
How to Safely Augment Reality: Challenges and Directions

Kiron Lebeck, Tadayoshi Kohno, Franziska Roesner
University of Washington

{kklebeck, yoshi, franzi}@cs.washington.edu

ABSTRACT
Augmented reality (AR) technologies, such as those in head-
mounted displays like Microsoft HoloLens or in automotive
windshields, are poised to change how people interact with
their devices and the physical world. Though researchers
have begun considering the security, privacy, and safety is-
sues raised by these technologies, to date such efforts have
focused on input, i.e., how to limit the amount of private
information to which AR applications receive access. In this
work, we focus on the challenge of output management: how
can an AR operating system allow multiple concurrently
running applications to safely augment the user’s view of
the world? That is, how can the OS prevent apps from (for
example) interfering with content displayed by other apps
or the user’s perception of critical real-world context, while
still allowing them sufficient flexibility to implement rich,
immersive AR scenarios? We explore the design space for
the management of visual AR output, propose a design that
balances OS control with application flexibility, and lay out
the research directions raised and enabled by this proposal.

1. INTRODUCTION
Augmented reality (AR) technologies redefine the bound-

aries between physical and virtual worlds. Rather than
presenting virtual content distinct from the physical world,
AR applications integrate virtual content “into” the physi-
cal world by collecting sensory information about the user’s
surroundings and overlaying virtual augmentations on the
user’s view of the real world. These technologies are unique
in their potential for immersive mixed reality (i.e., combined
physical and virtual) experiences, with applications rang-
ing from assistive technologies to driving aids and home en-
tertainment. Moreover, sophisticated AR applications that
run on immersive platforms like Head Mounted Displays
(HMDs) and cars are not hypothetical — industry efforts by
companies like Microsoft and BMW have demonstrated that
these technologies are real and on the horizon [3, 11,21].

Today’s typical AR applications run on conventional de-
vices (e.g., smartphones) in their own isolated contexts. For
example, the smartphone application WordLens1 detects and
translates text in real time using the phone’s camera. How-

1http://questvisual.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’16, February 23 - 24, 2016, St. Augustine, FL, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4145-5/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2873587.2873595

ever, as AR platforms continue to evolve and move from mo-
bile phones to more immersive devices such as Microsoft’s
HoloLens [11], they can provide richer experiences by run-
ning multiple applications that simultaneously augment a
shared environment. For example, a HoloLens user may
wish to play an AR video game while simultaneously running
Skype in the background (applications shown in Figure 1).

While AR applications have diverse potential, they also
raise a number of challenging security, privacy, and safety
issues [16]. Prior research efforts (e.g., [9, 17]) have focused
largely on addressing input privacy issues that stem from ap-
plications receiving unrestricted sensor access, such as the
ability for applications to record videos of a user’s sensitive
possessions or audio of private conversations. However, lit-
tle work has looked at the risks and challenges presented by
unregulated, and possibly malicious, application outputs —
for example, a buggy or malicious car application could dis-
play distracting images to interfere with the driver’s focus.
While ensuring the safety and security of an individual ap-
plication’s output is already challenging (as we will see),
these issues become particularly salient with the increas-
ingly complex interactions of multiple applications augment-
ing a shared environment, where applications may attempt
to display overlapping content, either coincidentally or ma-
liciously (e.g., to mount a denial-of-service attack).

In this work, we begin to address the safety and security
of AR visual output. We lay out design alternatives for vi-
sual output models, and in doing so we surface challenges
in balancing the flexibility of application functionality with
the system’s ability to control and mitigate risks from appli-
cation outputs. We provide initial directions for overcoming
these challenges by rethinking the role of the operating sys-
tem in managing visual AR outputs. Our exploration raises
directions and guidelines for future work in this space.

2. BACKGROUND AND MOTIVATION
We begin with several example AR scenarios, followed by

the risks and challenges that these scenarios may raise.

2.1 Example AR Systems: The Opportunities
We first present two illustrative case studies that capture

the diverse potential of AR technology: automotive AR and
HMDs. We focus on these scenarios, rather than mobile
phone-based AR, because they are immersive, intended for
continuous use, and naturally cater to multiple concurrently
running applications. However, mobile phone-based AR sce-
narios will also face many or all the issues we raise here.

We note that although the physical displays on which AR
content is drawn — in our examples, automotive windshields
and HMDs — are fundamentally two-dimensional screens, ap-
plications may display both 2D content (e.g., informational
overlays) as well as content that appears visually 3D. Dis-

Figure 1: From the left — HoloLens demo showcasing multiple Windows 10 applications; HoloLens demo of a mixed-reality game that
maps out the user’s physical environment and displays world-aware virtual content; BMW prototype AR glasses that provide the driver
with ‘X-ray vision’ by syncing with the car’s external cameras.

played content may be static (e.g., always in the bottom of
the screen) or it may need to adjust dynamically as the user
moves and/or the real-world environment changes.

Automotive. Recent years have seen substantial growth
in automotive AR efforts [12]. For example, technology by
Continental2 overlays 2D information (e.g., current speed
limit and navigational arrows) on a car’s windshield, and
BMW has proposed “X-Ray Vision” (shown in Figure 1)
that allows the driver to see through the body of the car [3].
Other efforts aim to display more immersive 3D augmenta-
tions. Recent work from Honda Research [23] uses 3D visual
cues to aid drivers in making left turns. Honda researchers
have also discussed integrating other visual elements into
the car’s 3D display, such as road signs or street addresses.3

Head Mounted Displays (HMDs). HMDs represent an-
other class of AR platforms rapidly gaining traction. Al-
though the idea of AR HMDs has been around for some
time [20], products such as Microsoft’s HoloLens and Magic
Leap’s AR headset are leading industry efforts to bring this
technology to production. These platforms have the poten-
tial to support a range of applications — Microsoft recently
showcased several HoloLens applications (Figure 1) such as
an AR video player, a 3D weather app, and a video game
that places virtual characters into the user’s view of the real
world.4,5 These applications highlight the ability of emerg-
ing platforms, like HoloLens, to display 3D content that ex-
ists in and interacts with some model of the user’s world.

2.2 The Risks and Challenges
AR applications can provide uniquely immersive experi-

ences; however, this ability can lead to undesirable conse-
quences if the applications are buggy or malicious. As prior
work [6] notes, today’s AR apps typically operate with the
unrestricted ability to access sensor inputs and render aug-
mentations. Since applications may not always be trusted
by the user or by the OS,6 this model raises a number of
security, privacy, and safety issues. Even if AR platforms
only allow apps from trusted developers — a policy perhaps
especially reasonable for cars — it is still critical to ensure
that buggy applications cannot accidentally misbehave.

Input Privacy. Unrestricted sensor access by applications

2http://continental-head-up-display.com/
3https://www.youtube.com/watch?v=OgsrFAe Lgc
4https://www.youtube.com/watch?v=gnlIEnHIJ7o
5https://www.youtube.com/watch?v=3AADEqLIALk
6Like prior work, we assume that the OS is trustworthy and
trusted by the user.

is a major privacy problem. Consider an HMD user in his
or her home. Without safeguards, applications may be able
to see sensitive information like medications. Prior efforts
have focused on addressing visual input privacy (e.g., [9,
10, 14, 17, 22]). For example, one set of strategies leverages
trusted OS modules to mediate sensor access for applica-
tions. Jana et al. propose the recognizer abstraction [9] as an
OS module for fine-grained sensory access control, and Roes-
ner et al. extend this model [17] to accommodate object- or
environment-specific access control policies. The left and
middle columns of Figure 2 depict the AR system pipeline
from [17], which consists of system sensors, system recogniz-
ers, an input policy module, and applications. The system
sensors collect information from the world, e.g., video from
a camera. An OS module then recognizes objects, such as
people or stop signs, and the policy module evaluates the
relevant privacy (and other) policies to determine which rec-
ognized objects to communicate to which applications.

Output Safety and Security. While the above works
make significant progress towards limiting the flow of sensi-
tive sensor information to applications, they do not mitigate
malicious or buggy outputs from applications. Output may
take multiple forms, including visual, audio, and haptic feed-
back. In this work, we focus on managing visual outputs,
because most of today’s AR applications display visual con-
tent. We propose a new output module for the AR pipeline,
shown in the right column of Figure 2. Absent defenses, a
buggy or malicious application could overwrite the output
of another application, display content that blocks or ob-
scures real-world content, or display content that distracts
(and possibly endangers) the user. By exploring the design
space for our new output module, we establish a trajectory
for defending against such threats. We consider several axes
along which malicious or buggy output might occur:

• Who (i.e., which application) displayed particular con-
tent. Knowing this could, for example, be useful in
disambiguating content generated by a phishing appli-
cation or advertisement from content generated by a
legitimate banking or route guidance application.

• What kind of content a particular application can draw.
For example, should an automotive application be able
to draw virtual pedestrians on the road?

• When an application can draw, based on the context
of the user’s actions or environment. For example,
could an HMD texting application pop up a full-screen
message when the user is doing something potentially
hazardous, like walking down stairs?

• Where an application can draw, both on the display

Figure 2: Pipeline for how data flows through an AR system and
applications. Prior work focused on the operating system’s role
in processing and dispatching (possibly privacy-sensitive) input
to applications. We extend this pipeline with an output module
and explore the operating system’s role in managing the visual
content (i.e., augmentations) that applications wish to display.

(i.e., with respect to the user’s“screen”) and within the
world (i.e., with respect to specific objects or 3D re-
gions in the world). For example, could an automotive
application render an ad on top of a road sign?

To our knowledge, existing research efforts and commer-
cial systems have not explored solutions to address AR out-
put safety and security. However, before AR systems can
be widely adopted, it is critical to design mechanisms to en-
sure they are safe and secure, without significantly hindering
the expressiveness of applications. Computer security is a
form of risk management, and hence the full spectrum of
adversarial actions that we discuss might never manifest.
Nevertheless, our goal is to provide a technical foundation
for mitigating such threats if they do arise.

3. DESIGN SPACE EXPLORATION
In this section, we explore several possible designs for the

output module of the AR pipeline (Figure 2), focusing on
visual output. The roles of the output module are: (1) to
provide a mechanism for applications to specify and display
visual content, and (2) to apply safety, security, and privacy
policies by interposing on the rendering of this content. Our
key questions in exploring this design space are: what role
should the operating system play in managing visual output,
and how should that role be realized? How can we design an
output module to enable flexible application behaviors while
mitigating risks from malicious or buggy applications? Our
earlier case studies and the above-mentioned risks motivate
two important design axes for managing visual AR outputs:

1. Flexibility: The ability of honest, non-buggy applica-
tions to display AR content. Ideally, an output module
does not prevent honest applications from implement-
ing and innovating on desirable AR functionality, in-
cluding through possible interactions between apps.

2. Control: The operating system’s ability to prevent ap-
plications from drawing malicious or undesirable AR
content (e.g., “undesirable” in the automotive context
may mean safety-critical distractions of the driver, or
occlusion of safety-critical objects like road signs).

We now explore how these two axes play out in the de-
sign space of visual output models. We first consider two
natural output models: the windowing model used by tradi-
tional platforms (e.g., desktops) and an alternate strawman
approach in which applications can free-draw AR content.

(We consider these models as discrete points in a design
space, though of course changes to the implementation of
one model could allow it to take on characteristics of an-
other.) We find that windowing overly constrains visual out-
put flexibility, while free-drawing overemphasizes flexibility
at the expense of control. We thus introduce a novel model
based on fine-grained AR objects that provides better flexi-
bility than windows and better control than free-drawing.

We assume that applications can receive input about the
real world to make decisions about how and where to display
augmentations, possibly dynamically updating these deci-
sions as the user’s real-world view changes. For privacy rea-
sons, applications may receive such input with varying de-
grees of fidelity (e.g., raw sensor input, recognizer events [9],
or information about real-world surfaces [25]), but we do not
focus on the problem of input privacy in this work.

3.1 Model 1: Windowing
We first consider how the traditional desktop windowing

model translates to the AR context. Under this model, the
OS delegates control of separate windows to applications —
rectangular display spaces in which they may draw arbitrary
content. Windows are typically isolated from each other, so
that one application cannot read content from or manipulate
content in another’s window. Given that this model is well
established in desktop systems, it seems natural to extend it
to AR — and, indeed, it appears that HoloLens utilizes such
a model in running Universal Windows applications.7

With traditional windows, applications can display con-
tent in roughly the following manner:

1. The OS gives applications handles to separate windows
corresponding to bounded regions of the display. Tra-
ditionally, windows are rectangular; in the AR context,
they may represent 3D rather than 2D regions that
map to the user’s real-world environment. Users can
typically resize and reposition these windows.

2. Applications render arbitrary content to their respec-
tive windows by calling some draw function that inter-
faces directly with graphics hardware.

Under this model, different applications cannot occupy
the same display region simultaneously — if two windows
overlap, only one can be in focus at a time (i.e., one window
occludes the other and receives inputs). Similarly, if one ap-
plication is in“full-screen”mode, in most of today’s systems,
this means that only it can display content. Though some
windowing implementations allow transparent windows or
embedded windows (e.g., iframes on the web), display re-
gion sharing with windows is limited to these features.

Control. Under this model, application outputs are iso-
lated, and content is rendered at the window granularity.
This gives the system coarse-grained control: applications
can only draw inside their own windows, and they can-
not autonomously reposition or resize those windows. As
a result, an application cannot draw over arbitrary regions
of the screen (e.g., the road viewed through an AR wind-
shield) unless the user or the system has explicitly placed its
window there. However, the system is not able to enforce
finer-grained properties, like where the application can draw
within the window. It also cannot enforce requirements on
arbitrary content the application draws inside its window.

7https://msdn.microsoft.com/en-us/library/windows/
apps/dn726767.aspx

Flexibility. The windowing model also presents flexibility
challenges for multiple applications running simultaneously.
While it may suffice for applications whose content fits nat-
urally inside a bounded window, such as the HoloLens video
player, it may not suit others. Consider the HoloLens game
in Figure 1. If the objects and characters in the game are in-
tended to behave like real-world objects (e.g., to move about
within and interact with the user’s world), the application
needs to render contextually with respect to the user’s world.
If the application does so in full screen mode, it either pre-
vents other applications from rendering any content at all
or, if multiple applications can overlay partially transparent
full-screen windows, its content may arbitrarily overlap or
conflict with the content of other applications in a way that
cannot be controlled at a fine granularity by the OS.

3.2 Model 2: Free-Drawing
Given the flexibility limitations of traditional windowing,

we next consider a point in the design space that is intention-
ally flexible, allowing applications to “free-draw” anywhere
within the user’s view, at any time. More precisely:

1. The OS gives applications handles to a shared window
corresponding to the device’s full display.

2. The applications each call a draw function to display
2D or 3D content in this shared environment.

Flexibility. This model provides maximum flexibility for
applications, which can draw arbitrarily to provide desirable
AR functionality unencumbered by the assumptions embed-
ded in the traditional windowing model. With free-drawing
(and sufficient information about the user’s world), applica-
tions can track and augment any objects in the user’s view
and visually interact with content from other applications.

Control. Unfortunately, the flexibility this model provides
to honest applications also enables malicious or buggy ap-
plications to more easily display undesirable content. With-
out restrictions, an app could display content that disori-
ents or visually impairs the user, or that endangers the
user by occluding or modifying possibly safety-critical real-
world objects. Consider the car case study. With no output
restrictions, a malicious app could occlude pedestrians or
road signs, potentially causing physical harm to users and
bystanders. Furthermore, with multiple applications free-
drawing simultaneously, applications may directly interfere
with or extract information from each other’s visual con-
tent. These risks are greater than with isolated windows,
even if those windows are partially transparent or overlap-
ping. Thus, while allowing applications to free-draw sup-
ports flexible rendering needs, it also provides the OS with
no capability to prevent or constrain malicious behavior, nor
to isolate content from different applications.

3.3 Model 3: Fine-Grained AR Objects
The above models require trading off flexibility for coarse-

grained output control. We desire a visual output model
that provides both flexibility for honest applications as well
as more fine-grained output control for the system. To
achieve this goal, we introduce a new AR output model
based on fine-grained objects. The key idea is to manage
visual content at the granularity of AR objects rather than
windows. Objects are abstract representations of AR con-
tent that applications wish to place into the user’s view of
the world, such as 3D virtual pets or 2D informational over-

lays. In the windowing and free-drawing models, applica-
tions must manage these objects internally. Our proposed
model elevates these objects to first-class OS primitives.

Flexibility and Control. Object-level granularity pro-
vides key flexibility and control benefits. Applications can
create and draw objects throughout the user’s view of the
world; however, by making these objects first-class OS prim-
itives, the system can enforce rich object-based constraints
and dynamically manage where and when objects can be
drawn, as well as how objects from different applications
can interact. For example, an AR car system could pre-
vent applications from drawing over critical objects such as
road signs while still allowing applications such as naviga-
tion to display content (e.g., direction arrows) dynamically
throughout the world. In some cases, the system may even
be able to regulate what objects an application draws, to the
extent that the semantics of certain objects are known to the
OS. For example, the system might only allow objects that
follow a certain template to overlay on top of road signs.

Concrete Instantiation. There are many possible imple-
mentation strategies — for example, one might start with a
windowing model and modify the definition of a window to
bound arbitrary 3D objects, or one might start from scratch.
Our goal is not to propose or evaluate specific implementa-
tions or APIs, but rather to explore AR objects as first-class
OS primitives. Nevertheless, we present a strawman output
module design, which allows us to illustrate this idea more
concretely and raise important design questions:

1. AR objects consist of visual descriptors (e.g., 3D meshes
and textures) and optional “physical properties” (e.g.,
how the objects should respond to collisions).

2. To display content, applications request the OS to draw
particular objects with certain requirements. For ex-
ample, apps might request specific display coordinates
or locations relative to other application or real-world
objects (e.g., to display labels on real-world faces).

3. The OS processes object placement requests, along
with constraints from a variety of parties (e.g., ap-
plications, the user, or the system itself) and contex-
tual information about the current world state (e.g.,
the current speed of the car). The OS then decides
which requests are permissible (or modifies requests)
and renders the appropriate visual content.

This model enables several desirable properties:

OS Support for Dynamic Updates. The OS can dynamically
update and redraw objects in response to user actions (e.g.,
head movement) or changes in the real world, rather than
requiring applications to handle these changes manually.

Shared World. The OS can position application content in
a shared world and manage physics-based (and other) inter-
actions between application and real-world objects. For ex-
ample, applications might register for system-based events,
like collisions between objects, and define how to respond to
these events. We further discuss the system’s possible roles
in managing these interactions in Section 4.

Subsuming Previous Models. The ability to handle a rich
set of possible constraints allows an object-based model to
subsume both the windowing model and the free-drawing
model. Constraints based on logical windows, or the lack of
any constraints, would emulate these models, respectively.

Contextual Tuning. Object-level granularity allows the OS

to contextually tune how strictly it applies controls, since
permissible behavior may vary based on user preferences,
application needs, and/or real-world context. For example,
content that can safely be displayed on an AR windshield
while a car is parked differs significantly from content that
can safely be displayed while the car is in motion. With
object-level control, and some notion of object semantics,
the system can contextually tune which application outputs
are controlled and how. This type of control is not achievable
with a coarser-grained windowing model, which can control
only where and whether an application can display.

Summary. Our key insight is that, by managing visual
output at the granularity of objects rather than in windows
or the full display, the OS can enable flexible application
behaviors while simultaneously preventing them from dis-
playing undesirable content. Instantiating such a model,
however, requires rethinking rendering abstractions and in-
teractions between applications. Future AR systems must
consider these issues if they are to provide both rich experi-
ences as well as output safety and security for users.

4. CHALLENGES AND OPPORTUNITIES
We now dive more deeply into the design and research

questions that our object-based output model raises, as well
as the novel opportunities it enables.

4.1 Key Design Challenges
We first consider a set of important design questions that

must be addressed to realize an object-based output model.

Defining Objects and Rendering APIs. Two key con-
siderations in supporting fine-grained, object-level augmen-
tation control are — how should the OS define objects, and
what kind of APIs should it expose to applications for dis-
playing content? We presented a strawman API in Sec-
tion 3.3, but carefully designing these APIs to minimize the
burden on application developers will be critical.

Constraint Specification and Evaluation. Important
object management questions we have not yet addressed are:
according to what constraints or policies should the OS do
this management, who specifies these constraints, how are
they expressed, and how are they evaluated? For example,
reasonable constraints in an automotive AR environment
might be that applications cannot display ads or overlay ob-
jects on real-world traffic signs while the car is in motion.
However, these constraints may change contextually (e.g.,
the car may permit ads to be shown when the vehicle is
stopped). Furthermore, different parties — applications, the
system, external regulatory agencies, or the user — may have
conflicting preferences. Key research questions are how the
OS should allow multiple parties to specify policies or con-
straints, how to evaluate potentially conflicting constraints
in real time, and how to manage conflicts when they arise.

Managing Objects in a Shared Environment. Our
object-based model allows the OS to mediate interactions
between augmentations from different applications within a
shared environment, though exactly what this role should
be raises open questions. How much information about the
real world do applications need to intelligently position (or
specify constraints for the positions of) their objects? What
kind of feedback should the OS provide to applications when
their objects interact with each other or the physical world

(e.g., a virtual ball bouncing on the real-world floor) given
that such feedback might leak private information about one
application to another? How should the OS handle possibly
malicious object interactions, such as one app that tries to
draw over another app’s object and occlude it from view?
These questions highlight some of the unique challenges that
immersive multi-application AR platforms may encounter.

4.2 New Capabilities
We next explore how our object-based model allows the

OS to take on new roles in supporting AR applications.

OS Support for Object Semantics. Our model allows
the OS to dynamically manage the interactions of applica-
tion objects with each other and the real world, significantly
reducing the burden on application developers to reposition
objects as the user’s view changes. Going one step further,
the OS could natively support certain AR objects (e.g., peo-
ple) in addition to abstract objects, by allowing applications
to register objects under pre-defined classes. This design al-
lows the OS to have a semantic understanding of certain
objects and to more intelligently manage their interactions.
For example, it would enable an output policy such as“appli-
cations may draw only pre-approved types of objects on top
of streets while the user is driving”— a significantly more
flexible policy than disallowing any drawing at all, while
still maintaining safety properties. However, applications
may wish to display diverse types of objects, and natively
supporting all possible classes of objects is infeasible. A key
question for AR system designers is thus what role, if any,
the OS should take in providing native object support.

Supporting Novel Inter-App Interactions. While some
amount of inter-application feedback is necessary to main-
tain a consistent world state within a shared environment
(e.g., so applications know when their objects collide), an
open question is — to what extent should applications be
aware of each other? Object-level granularity raises inter-
esting new possibilities for how applications can interact.
For example, could an application take as input not only
real-world objects, like faces, detected by system recogniz-
ers (as proposed in prior work [9]), but also virtual objects
created by other applications? A plausible use case would
be a translation application such as WordLens that takes as
input not only real-world text, but also text generated by
other (single-language) applications. This degree of interac-
tion could enable powerful new AR scenarios, but it raises
new challenges as well: for example, could applications ma-
nipulate their virtual objects to attack other applications
that take these objects as input? Whether and how best to
support such interactions must be carefully considered.

5. RELATED WORK
Researchers have explored applications and technical chal-

lenges surrounding AR for decades (e.g., [1,2,5,13,20,24,27]).
However, only recently have these technologies become com-
mercially available, and only recently have researchers begun
seriously considering the security, privacy, and safety con-
cerns associated with AR (e.g., [6,16]). Most technical work
to date has focused on input privacy (e.g., [9,10,14,17,22]);
in this paper we consider the challenge of output safety and
security. Surround Web [25] considers both AR input and
output issues, in that it limits the amount of real-world in-
put applications need to decide where and what to display;

its techniques are complementary to ours. Some of the is-
sues that we raise — e.g., the need to consider AR output
security at all — have also been identified previously [6, 16],
but we expand on these directions here and make significant
progress toward developing a visual output model for AR
that balances OS control and application flexibility.

Related earlier efforts in the AR space have studied multi-
application settings [18] and world-aware virtual objects [4].
These works do not consider security explicitly, but our
object-based model could incorporate some of these earlier
ideas. These works both also consider multi-user settings,
which we do not consider — though we observe that they will
raise interesting additional security and privacy questions.

More generally, prior work has considered display secu-
rity in non-AR contexts, including secure window systems
(e.g., [7, 19, 26]), shared cross-application UIs (e.g., iframes
on the web or research proposals for smartphones [15]), and
non-AR automotive displays (e.g., [8]). Though some shared
issues arise in these other contexts, the complexity of AR
scenarios (with virtual 3D objects and real-world interac-
tions) raises significant new challenges.

6. CONCLUSION
Immersive AR platforms, such as Microsoft’s HoloLens,

are quickly becoming a reality. However, fundamental secu-
rity and privacy challenges exist. Past works largely consider
the privacy implications of visual inputs available to AR ap-
plications. We initiate a complementary investigation into
the security risks of visual AR outputs. For example, multi-
application AR systems need mitigations to prevent mali-
cious or buggy applications from displaying content that
blocks the outputs of other applications, or that occludes
critical real-world objects (e.g., traffic signals or stairs). Our
key technical proposal is to enable operating system control
over visual output at the granularity of individual AR objects
that are owned by applications and correspond to items with
which the applications wish to augment the user’s view. We
provide an initial design and reflect upon how it can enable
safer, diverse multi-application AR environments.

7. ACKNOWLEDGEMENTS
We thank Linda Ng Boyle and David Molnar for valuable

discussions, as well as Antoine Bosselut and Suman Nath
for helpful feedback on earlier drafts. This work was sup-
ported in part by NSF grants CNS-0846065, CNS-0963695,
and CNS-1513584 and the Short-Dooley Professorship. This
material is based on research sponsored by DARPA under
agreement number FA8750-12-2-0107. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon.

8. REFERENCES
[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and

B. MacIntyre. Recent advances in augmented reality. IEEE
Computer Graphics and Applications, 21(6):34–47, 2001.

[2] R. T. Azuma. A survey of augmented reality. Presence:
Teleoperators and Virtual Environments, 6:355–385, 1997.

[3] R. Baldwin. Mini’s weird-looking AR goggles are actually
useful, Apr. 2015. http:
//www.engadget.com/2015/04/22/bmw-mini-qualcomm-ar/.

[4] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers.
Enveloping users and computers in a collaborative 3D
augmented reality. In IEEE/ACM International Workshop on
Augmented Reality, 1999.

[5] E. Costanza, A. Kunz, and M. Fjeld. Human machine
interaction. chapter Mixed Reality: A Survey, pages 47–68.
Springer-Verlag, 2009.

[6] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits,
D. Molnar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas,
et al. Operating system support for augmented reality
applications. Hot Topics in Operating Systems (HotOS), 2013.

[7] J. Epstein, J. McHugh, and R. Pascale. Evolution of a trusted
B3 window system prototype. In IEEE Symposium on Security
and Privacy, 1992.

[8] S. Gansel, S. Schnitzer, A. Gilbeau-Hammoud, V. Friesen,
F. Dürr, K. Rothermel, and C. Maihöfer. An access control
concept for novel automotive HMI systems. In ACM
Symposium on Access Control Models and Technologies, 2014.

[9] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits,
H. J. Wang, and E. Ofek. Enabling fine-grained permissions for
augmented reality applications with recognizers. In USENIX
Security, 2013.

[10] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner Darkly:
Protecting user privacy from perceptual applications. In IEEE
Symposium on Security and Privacy, 2013.

[11] L. Mathews. Microsoft’s HoloLens demo steals the show at
Build 2015, 2015. http://www.geek.com/microsoft/
microsofts-hololens-demo-steals-the-show-at-build-2015-1621727/.

[12] M. May. Augmented reality in the car industry, Aug. 2015.
https://www.linkedin.com/pulse/
augmented-reality-car-industry-melanie-may.

[13] G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann. A
survey of mobile and wireless technologies for augmented
reality systems. Computer Animation and Virtual Worlds,
19:3–22, 2008.

[14] N. Raval, A. Srivastava, K. Lebeck, L. Cox, and
A. Machanavajjhala. Markit: privacy markers for protecting
visual secrets. In Workshop on Usable Privacy & Security for
wearable and domestic ubIquitous DEvices (UPSIDE), 2014.

[15] F. Roesner and T. Kohno. Securing embedded user interfaces:
Android and beyond. In USENIX Security Symposium, 2013.

[16] F. Roesner, T. Kohno, and D. Molnar. Security and privacy for
augmented reality systems. Communications of the ACM,
57(4):88–96, 2014.

[17] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J.
Wang. World-driven access control for continuous sensing. In
ACM Conf. on Computer & Communications Security, 2014.

[18] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. M.
Encarnaçao, M. Gervautz, and W. Purgathofer. The
studierstube augmented reality project. Presence:
Teleoperators and Virtual Environments, 11(1):33–54, 2002.

[19] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the EROS trusted window system. In 13th USENIX
Security Symposium, 2004.

[20] I. E. Sutherland. A head-mounted three-dimensional display. In
Fall Joint Computer Conference, American Federation of
Information Processing Societies, 1968.

[21] A. Tarantola. HoloLens ‘Project XRay’ lets you blast robot
armies with a ray gun fist, Oct. 2015.
http://www.engadget.com/2015/10/06/
hololens-project-x-lets-you-blast-robot-armies-with-a-ray-gun/.

[22] R. Templeman, M. Korayem, D. Crandall, and A. Kapadia.
PlaceAvoider: Steering first-person cameras away from sensitive
spaces. In Network and Distributed System Security
Symposium (NDSS), 2014.

[23] C. Tran, K. Bark, and V. Ng-Thow-Hing. A left-turn driving
aid using projected oncoming vehicle paths with augmented
reality. In 5th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, 2013.

[24] D. van Krevelen and R. Poelman. A survey of augmented
reality technologies, applications, and limitations. The
International Journal of Virtual Reality, 9:1–20, 2010.

[25] J. Vilk, A. Moshchuk, D. Molnar, B. Livshits, E. Ofek,
C. Rossbach, H. J. Wang, and R. Gal. SurroundWeb:
Mitigating privacy concerns in a 3D web browser. In IEEE
Symposium on Security and Privacy, 2015.

[26] J. P. L. Woodward. Security requirements for system high and
compartmented mode workstations. Technical Report MTR
9992, Rev. 1 (also published by the Defense Intelligence Agency
as DDS-2600-5502-87), MITRE Corporation, Nov. 1987.

[27] F. Zhou, H. B.-L. Duh, and M. Billinghurst. Trends in
augmented reality tracking, interaction and display: a review of
ten years of ISMAR. In 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, 2008.

