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ABSTRACT

User authentication systems are at an impasse. The most ubiquitous
method — the password — has numerous problems, including
susceptibility to unintentional exposure via phishing and cross-site
password reuse. Second-factor authentication schemes have the
potential to increase security but face usability and deployability
challenges. For example, conventional second-factor schemes
change the user authentication experience. Furthermore, while
more secure than passwords, second-factor schemes still fail to
provide sufficient protection against (single-use) phishing attacks.

We present PhoneAuth, a system intended to provide security
assurances comparable to or greater than that of conventional two-
factor authentication systems while offering the same authentica-
tion experience as traditional passwords alone. Our work leverages
the following key insights. First, a user’s personal device (e.g., a
phone) can communicate directly with the user’s computer (and
hence the remote web server) without any interaction with the user.
Second, it is possible to provide a layered approach to security,
whereby a web server can enact different policies depending on
whether or not the user’s personal device is present. We describe
and evaluate our server-side, Chromium web browser, and Android
phone implementations of PhoneAuth.
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1. INTRODUCTION

The most common mechanism for users to log into web sites is
with usernames and passwords. They’re simple to implement on
a server and they allow web sites to easily interact with users in a
variety of ways.

There are a variety of problems with these simple approaches,
not least of which is that many users will reuse passwords across
different web sites [4, 14], at which point the compromise of one
web site leads to compromise of others [6, 26]. For users who might
want to remember distinct passwords, the cognitive burden makes
it impossible at scale. Furthermore, users faced with impostor web
sites or forms of phishing attacks often give up their credentials.
It should then come as no surprise that large numbers of users see
their online accounts accessed by illegitimate parties every day [9,
25], causing anywhere from minor annoyances, to financial harm,
to very real threats to life and well-being [15, 21].

As practitioners of computer science we know that passwords
offer poor security, yet here we are, four decades after the invention
of public-key cryptography and two decades into the history of the
web, and we still use passwords. A recent study by Bonneau et
al. [5] sheds some light onto why that is the case: none of the 35
studied password-replacement mechanisms are sufficiently usable
or deployable in practice to be considered a serious alternative or
augmentation to passwords, which is unfortunate since many of
the proposals are arguably more “secure” than passwords. This
includes mechanisms that employ public-key cryptography (such
as CardSpace [7] or TLS client certificates [11]). Public-key
cryptography would otherwise be an elegant solution to the security
problems with passwords outlined above: it would allow us to keep
the authentication secret (a private key) secret, and to not send it
to, and store it at, the parties to which users authenticate (or their
impostors).

We have set out to take a fresh look at the use of public-key
cryptography for user authentication on the web. We are cognizant
of the shortcomings of previous attempts, and of the presence of
public-key-based mechanisms in the list of failed authentication
proposals in the Bonneau et al. study. Yet we argue that public-key-
based authentication mechanisms can be usable if they are carefully
designed. Our main contribution in this paper is one such design
we call PhoneAuth, which has the following properties:

o It keeps the user experience of authentication invariant: users
enter a username and password directly into a web page, and
do not do anything else.



e [t provides a cryptographic second factor in addition to the
password, thus securing the login against strong attackers.

e This second factor is provided opportunistically, i.e., only
if and when circumstances allow (compatible browser, pres-
ence of second factor device, and so on). We provide fallback
mechanisms for when the second factor is unavailable.

Though PhoneAuth does have several operational requirements,
we belive that they are reasonable based on current technical trends
and do not hinder the deployability of PhoneAuth.

In Section 2 we evaluate previous efforts at strengthening user
authentication and establish the threat model and goals for our
system in Section 3. Section 4 outlines the system at a high level
while Section 5 delves into practical implementation details.

The Bonneau et al. study [5] presents a framework of 25
different usability, deployability, and security “benefits” that au-
thentication mechanisms should provide. We rate our system
against this framework and provide other evaluations in Section 6,
and discuss potential future directions in Section 7.

2. RELATED WORK

We examine some related work and how it attempts to address
the security issues with passwords, and then use the lessons learned
to motivate and inform our design goals in Section 3.

TLS CLIENT CERTIFICATES. One example of a password-less
authentication system is TLS Client Authentication [12], where a
TLS client certificate is used to authenticate a user. Using client
certificates means that the client does not send the authentication
secret (a private key) to the server, and that users cannot get
phished (since there is no password to be entered). There are,
however, several problems with TLS Client Authentication, which
have impeded its widespread adoption across the Web:

e Poor User Experience. Since the certificate is needed during
the TLS handshake, users must approve or reject its use
before they can interact with the website. This leads to a
user interface in which the browser asks the user to select an
identity (usually in terms of having to select a “distinguished
name” or an “X.509 certificate”) without presenting any
context about where and how that identity will be used.

e Privacy. Once a certificate has been installed on a user’s
machine, any site on the web can request TLS client authen-
tication with that certificate. The user now has two options,
do not log in at all or choose to log into more than one
site with the same certificate. Logging into more than one
website with the same certificate is possible, but creates the
potential for colluding sites to track a user’s browsing habits
by observing the certificate used to authenticate.

Another approach is for the user to create a different certifi-
cate for each site he authenticates to, but this leads to even
worse user experience: Now the user is presented with an
ever growing list of certificates every time he/she attempts to
authenticate to a site requiring TLS client authentication.

o Portability. Certificates ideally are related to a private
key that cannot be extracted from the underlying platform.
Therefore, they cannot be easily moved from one device
to another. Hence, any solution that involves TLS Client
Authentication also must address and solve the problem of
user credential portability. Potential solutions include re-
obtaining certificates for different devices (which can be a
difficult process by itself), extracting private keys (against
best security practices) and copying them from one device

to another, or cross-certifying certificates from different
devices.

We belive that the hassle of obtaining TLS client certificates and
the unfamiliar user interface leads users towards using less secure
(but more usable) password mechanisms when given the choice.

CARDSPACE. Microsoft developed the CardSpace [7] authentica-
tion system that had several features relevant to our work. Most
notably, it replaced passwords with a public-key based protocol.
Users would manage their digital identities through virtual identity
“cards.” When visiting a website that supported CardSpace, users
would be presented with a Ul that allowed them to choose which
card, and thus which identity, to use with the site. Under the
hood, CardSpace authenticated users by creating cryptographic
attestations of the user’s identity that could be communicated to
the verifying website. This approach had the advantage of not
revealing the authentication secret (typically a private key) to the
verifying site. Furthermore, because users logged in by selecting a
“card” rather than typing a password they could not be phished.
Unfortunately, CardSpace was not widely adopted and was
eventually discontinued altogether. We believe that CardSpace’s
attempt to provide many new features increased its overall com-
plexity and contributed to its demise by unnecessarily complicating
the user interface, interaction, and development models. We strive
to learn from CardSpace’s failure and have carefully designed
our system to minimally alter the user experience (and burden on
developers) from what users (and developers) are already used to.

FEDERATED LOGIN. The general approach behind federated login
allows users to have only one account — at an identity provider
— to which they directly authenticate (or perhaps have a limited
number of such accounts). All other websites (usually called
relying parties) do not ask the user to authenticate directly — instead
they consume identity assertions from the identity provider.
OpenlD [22], Facebook Connect [3], OpenID Connect [24], and
Security Assertion Markup Language (SAML) are examples of this
approach: after the user logs into the identity provider and approves
the issuance of the identity assertion, the identity provider sends the
identity assertion to the user’s browser, which then sends it to the
relying party. BrowserID [2] works in a slightly different manner:
here the browser, and not the identity provider, issues the identity
assertion (although the identity assertion includes a certificate from
the identity provider, which the user has to obtain ahead of time).
Federated login carries the promise of fewer passwords that users
need to manage. Of course, this promise can only be met when
most sites on the web are relying parties to at most a handful of
identity providers. The value proposition for a website to become a
relying party to an identity provider however, is not always a given:
what if the identity provider is insecure, or goes out of business,
or does not effectively block accounts that have been taken over by
attackers? Similarly, users may not be comfortable with the identity
provider knowing which sites the users frequent or relying parties
learning so much about users’ identities from the identity provider
— they might want to choose to have a new identity at a relying party
site instead of “reusing” their identity from the identity provider.
Finally, federated login really just reduces one problem (that of
securely authenticating to relying parties) to a previously unsolved
one (that of securely authenticating to an identity provider). It does
not, by itself, address the issue of users getting phished for their
password at the identity provider, or sharing that password with
such sites that decide not to work with a user’s identity provider.

TRADITIONAL TWO-FACTOR AUTHENTICATION. Some websites
use a variety of two-factor authentication schemes. In some cases,
the user has to enter, in addition to the password (‘“something that



they know”), some other code that they obtain from a device they
carry (“something that they have”). In other cases (e.g., smart
cards/tokens), users must actually plug the device into the PC on
which they’re authenticating.

Apart from the immediately obvious usability issues (the user
has to learn about the second factor and not forget to carry the
device with them), there are some more subtle ones: If a user
opts into, say, Google’s 2-Step Verification system, then some
of their legacy apps or devices might stop working, since they
use protocols (such as IMAP, SMTP or XMPP) that assume a
single-factor authentication mechanism. This in turns leads to
further complications that the user has to deal with. In Google’s
case there are machine-generated passwords (called “Application-
Specific Passwords”) that the user has to learn about, backup
options that need to be configured in case the second-factor device
goes missing, efc. As a result, users that sign up for two-factor
authentication are more likely to be locked out of their account than
those users that use only passwords.

Apart from raising the cognitive load on the user, two-factor
authentication does not completely solve the security issues of
passwords: while it does address the issue of re-using passwords
across websites, a clever attacker could theoretically phish a victim
both for their password and second factor.

ADVANCED PASSWORD MANAGERS. PwdHash [23], Password
Multiplier [16], and PassPet [29] are examples of advanced kinds
of password managers that are built into browsers: they prevent
phishing attacks and reduce password sharing by enforcing that
different sites will receive different passwords (in particular, the
legitimate site and the impostor site will receive different pass-
words). These advanced password managers, however, come with
their own set of usability issues [8], ranging from the fact that users
no longer know the passwords for certain sites to problems with
the interaction model (users sometimes have to press certain key
combinations to invoke the password manager, or be careful to only
type the password into the browser chrome).

OTHER RELATED WORK. The TLS-SA [19] work by Oppliger
et al. shares many of our insights. Unfortunately, it does not
provide long-lived TLS sessions and hence will not allow credential
binding in the same manner as our system. Additionally, the TLS-
SA papers do not take a firm stance on what the user experience
(UX) should be, instead enumerating a number of possible UXs,
none of which score well in the Usability section of the Bonneau et
al. [5] matrix.

The previously mentioned study by Bonneau et al. lists more
“non-standard” authentication mechanisms and critically analyzes
them. We agree with most of that analysis and refer the interested
reader to that work.

One take-away of the Bonneau ef al. work is that authentication
schemes where the user experiences strays from the traditional
“username + password” model have difficulty overcoming the
barrier for adoption. What’s more, much of the previous work in
this area dramatically shifts the user experience of login (e.g., by
requiring a second factor or redirecting the user to an identity
provider) while falling prey to some of the same attacks as pass-
words do — e.g., phishing.

3. GOALS AND ASSUMPTIONS

DESIGN GOALS. Given the lessons from previous work, we take a
fresh look at strong user authentication on the web. The goals we
have set for our work are outlined below:

e Some form of public-key cryptography needs to be involved
in the authentication process. Not only does this allow for the
authentication secret (the private key) to remain protected on
the client device, it also means that this secret is unknown to
the user and therefore cannot be stolen through phishing.

o The identity of the user must be established and proven above
the transport layer. Otherwise, the inability of users to see
the context in which they are authenticating leads to poor
user experience and privacy problems as we observed in TLS
client authentication.

e The action of logging into a website should remain invariant:
users type a username and password into a web page (not the
browser chrome or other trusted device), and then are logged
in. Apart from helping with learnability for the user, this
also helps with deployability: websites do not have to re-
design their login flows and can gradually “onboard” those
users that possess the necessary client software into the new
authentication mechanism.

e The design should work well both in a world with very few
identity providers, or in a world where every website runs its
own authentication services.

e Users need a fallback mechanism that allows them to log in
just with something “that they know” in case the public-key
mechanism does not work (e.g., they are on a device that does
not support the new mechanism, or the device responsible for
doing the public-key operation is not available), or in case
they do have a legitimate need to hand over their credential
to a third party (for example, someone asking their more
tech-savvy friend/child/parent to debug a problem with their
account).

THREAT MODEL. Another goal of our work is to protect users
in the face of a strong adversary. In particular, we assume the
following threat model: We allow adversaries to obtain the user’s
password — either through phishing or by compromising weaker
sites (for which the user has reused a password).

We assume that the attacker can perform a man-in-the-middle
attack on the connection between the user and the server to which
user is authenticating. For TLS based connections, this attack
assumes that the attacker has a valid TLS certificate for the site to
which the user is authenticating, thus allowing him to perform TLS
man-in-the-middle attacks. We even allow an attacker to obtain
the correct certificate for the victim site (presumably by stealing
the site’s private key). This capability is extremely powerful and
would even cause browser certificate pinning [20] to fall prey to a
TLS man-in-the-middle attack. Though we have not seen reports
of such attacks in the wild, security practitioners do believe such
attacks are possible [17].

Finally, we allow the attacker to deploy certain types of malware
on the user’s machine — for example those that perform keylogging.
However, we assume the attacker is not able to simultaneously
perform an attack on both the network connection and the physical
radio environment near the user. For example, these constraints
make malware that is able to control (and potentially man-in-the-
middle or denial of service) both the LAN NIC and the Bluetooth
chip out-of-scope, but leave in-scope malware that rides in the
browser session. Finally, we assume the attacker is not able to
simultaneously compromise the same user’s PC and user’s personal
device.



4. ARCHITECTURE

4.1 Architectural Overview

Our PhoneAuth authentication framework meets the goals above
by opportunistically providing cryptographic identity assertions
from a user’s mobile phone while the user authentications on
another device. Figure 1 explains this process:

e In step 1, the user enters their username and password into a
regular login page, which is then sent (in step 2) to the server
as part of an HTML form.

e Instead of logging in the user, the server responds with a
login ticket, which is as a request for an additional identity
assertion (more details below).

e In step 3, the browser forwards the login ticket to the user’s
phone, together with some additional information about key
material the browser uses to talk to the server.

e The phone performs a number of checks, and if they succeed,
signs the login ticket with a private key that is known to
the server as belonging to the user. The signed login ticket
constitutes the identity assertion. It’s cryptographic because
we use public-key signatures to sign the browser’s public key
with the user’s private key.

e In step 4, the browser forwards the identity assertion to the
server. The server checks that the login ticket is signed with
a key belonging to the user identified in step 2, and if so,
logs in the user by setting a cookie that is channel-bound to
the browser’s key pair (see below). As a result, the phone
certified the browser’s key pair as speaking for the user, and
the server records this fact by setting the respective cookie.

We now provide additional notes about the overall architecture:

OPPORTUNISTIC IDENTITY ASSERTIONS. We do not assume that
every user will have a suitable mobile phone with them, or attempt
logins from a browser that supports this protocol. That is why
in step 4 the browser can also return an error to the server. If
this is the case, the user has performed a traditional login (using
username + password), and in the usual manner (by typing it into
a login form), which means that the protocol essentially reduces
to a traditional password-based login. The cryptographic identity
assertion is opportunistic, i.e., provided when circumstances allow,
and omitted if they do not.

The server may decide to treat login sessions that carried a
cryptographic identity assertion differently from login sessions
that did not (and were only authenticated with a password). For
example, the server could decide to notify the user through back
channels (SMS, email, ezc.), similar to Facebook’s Login Notifica-
tions mechanism. The server could also restrict access to critical
account functions (e.g., changing security settings) to sessions that
did carry the identity assertion. We call this mode of PhoneAuth
opportunistic mode.

An alternative mode of PhoneAuth is strict mode, in which the
server rejects login attempts that did not carry a cryptographic
identity assertion. This is more secure, but comes at the cost of
disabling legacy devices that can’t produce identity assertions. The
decision whether to run in strict or opportunistic mode can either be
made by the server, or it can be made on a per-user basis: Security-
conscious users could opt into strict mode, while all other users run
in opportunistic mode. A user who has opted into strict mode would
not be able to log in when his phone was unavailable, while a user
has not opted in (i.e., runs in opportunistic mode) would simply see
a login notification or a restricted-access session when logging in
without his phone.

USER EXPERIENCE. The user does not need to approve the login
from the phone. The server will only issue a login ticket if the
user has indicated his intent to log in by typing a username and
password. When the phone sees a login ticket, it therefore knows
that user consent was given, and can sign the login ticket without
further user approval.

This means that there is no user interaction necessary during a
PhoneAuth login, other than typing the username and password. If
the phone and browser can communicate over a sufficiently long-
range wireless channel, the user can leave the phone in their pocket
or purse, and will not even need to touch it.

PROTECTED LOGINS. Recently, Czeskis et al. [10] introduced the
concept of Protected Login whereby they group logins into two
categories — protected and unprotected. Protected logins are those
that are a result of strong, unphishable credentials (e.g., a cookie or
an identity assertion in our case). Unprotected logins are logins that
result from weaker authentication schemes (e.g., just a password or
a password and secret questions). Following this nomenclature,
opportunistic PhoneAuth attempts to perform a protected login,
but reverts to an unprotected login if the identity assertion is not
available.

The work by Czeskis et al. shows that only first logins from
a new device need special protection via a second factor device —
subsequent logins can be protected by channel-bound cookies (see
below) that were set during the first login. This observation further
shows the usability of our scheme: we obtain strong protection with
a login mechanism that quite literally asks the user to do nothing
but type their username and password, and (assuming a wireless
connection between browser and phone) bring their phone into
the proximity of the browser only during the first login from that
browser.

TLS CHANNEL IDs. The security of PhoneAuth relies on the con-
cept of TLS origin-bound certificates (OBC) recently introduced
in [13]. TLS-OBC is currently an experimental feature in Google’s
Chrome browser and is under consideration by the IETF as a TLS
extension.

OBCs are TLS client certificates that are created by the browser
on-the-fly without any user interaction and used during the TLS
handshake to authenticate the client. OBCs don’t carry any user-
identifying information and are not used directly for authentication.
Instead, they simply create a TLS “channel” that survives TLS
session resets (the client re-authenticates itself with the same OBC
to the server, recreating the same channel). We can bind an HTTP
cookie to this TLS channel by including a TLS channel ID (a hash
of the client’s OBC) as part of the data associated with the cookie.
If the cookie is ever sent over a TLS channel with a different
channel ID (i.e., from a client using a different OBC), then the
cookie is considered invalid.

At the heart of PhoneAuth is the idea that the server and browser
will each communicate their view of the TLS channel between
them to the user’s phone. The server uses the login ticket as the
vehicle to communicate its view of the TLS channel ID to the
phone. The browser communicates the TLS channel ID directly
to the phone. If there is a man-in-the-middle between browser and
server (which doesn’t have access to the browser’s private OBC
key), these two TLS channel IDs will differ (the server will report
the ID of the channel it has established between the man-in-the-
middle and itself, while the browser will report its channel ID to
the phone). Similarly, if the user accidentally types his credentials
into a phishing site (which then turns around and tries to submit
them to the server), the two TLS channel IDs will differ.
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Figure 1: PhoneAuth Overview

The user’s phone compares the two TLS channel IDs and will
not issue an identity assertion if they differ, causing a login failure
in strict mode, and an unprotected login in opportunistic mode. The
phone can then potentially alert the user that an attack may be in
progress or send a message to the server if a cellular connection is
available.
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(signed and encrypted by master ticket key)

Figure 2: Login ticket structure

4.2 Protocol Details

In describing this protocol, we also describe inline how our
design addresses risks such as credential reuse, protocol rollback
attacks, TLS man-in-the-middle attacks, and phishing.

Recall that in step 2, the user’s entered username and password
are sent to the server. The server then verifies the credentials
and generates a login ticket. The login ticket structure is shown
in Figure 2. The ticket contains a TLS channel ID (for binding
the ticket to the TLS channel), the web origin of the webapp,
the expiration time (to prevent reuse), whether the login request
used TLS-OBC (to prevent rollback attacks), an account (to bind
the ticket to a user), and an origin protection key (to allow the
phone to decrypt assertion requests sent over insecure mediums).
The login ticket is encrypted and signed using keys derived from a
per-account master secret known only to the server and the user’s
phone; we describe later how the server and phone derive this
master secret key. Observe that the login ticket is opaque to the
browser — it can neither “peek” inside nor modify the login ticket.

The server sends the login ticket along with a certauth id that
tells the browser how to contact the user’s phone. The certauth id
is in the form of:

<origin_protection_key>@<device_address>.<device_type>.certauth

login ticket

origin,

TLS channel ID,
tls_obc_support
(signed and encrypted
by origin protection key)

3

~— assertion request
— id assertion ——pp»

Figure 3: Assertion request structure

After receiving the login ticket, the browser generates an asser-
tion request (shown in Figure 3) which includes the login ticket
along with some metadata about the TLS session. The metadata
also includes the TLS channel ID as seen by the browser and helps
to prevent a TLS man-in-the-middle attack. This data is encrypted
and authenticated under the origin protection key obtained from the
certauth id (obtained in step 2).

The browser sends the assertion request to the user’s phone in
step 3. The phone then unpacks and validates the assertion request,
making sure that the TLS channel IDs match, that the device can
vouch for the requested user, and that the assertion request was
indeed for this device. Next, the device generates an identity
assertion. The identity assertion simply contains the login ticket
signed by the private key of the user’s personal device. The phone
sends the identity assertion to the browser, which forwards it to the
webapp (shown in Figure 4). The webapp unpacks and validates
the assertion (again checking for TLS Channel ID mismatches) and
incorrect signatures.

Finally, the webapp gives the browser a channel-bound cookie,
thus completing the protected login.

ADDITIONAL SECURITY DISCUSSION. Though we discuss sev-
eral attacks and their mitigations above, we now highlight several
additional aspects of our security design. Observe that by including
the TLS channel ID in the login ticket, the server binds that ticket to
the server-browser TLS channel. Because the login ticket is end-to-
end encrypted to the user’s personal device, a rogue middle party is
unable to undetectably modify it. By using the TLS channel ID that
the browser has placed in the assertion request in conjunction with
the TLS channel ID from the login ticket, the user’s phone is able
to determine if a man-in-the-middle is present. Observe that the
metadata provided by the browser is encrypted and authenticated
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by the origin-protection-key which the user’s device extracts after
decrypting the login ticket. When the identity assertion returns to
the server, it can be sure that: 1) the identity assertion came over
the same TLS channel as the user password (no phishing occurred),
2) there was no TLS man-in-the-middle between the browser on
which the password was entered and the server, and 3) the user’s
phone was near the PC during authentication'.

4.3 Enrollment

As we mentioned briefly earlier, the user’s phone must be
enrolled with the server prior to use during authentication. Specifi-
cally, the user’s phone registers itself with the server by telling the
server its public key and identifying which user(s) it will vouch for.
The user’s personal device and the server also agree on a master
encryption key during the enrollment process. The architecture of
the enrollment protocol is fairly simple (occurring as a single HTTP
POST request) and is discussed in detail in Section 5.

Enrollment need only be done once per website and phone. Once
a user has enrolled his phone device with a server, he will not have
to do this again.

Clearly, prior to enrolling into this system, users do not have
the benefits of the system and are vulnerable to some the attacks
against which this system protects. Namely, we assume there to be
no TLS man-in-the-middle between the user’s PC and the server
during enrollment.

4.4 Practical Maintenance Operations

During the normal use of PhoneAuth, several maintenance
operations will occur. We address each in turn.

ADDING MORE PHONES. Users may want to have more than one
phone. However, to make it easier for users to maintain consistency
(the lack of which which may introduce user confusion) we
suggest only allowing users to have one enrolled phone as their
authentication device. We enforce this by overriding enrollment
information every time the user registers a (new) phone.

RECOVERY / REPLACING A PHONE. Users will want to replace
their phone for a variety of reasons — upgrades, loss (or breakage),
or just because. In our system this is easily accomplished if the user
has at least one PC which has an active login session. The user will
simply elect to “replace their authentication device” in the web UL
This will present a QR code which the user can scan with their new
phone. The QR code includes session information from the PC’s
active login session which the phone can use to prove to the server
that the user did have a valid session. As an alternative, users can
elect to have a special SMS sent to their new phone (presumably

'We discuss the reasoning for this after providing some implemen-
tation details.

the phone number has stayed constant), which will help them get
through the replacement process.

In the case where the user does not have an active protected login
session and has a new phone number, users will need to go through
a thorough account recovery procedure. For example, a service
provider may send an e-mail to a backup email address or ask
questions about the content of the account (such as recent e-mails).
There best recovery technique for a service provider largely depend
on the type of service being offered. We therefore do not give
concrete guidance on what the account recovery procedure should
be.

REVOCATION. Users may want to revoke their phone (in case it is
stolen or they decide to withdraw from the protected login system).
Similar to replacing a phone, this can be accomplished through
the web interface at the server if the user has an active session.
Otherwise, device revocation can potentially be a very dangerous
action. In case of no active session, we recommend that service
providers verify the user identity via a thorough account recovery
procedure (see above).

S. IMPLEMENTATION

Having presented the overall architecture, a key question arises:
why did we choose to implement identity assertion generation on
a smart phone? A standard option might have been a Near Field
Communication (NFC) smartcard or dedicated token, as used by
other constructions. While offering good security properties, the
use of dedicated tokens has usability problems — e.g., requiring
changes in user behavior (either to keep the token with the user
or to place the token near the computer when authenticating); these
user behavior changes violate our goal to keep the action of logging
in invariant. An additional advantage of using a phone is that users
already possess such a device, whereas otherwise they would have
to obtain a special-purpose authentication device from somewhere.

PHONES AND BLUETOOTH. Our system requires that the PC and
phone communicate wirelessly, since a wired connection would
have undesirable usability consequences. While they could clearly
communicate through a trusted third party known to both (i.e., a
server in the cloud [1]), this approach introduces unacceptable
latency and the need for cellular connectivity. Instead, we have
elected to have the PC and phone communicate directly through
Bluetooth. Though other alternative ad-hoc wireless protocols exist
(e.g., wifi direct, NFC), they are not sufficiently ubiquitous or have
other inherent limitations. Unlike NFC (which is for extremely
close range communication, i.e., “touching”), Bluetooth allows the
user to keep the phone in their pocket during the authentication
process — a huge usability benefit. Though the range of Bluetooth
has been shown to be artificially extendible by attackers [30], this
is not a security issue for our design unless the attackers are also
able to mount a TLS man-in-the-middle attack on the PC-Server
connection — in which case, such attackers are outside the scope of
our threat model (see Section 3).

5.1 Key Challenges and Methods

While implementing this system, we encountered a number of
interesting technical and design challenges.

PHONE AND PC COMMUNICATION. The central challenge with
using Bluetooth in our environment is that we want to simulta-
neously support (1) Bluetooth communication between the user’s
phone and the user’s browser without any user interaction with the
phone and (2) have this work even when the user has never had
contact with the computer / browser before. This is a challenge
because, without prior interaction, the phone and the computer /



browser will not be paired. To overcome these challenges, we
modify both the browser and leverage a seldom used feature of the
Bluetooth protocol.

In order for the PC and phone to contact one another over Blue-
tooth they need to learn one-another’s Bluetooth MAC address. In
most scenarios, this is usually done by putting one or both devices
in discoverable mode, scanning for devices, then using a Ul to
pick the corresponding device from the menu. Since this process
is highly interactive and time consuming (especially the scanning
portion), we investigated ways of short circuiting the process. We
leverage the fact that if one of the devices knows the MAC address
of the other device, then the discovery phase can be bypassed and
communication can immediately commence. Note that the phone
and the PC are assumed to not have any prior association and
therefore do not know each other’s address.

We considered two bootstrapping mechanisms: 1) the phone
would “be told” the PC’s address and would initiate a connection
with the PC or 2) the PC would “be told” the phone’s address
and would initiate a connection with the phone. For the first
mechanism, the server could send a message to the phone through
the cloud. However requires a cellular connection (which may not
be available) and introduces high latency thereby changing the user
experience and violating our goals from Section 3. For the second
mechanism, the PC can obtain the phone’s Bluetooth MAC address
from the already existing (and lower latency) server connection?.

Though the PC and Phone can make radio contact, there are
still a number of challenges to overcome. Traditionally, before any
Bluetooth communication takes place, the user must first “pair” the
two devices. This usually involves showing the user some interface
where he is asked to compare several numbers and usually press
a button on one or both devices. This is both labor and time
intensive from the user’s point of view. Instead, we utilize the
ability of Bluetooth devices to communicate over unauthenticated
RFCOMM connections. This technique allows us to create a “zero-
touch” user experience by not forcing the user to interact with the
mobile phone at all while authenticating on the PC. Recall from
Section 4 that although the Bluetooth connection is unauthenticated
at the RFCOMM level, the data is end-to-end authenticated and
encrypted on the application level using the origin-protection-key.

BROWSER SUPPORT FOR PHONE COMMUNICATION. Our archi-
tecture proposes that webpages should be able to request identity
assertions from the user’s mobile phone. One way of achieving
this goal is to create an API that would allow webpages to send
arbitrary data to the user’s phone. At the extreme, this would
amount to a Bluetooth API in JavaScript. This approach is
unattractive for a variety of both security and usability reasons. For
example, it might allow malicious sites to freely scan for and send
arbitrary data to nearby Bluetooth devices. This may expose those
devices to DOS attacks, make them even more vulnerable to known
Bluetooth exploits, and allow attackers to potentially track users
via their Bluetooth address. Instead, we chose an approach that
exposes a much higher level API — thereby severely constraining
the attackers’ abilities. We describe this in detail below.

5.2 Implementation Details

BROWSER. We extended the Chromium web browser to provide
websites a new JavaScript API for fetching identity assertions.
We modeled our approach after the BrowserID [2] proposal by
using the navigator.id namespace. The full API consists of the

2This must be done carefully, lest the designer creates a Bluetooth
address oracle. See Section 7 for more discussion of this pitfall.

function:
navigator.id.GetIdentityAssertion()

This API accepts three parameters: 1) a certauth id, 2) a login
ticket, and 3) a JavaScript callback function that will be called when
the identity assertion is ready.

If an identity assertion is not able to be fetched (either because
the phone is not in range or the ticket is incorrect), the callback
function may not be called — this is to help prevent malicious
actions such as brute-forcing correct login tickets and tracking
users by Bluetooth address.

Since regular Chromium extensions don’t have the ability to
interact with peripheral devices (i.e., Bluetooth), we also wrote an
additional NPAPI plugin that is embedded by the extension. The
extension currently supports the Chromium browser on both Linux
and Windows platforms. In total, the modification consisted of
3300 lines of C and 700 lines of JavaScript.

Pending work is ongoing to implement this functionality into the
core Chromium browser code. We are currently investigating to-
gether with the Firefox team whether our Get IdentityAssertion
API and the BrowserID API can be combined into a single API.

MOBILE PHONE. We modified the Android version of the open
source Google Authenticator application [27] to provide identity
assertions over unsecured RFCOMM. The application is able
to provide identity assertion while the screen is off, and the
application is in the background. The total changes required were
4000 lines of Java code.

SERVER. We chose a service-oriented design for the server-side
implementation. The central service exposes three RPCs: Regis-
terDevice, GenerateTickets, and VerifyTicket. The RegisterDevice
RPC is exposed as a REST endpoint directly to users’ phones. The
other two RPCs are intended for login services. The idea is that a
(separate) login service will call the GenerateTickets RPC after it
performed a preliminary authentication of the user (using username
and password), and will forward the login tickets returned by this
RPC to the user’s browser. Once the user’s browser has obtained
an identity assertion from the user’s phone and has forwarded it to
the login service, the login service will use the VerifyTicket RPC
to check that the identity assertion matches the previously issued
login ticket.
The basic signatures of the three RPCs is:

RegisterDevice Input parameters include an OAuth token iden-
tifying the user account for which the device is registered,
a public key generated by the device, and the Bluetooth
address of the device. This RPC returns the ticket master
key.

GenerateTickets The following input parameters are included in
the login tickets:

e The user id of the user for which the login service needs
Login Tickets.

e The URL of the login service.

e The TLS channel ID (see Section 4.1) of the client that
has contacted the login service. This is an optional
parameter and only included if the client (browser)
supports TLS-OBC.

e A boolean designating whether the user has explicitly
indicated an intent to log in (such as typing a username
and password), or not (such as during a “password-
less” login that is triggered purely by the proximity of



the phone to the browser). This boolean is embedded
in the login ticket and allows the phone to present a
consent screen on the phone if no previous user consent
has been obtained by the login service for this login.

e A boolean indicating whether the login service supports
TLS-OBC. This allows us to detect an attack in which
a man-in-the-middle pretends to a TLS-OBC-capable
browser (respectively login service) that the login ser-
vice (respectively browser) doesn’t support TLS-OBC.
This boolean will be compared by the phone to a similar
boolean that the browser reports directly to the phone.

This RPC returns a login ticket for the indicated user’s reg-
istered device. As noted earlier, a login ticket includes many
of the input parameters, together with an expiration time and
an origin protection key, and is encrypted and signed with
keys derived from the ticket master key established at device
enrollment time. Every login ticket is accompanied by an
identifier that includes the Bluetooth address of the device
possessing the ticket master key.

VerifyTicket This RPC’s input parameter is an “identity asser-
tion”, which is simply a counter-signed login ticket. The
service simply checks that the ticket is signed by a key that
corresponds to the user for which the ticket was issued, and
returns an appropriate status message to the caller (the login
service).

The complete implementation of this service (not including a
backend database for storing device registration information, unit
tests, and the actual login service) consisted of 5500 lines of Java.

6. EVALUATION

6.1 Comparative

We now evaluate our system using Bonneau et al.’s framework
of 25 different “benefits” that authentication mechanisms should
provide. We evaluate the two modes of using PhoneAuth — strict
and opportunistic. Recall from Section 4 that in strict mode, the
user can only successfully authenticate if an identity assertion
is fetched from his phone. In opportunistic mode, however,
identity assertions are fetched opportunistically and users achieve
either “protected” or “unprotected” login, with the latter possibly
resulting in user notifications or restricted account access. We also
include the incumbent passwords and a popular 2-factor scheme
as a baseline; we reproduce scores for passwords exactly as in
Bonneau e al.’s original publication, but disagree slightly with the
scores reported for Google 2-Step Verification (2SV). The results
of our evaluation are shown in Table 1.

USABILITY. In the usability arena, the strict and opportunistic
modes are similar to passwords and 2SV in that they provide the
easy-to-learn and easy-to-use benefits since neither mode requires
the user to do anything beyond entering a password. We rated
both strict and opportunistic modes as somewhat providing the
infrequent-errors benefit since they will cause errors if the user
forgets his password or if the PC-phone wireless connection does
not work. The strict mode does not provide the nothing-to-carry
benefit since users won’t be able to authenticate without their
personal device. On the other hand, opportunistic mode somewhat
provides that benefit since users may get a lower privileged session
without their personal device. Both PhoneAuth modes provide the
Quasi-Nothing-to-Carry benefit, since the device that the user is
required to carry is a device they carry with them already anyway.

We indicated that both strict and opportunistic modes at least
somewhat provided the scalable-for-users benefit since they reduce
the risk of password reuse across sites.

DEPLOYABILITY. Assessing the deployability benefits comes
down to evaluating how much change would be required in current
systems in order to get our proposed system adopted. We note that
the opportunistic mode is fairly deployable since it can always fall
back to simple password authentication. Strict mode provides less
deployability benefits, but is not far behind. Since the system is
not proprietary, the changes that would need to be done both on
the browser and server are minimal. Similarly, the cost-per-user of
these systems is minimal as well.

SECURITY. The security benefit arena is where our approach really
shines over passwords and 2SV. While the Bonneau et al. study
indicated that 2SV was resistant to phishing, unthrottled guessing,
and somewhat resistant to physical observation, we do not believe
this to be the case. Attackers can phish users for their 2SV codes
and, in conjunction with a phished password, can compromise
user accounts. The same is true under physical observation and
unthrottled guessing.

In comparison, PhoneAuth in strict mode is able to provide all
of the security benefits except for unlinkable, which we say it
provides somewhat because even though the user will be exposing
his or her Bluetooth MAC address to multiple verifiers, privacy
conscious users can change their Bluetooth MAC address to not
be globally unique. The opportunistic mode provides all of the
security benefits of passwords, but is also able to somewhat provide
the other security benefits by restricting users (or attackers) who
don’t provide an identity assertion to less privileged operations and
notifying users of the less secure login.

DISCUSSION. Given this evaluation, we believe that PhoneAuth
fares very well against the Bonneau ef al.’s metric and compares
favorably with the 35 authentication mechanisms investigated in
the Bonneau et al. study.

6.2 Performance

Measuring the performance impact of our login scheme is a
complex task. Issues range from the impact of the Bluetooth
service on the phone battery life, to overhead introduced by the
additional cryptographic functions (both for TLS-OBC and for the
login ticket issuance, signature and verification), and finally the
additional overhead introduced during login by communicating to
the phone, additional round trips between browser and server, and
so on. Below we discuss a number of these issues.

OVERHEAD OF CRYPTOGRAPHY. A key concern is the use of
TLS-OBC - since every connection to the login service will incur
the respective penalty. If the latency and overhead introduced
by TLS-OBC is too great, then this will manifest itself in slow
load times of the login page, for example. We refer the reader
to a detailed discussion of the TLS-OBC performance [13]. That
work shows that the overhead is negligible once the browser has
generated a client certificate (and very small for certain key types
even when a new client certificate needs to be generated).

The overhead of cryptography during the login process (gen-
erating the login ticket, checking and signing it, and checking
the ticket signature) is dwarfed by the “human-scale” operations
performed during login (typing a username and password), and
by the additional round trips between browser and server. For
example, a typical login ticket generation and verification took
about 1 millisecond in our setup of 1000 test runs. We examined
the timing of other cryptographic operations, but do not report on
them as they incur a delay of approximately the same order, but
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scoring.

have no end-user-impact (which is dominated by other latency; see
below).

OVERHEAD OF ADDITIONAL ROUND TRIPS. During login, the
browser makes an additional request to the server — to obtain the
login ticket from the login service. The latency introduced by such
arequest is highly variable — from a few milliseconds for clients on
a good network connection close to a datacenter where the login
service is running, to a few seconds for mobile clients in rural
areas far away from any datacenter. The relative overhead of a
single additional round trip, however, is relatively low. Bringing up
the login pages for Gmail, Facebook, and Hotmail, for example,
involves 14, 11, and 14 HTTP requests as of the time of this
writing (and this does not include submitting the password, getting
redirected to the logged-in state, and so on — simply loading and
displaying the login page).

OVERHEAD OF INVOLVING THE PHONE DURING LOGIN. This
is perhaps the most interesting type of overhead incurred: The
browser has to establish a Bluetooth connection to the phone
and obtain an identity assertion. As a baseline comparison, we
measured how long it took a member of our team to log into a
simple password-based login service (type username, password,
and submit) — an average of 8.8 seconds. Repeating the same login
while also obtaining an identity assertion increased the average
time to 10.3 seconds. The additional 1.5 seconds are mostly spent
establishing the Bluetooth connection, with processing time on the
phone and penalty for the additional round trip being much less of
an issue in comparison.

We noticed that the “long tail” of Bluetooth connection setup
time, however, was considerably slower — sometimes taking up to
7 seconds. As a result, our test login service tries for as long as 7
seconds to connect to the phone before giving up and proceeding
with a password-only “unprotected” login. Not surprisingly, when
we tested login with the phone turned off (simulating a situation in
which the phone wasn’t available to protect the login), the average
login time increased to 16.7 seconds — almost all of the additional
time was spent waiting (in vain) for the Bluetooth connection to the
phone to be established.

We envision techniques that may shorten the login time even
more. For example, “lazy verification” of the second factor
credentials (for opportunistic rather than strict logins) may work
as follows. The user is allowed to login like normal if a second
factor device is not found within 1 second, but behind the scenes the
server continues to search for the second factor device for another
20 seconds. If the second factor device is found, the user session is
upgraded and no notifications will be sent out.

This is still faster than a typical two-factor login, however. We
measured an average login time of 24.5 seconds for a 2-factor login
service that included typing a username and password, and copying
a one-time code from a smart phone app to the login page.

Note that for a user that uses 2-factor authentication, and
whose login service may perhaps accept both traditional one-time
codes and the (considerably more secure) cryptographic assertions
from the phone as a second factor, login actually speeds up
dramatically with our system (from 24.5 seconds to 10.3 seconds),
while at the same time reverting the login experience to a simple
“username-+password” form submission and improving security.

7. DISCUSSION

OPERATIONAL REQUIREMENTS AND DEPLOYABILITY. As the
careful reader has noticed, PhoneAuth has several operational
requirements which must be met in order for the system to be
deployed. First, our browser extension’s functionality should be
ported to be part of the actual browser. We have approached
the Chromium browser team and have interacted with the Fire-
fox team to make that happen. Second, it must be simple for
developers to deploy this authentication scheme to their websites.
Our service-oriented implementation of the server-side PhoneAuth
functionality makes this easy, but a roll out of PhoneAuth to a
non-trivial deployment is still in its planning phase. Third, the
system must be tested and approved by users. We believe the
main reason similar systems have failed is that none have been
able to support opportunistic strong user authentication without
modifications to the user experience — a feature which our system
provides. We are planning on running field tests of the system in the



near future. Finally, Bluetooth should be a ubiquitous technology
on most phones and PCs. We found that the majority of new
devices do indeed ship with Bluetooth [28]. Examining several
major device manufacturers, we found that all Apple computers,
almost all laptops (HP and Dell), and about half of Desktop PCs
(HP and Dell) have integrated Bluetooth. Given these statistics, we
believe the ubiquity of Bluetooth goal to be realistic.

OTHER METHODS FOR TESTING PHONE/PC COLOCATION.
Instead of relying on a wireless channel between the phone and PC,
an alternative approach for testing for proximity between phone
and PC may be to query both for their location. Most phones
can provide their location coordinates (for example through GPS
or cell triangulation). Recently, browsers have begun to expose
geolocation APIs as well [18]. However, without a GPS fix, phones
may provide location data with too coarse of a granularity. More
troublesome, however, is that the browser geolocation API (which
is based on IP addresses) does not work from behind a VPN or on
large managed networks (such as our university). These two issues
make the location based approach impractical.

As yet another approach, it may be feasible to transfer identity
assertions via NFC (by having users tap their phones on NFC
readers) or by having users scan QR codes. Both of these
approaches carry a non-negligible user experience impact. Users
must take their phone out of their pocket, purse, or backpack,
potentially unlock the screen, and potentially launch an app. We
believe this usability impact is too severe and therefore do not
consider these modes of operations.

Finally, some designs may be possible that leverage the cellular
network. We have chosen not to use them because of occasional
lack of cellular coverage and potentially high latency.

AVOIDING A BLUETOOTH ADDRESS ORACLE. We briefly con-
sidered a very attractive design, but discarded it for privacy rea-
sons because it inadvertently created a Bluetooth address oracle.
Specifically, in the design, users could just type their username into
the webpage login page and an identity assertion would be fetched
from their phone without requiring users to enter a password. This,
however, required that web sites expose an API that would return
a Bluetooth address based on username. Even though this design
presented nice usability benefits, we stayed clear of this approach.

8. CONCLUSION

In this paper we introduced PhoneAuth, a new method for user
authentication on the web. PhoneAuth enjoys the usability benefits
of conventional passwords — users can, for example, approach an
Internet kiosk, navigate to a web page of interest, and simply
type their user name and password to log in. At the same time,
PhoneAuth receives the benefits of conventional second-factor
authentication systems and more. Specifically, PhoneAuth stores
cryptographic credentials on the user’s phone. If present when the
user logs into a site, then the phone will attest to the user’s identity
via Bluetooth communications with the computer’s browser; this
happens even if the user has never interacted with that particular
computer before. Since users may occasionally forget their phones,
we further considered a layered approach to security whereby a
web server can enact different policies depending on whether or
not the user’s phone is actually present.

We called this concept "opportunistic identity assertions". Op-
portunistic identity assertions allow the server to treat logins
differently based on how the user was authenticated — allowing the
server to provide tiered access or restrict dangerous functionality
(e.g., mass e-mail deletion). Thus, while opportunistic identity
assertions may not always be available to all users (e.g., lack of

Bluetooth support), there are still advantages in providing them.
Similarly, an adversary who is able to make it appear that Alice’s
phone is "not there" simply degrades Alice’s login and prevents
access to dangerous functionality.

We implemented and evaluated PhoneAuth, and our assessment
is that PhoneAuth is a viable solution for improving the security of
authentication on the web today.
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