
Designing voting machines for verification

NAVEEN SASTRY∗ TADAYOSHI KOHNO† DAVID WAGNER‡

Abstract

We provide techniques to help vendors, independent test-
ing agencies, and others verify critical security properties
in direct recording electronic (DRE) voting machines.
We rely on specific hardware functionality, isolation, and
architectural decision to allow one to easily verify these
critical security properties; we believe our techniques
will help us verify other properties as well. Verification
of these security properties is one step towards a fully
verified voting machine, and helps the public gain con-
fidence in a critical tool for democracy. We present a
voting system design and discuss our experience build-
ing a prototype implementation based on the design in
Java and C.

1 Introduction

With a recent flurry of reports criticizing the trustwor-
thiness of direct recording electronic (DRE) voting ma-
chines, computer scientists have not been able to allay
voters’ concerns about this critical infrastructure [17, 29,
33, 38]. The problems are manifold: poor use of cryptog-
raphy, buffer overflows, and in at least one study, poorly
commented code. Given these problems, how can we
reason about, or even prove, security properties of voting
machines?

The ultimate security goal would be a system where
any voter, without any special training, could easily con-
vince themselves about the correctness ofall relevant
security properties. Our goal is not so ambitious; we
address convincing those with the ability to understand

∗nks@cs.berkeley.edu. Supported by NSF CNS-0524252
and by the Knight Foundation under a subcontract through theCal-
tech/MIT Voting Technology Project.

†tkohno@cs.ucsd.edu. Supported by NSF CCR-0208842,
NSF ANR-0129617, and NSF CCR-0093337. Part of this researchwas
performed while visiting the University of California at Berkeley.

‡daw@cs.berkeley.edu. Supported by NSF CCR-0093337
and CNS-0524252.

code the correctness of a few security properties. For
clarity, we focus on two important security properties in
the body of this paper. Verification of these properties, as
well as the others we describe elsewhere in this paper, are
a step towards the full verification of a voting machine.

Property 1 None of a voter’s interactions with the vot-
ing machine, including the final ballot, can affect any
subsequent voter’s sessions1.

One way to understand this property is to consider a
particular voting system design that exhibits the prop-
erty. A DRE can be “memoryless,” so that after indelibly
storing the ballot, it erases all traces of the voter’s actions
from its RAM. This way, a DRE cannot use the voter’s
choices in making future decisions. A DRE that achieves
Property 1 will prevent two large classes of attacks: one
against election integrity and another against privacy. A
DRE that is memoryless cannot decide to change its be-
havior in the afternoon on election day if it sees the elec-
tion trending unfavorably for one candidate. Similarly,
successful verification of this property guarantees that a
voter, possibly with the help of the DRE or election in-
sider, cannot access a prior voter’s selections.

A second property is:

Property 2 A ballot cannot be cast without the voter’s
consent to cast.

Property 2 ensures the voter’s ballot is only cast with
their consent; combined with other security properties,
the property helps ensure the voter’s ballot is cast in an
unmodified form.

In Section 8, we discuss additional target properties
for our architecture, and we discuss strategies for how to
prove and implement those properties successfully.

1Note that we do allow certain unavoidable interactions, e.g., after
the ballot storage device becomes “full,” a voting machine should not
allow subsequent voters to vote.

Current DREs are not amenable to verification of these
security properties; for instance, version 4.3.1 of the
Diebold AccuVote-TS electronic voting machine con-
sists of 34 7122 lines of vendor-written C++ source code,
all of which must be analyzed to ensure Properties 1
and 2. One problem with current DRE systems, in other
words, is that the trusted computing base (TCB) is sim-
ply too large. The larger problem, however, is the code
simply is notstructuredto verify security properties.

In this paper, we develop a new architecture that sig-
nificantly reduces the size of the TCB for verification
of these properties. Our goal is to make voting systems
more amenable to efficient verification, meaning that im-
plementations can be verified to be free of malicious
logic. By appropriate architecture design, we reduce the
amount of code that would need to be verified (e.g., using
formal methods) or otherwise audited (e.g., in an infor-
mal line-by-line source code review) before we can trust
the software, thereby enhancing our ability to gain confi-
dence in the software. We stress that our architecture as-
sumes voters will be diligent: we assume that each voter
will closely monitor their interaction with the voting ma-
chines and look for anomalous behavior, checking (for
example) that her chosen candidate appears in the confir-
mation page.

We present techniques that we believe are applicable
to DREs. We develop a partial voting system, but we em-
phasize that this work is not complete. As we discuss in
Section 2, voting systems comprise many different steps
and procedures: pre-voting, ballot preparation, audit trail
management, post-election, recounts, and an associated
set of safeguard procedures. Our system only addresses
the active voting phase. As such, we donotclaim that our
system is a replacement for an existing DRE or a DRE
system with a paper audit trail system. See Section 7 for
a discussion of using paper trails with our architecture.

Technical elements of our approach.We highlight two
of the key ideas behind our approach. First, we fo-
cus on creating a trustworthy vote confirmation process.
Most machines today divide the voting process into two
phases: an initial vote selection process, where the voter
indicates who they wish to vote for; and a vote confirma-
tion process, where the voter is shown a summary screen
listing their selections and given an opportunity to review
and confirm these selections before casting their ballot.
The vote selection code is potentially the most complex
part of the system, due to the need for complex user inter-
face logic. However, if the confirmation process is easy
to verify, we can verify many important security prop-
erties without analyzing the vote selection process. Our

2Kohno et al. count the total number of lines in their paper [17]; for
a fair comparison with our work, we look at source lines of code, which
excludes comments and whitespace from the final number. Hence, the
numbers cited in their paper differ from the figure we list.

architecture splits the vote confirmation code into a sepa-
rate module whose integrity is protected using hardware
isolation techniques. This simple idea greatly reduces
the size of the TCB and means that only the vote con-
firmation logic (but not the vote selection logic) needs
to be examined during a code review for many security
properties, such as Property 2.

Second, we use hardware resets to help ensure Prop-
erty 1. In our architecture, most modules are designed
to be stateless; when two voters vote in succession, their
execution should be independent. We use hard resets to
restore the state of these components to a consistent ini-
tial value between voters, eliminating the risk of privacy
breaches and ensuring that all voters are treated equally
by the machine.

Our architecture provides several benefits. It preserves
the voting experience that voters are used to with current
DREs. It is compatible with accessibility features, such
as audio interfaces for voters with visual impairments,
though we stress that we do not implement such features
in our prototype. It can be easily combined with a voter-
verified paper audit trail (VVPAT). Our prototype imple-
mentation contains only 5 085 lines of trusted code.

2 Voting overview

DREs. A direct recording electronic(DRE) voting ma-
chine is typically a stand-alone device with storage, a
processor, and a computer screen that presents a voter
with election choices and records their selections so they
can be counted as part of the canvass. These devices
often use an LCD and touch screen to interact with the
voter. Visually impaired voters can generally use alter-
nate input and output methods, which presents a boon to
some voters who previously required assistance to vote.

Pre-election setup. The full election process incorpo-
rates many activities beyond what a voter typically ex-
periences in the voting booth. Although the exact pro-
cesses differ depending on the specific voting technol-
ogy in question, Figure 1 overviews the common steps
for DRE-based voting. In the pre-voting stage, election
officials prepare ballot definition files describing the pa-
rameters of the election. Ballot definition files can be
very complex [24], containing not only a list of races and
values indicating how many selections a voter can make
for each race, but also containing copies of the ballots
in multiple languages, audio tracks for visually impaired
voters (possibly also in multiple languages), fields that
vary by precinct, and fields that vary by the voter’s party
affiliation for use in primaries. Election officials gener-
ally use external software to help them generate the ballot
definition files. After creating the ballot definition files,
an election worker will load those files onto the DRE vot-

V o t e r s i g n i n a t p o l l i n gs t a t i o n
A C T I V E V O T I N GV o t e r a u t h e n t i c a t i o nV o t e r i n t e r a c t i o nV o t e s t o r a g eI n s t a l l b a l l o tP r i n t z e r o � t a p eP R E � V O T I N G P O S T � V O T I N GF i n a l i z e b a l l o t s C A N V A S S I N G

D e s i g n b a l l o t S u m u p v o t e s
Figure 1: Major steps in the voting process when using DREs. The shaded portions are internal to the DREs. In this
work, we mainly address voter authentication, interaction, and vote storage.

ing machines. Before polls open, election officials gen-
erally print a “zero tape,” which shows that no one cast a
ballot prior to the start of the election.

Active voting. When a voter Alice wishes to vote, she
must first interact with election officials to prove that she
is eligible to vote. The election officials then give her
some token or mechanism to allow her to authenticate
herself to the DRE as an authorized voter. Once the DRE
verifies the token, the DRE displays the ballot informa-
tion appropriate for Alice, e.g., the ballot might be in Al-
ice’s native language or, for primaries, be tailored to Al-
ice’s party affiliation. After Alice selects the candidates
she wishes to vote for, the DRE displays a “confirmation
screen” summarizing Alice’s selections. Alice can then
either accept the list and cast her ballot, or reject it and
return to editing her selections. Once she approves her
ballot, the DRE stores the votes onto durable storage and
invalidates her token so that she cannot vote again.

Finalization & post-voting. When the polls are closed,
the DRE ensures that no further votes can be cast and
then prints a “summary tape,” containing an unofficial
tally of the number of votes for each candidate. Poll
workers then transport the removable storage medium
containing cast ballot images, along with the zero tape,
summary tape, and other materials, to a central facility
for tallying. During the canvass, election officials accu-
mulate vote totals and cross-check the consistency of all
these records.

Additional steps. In addition to the main steps above,
election officials can employ various auditing and test-
ing procedures to check for malicious behavior. For ex-
ample, some jurisdictions use parallel testing, which in-
volves sequestering a few machines, entering a known set
of ballots, and checking whether the final tally matches
the expected tally. Also, one could envision repeating the
vote-tallying process with a third-party tallying applica-

tion, although we are unaware of any instance where this
particular measure has been used in practice. While these
additional steps can help detect problems, they are by no
means sufficient.

3 Goals and assumptions

Security goals.For clarity, in the body of this paper we
focus on enabling efficient verification of Properties 1
and 2 (see Section 1), though we hope to enable the effi-
cient verification of other properties as well. Property 1
reflects a privacy goal: an adversary should not be able
to learn any information about how a voter voted besides
what is revealed by the published election totals. Prop-
erty 2 reflects an integrity goal: even in the presence of
an adversary, the DRE should record the voter’s vote ex-
actly as the voter wishes. Further, an adversary should
not be able to undetectably alter the vote once it is stored.
We wish to preserve these properties against the classes
of adversaries discussed below.

Wholesale and retail attacks.A wholesale attack is one
that, when mounted, has the potential of affecting a broad
number of deployed DREs. A classic example might be a
software engineer at a major DRE manufacturer inserting
malicious logic into her company’s DRE software. Prior
work has provided evidence that this it is a concern for
real elections [3]. Such an attack could have nationwide
impact and could compromise the integrity of entire elec-
tions, if not detected. Protecting against such wholesale
attacks is one of our primary goals. In contrast, a retail
attack is one restricted to a small number of DREs or a
particular polling location. A classic retail attack might
be a poll worker stuffing ballots in a paper election, or
selectively spoiling ballots for specific candidates.

Classes of adversaries.We desire a voting system that:

• Protects againstwholesaleattacks by election offi-

cials, vendors, and other insiders.

• Protects againstretail attacks by insiders when the
attacksdo not involve compromising the physical
security of the DRE or the polling place (e.g., by
modifying the hardware or software in the DRE or
tampering with its surrounding environment).

• Protects against attacks by outsiders, e.g., voters,
when the attacksdo not involve compromising
physical security.

We explicitly do not consider the following possible
goals:

• Protect againstretail attacks by election insiders
and vendors when the attacksdo involve compro-
mising physical security.

• Protect against attacks by outsiders, e.g., voters,
when the attacksdo involve compromising physical
security.

On the adversaries that we explicitly do not consider.
We explicitly exclude the last two adversaries above be-
cause we believe that adversaries who can violate the
physical security of the DRE will always be able to sub-
vert the operation of that DRE, no matter how it is de-
signed or implemented. Also, we are less concerned
about physical attacks by outsiders because they are typi-
cally retail attacks: they require modifying each individ-
ual voting machine one-by-one, which is not practical to
do on a large scale. For example, to attack privacy, a
poll worker could mount a camera in the voting booth
or, more challenging but still conceivable, an outsider
could use Tempest technologies to infer a voter’s vote
from electromagnetic emissions [18, 37]. To attack the
integrity of the voting process, a poll worker with enough
resources could replace an entire DRE with a DRE of
her own. Since this attack is possible, we also do not
try to protect against a poll worker that might selectively
replace internal components in a DRE. We assume elec-
tion officials have deployed adequate physical security to
defend against these attacks.

We assume that operating procedures are adequate to
prevent unauthorized modifications to the voting ma-
chine’s hardware or software. Consequently, the prob-
lem we consider is how to ensure that the original design
and implementation are secure. While patches and up-
grades to the voting system firmware and software may
occasionally be necessary, we do not consider how to se-
curely distribute software, firmware, and patches, nor do
we consider version control between components.

Attentive voters. We assume that voters are attentive.
We require voters to check that the votes shown on the

confirmation screen do indeed accurately reflect their in-
tentions; otherwise, we will not be able to make any
guarantees about whether the voter’s ballot is cast as in-
tended. Despite our reliance on this assumption, we re-
alize it may not hold for all people. Voters are fallible
and not all will properly verify their choices. To put it
another way, our system offers voters theopportunityto
verify their vote. If voters do not take advantage of this
opportunity, we cannot help them. We do not assume
that all voters will avail themselves of this opportunity,
but we try to ensure that those who do, are protected.

4 Architecture

We focus this paper on our design and implementation
of the “active voting” phase of the election process (cf.
Figure 1). We choose to focus on this step because we be-
lieve it to be one of the most crucial and challenging part
of the election, requiring interaction with voters and the
ability to ensure the integrity and privacy of their votes.
We remark that we attempt to reduce the trust in the can-
vassing phase by designing a DRE whose output record
is both privacy-preserving (anonymized) and integrity-
protected.

4.1 Architecture motivations

To see how specific design changes to traditional vot-
ing architectures can help verify properties, we will go
through a series of design exercises starting from current
DRE architectures and finishing at our design. The exer-
cises will be motivated by trying to design a system that
clearly exhibits Properties 1 and 2.

Resetting for independence.A traditional DRE, for ex-
ample the Diebold AccuVote-TS, is designed as a single
process. The functions of the DRE—validating the voter,
presenting choices, confirming those choices, storing the
ballot, and administrative functions—are all a part of the
same address space.

Let us examine one particular strategy we can use to
better verify Property 1 (“memorylessness”), which re-
quires that one voter’s selections must not influence the
voting experience observed by the next voter. Suppose
after every voter has voted, the voting machine is turned
off and then restarted. This is enough to ensure that
the voting machine’s memory will not contain any in-
formation about the prior voter’s selections when it starts
up. Of course, the prior voter’s selections must still be
recorded on permanent storage (e.g., on disk) for later
counting, so we also need some mechanism to prevent
the machine from reading the contents of that storage
medium. One conservative strategy would be to simply
require that any file the DRE writes to must always be

V o t e S e l e c t i o nI O M u l t i p l e x o rL C D a n dT o u c h S c r e e n
R e s e t M o d u l e T o k e nR e a d e rV o t e C o n f i r m a t i o nV o t e C o r e

Figure 2: Our architecture, at an abstract level. For the properties we consider, theVoteSelection module need not be
trusted, so it is colored red.

opened in write-only mode, and should never be opened
for reading. More generally, we can allow the DRE to
read from some files, such as configuration files, as long
as the DRE does not have the ability to write to them.
Thus the set of files on permanent storage are partitioned
into two classes: a set of read-only files (which cannot
be modified by the DRE), and a set of write-only files
(which cannot be read by the DRE). To summarize, our
strategy for enforcing Property 1 involves two prongs:

1. Ensure that a reboot is always triggered after a voter
ends their session.

2. Check every place a file can be opened to ensure
that data files are write-only, and configuration files
are read-only.

There must still be a mechanism to prevent the DRE from
overwriting existing data, even if it cannot read that data.

We introduce a separate component whose sole job is
to manage the reset process. TheBallotBox triggers the
ResetModule after a ballot is stored. The reset module
then reboots a large portion of the DRE and manages the
startup process. We use a separate component so that it
is simple to audit the correctness of theResetModule.

We emphasize this design strategy is not the only way
to verify this particular property. Rather, it is one tech-
nique we can implement that reduces the problem of en-
forcing Property 1 to the problem of enforcing a checklist
of easier-to-verify conditions that suffice to ensure Prop-
erty 1 will always hold.

Isolation of confirmation process.In considering Prop-
erty 2, which requires the voter’s consent to cast in order
for the ballot to be stored, we will again see how mod-
ifying the DRE’s architecture in specific ways can help
verify correctness of this property.

The consent property in consideration requires audi-
tors to confidently reason about the casting procedures.
An auditor (perhaps using program analysis tools) may
have an easier time reasoning about the casting process
if it is isolated from the rest of the voting process. In
our architecture, we take this approach in combining the
casting and confirmation process, while isolating it from
the vote selection functionality of the DRE. With a care-
ful design, we only need to consider this sub-portion to
verify Property 2.

From our DRE design in the previous section, we in-
troduce a new component, called theVoteConfirmation

module. With this change, the voter first interacts with
a VoteSelection module that presents the ballot choices.
After making their selections, control flow passes to the
VoteConfirmation module that performs a limited role:
presenting the voter’s prior selections and then waiting
for the voter to either 1) choose to modify their se-
lections, or 2) choose to cast their ballot. Since the
VoteConfirmation module has limited functionality, it
only needs limited support for GUI code; as we show
in Section 6.1 we can more easily analyze its correctness
since its scope is limited. If the voter decides to modify
the ballot, control returns to theVoteSelection module.

Note the voter interacts with two separate compo-
nents: first theVoteSelection component and then
VoteConfirmation. There are two ways to mediate the
voter’s interactions with the two components: 1) endow
each component with its own I/O system and screen;
2) use one I/O system and a trusted I/O “multiplexor”
to manage which component can access the screen at
a time. The latter approach has a number of favorable
features. Perhaps the most important is that it preserves
the voter’s experience as provided by existing DRE sys-
tems. A voting machine with two screens requires voters

to change their voting patterns, and can introduce the op-
portunity for confusion or even security vulnerabilities.
Another advantage is cost: a second screen adds cost and
complexity. One downside is that we must now verify
properties about theIOMultiplexor. For example, it must
route the input and output to the proper module at the
appropriate times.

In the the final piece of our architecture, we introduce
aVoteCore component. After the voter interacts with the
VoteSelection system and then theVoteConfirmation

module to approve their selection, theVoteCore compo-
nent stores the ballot on indelible storage in itsBallotBox

and then cancels the voter’s authentication token. Then,
as we described above, it initiates a reset with the
ResetModule to clear the state of all modules.

Let us return to our original property: how can we
verify that a ballot can only be cast with the voter’s ap-
proval? With our architecture, it suffices to verify that:

1. A ballot can only enter theVoteCore through the
VoteConfirmation module.

2. TheVoteCore gives the voter the opportunity to re-
view the exact contents of the ballot.

3. A ballot can only be cast if the voter unambiguously
signals their intent to cast.

To prove the last condition, we add hardware to simplify
an auditor’s understanding of the system, as well as to
avoid calibration issues with the touch screen interface.
A physical cast button, enabled only by the confirma-
tion module, acts as a gate to stop the ballot between the
VoteSelection andVoteCore modules. The software in
the VoteConfirmation module does not send the ballot
to theVoteCore until theCastButton is depressed; and,
since it is enabled only in theVoteConfirmation module,
it is easy to gain assurance that the ballot cannot be cast
without the voter’s consent. Section 6.1 will show how
we achieve this property based on the code and architec-
ture.

There is a danger if we must adjust the system’s ar-
chitecture to meet each particular security property: a
design meeting all security properties may be too com-
plex. However, in Section 8, we discuss other security
properties and sketch how we can verify themwith the
current architecture. Isolating the confirmation process
is a key insight that can simplify verifying other prop-
erties. The confirmation process is at the heart of many
properties, and a small, easily understood confirmation
process helps not just in verifying Property 2.

4.2 Detailed module descriptions

Voter authentication. After a voter signs in at a polling
station, an election official would give that voter a vot-

ing token. In our implementation, we use a magnetic
stripe card, but the token could also be a smartcard or a
piece of paper with a printed security code. Each voting
token is valid for only one voting machine. To begin vot-
ing, the voter inserts the token into the designated vot-
ing machine. TheVoteCore module reads the contents
of the token and verifies that the token is designated to
work on this machine (via a serial number check), is in-
tended for this particular election, has not been used with
this machine before, and is signed using some public-
key signature scheme. If the verification is successful,
theVoteCore module communicates the contents of the
voting token to theVoteSelection module.

Vote selection. The VoteSelection module parses the
ballot definition file and interacts with the voter, allow-
ing the voter to select candidates and vote on referenda.
The voting token indicates which ballot to use, e.g., a
Spanish ballot if the voter’s native language is Spanish
or a Democratic ballot if the voter is a Democrat voting
in a primary. TheVoteSelection module is intended to
follow the rules outlined in the ballot definition file, e.g.,
allowing the voter to choose up to three candidates or to
rank the candidates in order of preference. Of course, the
VoteSelection module is untrusted and may contain ma-
licious logic, so there is no guarantee that it operates as
intended. TheVoteSelection module interacts with the
voter via theIOMultiplexor.

Vote confirmation. After the voter is comfortable with
her votes, theVoteSelection module sends a descrip-
tion of the voter’s preferences to theVoteConfirmation

module. TheVoteConfirmation module interacts with
the voter via theIOMultiplexor, displaying a summary
screen indicating the current selections and prompting
the voter to approve or reject this ballot. If the voter ap-
proves, theVoteConfirmation module sends the ballot
image3 to theVoteCore module so it can be recorded.
The VoteConfirmation module is constructed so that
the data that theVoteConfirmation module sends to the
VoteCore module is exactly the data that it received from
theVoteSelection module.

Storing votes and canceling voter authentication to-
kens. After receiving a description of the votes from
theVoteConfirmation module, theVoteCore atomically
stores the votes and cancels the voter authentication to-
ken. Votes are stored on a durable, history-independent,
tamper-evident, and subliminal-free vote storage mech-
anism [25]. By “atomically,” we mean that once the
VoteCore component begins storing the votes and can-
celing the authentication token, it will not be reset until
after those actions complete. After those actions both
complete, theVoteCore will trigger a reset by sending a

3A ballot imageis merely a list of who this voter has voted for. It
need not be an actual image or picture.

message to theResetModule. Looking ahead, the only
other occasion for theResetModule to trigger a reset is
when requested byVoteCore in response to a user wish-
ing to cancel her voting session.

Cleaning up between sessions.Upon receiving a sig-
nal from theVoteCore, the ResetModule will reset all
the other components. After those components awake
from the reset, they will inform theResetModule. Af-
ter all components are awake, theResetModule tells all
the components to start, thereby initiating the next vot-
ing session and allowing the next voter to vote. We
also allow theVoteCore module to trigger a reset via the
ResetModule if the voter decides to cancel their voting
process; when a voter triggers a reset in this way, the
voter’s authentication token is not canceled and the voter
can use that token to vote again on that machine at a later
time. Although theVoteCore has access to external me-
dia to store votes and canceled authentication tokens, all
other state in this component is reset.

Enforcing a trusted path between the voter and the
VoteConfirmation module. Although the above dis-
cussion only mentions theIOMultiplexor in passing,
the IOMultiplexor plays a central role in the secu-
rity of our design. Directly connecting the LCD and
touch screen to both theVoteSelection module and the
VoteConfirmation module would be unsafe: it would
allow a maliciousVoteSelection module to retain con-
trol of the LCD and touch screen forever and display a
spoofed confirmation screen, fooling the voter into think-
ing she is interacting with the trustedVoteConfirmation

module when she is actually interacting with mali-
cious code. TheIOMultiplexor mediates access to the
LCD and touch screen to prevent such attacks. It en-
forces the invariant that only one module may have con-
trol over the LCD and touch screen at a time: either
VoteConfirmation or VoteSelection may have control,
but not both. Moreover,VoteConfirmation is given
precedence: if it requests control, it is given exclusive
access andVoteSelection is locked out. This allows our
system to establish a trusted path between the voter in-
terface and theVoteConfirmation module.

4.3 Hardware-enforced separation

Our architecture requires components to be protected
from each other, so that a maliciousVoteSelection com-
ponent cannot tamper with or observe the state or code
of other components. One possibility would be to use
some form of software isolation, such as putting each
component in a separate process (relying on the OS for
isolation), in a separate virtual machine (relying on the
VMM), or in a separate Java applet (relying on the JVM).

Instead, we use hardware isolation as a simple method

for achieving strong isolation. We execute each mod-
ule on its own microprocessor (with its own CPU, RAM,
and I/O interfaces). This relies on physical isolation in
an intuitive way: if two microprocessors are not con-
nected by any communication channel, then they cannot
directly affect each other. Verification of the intercon-
nection topology of the components in our architecture
consequently reduces to verifying the physical separation
of the hardware and verifying the interconnects between
them. Historically, the security community has focused
primarily on software isolation because hardware isola-
tion was viewed as prohibitively expensive [32]. How-
ever, we argue that the price of a microprocessor has
fallen dramatically enough that today hardware isolation
is easily affordable, and we believe the reduction in com-
plexity easily justifies the extra cost.

With this approach to isolation, the communication el-
ements between modules acquire special importance, be-
cause they determine the way that modules are able to in-
teract. We carefully structured our design to simplify the
connection topology as much as possible. Figure 3 sum-
marizes the interconnectivity topology, and we describe
several key aspects of our design below.

We remark that when multiple hardware components
are used, one should ensure that the same versions of
code run on each component.

Buses and wires.Our hardware-based architecture em-
ploys two types of communication channels: buses and
wires. Buses provide high-speed unidirectional or bidi-
rectional communication between multiple components.
Wires are a simple signaling element with one bit of
state; they can be either high or low, and typically are
used to indicate the presence or absence of some event.
Wires are unidirectional: one component (the sender)
will set the value of a wire but never read it, and the other
component (the receiver) will read the value of the wire
but never set it. Wires are initially low, and can be set,
but not cleared; once a wire goes high, it remains high
until its controlling component is reset. We assume that
wires are reliable but buses are potentially unreliable.

To deal with dropped or garbled messages without in-
troducing too much complexity, we use an extremely
simple communication protocol. Our protocol is con-
nectionless and does not contain any in-band signaling
(e.g., SYN or ACK packets). When a component in our
architecture wishes to transmit a message, it will repeat-
edly send that message over the bus until it is reset or it
receives an out-of-band signal to stop transmitting. The
sender appends a hash of the message to the message.
The receiver accepts the first message with a valid hash,
and then acknowledges receipt with an out-of-band sig-
nal. This acknowledgment might be conveyed by chang-
ing a wire’s value from low to high, and the sender can
poll this wire to identify when to stop transmitting. Com-

W i r e B u sC o n n e c t i o n t o I O d e v i c eR e a d y w i r eS t a r t w i r eR e s e t s i g n a l

I O M u l t i p l e x o rL C D a n dT o u c h S c r e e n C a s tB u t t o nC a n c e lB u t t o n R e s e t M o d u l e

V o t e S e l e c t i o n
T o k e nR e a d e r

V o t e C o n f i r m a t i o n
V o t e C o r e

Figure 3: Our architecture, showing the hardware communication elements.

ponents that need replay protection can add a sequence
number to their messages.

Using buses and wires.We now describe how to in-
stantiate the communication paths in our high-level de-
sign from Section 4.2 with buses and wires. Once
the VoteCore module reads a valid token, it repeatedly
sends the data on the token toVoteSelection until it re-
ceives a message fromVoteConfirmation. After stor-
ing the vote and canceling the authentication token, the
VoteCore module triggers a reset by setting its wire to
theResetModule high.

To communicate with the voter, theVoteSelection

component creates a bitmap of an image, packages that
image into a message , and repeatedly sends that message
to the IOMultiplexor. Since theVoteSelection module
may send many images, it includes in each message a se-
quence number; this sequence number does not change if
the image does not change. Also included in the message
is a list of virtual buttons, each described by a globally
unique button name and the x- and y-coordinates of the
region. TheIOMultiplexor will continuously read from
its input source (initially theVoteSelection module) and
draw to the LCD every bitmap that it receives with a new
sequence number. TheIOMultiplexor also interprets in-
puts from the touch screen, determines whether the in-
puts correspond to a virtual button and, if so, repeatedly

writes the name of the region to theVoteSelection mod-
ule until it has new voter input. Naming the regions pre-
vents user input on one screen from being interpreted as
input on a different screen.

When the voter chooses to proceed from the vote
selection phase to the vote confirmation phase, the
VoteConfirmation module will receive a ballot from the
VoteSelection module. TheVoteConfirmation mod-
ule will then set its wire to theIOMultiplexor high.
When theIOMultiplexor detects this wire going high,
it will empty all its input and output bus buffers, re-
set its counter for messages from theVoteSelection

module, and then only handle input and output for the
VoteConfirmation module (ignoring any messages from
VoteSelection). If the VoteConfirmation module deter-
mines that the user wishes to return to theVoteSelection

module and edit her votes, theVoteConfirmation mod-
ule will set its wire to theVoteSelection module high.
The VoteSelection module will then use its bus to
VoteConfirmation to repeatedly acknowledge that this
wire is high. After receiving this acknowledgment, the
VoteConfirmation module will reset itself, thereby clear-
ing all internal state and also lowering its wires to the
IOMultiplexor and VoteSelection modules. Upon de-
tecting that this wire returns low, theIOMultiplexor will
clear all its input and output buffers and return to han-

dling the input and output forVoteSelection. The pur-
pose for the handshake between theVoteConfirmation

module and theVoteSelection module is to prevent the
VoteConfirmation module from resetting and then im-
mediately triggering on the receipt of the voter’s previ-
ous selection (without this handshake, theVoteSelection

module would continuously send the voter’s previous se-
lections, regardless of whetherVoteConfirmation reset
itself).

4.4 Reducing the complexity of trusted
components

We now discuss further aspects of our design that facili-
tate the creation of implementations with minimal trusted
code.

Resets.Each module (except for theResetModule) in-
teracts with theResetModule via three wires, the initial
values of which are all low: aready wire controlled by
the component andreset andstart wires controlled by
theResetModule. The purpose of these three wires is to
coordinate resets to avoid a situation where one compo-
nent believes that it is handling thei-th voter while an-
other component believes that it is handling the(i+1)-th
voter.

The actual interaction between the wires is as follows.
When a component first boots, it waits to complete any
internal initialization steps and then sets theready wire
high. The component then blocks until itsstart wire
goes high. After theready wires for all components
connected to theResetModule go high, theResetModule

sets each component’sstart wire high, thereby allowing
all components to proceed with handling the first voting
session.

Upon completion of a voting session, i.e., after re-
ceiving a signal from theVoteCore component, the
ResetModule sets each component’sreset wire high.
This step triggers each component to reset. The
ResetModule keeps thereset wires high until all the
componentready wires go low, meaning that the com-
ponents have stopped executing. TheResetModule sub-
sequently sets thereset wire low, allowing the compo-
nents to reboot. The above process with theready and
start wires is then repeated.

Cast and cancel buttons. Our hardware architecture
uses two physical buttons, a cast button and a cancel but-
ton. These buttons directly connect the user to an indi-
vidual component, simplifying the task of establishing
a trusted path for cast and cancel requests. Our use of a
hardware button (rather than a user interface element dis-
played on the LCD) is intended to give voters a way to
know that their vote will be cast. If we used a virtual cast
button, a maliciousVoteSelection module could draw a

spoofed cast button on the LCD and swallow the user’s
vote, making the voter think that they have cast their vote
when in fact nothing was recorded and leaving the voter
with no way to detect this attack. In contrast, a physical
cast button allows attentive voters to detect these attacks
(an alternative might be to use a physical “vote recorded”
light in the VoteCore). Additionally, if we used a vir-
tual cast button, miscalibration of the touch screen could
trigger accidental invocation of the virtual cast button
against the voter’s wishes. While calibration issues may
still affect the ability of a user to scroll through a multi-
screen confirmation process, we anticipate that such a
problem will be easier to recover from than touch screen
miscalibrations causing the DRE to incorrectly store a
vote. To ensure that a maliciousVoteSelection module
does not trick the user into pressing the cast button pre-
maturely, theVoteConfirmation module will only enable
the cast button after it detects that the user paged through
all the vote confirmation screens.

We want voters to be able to cancel the voting process
at any time, regardless of whether they are interacting
with the VoteSelection or VoteConfirmation modules.
Since theVoteSelection module is untrusted, one pos-
sibility would be to have theIOMultiplexor implement
a virtual cancel button or conditionally pass data to the
VoteConfirmation module even when theVoteSelection

module is active. Rather than introduce these complexi-
ties, we chose to have theVoteCore module handle can-
cellation via a physical cancel button. The cancel button
is enabled (and physically lit by an internal light) until
the VoteCore begins the process of storing a ballot and
canceling an authentication token.

5 Prototype implementation

To evaluate the feasibility of the architecture presented in
Section 4, we built a prototype implementation. Our pro-
totype uses off-the-shelf “gumstix connex 400xm” com-
puters. These computers measure 2cm by 8cm in size,
cost $144 apiece, and contain an Intel XScale PXA255
processor with a 400 MHz StrongARM core, 64 MB of
RAM, and 16 MB of flash for program storage. We en-
able hardware isolation by using a separate gumstix for
each component in our architecture.

We do not claim that the gumstix would be the best
way to engineer an actual voting system intended for use
in the field. However, the gumstix have many advantages
as a platform for prototyping the architecture. In con-
junction with an equally sized expansion board, the pro-
cessors support three external RS-232 serial ports, which
transmit bidirectional data at 115200 kbps. We use se-
rial ports as our buses. Additionally, each gumstix sup-
ports many general purpose input/output (GPIO) regis-
ters, which we use for our wires. Finally, the XScale

Figure 4: We show the front and back of a gumstix as
well as an expansion board through which the GPIO and
serial ports are soldered. The quarter gives an indication
of the physical size of these components.

processor supports an LCD and touch screen interface.
The gumstix platform’s well-designed toolchain and

software environment greatly simplified building our
prototype. The gumstix, and our prototype, use a min-
imal Linux distribution as their operating system. Our
components are written in Java and run on the Mi-
crodoc J9 Java VM; its JIT provides a significant speed
advantage over the more portable JamVM Java inter-
preter. Our choice of Java is twofold: it is a type-safe
language and so prevents a broad range of exploits; sec-
ondly, several program verification tools are available
for verifying invariants in Java code [8, 19]. C# is an-
other natural language choice since it too is type-safe
and the Spec# [5] tool could aid in verification, but C#
is not supported as well on Linux. We view a rich sta-
ble of effective verification tools to be just as important
as type-safety in choosing the implementation language
since software tools can improve confidence in the voting
software’s correctness. Both can eliminate large classes
of bugs.

5.1 Implementation primitives

Our architecture requires implementations of two sepa-
rate communications primitives: buses and wires. It is
straightforward to implement buses using serial ports on
the gumstix. To do so, we expose connectors for the se-
rial ports via an expansion board connected to the main
processor. Figures 4 and 5 show an example of such an
expansion board. We additionally disable thegetty ter-
minal running on the serial ports to allow conflict free use
of all three serial ports. The PXA255 processor has 84
GPIO pins, each controlled by registers; we implement
wires using these GPIOs. A few of the pins are exposed

Figure 5: The mounting board for a single component. It
contains three serial ports (along the top), 4 GPIO pins
and a ground pin (along the right side), as well as a gum-
stix processor board mounted atop an expansion board.

on our expansion board and allow two components to be
interconnected via their exposed GPIO pins. Each GPIO
pin can be set in a number of modes. The processor can
set the pin “high” so that the pin has a 3.3 volt difference
between the reference ground; otherwise, it is low and
has a 0 voltage difference between ground. Alternatively,
a processor can poll the pin’s state. To enforce the uni-
directional communication property, particularly when a
single wire is connected to more than two GPIOs, we
could use a diode, which allows current to flow in only
one direction4. We currently rely on software to enforce
that once a GPIO is set high, it cannot ever be set low
without first restarting the process; this is a property one
could enforce in hardware via a latch, though our current
prototype does not do so yet.

In addition to the GPIOs, the PXA255 exposes an
NRESET pin. Applying a 3.3v signal to the NRESET
pin causes the processor to immediately halt execution;
when the signal is removed, the processor begins in a
hard boot sequence. The gumstix are able to reboot in
under 10 seconds without any optimizations, making the
NRESET pin nearly ideal to clear a component’s state
during a reset. Unfortunately, the specifics of the reboot
sequence causes slight problems for our usage. While the
NRESET wire is held high, the GPIO pins are also high.
In the case where one component reboots before another
(or where selective components are reboot), setting the
GPIOs high will inadvertently propagate a signal along
the wire to the other components. Ideally, the pins would
be low during reset. We surmise that designing a chip
for our ideal reset behavior would not be difficult given

4Even this may not be enough, since an actual diode does not be-
have as the idealized diode we rely upon.

Figure 6: A picture of our prototype implementation.
There is one board for each component in the system.
The magnetic swipe card (along the left) is used for au-
thentication, while the cast button is in the upper left
component.

sufficient hardware expertise. Since the microprocessors
in our platform do not exhibit our ideal behavior, in our
prototype we have a separate daemon connected to an
ordinary GPIO wire that stops the Java process running
the component code when the reset pin goes high and
then resets all wire state to low. The daemon starts a new
component process when the signal to its reset pin is re-
moved. This is just a way of emulating, in software, the
NRESET semantics we prefer. Of course, a production-
quality implementation would enforce these semantics in
trusted hardware.

We use a Kanecal KaneSwipe GIT-100 magnetic card
reader for authorizing voters to use the machine. A voter
would receive a card with authentication information on
it from poll workers upon signing in. The voter cannot
forge the authentication information (since it contains a
public key signature), but can use it to vote once on a
designated DRE. The reader has an RS-232 interface, so
we are able to use it in conjunction with the serial port
on the gumstix.

Finally, our implementation of theVoteCore compo-
nent uses a compact flash card to store cast ballot im-
ages and invalid magcard identifiers. Election officials
can remove the flash card and transport it to county head-
quarters after the close of polls. A deployed DRE might
use stronger privacy-protection mechanisms, such as
a history-independent, tamper-evident, and subliminal-
free data structure [25]. For redundancy, we expect a
deployed DRE to also store multiple copies of the votes
on several storage devices. A full implementation of
theVoteSelection component would likely also use some

Figure 7: The right image shows a screenshot of the
VoteSelection component displaying referenda from the
November 2005 election in Berkeley, CA. We flipped a
coin to choose the response shown on this screen.

kind of removable storage device to store the ballot def-
inition file. In our prototype, we hard-code a sample
ballot definition file into theVoteSelection component.
This suffices for our purposes in gauging the feasibility
of other techniques.

Our prototype consists of five component boards wired
together in accordance with Figure 3. We implement all
of the functionality except for the cancel button. See Fig-
ure 6 for a picture showing the five components and all
of their interconnections. Communication uses physical
buses and wires. The I/O multiplexer, after each update
operation, sends an image over a virtual bus connected
(connected via the USB network) to the PC for I/O. It
sends the compressed image it would ordinarily blit to
the framebuffer to the PC so that the PC can blit it to its
display. The gumstix only recently supported LCD dis-
plays, and we view our PC display as an interim solution.
The additional software complexity for using the LCD is
minimal as it only requires blitting an image to memory.

Figure 7 shows our voting software running on the
gumstix. We used ballot data from the November 2005
election in Alameda County, California.

6 Evaluation

6.1 Verifying the desired properties

Property 1. Recall that to achieve “memorylessness”
we must be able to show the DRE is always reset af-
ter a voter has finished using the machine, and the DRE
only opens a given file read-only or write-only, but not

1 grabio.set();
2 ... UPDATE DISPLAY ...
3 castenable.set();
4 if (cast.isSet()) {
5 while (true) {
6 toVoteCore.write(ballot);
7 }
8 }

Confirm.java

1 byte [] ballot =
2 fromVoteConf.read();
3 if (ballot != null) {
4 ... INVALIDATE VOTER TOKEN ...
5 ballotbox.write (ballot);
6 while (true) {
7 resetWire.set();
8 }
9 }

VoteCore.java

Figure 8: Code extracts from theVoteConfirmation and VoteCore modules, respectively. Examining these code
snippets with the connection topology helps us gain assurance that the architecture achieves Properties 1 and 2.

both. To show that the DRE is reset after storing a
vote, we examine a snippet of the source code from
VoteCore.java, the source code for theVoteCore

module in Figure 8. In line 7, after storing the ballot
into the ballot box, theVoteCore module continuously
raises the reset wire high. Looking at the connection dia-
gram from Figure 3, we note the reset wire terminates at
theResetModule and induces it to restart all components
in the system. Further inspecting code not reproduced in
Figure 8 reveals the only reference to theballotbox
is in the constructor and in line 5, so writes to it are con-
fined to line 5.

Finally, we need merely examine every file open call
to make sure they are either read-only or write only. In
practice, we can guarantee this by ensuring writable files
are append-only, or for more sophisticated vote storage
mechanisms as proposed by Molnar et al., that the stor-
age layer presents a write-only interface to the rest of the
DRE.

Property 2. For the “consent-to-cast” property, we need
to verify two things: 1) the ballot can only enter the
VoteCore through theVoteConfirmation module, and 2)
the voter’s consent is required before the ballot can leave
theVoteConfirmation module.

Looking first at Confirm.java in Figure 8, the
VoteConfirmation module first ensures it has control of
the touch screen as it signals theIOMultiplexor with the
“grabio” wire. It then displays the ballot over the bus,
and subsequently enables the cast button. Examining the
hardware will show the only way the wire can be enabled
is through a specific GPIO, in fact the one controlled by
the “castenable” wire. No other component in the sys-
tem can enable the cast button, since it is not connected
to any other module. Similarly, no other component in
the system can send a ballot to theVoteCore module: on
line 6 ofConfirm.java, theVoteConfirmation sends
the ballot on a bus named “toVoteCore”, which is called
the “fromVoteConf” bus inVoteCore.java. The

Java C (JNI) Total
Communications 2314 677 2991
Display 416 52 468
Misc. (interfaces) 25 0 25
VoteSelection 377 0 377
VoteConfirmation 126 0 126
IOMultiplexor 77 0 77
VoteCore 846 54 900
ResetModule 121 0 121
Total 4302 783 5085

Table 1: Non-comment, non-whitespace lines of code.

ballot is demarshalled on line 1. Physically examining
the hardware configuration confirms these connections,
and shows the ballot data structure can only come from
theVoteConfirmation module. Finally, in theVoteCore

module, we see the only use of the ballotbox is at line 5
where the ballot is written to the box. There are only two
references to theBallotBox in the VoteCore.java
source file (full file not shown here), one at the construc-
tor site and the one shown here. Thus we can be con-
fident that the only way for a ballot to be passed to the
BallotBox is if a voter presses the cast button, indicat-
ing their consent. We must also verify that the images
displayed to the voter reflect the contents of the ballot.

6.2 Line counts

One of our main metrics of success is the size of the
trusted computing base in our implementation. Our code
contains shared libraries (for communications, display,
or interfaces) as well as each of the main four modules in
the TCB (VoteConfirmation, IOMultiplexor, VoteCore,
and ResetModule). The VoteSelection module can be
excluded from the TCB when considering Properties 1

and 2. Also included in the TCB, but not our line count
figures, are standard libraries, operating system code,
and JVM code.

In Table 1, we show the size of each trusted portion as
a count of the number of source lines of code, excluding
comments and whitespace.

The communications libraries marshal and unmarshal
data structures and abstract the serial devices and GPIO
pins. The display libraries render text into our user in-
terface (used by theVoteConfirmation component) and
ultimately to the framebuffer.

7 Applications to VVPATs and crypto-
graphic voting protocols

So far we’ve been considering our architecture in the
context of a stand-alone paperless DRE machine. How-
ever, jurisdictions such as California require DREs to be
augmented with a voter verified paper audit trail. In a
VVPAT system, the voter is given a chance to inspect the
paper audit trail and approve or reject the printed VVPAT
record. The paper record, which remains behind glass to
prevent tampering, is stored for later recounts or audits.

VVPAT-enabled DREs greatly improve integrity pro-
tection for non-visually impaired voters. However, a
VVPAT does not solve all problems. Visually impaired
voters who use the audio interface have no way to vi-
sually verify the selections printed on the paper record,
and thus receive little benefit from a VVPAT. Also, a
VVPAT is only an integrity mechanism and does not help
with vote privacy. A paper audit trail cannot prevent a
malicious DRE from leaking one voter’s choices to the
next voter, to a poll worker, or to some other conspirator.
Third, VVPAT systems require careful procedural con-
trols over the chain of custody of paper ballots. Finally,
a VVPAT is a fall-back, and even in machines that pro-
vide a VVPAT, one still would prefer the software to be
as trustworthy as possible.

For these reasons, we view VVPAT as addressing
some, but not all problems. Our methods can be used to
ameliorate some of the remaining limitations, by provid-
ing better integrity protection for visually impaired vot-
ers, better privacy protection for all voters, reducing the
reliance on procedures for handling paper, and reducing
the costs of auditing the source code. Combining our
methods with a VVPAT would be straightforward: the
VoteConfirmation module could be augmented with sup-
port for a printer, and could print the voter’s selections at
the same time as they are displayed on the confirmation
screen. While our architecture might be most relevant to
jurisdictions that have decided, for whatever reason, to
use paperless DREs, we expect that our methods could
offer some benefits to VVPAT-enabled DREs, too.

Others have proposed cryptographic voting protocols
to enhance the security of DREs [10, 16, 26, 27]. We note
that our methods could be easily combined with those
cryptographic schemes.

8 Extensions and discussion

In addition to the properties we discussed, there are other
relevant security properties which we considered in de-
signing our voting system. We have not rigorously val-
idated that the design provides these properties, though
we outline directions we will follow to do so.

Property 3 The DRE cannot leak information through
the on-disk format. Additionally, it should be history-
independent and tamper evident.

Property 3 removes the back-end tabulation system from
the trusted path. Without this property, the tabulation
system may be in the trusted path because the data in-
put to the tabulation system may reveal individual voter’s
choices. With this property, it is possible to make the
outputs of each individual DRE publicly available, and
allow multiple parties to independently tabulate the final
results. We believe we can use the techniques from Mol-
nar et al. in implementing Property 3 [25].

Property 4 The DRE only stores ballots the voter ap-
proves.

Property 4 refers to a few conditions. The DRE must not
change the ballot after the voter makes their selection in
theVoteSelection module; software analysis techniques
could prove useful in ensuring the ballot is not modified.
Additionally, there will need to be some auditing of the
code to ensure display routines accurately display votes
to the screen.

Property 5 The ballot contains nothing more than the
voter’s choices.

In particular, the ballot needs to be put into a canonical
form before being stored. Violation of Property 5 could
violate the voter’s privacy, even if the voter approves the
ballot. Suppose the voter’s choice, “James Polk” were
stored with an extra space: “JamesPolk”. The voter
would not likely notice anything were amiss, but this
could convey privacy leaking information in a sublimi-
nal channel [16]. We expect software analysis techniques
could ensure that canonicalization functions are run on
all program paths. Combined with Property 4 to ensure
the ballot doesn’t change, this would help ensure the bal-
lot is canonicalized.

We do not expect these to be an exhaustive list of
the desirable security properties; rather, they are proper-
ties that we believe are important and that we can easily
achieve with this architecture without any changes.

Minimizing the underlying software platform. Our
prototype runs under an embedded Linux distribution
that is custom designed for the gumstix platform. De-
spite its relatively minimal size (4MB binary for ker-
nel and all programs and data), it still presents a large
TCB, most of which is unnecessary for a special-purpose
voting appliance. We expect that a serious deployment
would dispense with the OS and build a single-purpose
embedded application running directly on the hardware.
For instance, we would not need virtual memory, mem-
ory protection, process scheduling, filesystems, dual-
mode operation, or most of the other features found in
general-purpose operating systems. It might suffice to
have a simple bootloader and a thin device driver layer
specialized to just those devices that will be used during
an election. Alternatively, it may be possible to use ideas
from nanokernels [11], microkernels [14, 31], and oper-
ating system specialization [30] to reduce the operating
system and accordingly the TCB size.

Deploying code. Even after guaranteeing the software
is free of vulnerabilities, we must also guarantee that the
image running on the components is the correct image.
This is not an easy problem, but the research commu-
nity has begun to address the challenges. SWATT [34] is
designed to validate the code image on embedded plat-
forms, though their model does not allow for CPUs with
virtual memory, for example. TCG and NGSCB use a
secure hardware co-processor to achieve the same ends,
though deploying signed and untampered code to devices
still requires much work. Additionally, a human must
then check that all components are running the latest bi-
nary and must ensure that the binaries are compatible
with each other – so that a version 1.0VoteCore is not
running with a version 1.1IOMultiplexor module, for ex-
ample.

This concern is orthogonal to ours, as even current vot-
ing machines must deal with versioning. It illustrates one
more challenge in deploying a secure voting system.

9 Related work

There has been a great deal of work on high-assurance
and safety-critical systems, which are designed, imple-
mented, and tested to achieve specific safety, reliability,
and security properties. We use many classic techniques
from that field, including minimization of the size of the
TCB and decomposing the application into clearly spec-
ified components. One contribution of this paper is that
we show in detail how those classic techniques may be

applied in the e-voting context.
Modularity is widely understood to be helpful in build-

ing high-reliability systems. Deep space applications of-
ten use multiple components for reliability and fault tol-
erance [41]. Telephone switches use redundant com-
ponents to upgrade software without loss of availabil-
ity [41]. In avionics, Northrop Grumman has proposed
an architecture for future avionics systems suitable to the
Department of Defense’s Joint Vision 2020 [39]. Their
MLS-PCA architecture is intended to support tens to
hundreds of thousands of separate processors. MLS-
PCA uses isolation for several purposes, including mis-
sion flexibility, multi-level security when interoperating
with NGOs, and reduction in the amount of trusted soft-
ware over traditional federated architectures. Of these
reasons, the last is most related to our setting. Others
have articulated composibility of security as one of the
key challenges in applying modularity to the security set-
ting [21].

Rebooting is widely recognized in industry as a useful
way to prevent and rectify errors [9]. Rebooting returns
the system to its original state, which is often a more
reliable one. Others use preventative rebooting to mit-
igate resource leaks andHeisenbugs[15]. In contrast,
our work uses rebooting for what we believe is a new
purpose: privacy. Prior work focuses on availability and
recoverability, while we use it to simplify our task in ver-
ifying privacy preserving properties.

The Starlight Interactive Link is a hardware device that
allows a workstation trusted with secret data to safely
interact with an unclassified network [2]. The Starlight
Interactive Link acts as a data diode. A chief concern is
secret data leaking onto the untrusted network. Many of
these ideas led to the design of ourIOMultiplexor.

Our design shares similarities with existing DRE vot-
ing machines from major vendors, such as Diebold, Hart
Intercivic, Sequoia Voting Systems, and Election Sys-
tems and Software. A criticism of the machines, how-
ever, is that people must trust the software running on
the machines since the voter cannot be sure their vote
was properly recorded. Rebecca Mercuri has called for
vendors to augment DRE machines with a voter verified
paper audit trail (VVPAT) [22, 23]. In this DRE variant,
the voter must approve a paper copy of their selections
that serves as the permanent record. The paper copy is
typically held behind glass so the voter cannot tamper
with it. Even in spite of malicious software, the paper
copy accurately reflects the voter’s selections.

The principle of isolation for systems is well estab-
lished [4, 7, 12, 20, 28, 31, 32, 35, 36, 40]. Isola-
tion has been proposed as a technique to improve se-
curity in two existing voting systems. The FROGS and
Pnyx.DRE systems both separate the vote selection pro-
cess from vote confirmation [1, 6]. However, FROGS

significantly alters the voting experience while it is not
clear the Pnyx.DRE was designed for verification nor
does it provide our privacy protections.

Finally, Hall discusses the impact of disclosing the
source for voting machines for independent audit [13].

10 Conclusions

Democracy deserves the best efforts that computer sci-
entists can deliver in producing accurate and verifiable
voting systems. In this work, we have proposed better
DRE based voting designs, whether VVPAT-enabled or
not. In both cases, our architecture provides stronger se-
curity properties than current voting systems.

Our approach uses hardware to isolate components
from each other and uses reboots to guarantee voter pri-
vacy. In particular, we have shown how isolating the
VoteSelection module, where much of the hairiness of a
voting system resides, into its own module can eliminate
a great deal of complex code from the TCB. Though iso-
lation is not a novel idea, the way we use it to improve
the security of DREs is new. This work shows that it
is possible to improve existing DREs without modifying
the existing voter experience or burdening the voter with
additional checks or procedures.

The principles and techniques outlined here show that
there is a better way to design voting systems.

Acknowledgments

We thank David Jefferson for early discussions that led
to this work. Umesh Shankar, Chris Karlof, Rob John-
son, and Mike Reiter provided invaluable feedback on
the presentation, organization, and provided great insight
into the thinking and organization of the work. We thank
Matt Bishop and David Molnar for helpful discussions
about related works.

References

[1] Auditability and voter-verifiability for electronic voting
terminals. http://www.scytl.com/docs/pub/
a/PNYX.DRE-WP.pdf, December 2004. White paper.

[2] M. Anderson, C. North, J. Griffin, R. Milner, J. Yesberg,
and K. Yiu. Starlight: Interactive Link. InProceedings of
the 12th Annual Computer Security Applications Confer-
ence (ACSAC), 1996.

[3] J. Bannet, D. W. Price, A. Rudys, J. Singer, and D. S. Wal-
lach. Hack-a-vote: Demonstrating security issues with
electronic voting systems.IEEE Security and Privacy
Magazine, 2(1):32–37, Jan./Feb. 2004.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. InProceedings of the 19th

ACM Symposium on Operating Sstems Principles (SOSP
2003), October 2003.

[5] M. Barnett, K. R. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. InProceedings of Con-
struction and Analysis of Safe, Secure and Interoperable
Smart Devices (CASSIS), 2004.

[6] S. Bruck, D. Jefferson, and R. Rivest. A modu-
lar voting architecture (“Frogs”). http://www.
vote.caltech.edu/media/documents/wps/
vtp wp3.pdf, August 2001. Voting Technology
Project Working Paper.

[7] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Run-
ning commodity operating systems on scalable multipro-
cessors. InProceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP), October 1997.

[8] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leav-
ens, K. R. Leino, and E. Poll. An overview of JML
tools and applications. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 7(3):212–
232, June 2005.

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot – a technique for cheap recovery. In
6th Symposium on Operating System Design and Imple-
mentation (OSDI), December 2004.

[10] D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security & Privacy Magazine, 2(1):38–
47, Jan.–Feb. 2004.

[11] D. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-level re-
source management. InProceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP), Oc-
tober 1995.

[12] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A se-
cure environment for untrusted helper applications: Con-
fining the wily hacker. InProceedings of the 6th USENIX
Security Symposium, August 1996.

[13] J. Hall. Transparency and access to source code in e-
voting. Unpublished manuscript.

[14] G. Heiser. Secure embedded systems need microkernels.
USENIX ;login, 30(6):9–13, December 2005.

[15] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Soft-
ware rejuvenation: Analysis, module and applications. In
Twenty-Fifth International Symposium on Fault-Tolerant
Computing, 1995.

[16] C. Karlof, N. Sastry, and D. Wagner. Cryptographic
voting protocols: A systems perspective. InFourteenth
USENIX Security Symposium, August 2005.

[17] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wal-
lach. Analysis of an electronic voting system. InIEEE
Symposium on Security and Privacy, pages 27–40, May
2004.

[18] M. Kuhn. Optical time-domain eavesdropping risks of
CRT displays. InIEEE Symposium on Security and Pri-
vacy, May 2002.

[19] G. Leavens and Y. Cheon. Design by contract
with JML. ftp://ftp.cs.iastate.edu/pub/
leavens/JML/jmldbc.pdf.

[20] J. Liedtke. Toward real microkernels.Communications
of the ACM, 39(9):70, September 1996.

[21] D. McCullough. Noninterference and the composability
of security properties. InIEEE Symposium on Security
and Privacy, May 1988.

[22] R. Mercuri. Electronic Vote Tabulation Checks & Bal-
ances. PhD thesis, School of Engineering and Applied
Science of the University of Pennsylvania, 2000.

[23] R. Mercuri. A better ballot box? IEEE Spectrum,
39(10):46–50, October 2002.

[24] D. Mertz. XML Matters: Practical XML data
design and manipulation for voting systems.
http://www-128.ibm.com/developerworks/
xml/library/x-matters36.html, June 2004.

[25] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-
evident, history-independent, subliminal-free data struc-
tures on PROM storage -or- How to store ballots on a vot-
ing machine (extended abstract). InIEEE Symposium on
Security and Privacy, May 2006.

[26] C. A. Neff. A verifiable secret shuffle and its applica-
tion to e-voting. In8th ACM Conference on Computer
and Communications Security (CCS 2001), pages 116–
125, November 2001.

[27] C. A. Neff. Practical high certainty intent verification
for encrypted votes.http://www.votehere.net/
vhti/documentation, October 2004.

[28] N. Provos, M. Friedl, and P. Honeyman. Preventing priv-
ilege escalation. InProceedings of the 12th USENIX Se-
curity Symposium, August 2003.

[29] RABA Innovative Solution Cell. Trusted agent report
Diebold AccuVote-TS voting system, January 2004.

[30] M. Rajagopalan, S. Debray, M. Hiltunen, and R. Schlicht-
ing. Automated operating system specialization via bi-
nary rewriting. Technical Report TR05-03, University of
Arizona, February 2005.

[31] R. Rashid Jr., A. Tevanian, M. Young, M. Young,
D. Golub, R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent virtual memory management for
paged uniprocessor and multiprocessor architectures. In
Proceedings of the 2nd Symposium on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), October 1987.

[32] J. Rushby. Design and verification of secure systems.
In Proceedings of the 8th ACM Symposium on Operating
Systems Principles (SOSP), December 1981.

[33] Science Applications International Corporation (SAIC).
Risk assessment report Diebold AccuVote-TS voting sys-
tem and processes, September 2003.

[34] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWAtt: Software-based attestation for embedded devices.
In Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

[35] M. Swift, M. Annamalai, B. Bershad, and H. Levy.
Recovering device drivers. InProceedings of the 6th
ACM/USENIX Symposium on Operating System Design
and Implementation, December 2004.

[36] M. Swift, B. Bershad, and H. Levy. Improving the reli-
ability of commodity operating systems. InProceedings
of the 19th ACM Symposium on Operating Sstems Princi-
ples (SOSP 2003), October 2003.

[37] W. van Eck. Electromagnetic radiation from video display
units: An eavesdropping risk?Computers & Security, 4,
1985.

[38] D. Wagner, D. Jefferson, M. Bishop, C. Karlof, and
N. Sastry. Security analysis of the Diebold AccuBa-
sic interpreter. California Secretary of State’s Voting
Systems Technology Assessment Advisory Board (VS-
TAAB), February 2006.

[39] C. Weissman. MLS-PCA: A high assurance security ar-
chitecture for future avionics. InProceedings of the 19th
Annual Computer Security Applications Conference (AC-
SAC 2003), 2003.

[40] A. Whitaker, M. Shaw, and S. Gribble. Denali: A scal-
able isolation kernel. In10th ACM SIGOPS European
Workship, September 2002.

[41] I.-L. Yen and R. Paul. Key applications for high-
assurance systems.IEEE Computer, 31(4):35–45, April
1998.

