet (the concatenation
of the intermediate ciphertext and the MAC tag) output by
the SSH BPP.

Decryption is defined in a natural way: the receiver first
decrypts the intermediate ciphertext portion of a ciphertext
to get an encoded packet. The receiver then prepends a 32-
bit counter (which it also maintains) to the encoded packet
and determines whether the received MAC tag is valid. If
so, the decryptor removes the payload from the encoded
packet and delivers the payload to the user (or a higher-
level protocol). If the MAC verification fails, the connection
is terminated.

The SSH specification recommends the use of CBC mode
with inter-packet chaining. This means that, when encrypt-
ing an encoded payload, the sender uses as the initialization
vector (IV) either the last block of the immediately preced-
ing ciphertext or, when encrypting the first message, an IV
computed during the SSH key agreement protocol. We re-
fer to the current instantiation of the SSH protocol as SSH-
IPC, or SSH with inter-packet chaining.

3. Attack Against the Standard
Implementation of SSH

There is a simple attack against SSH-IPC; this attack
was also recently reported by Dai [10]. The problem with
SSH-IPC is that an attacker will know the IV for the next
message to be encrypted before the next message is actu-
ally encrypted. This means that if an attacker can control
the entire first block of the input into SSH-IPC’s underly-
ing CBC encryption scheme, it will be able to control the
corresponding input to the underlying block cipher. Since a
block cipher is deterministic, an attacker could use this to
glean information about a previously encrypted message.

We describe the attack in slightly more detail. We assume
for now that an adversary can control the entire first block of
an encoded packet. Suppose that an adversary has a guess
G of the first encoded block of the ith packet, and let C1 be
the last CBC block of the i − 1st intermediate ciphertext.
Since we are considering SSH-IPC, the block C1 was used
as the IV when encrypting the ith packet. Let C2 be the
first block of the ith ciphertext. And let C3 be the last CBC
block of the underlying ciphertext the user just output (i.e.,
the user will use C3 as its next IV). If the adversary is able
to force the user to encrypt the block C1 ⊕ C3 ⊕G, where
⊕ is the xor operation, and if the resulting block is C2, the
adversary knows its guess of for G was correct; otherwise the
adversary knows its guess was incorrect.

A small complication arises when mounting this attack
against SSH-IPC because the attacker cannot control the
entire first block of an encoded message (because the first
40 bits of an encoded packet contain metadata). This means
that an attacker may not be able to force a user’s underlying
CBC scheme to encrypt the block C1 ⊕ C3 ⊕G. An attacker
will, however, be able to mount this attack if C1 and C3 are
identical in the bits that the attacker cannot control. Let l
be the block length (in bits) of the underlying block cipher.
Since an attacker can control approximately lg(l/8) bits of
the padding length field and approximately 15− lg(l/8) bits
of the packet length field of an encoded message (SSH imple-
mentations are only required to support packets with pay-
loads containing less than 215 bytes and all packets must
be padded to a multiple of the block length), an attacker
could mount a variant of the above attack by waiting for a
collision on approximately 25 bits (but the adversary’s last
encryption request may be up to 215 bytes long).

4. Attacks Against a Natural “Fix”
The problem with SSH-IPC stems from the fact that its

underlying encryption scheme is itself vulnerable to chosen-
plaintext attacks. A logical fix might therefore be to re-
place the underlying encryption scheme with randomized
CBC mode (i.e., CBC mode in which a new random IV
is chosen for each message; this new IV must also be sent
with the ciphertext). Randomized CBC mode was proven
to resist chosen-plaintext attacks in [2]. We refer to an SSH
implementation that uses randomized CBC mode as SSH-
NPC, or SSH with no packet chaining.

It is possible to prove that SSH-NPC preserves privacy
against chosen-plaintext attacks and integrity under a no-
tion called “integrity of plaintexts” provided that a user does
not use SSH-NPC to encrypt more than 232 messages with
any given key. This proof holds even if the paddings used
in encoded packets are not random (which is allowed by the
SSH specification). As the following attack shows, however,
even though SSH-NPC with non-random padding preserves
privacy against chosen-plaintexts attacks, it does not pre-
serve privacy against chosen-ciphertext attacks.

Reaction attack against SSH-NPC. The SSH specifica-
tion encourages, although does not require, implementations
to use random padding. Unfortunately, when the padding
value is fixed (e.g., all zeros), SSH-NPC is susceptible to
an easily-mountable reaction attack. Furthermore, this at-
tack can be made to work even when the padding values
are not fixed but short and not hard to predict: an attacker
can simply wait until the predicted padding values collide



and then use the predicted value to successfully mount an
attack. The attack we describe here is similar in spirit to
Wagner’s attack in [7] and to the attacks in [20, 26] (the
term “reaction attack” comes from [16]).

The attack proceeds roughly as follows: an attacker in-
tercepts (and prevents the delivery of) two ciphertexts sent
by one party involved in an SSH connection. The adversary
then makes a guess about the relationship between the two
plaintexts corresponding to the two intercepted ciphertexts.
The adversary then uses that guess and those two cipher-
texts to create a new “ciphertext,” which the adversary then
sends to the other party involved in the SSH session. By ob-
serving the second party’s reaction (recall that if the second
party does not accept the doctored ciphertext, the connec-
tion will be terminated), an adversary will learn whether
its guess was correct. Intuitively, this attack works because
an attacker can modify the ciphertext in such a way that if
its guess was correct, the ciphertext that the second party
receives will verify. If its guess was incorrect, with high
probability the ciphertext will not verify.

We now describe the attack in more detail. As before,
let ⊕ denote the xor operation, let ‖ denote the concate-
nation of two strings, and let l denote the block length (in
bits) of the block cipher that SSH-NPC uses in CBC mode.
Suppose a user uses SSH-NPC to encrypt two equal-length
messages M1 and M2 with lengths at most l − 40 (or that
are identical after their l− 40-th bit). (For simplicity of ex-
position, assume that the two messages are exactly l − 40
bits long.) Let P11 and P12 be the first and the second
block of the encoded packet corresponding to the payload
M1, respectively. Similarly, let P21 and P22 be the first and
the second block of the encoded packets corresponding to
M2, respectively. The blocks P11 and P21 correspond to the
packet length, the padding length, and the payload fields of
the two encoded packets, and the blocks P12 and P22 cor-
respond to the padding fields. Since we are assuming fixed
padding (such as padding with all zeros), the padding blocks
P12 and P22 will be equal.

When SSH-NPC’s underlying CBC mode encryption sche-
me encrypts the first encoded packet P11‖P12, it will gener-
ate a ciphertext σ1 = C10‖C11‖C12; SSH-NPC’s underlying
MAC will also generate a tag τ1 (the MAC being computed
over the concatenation of a counter and P11‖P12). Similarly,
SSH-NPC will generate the CBC ciphertext C20‖C21‖C22

and the MAC tag τ2 for the encoded packet P21‖P22. (The
two blocks C10 and C20 correspond to the underlying CBC
mode’s random initialization vectors.)

Now assume that the receiver has not yet received the two
ciphertexts corresponding to M1 and M2 (i.e., the recipi-
ent’s counter is identical to the counter that the sender used
when she encrypted the first message). Assume that the at-
tacker knows either M1 or M2 and wants to verify a guess
of the other (or that the attacker wants to verify a guess of
the relationship between M1 and M2). Let X be the value
P11 ⊕ P21 ⊕ C20 (recall that the blocks P11 and P12 both
begin with the same 40 bits of header information and that
they respectively end in M1 and M2). The attacker then
asks the receiver to decrypt the message X‖C21‖C22‖τ1.
If the attacker’s guess is correct, then X‖C21‖C22 will de-
crypt, via SSH-NPC’s underlying CBC scheme, to P11‖P12,
the MAC tag τ1 will verify, and the decryptor will accept
the message. If the attacker’s guess is incorrect, however,
X‖C21‖C22 will not decrypt to P11‖P12, the tag τ1 will not

verify (unless the attacker also succeeds in breaking the se-
curity of the underlying MAC scheme), and the SSH-NPC
connection will terminate. The adversary, by watching the
recipients reaction, therefore learns information about the
plaintexts the sender is encrypting.

There are two aspects of this attack that make it easy
to mount. First, this attack only requires modifying en-
crypted packets; no chosen-plaintexts are required. Second,
an attacker can learn whether its guess is correct simply by
watching the recipient’s response. These observations mean
that all an attacker needs to perform this attack is the ability
to monitor, prevent the delivery of, and inject messages in
the encrypted communications between two parties. Similar
to Wagner’s attack in [7], this attack can be used to (among
other things) infer the characters that a user types over an
interactive SSH-NPC session. Of course, once the attacker
makes an incorrect guess, SSH-NPC terminates the connec-
tion. Nonetheless, an attacker might still be able to repeat
its attack after the user begins a new session.

Information leakage, replay, and out-of-order de-
livery attacks. Although the SSH draft suggests that an
SSH session rekey after every gigabyte of transmitted data,
doing so is not required. We caution that if an SSH-NPC
(or SSH-IPC) session is not rekeyed frequently enough, then
the session will be vulnerable to a number of other attacks.
Recall that the SSH binary packet protocol includes a 32-bit
counter in each message to be MACed. These attacks make
use of the fact that if the SSH connection is not rekeyed
frequently enough, then the counter will begin to repeat.

Recall that SSH generates each MAC using the encoded
payload prepended with a counter as an input and then ap-
pends the MAC to the intermediate ciphertext to generate
a ciphertext packet. As a result, if the underlying MAC al-
gorithm is stateless and deterministic (which many MACs
are), then allowing the counter to repeat will leak infor-
mation about a user’s plaintexts (through the MAC). We
present the attacks in more details for completeness. Sup-
pose that the underlying message authentication scheme is
stateless and deterministic and that the padding is some
fixed value. Suppose that an attacker A sees a ciphertext
with a MAC tag τ and suspects that the underlying payload
is M . To verify its guess, A waits for the sender to encrypt
232 − 1 more packets and then requests the sender to en-
crypt the payload M . Let τ ′ be the MAC tag returned in
response to the request. If A’s guess is correct, then τ ′ will
equal τ . Otherwise τ ′ 6= τ with very high probability. The
attack can also be used to break the privacy of SSH-NPC
when SSH-NPC uses random padding. In particular, if the
first 232 messages that a user tags result in encoded packets
that use the minimum 4 bytes of random padding, then an
attacker capable of forcing a user to tag an additional 232

chosen-plaintexts will be able to learn information about the
user’s initial 232 messages. The property used in this attack
(that tagging with a deterministic MAC leaks information
about plaintexts) was also exploited by [5] and [20].

If the counter is allowed to repeat, SSH-NPC also be-
comes vulnerable to replay attacks and out-of-order deliv-
ery attacks. For replay attacks, once the receiver has de-
crypted 232 messages, an attacker will be able to convince
the receiver to re-accept a previously received message. For
out-of-order delivery attacks, after the sender has encrypted
more that 232 messages, an attacker will be able to modify
the order in which the messages are decrypted.



5. Secure Fixes to SSH
We now briefly describe our new SSH instantiations. We

show in Section 6 that these new alternatives provably meet
our strongest notions of security. That is, assuming that
these fixes are not used to encrypt more than 232 packets
between rekeying, these new constructions will resist chosen-
plaintext and chosen-ciphertext privacy attacks as well as
forgery, replay, and out-of-order delivery attacks. Security
above 232 is not guaranteed because, after 232 packets are
encrypted, the SSH BPP’s 32-bit internal counter will be-
gin to wrap. We will compare these instantiations of SSH
to others and discuss additional possible modifications, in-
cluding extending the length of SSH’s internal counter, in
Section 7.

SSH via randomized CBC mode with random padding:
SSH-$NPC. Recall that the attack against SSH-NPC in-
volves creating a new intermediate ciphertext that would
decrypt to an encoded packet that the user previously en-
crypted (assuming the attacker’s guess was correct). With
this in mind, we propose a provably secure SSH instantiation
(SSH-$NPC) that uses randomized CBC mode for the un-
derlying encryption scheme and that requires that encoded
packets use random padding. We require that the random
padding be chosen anew for each encryption and that the
random padding occupy at least one full block of the encoded
packet. This conforms to the current SSH specification since
the latter allows padding up to 255 bytes.

The intuition behind the security of this alternative and
the reason that this alternative resists the attack in Section 4
is the following. Since the random padding is not sent in the
clear, an attacker will not know what the random padding
is and will not be able to forge a ciphertext that will de-
crypt to that previously encoded message (with the same
random padding). Furthermore, any other attack against
SSH-$NPC would translate into an attack against the under-
lying CBC mode encryption scheme, the underlying MAC,
the encoding scheme, or the underlying block cipher.

SSH via CBC mode with CTR generated IVs: SSH-
CTRIV-CBC. Instead of using CBC mode with a random
IV, it is also possible to generate a “random-looking” IV
by encrypting a counter with a different key; we call this
alternative SSH-CTRIV-CBC. Unlike SSH-$NPC, for SSH-
CTRIV-CBC we do not require a full block of padding and
we do not require the padding to be random. The reason
we do not require random padding for this alternative is
because the decryptor is stateful and that any modification
to an underlying CBC ciphertext will, with probability 1,
change the encoded packet. This alternative is more attrac-
tive than SSH-$NPC because it does not increase the size of
ciphertexts compared to SSH-IPC (but it does require one
additional block cipher application compared to SSH-IPC).

SSH via CTR mode with stateful decryption: SSH-
CTR. SSH-CTR uses standard CTR mode as the under-
lying encryption scheme with one modification: both the
sender and the receiver maintain the counters themselves,
rather than transmitting them as part of the ciphertexts.
We refer to this variant of CTR mode as CTR mode with
stateful decryption. We point out that this CTR mode vari-
ant offers the same level of chosen-plaintext privacy as stan-
dard CTR mode, the security of which was shown in [2].
As with SSH-CTRIV-CBC, SSH-CTR does not require ad-
ditional padding and does not require the padding to be

random. Furthermore, unlike SSH-$NPC and SSH-CTRIV-
CBC, SSH-CTR requires the same number of block cipher
invocations as SSH-IPC.

Other possibilities. There are numerous other possible
fixes to the SSH BPP. Rather than enumerate all possible
fixes to the SSH BPP, in Section 6 we discuss how one can
use our general proof techniques to prove the security of
other fixes (assuming, of course, that the other fixes are
indeed secure). For example, another fix of interest might
be SSH-EIV-CBC, or SSH where the underlying encryption
scheme is replaced by a CBC variant in which the IV is the
encipherment of the last block of the previous ciphertext.

6. Provable Security Results

Practice-oriented provable security. Provable secu-
rity was first introduced by Goldwasser and Micali in [15]
and has since gained wide acceptance in both theoretical
and applied cryptography. In this approach, one determines
the security definitions and adversary models for the cryp-
tographic construct in question and “proves” security of the
desired construct via a reduction from the hardness of the
underlying primitives. We follow this approach here. Addi-
tionally, our reductions allow concrete bounds to be readily
obtained, thus following the practice-oriented approach to
provable security. We note, however, that for simplicity we
do not state exact bounds in the paper but simply state
roughly how the resources for breaking the construct and
those for breaking the underlying primitives compare. In
most cases, they are equal. In other cases, they can be easily
determined by looking at the expansion between a payload
message and its encoded packet.

Analyzing SSH via a new paradigm. An SSH cipher-
text is the concatenation of the encryption and the MAC
of (some encodings of) an underlying payload message. At
first glance, this seems to fall into the “Encrypt-and-MAC”
method of composing an encryption scheme with a MAC
scheme: to encrypt a message M , apply the encryption al-
gorithm to M and the tag generation algorithm to M , then
concatenate the resulting strings to produce the final cipher-
text to be transmitted. As pointed out in [5, 20], this partic-
ular composition method is not generically secure: security
under standard notions of the encryption and MAC schemes
used as building blocks under this composition method is not
enough to guarantee the privacy of the payload. Naturally,
this raises a question regarding the security of SSH.

We show here that, with an appropriate encoding method,
such as the method used in SSH, an Encode-then-E&M
scheme can actually be made secure. In fact, our analy-
sis models SSH more generally as an authenticated encryp-
tion scheme constructed via a paradigm we call Encode-then-
E&M : to encrypt a message, first encode it (as SSH does),
then encrypt and MAC the encoded packets. Our analysis
was done in a general way in order to ensure that that the
definitions and techniques we developed will be useful to the
evaluators of other SSH-like schemes.

As described in Section 2, an SSH BPP encoded message
(for encryption) consists of a packet length field, a padding
length field, payload data, and padding. An encoded mes-
sage (for MACing) is identical to an encoded message for
encryption except that it is prepended with a 32-bit counter.



6.1 Definitions

Notation. If x and y are strings, then |x| denotes the
length of x in bits and x‖y denotes their concatenation. If
i is a non-negative integer, then 〈i〉l denotes the unsigned
l-bit binary representation of i. The empty string is denoted
ε. When we say an algorithm is stateful, we mean that it
uses and updates its state and that the entity executing it
maintains the state between invocations. Let ε denote the
initial state of any (stateful or stateless) algorithm. If f is a

randomized (resp., deterministic) algorithm, then x
R← f(y)

(resp., x ← f(y)) denotes the process of running f on input
y and assigning the result to x. If A is a program, A ⇐ x
means “return the value x to A.”

Encryption schemes with stateful decryption. As
usual a symmetric encryption scheme or authenticated en-
cryption scheme SE = (K, E ,D) consists of three algorithms.
The randomized key generation algorithm returns a key K.
The encryption algorithm, which may be both randomized
and stateful, takes key K and a plaintext and returns a
ciphertext. Motivated by SSH, the novel feature here is
that the decryption algorithm may also be stateful (but not
randomized); the decryption algorithm takes key K and a
ciphertext and returns either a plaintext or a special symbol
⊥ (indicating failure).

Consider the interaction between an encryptor and a de-
cryptor. If, at any point in time, the sequence of inputs to
the decryptor is not a prefix of the sequence of outputs of the
encryptor, then we say that the encryption and decryption
processes have become out-of-sync and refer to the decryp-
tion input at that point in time as the first out-of-sync input.
The usual correctness condition, which said that if C is pro-
duced by encrypting M under K then decrypting C under K
yields M , is replaced with a less stringent condition requir-
ing only that decryption succeed when the encryption and
decryption processes are in-sync. More precisely, the follow-
ing must be true for any key K and plaintexts M1, M2, . . ..
Suppose that both EK and DK are in their initial states.
For i = 1, 2, . . ., let Ci = EK(Mi) and let M ′

i = DK(Ci). It
must be that Mi = M ′

i for all i.

Message authentication schemes. A message authenti-
cation scheme or MAC MA = (K, T ,V) consists of three
algorithms. The randomized key generation algorithm re-
turns a key K. The tagging algorithm, which may be both
randomized and stateful, takes key K and a plaintext and
returns a tag. The deterministic and stateless verification
algorithm takes key K, a plaintext, and a candidate tag and
returns a bit. For any key K and message M , and for any
internal state of TK , we require that VK(M, TK(M)) = 1.

Encoding schemes. An “encoding” is an unkeyed transfor-
mation. We use encodings to model the process of loading a
payload message into a packet for encryption and a packet
for message authentication (recall that the encoded packet
that the SSH BPP encrypts is slightly different than the en-
coded packet that the SSH BPP MACs). Syntactically, an
encoding scheme EC = (Enc, Dec) consists of an encoding
algorithm and a decoding algorithm. The encoding algo-
rithm Enc, which may be both randomized and stateful,
takes as input a message M and returns a pair of mes-
sages (Me, Mt). The decoding algorithm Dec, which may
also be stateful but not randomized, takes as input a mes-
sage Me and returns a pair of messages (M, Mt), or (⊥,⊥)

on error. The following consistency requirement must be
met. Consider any two messages M, M ′ where |M | = |M ′|.
Let (Me, Mt)

R← Enc(M) for Enc in some state, and let

(M ′
e, M

′
t)

R← Enc(M ′) for Enc is in some (possibly differ-
ent) state. We require that |Me| = |M ′

e| and |Mt| = |M ′
t |.

Furthermore, suppose that both Enc and Dec are in their
initial states. For any sequence of messages M1, M2, . . .
and for i = 1, 2, . . ., let (M i

e, M
i
t ) = Enc(M i), and then

let (mi, mi
t) = Dec(M i

e). We require that M i = mi and
that M i

t = mi
t for all i.

Encode-then-E&M paradigm. Now consider an encoding
scheme, and let (Me, Mt) be the encoding of some message
M . To generate a ciphertext for M using the Encode-then-
E&M construction, the message Me is encrypted with an
underlying encryption scheme, the message Mt is MACed
with an underlying MAC algorithm, and the resulting two
values (intermediate ciphertext and MAC) are concatenated
to produce the final ciphertext. The composite decryption
procedure is similar except the way errors (e.g., decoding
problems or tag verification failures) are handled: in partic-
ular, should the composite decryption algorithm enter a new
state or return to its previous state? We take the approach
used in SSH whereby, if a decryption fails, the composite de-
cryption algorithm enters a “halting state.” This approach
is perhaps the most intuitive since, upon detecting a chosen-
ciphertext attack, the decryption algorithm prevents all sub-
sequent ciphertexts from being decrypted (of course, this
also makes the decryptor vulnerable to a denial-of-service-
type attack). Construction 1 shows the Encode-then-E&M
composition method in details.

Construction 1. (Encode-then-E&M) Let EC = (Enc,
Dec), SE = (Ke, E ,D), and MA = (Kt, T ,V) be encod-
ing, encryption, and message authentication schemes with
compatible message spaces (the outputs from Enc are suit-
able inputs to E and T ). Let all states initially be ε. We
associate to these schemes a composite Encode-then-E&M
scheme SE = (K, E ,D) as follows:

Algorithm K
Ke

R← Ke

Kt
R← Kt

Return 〈Ke, Kt〉

Algorithm E〈Ke,Kt〉(M)

(Me, Mt)
R← Enc(M)

σ
R← EKe(Me) ; τ

R← TKt(Mt)
C ← σ‖τ
Return C

Algorithm D〈Ke,Kt〉(C)
If st =⊥ then return ⊥
If cannot parse C then st ←⊥ ; return ⊥
Parse C as σ‖τ ; Me ← DKe(σ)
If Me =⊥ then st ←⊥ ; return ⊥
(M, Mt) ← Dec(Me)
If M =⊥ then st ←⊥ ; return ⊥
v ← VKt(Mt, τ)
If v = 0 then st ←⊥ ; return ⊥
Return M

Although only D explicitly maintains state in the above
pseudocode, the underlying encoding, encryption, and MAC
schemes may also maintain state.

6.2 Security Notions

Since the goal is to model schemes based on block ci-
phers and cryptographic hash functions, a concrete security



treatment is used. We associate to any adversary a number
called its “advantage” that measures its success in breaking
a given scheme with respect to a given security notion. The
smaller an adversary’s advantage is against a given scheme,
the stronger that scheme is with respect to that adversary.
In discussion, take “secure” to mean that the advantage of
any adversary with “practical” resources is “small.” We
briefly describe the security notions here. The full version
of this paper [4] presents these notions in more detail.

Security notions for encryption schemes with state-
ful decryption. A secure authenticated encryption sche-
me SE = (K, E ,D) is one that preserves both privacy and
integrity. The standard notion of indistinguishability (pri-
vacy) under chosen-plaintext attacks (ind-cpa) is as fol-
lows [2]: we consider a game in which an adversary A is
given access to an left-or-right-encryption (lr-encryption) or-
acle EK(LR(·, ·, b)), for some hidden bit b, that on input two
equal length message M0, M1, returns EK(Mb). After per-
forming a number of lr-encryption queries, the adversary
must return a guess for the bit b. We define Advind-cpa

SE (A)
as the probability that A returns 1 when b = 1 minus the
probability that A returns 1 when b = 0.

For our notion of chosen-ciphertext privacy for stateful de-
cryption (ind-sfcca), we consider a game in which an adver-
sary B is given access to an lr-encryption oracle EK(LR(·, ·,
b)) and a decryption oracle DK(·). As long as B’s queries to
DK(·) are in-sync with the responses from EK(LR(·, ·, b)),
the decryption oracle performs the decryption (and updates
its internal state) but does not return a response to B.
Once B makes an out-of-sync query to DK(·), the decryp-
tion oracle returns the output of the decryption. We de-
fine Advind-sfcca

SE (B) as the probability that B returns 1
when b = 1 minus the probability that B returns 1 when
b = 0. The new ind-sfcca notion implies the previous notion
of indistinguishability under chosen-ciphertext attacks (ind-
cca [2]). Note that, without allowing an adversary to query
the decryption oracle with in-sync ciphertexts (e.g., in the
standard ind-cca setting), we would not be able to model
attacks in which the adversary attacks a stateful decryptor
after the latter had decrypted a number of legitimate cipher-
texts (perhaps because of some weakness related to the state
of the decryptor at that time).

The standard notion for integrity of plaintexts (int-ptxt)
is as follows [5]: we consider a game in which an adver-
sary A is given access to an encryption oracle EK(·) and
a decryption-verification oracle D∗K(·). On input a candi-
date ciphertext C, the decryption-verification oracle invokes
DK(C) and returns 1 if DK(C) 6=⊥ and 0 otherwise. We

define Advint-ptxt
SE (A) as the probability that A can find a

ciphertext C such that D∗K(C) = 1 but that the decrypted
value of C, i.e. DK(C), was not previously a query to EK(·).
For our notion of integrity of ciphertexts for stateful de-
cryption (int-sfctxt), we again consider a game in which
an adversary B is given access to the two oracles EK(·) and
D∗K(·). We define Advint-sfctxt

SE (B) as the probability that B
can generate a ciphertext C such that D∗K(C) = 1 and C is
an out-of-sync query. The new notion of int-sfctxt implies
the previous notion of integrity of ciphertexts (int-ctxt [5])
as well as security against replay and out-of-order delivery
attacks.

The following proposition states that, if a scheme is in-
distinguishable under chosen-plaintexts attacks and if the

scheme meets our strong definition of integrity of cipher-
texts, then the scheme will meet our strong definition of
indistinguishability under chosen-ciphertext attacks. The
proof appears in [4]. It is similar to the results in [5] and [19]
which show that the standard ind-cpa and the standard int-
ctxt notion imply the standard ind-cca notion.

Proposition 1. Let SE = (K, E ,D) be a symmetric au-
thenticated encryption scheme. Given any ind-sfcca adver-
sary A, we can construct an int-sfctxt adversary I and an
ind-cpa adversary B such that

Advind-sfcca
SE (A) ≤ 2 ·Advint-sfctxt

SE (I) + Advind-cpa
SE (B)

and I and B use the same resources as A.

Unforgeability of MAC schemes. We consider a secure
MACMA = (K, T ,V) to be one that is strongly unforgeable
under chosen-message attacks [5]. We consider a game in
which a forger F is given access to a tagging oracle TK(·) and
a verification oracle VK(·). The forger is allowed arbitrary
queries to the oracles and wins if it can find a pair (M, τ)
such that VK(M, τ) = 1 but τ was never returned by TK(·)
as a tag for M . We denote the advantage of this forger as
Advuf-cma

MA (F ). Although this notion is in general stronger
than the standard notion of unforgeability [3], we note that
any pseudorandom function is a strongly unforgeable MAC,
and most practical MACs seem to be strongly unforgeable.

Pseudorandom functions. We formalize pseudorandom
functions and their security following [14, 3]. Suppose F is a
family of functions from some message space M to {0, 1}L,
and let RandM→L denote the family of all functions from
M to {0, 1}L. We define Advprf

F (D) as the advantage of
a distinguisher D in distinguishing a random instance of F
from a random instance of RandM→L.

Collision resistance of encoding schemes. The se-
curity of a composite Encode-then-E&M construction de-
pends on properties of the underlying encoding, encryption,
and MAC schemes. In addition to the standard assump-
tions of indistinguishability of the encryption scheme and
unforgeability and pseudorandomness of the MAC scheme,
we require “collision resistance” of the encoding scheme. We
motivate this notion as follows. Consider an integrity adver-
sary against a composite Encode-then-E&M scheme. If the
adversary can find two different messages that encode (or
decode) to the same input for the underlying MAC, then
the adversary may be able to compromise the integrity of
the composite scheme. Consider now an indistinguishabil-
ity adversary against the composite scheme. As long as the
adversary does not generate two inputs for the underlying
MAC that collide, the underlying MAC should not leak in-
formation about the plaintext. The following describes the
notions of collision resistance for encoding schemes. Formal
definitions appear in [4].

An adversary A mounting a “chosen-plaintext attack”
against an encoding scheme EC = (Enc, Dec) is given access
to an encoding oracle Enc(·). If A can make the encoding
oracle output two pairs that collide on their second compo-
nents (i.e., the Mt’s), then A wins. We allow A to repeatedly
query the encoding oracle with the same input. Similarly, an
adversary B mounting a “chosen-ciphertext attack” against
EC is given access to both an encoding oracle and a decod-
ing oracle Dec(·). If B can cause a collision in the second
components of the outputs of Enc(·), Dec(·), or both, then



Algorithm Enc(M) // |M | ≡ 0 (mod 8)
If stn = ε then stn ← 0
bpl ← l− �(|M |+ 40) (mod l)

�
If bpl < 32 then bpl ← bpl + l

p
R← {0, 1}bpl

tl ← (8 + |M |+ bpl)/8 ; pl ← bpl/8
Me ← 〈tl〉32‖〈pl〉8‖M‖p ; Mt ← 〈stn〉32‖Me

stn ← stn + 1 mod 232

Return (Me, Mt)

Algorithm Dec(Me)
If stu = ε then stu ← 0
Mt ← 〈stu〉32‖Me

stu ← stu + 1 mod 232

If cannot parse Me then return (⊥,⊥)
Parse Me as 〈tl〉32‖〈pl〉8‖M‖p
Return (M, Mt)

Figure 2: The SSH encoding algorithm EC =
(Enc, Dec) for l-bit blocks, where l ≡ 0 (mod 8) and
64 ≤ l ≤ 252 ·8. The states stn and stu are maintained
across invocations.

it wins. Of course, we exclude the cases where B uses the
two oracles in a trivial way to obtain collisions (e.g. submit-
ting a query to Enc(·) and then immediately submitting the
first component of the result, namely Me, to Dec(·)). We
refer to the advantages of the adversaries in these two set-
tings as Advcoll−cpa

EC (A) and Advcoll−cca
EC (B), respectively.

All encoding schemes with deterministic and stateless encod-
ing algorithms are insecure under chosen-plaintext collision
attacks. Furthermore, all encoding schemes with stateless
decoding algorithms are insecure under chosen-ciphertext
collision attacks.

6.3 SSH Security Results

The SSH encoding scheme, when used with an l-bit block
cipher, is shown in Figure 2 (see also Section 2). Recall
that |x| denotes the length of string x in bits, not bytes,
and that 〈x〉k denotes the representation of x as a k-bit un-
signed integer. As mentioned, although Figure 2 shows the
padding p as a random string (the second boxed equation),
the SSH specification does not require that p be random.
Additionally, although the SSH specification allows up to
255 bytes of padding, the two major implementations of the
SSH protocol, openssh-2.9p2 and SSH Communications’
ssh-3.0.1, use the minimum-recommended padding length
shown in Figure 2. The proposed SSH-$NPC instantiation
of SSH replaces the first boxed statement with bpl ← bpl+ l
if bpl < l and always uses random padding as shown in the
second boxed statement. The instantiations SSH-CTRIV-
CBC, SSH-EIV-CBC, and SSH-CTR, on the other hand,
uses the first boxed statement with no modification and al-
lows padding p to be non-random.

The following lemma gives the collision bounds for the
SSH encoding as shown in Figure 2. Notice that if qe ≤
232, then dqe · 2−32e − 1 ≤ 0 and Advcoll−cpa

EC (A) = 0 for
any adversary A. Also, if a coll-cca adversary C submits
more than 232 encoding queries or 232 decoding queries, then
it can completely break the scheme, i.e. Advcoll−cca

EC (C) =
1. (For coll-cca security of up to 232 decoding queries it is
critical that the decoding algorithm increment its counter

on every invocation, even for messages that do not correctly
decode.) The proof appears in [4].

Lemma 1. (Collision Resistance of the SSH Encod-
ing) Let EC be the encoding scheme shown in Figure 2 and
let mbpl be the minimum padding length (32 bits in Figure 2;
the 32 in the equations below corresponds to the length of
the encoding scheme’s internal counter, not the minimum
padding length). For any coll-cpa adversary A and any coll-
cca adversary B, each making qe encoding queries and, in
the case of B, making qd decoding queries, we have that

Advcoll−cpa
EC (A) ≤ �

qe · 2−32
� · ��qe · 2−32

�− 1
� · 231−mbpl

Advcoll−cca
EC (B) = 0 if qe, qd ≤ 232

and that coll-cca collision resistance is not provided if qe or
qd > 232.

Integrity and privacy of our recommendations. Our
proposed fixes from Section 5 are secure under our strong
notions of integrity (int-sfctxt) and indistinguishability (ind-
sfcca). We sketch our proof of security for SSH-CTR (see [4]
for details). The proof technique extends naturally to other
possible fixes to the SSH BPP.

We first present a general result that holds for all Encode-
then-E&M constructions. This result states that, for any
Encode-then-E&M construction, if the underlying encryp-
tion scheme is ind-cpa-secure, if the underlying MAC is a
secure pseudorandom function, and if the encoding scheme
is coll-cpa collision resistant, then the composite Encode-
then-E&M scheme will be ind-cpa-secure. The proof in [4]
uses a slightly weaker notion of security for MACs.

Lemma 2. (Privacy of Encode-then-E&M with Re-
spect to Chosen-Plaintext Attacks) Let SE, MA, and
EC respectively be an encryption, a message authentication,
and an encoding scheme. Let SE be the encryption scheme
associated to them as per Construction 1. Then, given any
ind-cpa adversary S against SE, we can construct adver-
saries A, D, and C such that

Advind-cpa

SE (S) ≤ Advind-cpa
SE (A) + 2 ·Advprf

MA(D) +

2 ·Advcoll−cpa
EC (C) .

Furthermore, A, D, and C use the same resources as S ex-
cept that A’s and D’s inputs to their respective oracles may
be of different lengths than those of S (due to the encod-
ing).

We now state our result for SSH-CTR:

Theorem 1. (Security of SSH-CTR) Let SE be a CTR-
mode encryption scheme with stateful decryption, let MA
be a message authentication scheme, and let EC be the en-
coding scheme described above. Let SSH-CTR be the en-
cryption scheme associated to them as per Construction 1.
Then, given any int-sfctxt adversary I against SSH-CTR, we
can construct adversaries F and C such that Equation (1)
holds. Similarly, given any ind-sfcca adversary A against
SSH-CTR, we can construct adversaries S, B, E, and G
such that Equation (2) holds.

Advint-sfctxt
SSH-CTR(I) ≤ Advuf-cma

MA (F ) + Advcoll−cca
EC (C) (1)

Advind-sfcca
SSH-CTR(A) ≤ 2 ·Advint-sfctxt

SSH-CTR(S) + Advind-cpa
SE (B) +

2 ·Advprf
MA(E) + 2 ·Advcoll−cpa

EC (G) (2)



Furthermore, F and C use the same resources as I except
that F ’s messages to its oracles may be of different lengths
than I’s queries to its oracles (due to encoding) and C’s
messages to its decoding oracle may have slightly different
lengths than I’s decryption queries. Also, S, B, E, and G
use the same resources as A except that B’s and E’s inputs
to their respective oracles may be of different lengths than
those of A (due to the encoding).

Theorem 1 can be interpreted as follows. Equation (1) states
that SSH-CTR provides stateful chosen-ciphertext integrity
if the MAC is strongly unforgeable and if the encoding is
coll-cca collision resistant. Equation (2) states that SSH-
CTR provides stateful chosen-ciphertext privacy if it pro-
vides stateful chosen-ciphertext integrity, if the underlying
encryption scheme is ind-cpa secure, if the MAC is a secure
pseudorandom function, and if the encoding is coll-cpa se-
cure. As as example, making reasonable assumptions about
the security of the HMAC scheme, an implementation of
SSH-CTR that uses HMAC and AES in stateful-decryption
CTR mode will be secure under both of the strong notions
provided that at most 232 messages are encrypted between
rekeying. Notice here that we use different security proper-
ties of the MAC to obtain different security aspects of SSH-
CTR, namely strong unforgeability for integrity and pseu-
dorandomness for privacy. This distills the property of the
MAC that leads to each aspect of security. We point out,
however, that the notion of strong unforgeability is relatively
new [5] and that we do not know of any provably-secure
strongly unforgeable MACs that are not also pseudorandom
functions.

To prove Theorem 1 (details in [4]), we first use Lemma 1,
Lemma 2, the ind-cpa proof of security for CTR mode [2],
and the assumed pseudorandomness of the underlying MAC
to show that SSH-CTR is ind-cpa-secure. We then prove
Equation (1). Applying Proposition 1 and our ind-cpa and
int-sfctxt results for SSH-CTR leads to Equation (2). We
briefly discuss our proof of Equation (1). Let I be an int-
sfctxt adversary and let M i be I’s i-th chosen-plaintext
query to its encoding oracle, let M i

e, M
i
t be the encoding of

M i, and let σi‖τi be the returned ciphertext. Let σ′j‖τ ′j be

I’s j-th decryption-verification oracle query, let mj
e be the

decryption of σ′j by the underlying decryption algorithm.
To prove Equation (1), we basically show that given an int-
sfctxt adversary attacking SSH-CTR, that adversary can
also be used to attack the unforgeability of the underlying
MAC, to attack the coll-cca collision resistance of the under-
lying encoding scheme, or that the first out-of-order cipher-
text submitted by the adversary, σ′j‖τ ′j , is such that σj 6= σ′j
but M j

e = mj
e. By properties of CTR mode with stateful de-

cryption, the latter event cannot occur. The same property
holds for SSH-CTRIV-CBC and SSH-EIV-CBC. For SSH-
$NPC the latter event can occur, but the probability the lat-
ter event occurs is small because the last (random) block of
the encoded packet is not given to the adversary. The strat-
egy we outlined in this paragraph can be used to prove the
security of other fixes to the SSH BPP that work by replac-
ing the underlying encryption scheme; namely, prove that
the underlying encryption scheme is ind-cpa secure and that
the probability of the event we described is small. (We only
consider the first out-of-order ciphertext query an adversary
makes because if the first out-of-order ciphertext query does
not decrypt, the decryptor enters a halting state.)

7. Discussion and Recommendations
Having thus presented our main results, we are now in a

position to make specific recommendations to the SSH com-
munity. We begin by noting that a fundamental problem
with the current SSH specification is that the counter (that
is prepended to the encoded payload before MACing) is only
32 bits long. As shown in Section 4, once the 32 bit counter
repeats, an SSH session’s MAC tags may begin to leak in-
formation about a user’s plaintexts. Our provable security
results reflect this constraint: strong security is maintained
only if the parties rekey at least once every 232 packets.
Two natural solutions to this problem are to either make
the counter longer or to require an SSH session to rekey at
least once every 232 messages. We recommend the second
option because it does not affect the packet format and thus
will likely require minimal changes to existing implementa-
tions of SSH. In the following discussion we assume that all
implementations will rekey frequently.

We consider the current instantiation of the SSH BPP
transport protocol, SSH-IPC, and our specific recommen-
dations. We also consider two other possible alternatives,
namely switching to an Encrypt-then-MAC-based construc-
tion or to a dedicated authenticated encryption construc-
tion. The former involves re-engineering the SSH BPP so
that it first encrypts a message with some underlying en-
cryption scheme and then MACs the resulting ciphertext.
The latter involves modifying SSH to use a dedicated au-
thenticated encryption scheme (e.g., XCBC [13], OCB [24]).

Continue to use SSH-IPC? As mentioned, SSH-IPC is
susceptible to an adaptive chosen-plaintext attack requiring
an SSH user to encrypt on the order of 213 packets. However,
the attack may not be considered practical since it requires
the attacker to, after seeing a ciphertext collision, control
the next message that a user encrypts. If the session is
encrypting a lot of data very quickly (e.g., while transferring
a file), then an attacker may not have time to both recognize
that a collision has occurred and to force the user to encrypt
a specially-doctored message. Additionally, if we consider
how the SSH transport protocol is used within SSH (and
not as an entity by itself), then the attack is complicated
by the fact that an application may compress and further
encode user data before passing the resulting compressed
payload to the SSH-IPC protocol. Nonetheless, we suggest
that the use of SSH-IPC be deprecated. One simple reason
is that, even if these attacks may be difficult to mount in
practice, in the modern era of strong cryptography it would
seem counterintuitive to voluntarily use a protocol with low
security when it is possible to fix the security of SSH at low
cost.

Switch to SSH-NPC? Since SSH-NPC requires similar
changes to the specification and implementations as SSH-
$NPC while achieving less security than our other fixes,
there does not appear to be any substantial reasons to switch
to SSH-NPC. Therefore, we do not consider it further.

Switch to SSH-$NPC? The advantages offered by SSH-
$NPC are clear: it is provably secure and requires relatively
minor and mostly localized changes to the SSH specifica-
tion and to implementations. The added security, however,
comes with the additional cost of up to two extra blocks per
packet. In interactive sessions where an individual packet
may only contain a few bytes of user data, the additional
cost associated with those extra blocks may be significant



(in terms of bandwidth consumption, the time necessary
to encrypt and MAC those two extra blocks, and the time
required to generate the extra block of randomness). An-
other potential problem with SSH-$NPC is that it is prone
to accidental implementation mistakes. Recall that if the
padding used with SSH-$NPC is not randomized, then the
same reaction attack against SSH-NPC will be effective here.
Since two SSH implementations will inter-operate regard-
less of whether their padding is random or fixed, an SSH
developer might accidentally use non-random or predictable
padding. Such an accidental implementation mistake could
have serious security consequences.

Switch to SSH-CTR? SSH-CTRIV-CBC? or SSH-EIV-
CBC? The SSH-CTR instantiation is a promising candidate
since it is provably secure, does not incur packet expansion,
and does not require the padding to be random. Further-
more, there are several performance advantages with using
CTR mode instead of CBC mode; for example, a software
CTR mode implementation can be up to four times faster
than a well-optimized CBC implementation [22]. Although
perhaps not as attractive as SSH-CTR, SSH-CTRIV-CBC
and SSH-EIV-CBC are also promising candidates because
they also require no additional padding and because they
only use one more block cipher invocation per packet than
SSH-IPC.

Recall that the underlying encryption schemes for SSH-
CTR, SSH-CTRIV-CBC, and SSH-EIV-CBC require both
the sender and the receiver to maintain state. Prior to this
work, most provable security analyses focused on encryp-
tion schemes with stateless decryption algorithms (hence our
need to define security notions for encryption schemes with
stateful decryption algorithms). Consequently, one initial
objection to these three constructions might be that they
require the underlying decryption algorithms to maintain
state. However, since the composite SSH BPP decryption
algorithm is already stateful (because the decoding algo-
rithm is stateful), the fact that these three fixes use underly-
ing encryption schemes with stateful decryption algorithms
should be of little concern. Another potential disadvantage
with CTR mode is that it is often perceived as being too
“risky” [22]. As [22] points out, however, when used cor-
rectly and with proofs of security, CTR mode has many
advantages over other encryption modes. Furthermore, as
Bellovin and Blaze point out in [8], one can minimize the
risk incurred with using CTR mode (including the risk of
being forced to use repeating counters) if key management
is done dynamically and properly, if it is not used with mul-
tiple senders who share keys, and if it is used in conjunction
with strong integrity checks. All of these conditions hold in
the case of SSH-CTR.

Switch to Encrypt-then-MAC? Instead of insisting on
using the current SSH Encode-then-E&M construction, it
would also be possible to switch to another paradigm such
as Encrypt-then-MAC (in which the message is first en-
crypted with an underlying encryption scheme and then
the resulting ciphertext is MACed with an underlying mes-
sage authentication scheme). This alternative is attractive
because an Encrypt-then-MAC construction is provably se-
cure assuming that its underlying encryption and message
authentication schemes are also secure [5, 20]. We note,
however, that since our recommended fixes provably meet
our strongest notions of security, there may be little motiva-

tion to switch to an Encrypt-then-MAC-based construction.
Additionally, switching to an Encrypt-then-MAC construc-
tion will likely require more intrusive modifications to the
current SSH specification and to SSH implementations. Fur-
thermore, unless care is taken, implementations of the mod-
ified SSH specification may not be compatible with imple-
mentations of the current SSH specification. Conceptually
speaking, the changes incurred by SSH-CTR, SSH-$NPC,
SSH-CTRIV-CBC, and SSH-EIV-CBC involve only chang-
ing the underlying encryption module and, in the case of
SSH-$NPC, adding more random number generation for the
padding. In contrast, the changes incurred by switching to
the Encrypt-then-MAC construction involve changing the
whole construction. Of course, the difference in the actual
efforts that developers need to put in is highly implementa-
tion dependent.

Switch to dedicated authenticated encryption sche-
mes? There are symmetric key-based authenticated encryp-
tion schemes that are designed from scratch and, thus, are
potentially more efficient than schemes based on a black-box
composition of off-the-shelf encryption and MAC compo-
nents. These include RPC [19], XCBC [13], IACBC [18], and
OCB [24]. Recall that currently the input to the SSH BPP’s
underlying encryption scheme is different from the input to
the underlying MAC. There are two possible ways to in-
corporate a dedicated authenticated encryption scheme into
SSH: (1) specifically re-design the SSH specification around
a single authenticated encryption component or (2) some-
how plug a dedicated authenticated encryption scheme into
the current SSH design. As we mentioned when we consid-
ered the Encrypt-the-MAC paradigm, re-designing the SSH
specification is probably not an attractive option.

For (2), the most logical way to incorporate a dedicated
scheme into SSH would be to replace the current encryption
scheme (CBC mode with chained IVs) with something like
XCBC or OCB and to use the “none” message authentica-
tion scheme. As we argued for SSH-CTR, SSH-$NPC, SSH-
CTRIV-CBC, and SSH-EIV-CBC, this modification should
be fairly easy to do, and, given the efficiency of dedicated
authenticated encryption schemes, could result in signifi-
cant performance gains. The present drawback with this
approach is that the current SSH specification does not in-
clude the 32-bit counter in the input to the underlying en-
cryption scheme. Since, under this construction, the counter
will not be bound to the input to the dedicated authenti-
cated encryption scheme, this construction cannot protect
against replay and out-of-order delivery attacks (while our
proposed recommendations can). To rectify this situation,
one would still have to modify more than just the “black-
box” encryption component of the SSH BPP; doing so has
the same drawbacks as possibility (1) above.

Closing remarks. We acknowledge that there are many
possible ways to fix the current problems with the SSH
protocol. We are biased towards our recommended fixes
(e.g., SSH-CTR) because they are “less intrusive” than the
other possible modifications but are still efficient and secure.
“Less intrusive” is, however, a subjective measure and the
IETF SSH working group may decide that it is feasible to
re-engineer the SSH protocol to use an Encrypt-then-MAC-
based construction or a dedicated authenticated encryption
scheme. Given the inertia of the current SSH protocol, how-
ever, we feel that the working group may have a hard time



justifying significant modifications to the SSH specification.
The goal of this work is to provide enough information to
the SSH community so that the SSH community can make
an informed decision when deciding how to fix the current
problems with SSH.
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