
The Limits of Automatic OS Fingerprint Generation

David W. Richardson, Steven D. Gribble, and Tadayoshi Kohno
Department of Computer Science & Engineering, University of Washington

Seattle, Washington, USA
{daverich, gribble, yoshi}@cs.washington.edu

ABSTRACT
Remote operating system fingerprinting relies on implementation
differences between OSs to identify the specific variant executing
on a remote host. Because these differences can be subtle and dif-
ficult to find, most fingerprinting tools require expert manual effort
to construct discriminative fingerprints and classification models.
In prior work, Caballero et al. proposed a promising technique to
eliminate manual intervention: the automatic generation of finger-
prints using an approach similar to fuzz testing [6]. Their work
evaluated the technique in a small-scale, carefully controlled test
environment. In this paper, we re-examine automatic OS finger-
printing in a more challenging large-scale scenario to better under-
stand the viability of the technique. In contrast to the prior work,
we find that automatic fingerprint generation suffers from several
limitations and technical hurdles that can limit its effectiveness,
particularly in more demanding, realistic environments.

We use machine learning algorithms from the well-known Weka
[11] data mining toolkit to automatically generate fingerprints over
329 different machine instances, and we compare the accuracy of
our automatically generated fingerprints to Nmap. Our results sug-
gest that overfitting to non-OS-specific behavioral differences, the
indistinguishability of different OS variants, the biasing of an auto-
matic tool to the makeup of the training data, and the lack of abil-
ity of an automatic tool to exploit protocol and software semantics
significantly limit the usefulness of this technique in practice. Au-
tomatic techniques can help identify candidate signatures, but our
results suggest that manual expertise will remain an integral part of
fingerprint generation.

Categories and Subject Descriptors: D.4 [Operating Systems]:
Security and Protection; D.4.4 [Operating Systems]: Communi-
cations Management—network communication; C.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Design, performance security

Keywords: Fingerprinting, machine learning, fuzz testing, active
learning, classification, automatic fingerprint generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0088-9/10/10 ...$10.00.

1. INTRODUCTION
Remote fingerprinting exploits differences between multiple im-

plementations of the same software to identify the software variant
executing on a remote host. For example, Nmap [21] uses finger-
printing to identify a remote host’s operating system. A fingerprint
consists of a set of network queries and a classification model. A
fingerprinting tool issues the queries against the remote host, typ-
ically by sending carefully crafted network packets, collects re-
sponse packets, and feeds these responses into the classification
model. If the different implementations of the software generate
predictably different query responses, the classification model can
use the responses to identify the version of the remote software.

Fingerprinting tools typically rely on the manual effort of ex-
perts to construct discriminative queries and accurate classification
models. As more variants of software propagate and as specific
software evolves over time, the effort needed to keep a fingerprint
database up-to-date can be prohibitive. In prior work, Caballero et
al. proposed the idea of automatic fingerprint generation [6]. Their
system, called FiG, uses an approach similar in spirit to fuzz testing
to automatically generate candidate queries, execute them against a
pool of known test machines, identify useful queries, and derive a
classification model using two simple machine learning techniques.
They demonstrated the promise of this approach by showing that
FiG could reliably differentiate between three specific operating
system versions (Windows XP SP2, Linux 2.6.11, and Solaris 9)
and between five DNS server implementations.

Though their work presented an important first step, their evalu-
ation did not explore more extensive, fine-grained system diversity
or the practical difficulties that fingerprinting tools must overcome
in realistic deployments. In this paper, we take the next step by
considering whether automatically generated fingerprinting tools
are viable in the more challenging environments that fingerprint-
ing tools can face in practice.

We focus on operating system (OS) fingerprinting, specifically
OS classification, which attempts to identify the OS version run-
ning on a remote host. We test whether machine learning algo-
rithms from the well-known Weka [11] data mining toolkit can
generate fingerprinting tools that can differentiate between a large
number of machine instances in a pool that exhibits both coarse-
grained differences, such as Linux vs. Microsoft Windows, as well
as fine-grained differences, such as two machines with differing
versions of the Linux kernel.

To do this, we implemented a platform that let us run automatic
fingerprinting experiments at scale on our own local cluster, as well
as within Amazon.com’s elastic compute cloud (EC2). Our experi-
ments take advantage of diverse, community-supplied machine in-
stances, including virtual appliances gathered from VMware’s mar-
ketplace and machine instances from Amazon’s instance library.

Using 329 different instances, we evaluated the accuracy of our
automatically generated fingerprints for a range of different clas-
sification granularities, and we compared their accuracy to Nmap.
Finally, we examined the queries and classification rules generated
by our automatic tools to determine whether the fields and rules
used correspond to true differences in OS implementation, or were
erroneous and inappropriate.

Interestingly, our results are mostly negative: somewhat contrary
to the early evidence in the prior work, we found that automatic fin-
gerprinting faces significant technical hurdles in practice. Specifi-
cally, four issues confounded our ability to automatically generate
accurate OS fingerprints at scale:

1. Overfitting: response packets can vary for reasons besides
differences in OSs’ implementations. As examples, the value
of TCP window scale option field may depend on how much
memory is installed in a machine, the initial TCP sequence
number selected by a remote host is typically non-deterministic,
and network packet loss may cause some response packets to
be lost. To be accurate, fingerprints’ classification models must
exclude differences caused by these extraneous, non-OS fac-
tors, but this is difficult to do automatically, particularly when
considering a large pool of training and test machines.

2. Training bias: the learning algorithms we used in the con-
struction of classification models tend to latch on to biases in
the distribution of hosts in our training pool. If the training set
is non-representative of the general population, then the gener-
ated tool’s accuracy during testing might be very different than
in deployment.

3. Indistinguishablity: when we try to classify hosts that have
fine-grained implementation differences, such Linux kernel ver-
sions 2.6.15 and 2.6.22, it is hard to find queries that “tickle”
their implementation differences to produce varying responses.
As the classification granularity gets more fine-grained, it be-
comes much more likely that any differences observed in re-
sponse packets are caused by extraneous factors that lead to
overfitting, rather than true operating system implementation
differences.

4. Lack of semantics: automatic fingerprint generation tools are
limited to a mechanical view of packet field, whereas manu-
ally derived fingerprints can take advantage of human exper-
tise to understand the deeper semantics of network protocols
and packet fields. As such, tools like Nmap can use complex,
multi-packet queries, and they can extract attributes out of mul-
tiple response packets, such as the greatest common divisor of
differences between initial sequence numbers. We expect that
it would be challenging to engineer automatic fingerprinting
tools that are able to “understand” enough to derive such com-
plex queries and response packet attributes, yet these are some
of the most useful.

While an automatically generated fingerprinting tool can be com-
petitive with Nmap at solving OS classification for coarse granular-
ity buckets (Windows vs. Linux) and small machine pools, at fine
granularity (Linux 2.6.15 vs. 2.6.22) and large scale, our results
suggest that automatic tools fall prey to overfitting and biases in the
training data. Automatic tools are prone to confusing unlucky co-
incidences with stable, genuinely discriminative classification rules
and probe packets. At scale and with fine-grained machine differ-
ences, such rare coincidences are more likely to be found than use-
ful probes and rules, and our results suggest that manual expertise
may ultimately necessary to distinguish between them.

2. OVERVIEW
Though fingerprinting applies to a broad range of network soft-

ware, in this paper we focus on OS fingerprinting as it applies to
the well established OS classification application. The goal of OS
classification is to identify the OS executing on an arbitrary re-
mote machine. To accomplish this, an OS classification tool first
constructs a predictive model by probing a set of machines with
known operating systems installed on them and finding differen-
tiating features within probe responses. To classify an unknown
machine, probe responses from that machine are fed into the con-
structed model, which outputs its best guess for the unknown ma-
chine’s operating system.

With OS classification, the set of known machines used to con-
struct the model is referred to as the training set. Training set ma-
chines are selected so that they contain a diverse but representative
sampling of OSs found in the wild. Probes consist of carefully
constructed TCP/IP packets designed to tickle implementation dif-
ferences between the OSs’ network stacks. For OS classification
to work well, the probes and predictive model must be constructed
to cause different OSs to generate observably different response
packet features, but these features must also be stable within differ-
ent instances of the same OS.

A robust OS classification tool is useful to network administra-
tors and adversaries. For the former, the tool allows them to mon-
itor and enforce policies on types, versions, and patch levels of
machines within a network. For the latter, the tool can help identify
potential vulnerabilities to exploit in target machines.

OS classification becomes progressively harder at scale. As the
number of OS classes to distinguish grows, it becomes more likely
that a tool will confuse one minor OS kernel revision for another.

2.1 Nmap
One popular remote operating system fingerprinting tool is called

Nmap [21]. Nmap’s designers have devised 16 hand-crafted net-
work probe packets aimed at eliciting responses containing kernel-
specific differences. After probing a machine, Nmap extracts and
condenses response features into a summary data structure that is
fed into Nmap’s classification model.

Nmap was designed to solve the OS classification problem: its
classification model consists of a database of thousands of ref-
erence summary data structures for known OSs. When an un-
known subject machine is probed, its response summary structure
is matched against this database, and the OS with the closest match-
ing reference summary in the database is returned. Nmap measures
closeness using a set of hand-tuned heuristics, assigning weights to
specific summary features and summing up the weights of features
that the unknown subject has in common with a given reference
record in the database. Because new OS variants and versions are
routinely coming online, Nmap’s developers face the constant bat-
tle of finding new probes and re-examining existing ones to keep
the Nmap classification database up-to-date.

2.2 Automatic fingerprint generation
Caballero’s prior work hypothesizes that the limitations of man-

ual fingerprint generation can be overcome by automatically gener-
ating and testing candidate fingerprints, and training a discrimina-
tive signature set and accurate classification model [6]. In this way,
automatic fingerprint generation is similar to fuzz testing: a large
number of network queries are automatically generated and those
queries are played against a set of training machines with known
ground truth. Simple machine learning is then used to construct
a predictive model that reflects observed differences and hopefully
generalizes beyond the training set.

In this work, we uncover and examine the challenges with au-
tomatic fingerprinting that arise at scale. We focus on two issues.
First, when considering a large and diverse population of machines,
OS versions, and networks, we will inevitably encounter many prac-
tical challenges in collecting accurate and reliable data such as
packet loss and non-deterministic data. Can we overcome these
problems, and if so, to what degree do our solutions impact fin-
gerprint generation accuracy? Second, classification models must
hone in on behavioral differences between operating systems, but
to generalize beyond the training set, they must avoid overfitting
to sources of behavioral differences other than the OS implemen-
tation. Is this possible to do using modern machine learning algo-
rithms, and how well do the resulting tools perform compared to
manually generated tools like Nmap?

2.2.1 Practical challenges with data collection
A serious limitation of automatic fingerprinting tools is that they

have no semantic knowledge about the various TCP and IP fields in
network packets. Fields are treated as simple typed attribute/value
pairs. This means that a tool is unable to take advantage of the many
inter-field and inter-packet relationships that exist in the TCP and
IP specifications. This affects a tool’s ability to intelligently craft
probe packets that are likely to trigger OS-specific implementation
differences in a remote host, and its ability to analyze the probes’
responses to find more complex relationships that can be used to
identify OS variants.

Automatic tools compensate for this lack of semantic knowledge
by generating a large number of random probe packets and by using
machine learning algorithms on the responses to learn discriminat-
ing features. However, we must carefully weigh the tradeoffs be-
tween sending too many and too few probe packets: too few probes
risks missing valuable response packets, while too many probes can
be impractical and make it more likely the tool will encounter noise
in the data that confounds the machine learning process.

Another challenge is that some response packets will contain
non-deterministic values. Non-determinism can be introduced by
the remote host, or by the network itself when packets are dropped,
reordered, or modified by middleboxes such as routers or firewalls.
In the simplest case, if we see no response from a probe, we cannot
be sure if this is because the remote host chose not to respond to it,
or because of temporary network or environmental conditions.

2.2.2 Challenges with classification models
Once a large number of probe and response pairs are collected

from a set of training machines labeled with ground-truth OS ver-
sions, the next step in automatic fingerprint generation is to use
machine learning techniques to construct a classification model. An
ideal model for OS classification would select features that are con-
sistent between instances of the same OS, but which have observ-
able differences between instances of different OSs. The model
must hone in on deterministic behavioral differences that are at-
tributable to OS’s source code itself. Unfortunately, there are many
potential sources of behavioral difference beyond this. In our ex-
periments, we have encountered the following:

Non-determinism: non-determinism in the network, operating sys-
tem, or applications that respond to packets can lead to observable
differences. For example, if an OS selects an initial sequence num-
ber at random, or is configured to use port knocking, this can lead
to observable non-determinism.

Hidden state: there are complex state machines within the operat-
ing system and applications that can lead to differing behavior over
time. For example, OSs that are not configured to use SYN cookies

can be vulnerable to SYN flood attacks that cause a SYN queue to
fill up, potentially leading to an observable difference dependent on
the packet sequence leading up to the probe itself.

Network and middleboxes: the nature of the network and net-
work components between the probe machine and remote host can
introduce behavioral differences. For example, middleboxes might
rewrite fields while routers could modify explicit congestion noti-
fication fields during periods of congestion.

Host hardware: the hardware on which an OS runs can directly
or indirectly affect behavior. For example, the value of the TCP
window scale options field selected by a remote host can be affected
by the amount of RAM present on the machine.

Applications: applications can modify the network behavior of a
host, for example, by setting socket variables using the equivalent
of Linux’s setsockopt API.

System configuration: even if two hosts are running identical OSs,
the machines might be configured differently, leading to differing
behavior. For example, a machine might have its firewall enabled,
causing it to not respond to some probe packets; as another exam-
ple, a Linux machine might be configured to change default send
or receive window sizes via the /proc interface.

OS source code: differences in the source code between OS ver-
sions can lead to different behavior.

To solve the OS classification problem, a classification model
must contain attribute/value pairs whose observed differences are
attributable only to operating system source code. If any other
kinds of differences pollute the model, then the fingerprinting tool
is susceptible to overfitting and potentially will fail to generalize
accurately beyond the training data.

Some of these categories can be eliminated with sufficient data;
for example, non-determinism can be identified probabilistically by
generating multiple, identical probe packets and looking for vary-
ing responses. Other categories are much harder to identify au-
tomatically, such as hardware or system configuration differences.
To be robust against these, the set of training machines must con-
tain instances that reflect exactly these hardware and configuration
differences, so that the model generation process can discriminate
against them. In fact, if the set of training machines is itself biased
to particular configurations and machines, this bias can sneak into
the classification models and also affect their accuracy. In essence,
the set of training machines must contain as much heterogeneity as
the general population itself or it will be prone to overfitting.

Another challenge of classification arises if there are non-rep-
resentative biases in the training set. Some learning algorithms
use the likelihood that a class was encountered during training to
weight the probability that a given test instance is a member of that
class. If the training set contains a distribution of classes in its ma-
chine population than are not seen in the real world, the generated
tool’s accuracy in the wild might differ substantially than its accu-
racy during testing.

3. IMPLEMENTATION AND TESTBED
In this section, we describe the design and implementation of

our automatic fingerprint generation tool and the data sets we use
for evaluation. Our tool is composed of a set of modules: a probe
generator generates a large number of candidate network probes; a
data collector transmits probes to a machine set and gathers associ-
ated response packets; and a learner uses training data and machine
learning algorithms to generate a fingerprinting tool, including its
classification model and final probe set. Figure 1 shows the flow

training
machines

test
machines

probe
generator

candidate
probe set

training
data

probes +responses

learnerprobes

model

fingerprinting
tool

probesresponses

results

Figure 1: Experimental data flow. This figure shows how data flows
in our platform during training and testing.

of data through our experimental system. We built our system in
Python, but with some use of C to speed up critical components.

3.1 Experimental machines
We collected 329 unique virtual machine instances from a vari-

ety of sources, including Amazon EC2 instances, VMware appli-
ances, and distributions from Linux websites. Though we empha-
sized Linux variants with differing kernel versions, we also gath-
ered some Windows, BSD, and Solaris machine instances. For each
instance, we manually produced a ground-truth label and examined
the machine to determine a suitable open TCP port to probe. For
most non-Windows machines, we used port 22 (ssh), and for Win-
dows, we primarily used port 3389 (RDP).

We expect that a fingerprinting tool will be able to easily distin-
guish between major OS categories, such as Windows and Linux,
but it will have a more difficult time classifying minor differences
between OS instances, such as Linux kernel versions 2.2.10 and
2.2.20 or the Ubuntu and Redhat distributions. To let us experi-
ment with this tradeoff between accuracy and fidelity, each of our
ground-truth labels actually reflects two different hierarchies of clas-
sification. The first hierarchy contains three different levels of OS
kernel granularity, and the second hierarchy contains three differ-
ent levels of OS distribution granularity. Our goal is not for these
329 VM instances to approximate the distribution of OS variants
found on the Internet. Rather, by having both hierarchies, we can
test whether a fingerprinting tool is more likely to find behavioral
differences attributable to kernel differences or to OS configuration
and packaging differences.

Table 1 shows the labels we assigned to our machine instances
in each of the two classification hierarchies, and the number of ma-
chine instances to which we assigned each label. Note that our
machine instances are skewed towards Linux. This ensures that we
have enough variety of Linux machines to compare the accuracy of
fingerprinting at fine-granularity and coarse-granularity classifica-
tion levels. However, as we will see later, the population bias that
it introduces has negative effects on our fingerprinting tools.

3.2 Probe generator and data collector
The probe generator produces a large set of non-fragmented net-

work packets by assigning randomly generated values to various
IP and TCP fields, subject to the constraints that packets must be
well-constructed and routable to a target machine. To avoid over-
whelming the system with undeliverable packets, we did not ex-
periment with adding IP options, though we did include randomly
generated TCP options. To help detect non-deterministic values in
responses, the data collector transmits each probe multiple times.
In Section 4.1, we describe our experiments that explore how many
times each probe should be sent. For a detailed explanation of the
IP and TCP fields we used, as well as an example of a probe packet

Linux (314) Windows (12) BSD (2) Solaris (1)

label (# machines with label)level

0

2.6 (312) XP (6) others (6)1 winserver (6)

2.6.21 (189)
2

2.6.16 (74)2.6.15 (9) 2.6.18 (17) 2.6.22 (5)
2.6.24 (7) XP (6) winserver (6) others (16)

Linux (314) Windows (12) BSD (2) Solaris (1)

label (# machines with label)level

0

gentoo (16)
1

fedora (53)ubuntu (185) debian (47) centos (12)
XP (6) winserver (6) freebsd (2) opensolaris (1)redhat (4)

2

ubuntu6.06 (24) ubuntu6.10 (4) ubuntu7.04 (13)
ubuntu8.04 (62) ubuntu8.10 (28) fedora4 (9) fedora5 (8)

fedora6 (8) fedora8 (18) fedora9 (4) debian4.0 (26)
debian5.0 (18) gentoo (16) centos5.0 (5) centos5.2 (4)

XP (6) winserver2003 (6) others (16)

ubuntu7.10 (54)

(a) OS kernel classification hierarchy

(b) OS distribution classification hierarchy

Table 1: Machine instance classes. This table shows the labels we as-
sign to machine instances, broken down into two different classification
hierarchies. To save space, some rare labels are collapsed into an “oth-
ers” field in the table, but are broken out in our actual experiments.

and the resulting response packets from one of our training ma-
chines, we refer the reader to Appendix A.

3.3 Learners
Learners use training data gathered by the data collector to gen-

erate a fingerprinting tool, including both its classification model
and probes. The key to understanding how a learner module works
is to understand fingerprints, how they are used, and how they are
implemented. We discuss each of these points below.

3.3.1 Fingerprints
Consider a set P of TCP/IP packets and a set of machines M ,

where each machine m ∈ M has a known, labeled OS OS(m).
Having sent each packet p ∈ P to every machine m ∈ M , the
data collector records a response packet Rp for each p, or null if
no response is received. This yields a set of examples E for the
learner, where E = (< p, Rp >, m) for p ∈ P and m ∈ M .
A learner L takes as input the set of examples E and produces a
fingerprinting tool f . The tool f takes as input an example e and
returns the best OS label for the example’s machine e(m). A tool
is a function f such that f(e) = OS(e(m)) for all e ∈ E.

To solve the OS classification problem, this tool f should not
only correctly return the OS of all examples in E, but it should
also correctly return the OS of previously unencountered examples
not in E. We experiment with classification accuracy at varying
levels of OS granularity by directing our learners to use any of the
different OS label levels from Table 1; in one experiment, we use
course-grained labels (e.g., Windows vs. Linux), and in others, we
can learn using finer-grained labels (e.g., Ubuntu vs. Debian).

3.3.2 Model construction algorithms
Many machine learning algorithms could be used to implement

a learner L and fingerprinting tool f . We used five algorithms im-
plemented in the popular data mining toolkit Weka [11]:

J48. This algorithm is a clone of the C4.5 decision tree imple-
mentation by Ross Quinlan [17]. Decision trees are constructed by

0

5

10

15

20

25

30

1 10 100 1000 10000

di

ff
er

en
tia

bl
e

m
ac

hi
ne

pa

ir
s

probe packets

(a) Effect of # probes on differentiability.

1

10

100

1000

10000

1
10

12

10
27

10

28

10
29

10

30

14
57

14

62

14
63

14

64

14
65

14

66

14
67

14

68

14
69

14

70

14
71

14

72

14
73

14

74

14
75

14

76

14
78

14

81

14
82

14

83

14
84

14

85

14
86

fie

ld
s

unique values in responses

(b) Identifying determinism.

Figure 2: Differentiability and determinism. Graph (a) shows the effect of increasing the number of probe packets on our ability to distinguish
between 200 pairs of randomly chosen machines using only TCP or IP fields known to elicit deterministic, OS-specific differences. Histogram
(b) shows the count of response fields that had a given number of unique values. Most response fields have a unique value, suggesting they are
deterministic. Note that the x-axis is discontinuous.

repeatedly partitioning the examples using the best attributes in the
training data.

JRip. This algorithm implements a propositional rule learner based
on repeated incremental pruning to produce error reduction (RIP-
PER). The generated rules are expressed as propositional logic equa-
tions of the attributes in the training data.

RandomForest. This algorithm constructs many decision trees and
uses a form of consensus over the trees in order to label an example
with a class value.

SMO. This algorithm is an implementation of support vector ma-
chines. SVMs attempt to represent the examples as points in space
such that similar examples are grouped into the same region. New
examples are classified by being mapping into the best fitting re-
gion of space.

IBk. This is a standard clustering algorithm using K-nearest neigh-
bors. To classify a sample, the model finds the K-closest matching
examples and returns the label held by the majority of the matches.
In our analysis, we fix K to 3, resulting in 3-nearest neighbors for
all of our experiments.

For comparison, we also use Nmap to classify machine instances.
To make the comparison fair, we replaced Nmap’s extensive classi-
fication database with one constructed using records gathered from
our training sets. As we will explain in Section 4.3.1, we modified
Nmap to emit a best, single guess when it would otherwise emit a
list of labels between which it cannot differentiate.

3.4 Evaluation method
Given a fingerprinting tool produced by a learner, we run ex-

periments to evaluate how effective that tool is at solving the OS
classification problem. To do this, we use the standard method of
splitting our machine set into two disjoint sets of training machines
and test machines. Data gathered from the training machines is
used by the learner to produce a tool f , and the tool f is then used
to classify machines in the test set. In all of our experiments, the
probing and probed machine run on the same subnet.

4. RESULTS

4.1 Overcoming data collection challenges
We now evaluate the accuracy of automatically generated finger-

prints, focusing on three questions. First, how difficult is it to over-
come the practical challenges of clean data collection? Second, in
our classification models, how often do we encounter overfitting to
non-OS source code behavioral differences? Third, how accurate
are automatically generated fingerprints at different classification
granularities, and how does this compare to Nmap?

To be able to generate accurate models and tools, the data we
collect should satisfy two criterion: the data must be useful, mean-
ing that it contains enough differences for a model to distinguish
between OSs, and it must be consistent, meaning that the data is re-
peatable across separate experimental runs. Our experiments show
that there are three practical challenges any automatic fingerprint-
ing tool must overcome to obtain useful and consistent data: (1)
choosing the number of training packets to send, (2) eliminating
non-determinism in the collected data, and (3) coping with packet
loss when conducting experiments.

Choosing the number of packets. During training, collecting use-
ful data requires sending an adequate number of probe packets. The
more probe packets that are sent, the more likely the system is to
obtain discriminative response data. However, sending too many
packets is inefficient and risks introducing noise into the data. To
show the relationship between the number of training packets sent
and the amount of useful data gathered, we constructed an experi-
ment using 200 randomly selected pairs of machine instances and
50,000 candidate probe packets. We count the number of machine
pairs we could distinguish from each other, using only TCP or IP
fields known to elicit deterministic, OS-specific differences, as a
function of the number of probe packets sent. We then averaged
this count over many randomly generated sets of probe packets of
each size. Figure 2(a) shows the result of this analysis.

Not surprisingly, we found that, on average, our ability to distin-
guish between two randomly selected machines from our sample
pool increased as we sent more probe packets: more data gives the
classification models more input to work with. However, we also
found that the rate of increased accuracy slows dramatically be-
yond roughly 100 packets, suggesting that very large packet num-
bers will only modestly increase accuracy at the risk of introducing
noisy data into the models. We conservatively chose to use a set of
50,000 packets during the rest of our experiments.

Eliminating non-determinism. An obstacle to obtaining consis-
tent data is non-determinism in response packet fields. To identify
and eliminate non-deterministic fields during training, we used the
simple approach of looking for changes in a field’s value across
successive probes. Instead of sending a probe to a target machine
once, we send each probe multiple times, record the set of re-
sponses, and check that each field’s value is consistent across all
collected responses. A field whose value changes is excluded from
consideration, and a field whose value remains stable is kept as a
candidate for the learner.

To find a practical and efficient number of copies the data col-
lector should send each probe to eliminate non-determinism, we
selected at random 20 generated probe packets and 10 machines.
Next, we sent each probe 1500 times and recorded the responses.

7556
7558
7560
7562
7564
7566
7568
7570
7572
7574
7576

1 10 100 1000

of

 d
et

er
m

in
is

tic
 fi

el
ds

times a given probe packet is sent

2

3 5

6

4

(a) Number of times a probe should be sent.

10,227,944

149 0 0 2 29,339

6,192,566

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

0 1 2 3 4 5 6

co
un

t o
f p

ro
be

 p
ac

ke
ts

responses

(b) Packet loss.

Figure 3: Sending packets multiple times and packet loss. Graph (a) shows the effect of sending a probe packet multiple times on the number of
non-deterministic fields discovered. Note that the graph’s y-axis does not begin at zero. Histogram (b) counts the number of probe packets that
received between 0 and 6 responses. Probes typically receive no responses, or all six, suggesting that packet loss is rare.

Each response contains up to 39 separate fields, so we collected a
total of 39 x 20 x 10 = 7800 fields, each with 1500 values. Not
all machines returned responses for all 1500 probes; the smallest
response set contained 1486 responses. This data lets us exam-
ine how hard it is to spot non-deterministic behavior by identifying
fields that exhibit more than one value across the responses.

Figure 2(b) shows a histogram of the count of response fields that
had a given number of unique values. The histogram is bimodal:
most response fields have a single unique value, indicating that they
are likely deterministic, while some fields have many unique val-
ues, suggesting that they are non-deterministic and that this non-
determinism is easy to “provoke.” Thus, sending each probe a rela-
tively small number of times during training is sufficient in practice
for uncovering non-determinism.

In Figure 3(a), we vary the number of times each probe is sent
and show the number of fields that we declare to be deterministic.
The results show that sending a probe six times is sufficient to un-
cover all non-determinism that we could identify in this small set of
20 probe packets and 10 machines. For the remainder of this sec-
tion, we send each of our 50, 000 probe packets a total of 6 times
per machine instance during training. However as we describe in
Section 4.2.2 below, large-scale experiments still can uncover sev-
eral rare, unlucky circumstances in which six probes are not suffi-
cient to uncover non-deterministic behavior. At increasing scale, it
is common to encounter such rarities!

Coping with packet loss. Our ability to find non-determinism us-
ing six transmissions of each probe packet is predicated on the as-
sumption that probe and response packets are seldom dropped dur-
ing transit. However, packet losses will occasionally occur. As
well, since our probe packets contain randomly generated field val-
ues, many of our probes will be dropped by the remote host rather
than eliciting a response. This lack of response is as valuable to our
classification models as a valid response. However, it is impossi-
ble to distinguish between network-induced packet loss and packets
dropped by the remote host. If we collect data on a lossy network,
we run the risk of confusing dropped packets with deliberate lack
of responses.

To understand the potential impact of packet loss on evaluation,
we collected responses by sending all 50, 000 of our probe packets
to all of our evaluation machines a total of six times each. For
each set of six probes sent to a machine, we counted the number of
response packets observed. Figure 3(b) shows a histogram of the
number of packet responses received.

Figure 3(b) shows that in the vast majority cases, a machine ei-
ther returns a response for all six probes, or it returns no responses
at all. Occasionally, we observed single packet losses, and even
more rarely, we observed a handful of multiple packet losses. These
results are promising, since it means that a simple way to deal
with potential packet loss is for our data collector to only consider

probes that return all responses or none; other cases can be disre-
garded. In practice applying this technique in our carefully con-
trolled networking environment resulted in us discarding just 121
out of 50,000 probe packets (0.24%).

4.2 Overfitting in the models
After having collected useful and consistent training data, the

next challenge faced by an automatic fingerprinting tool is avoid-
ing overfitting in the classification models. Overfitting tends to be
introduced by fields whose behavior depends on something other
than the source code of the OS itself.

4.2.1 What are the potential sources of overfitting?
To better understand the kinds of overfitting that might occur

in our models, for each response packet field in our probe data,
we manually examined Linux and BSD source code to understand
what factors could impact that field’s value and to explore whether
there were system call APIs, OS configuration files, and other sources
of behavioral differences. Though it is difficult to be exhaustive,
this characterization effort gave us a good sense of which fields, if
used in our models, are likely to lead to overfitting.

Some fields were fairly straightforward to analyze and had un-
surprising results. For example, the IP version field is primarily
influenced by whether an OS is using IPv4 or IPv6; though it can
also be influenced by OS configuration, by applications that select
specific network interfaces, or by network middleboxes, in practice
our tool restricts itself to sending IPv4 packets and thus we are very
unlikely to encounter anything other than an IPv4 version field in a
response.

Some fields were easy to analyze but had surprising results. For
example, if a response packet contains the WScale TCP option,
then the amount of memory on the remote host can influence the
response packet’s WScale value. This can be seen in the following
snippet of source code from the Linux 2.6.19 kernel:

(*rcv_wscale) = 0;
if (wscale_ok){

space = max_t(u32, sysctl_tcp_rmem[2],
sysctl_rmem_max);

space = min_t(u32, space, *window_clamp);
while (space>65535 && (*rcv_wscale)<14){

space >>= 1;
(*rcv_wscale)++;

}
}

The value of the third element in the sysctl_tcp_rmem array is in-
fluenced by the amount of physical memory installed on a host.
Hence, memory capacity, and thus hardware configuration, can in-
fluence the value of the WScale TCP option field.

We also ran into many ambiguous cases when deciding whether
a source of influence ought to count towards a particular field’s

non-
determ

inism

hidden
state

netw
ork

hardw
are

applications

system

configuration

O
S

 source
code

IP field

version ! ! ! x
hdrlen ! ! ! x

tos ! ! ! x
len ! ! ! x
id x x ! x

flags ! x
frag ! x
ttl x x x x x

proto ! x
chksum x x x x x x x

TCP field

seq x x ! x
ack ! x

dataofs ! ! ! x
reserved ! x

flags ! ! ! x
win size ! ! ! ! x
chksum x x x x x x x
urgptr ! ! ! x

op order ! ! ! x
op MSS ! x x x

opt wscale ! x x x x
opt tsval x x ! ! ! x

Table 2: Sources of observable behavioral differences. This table clas-
sifies the sources of observable behavioral differences associated with
TCP and IP fields.

value. For example, even though an application can in principle
affect the IP header length field by causing IP options to be added
to a packet, in practice, we never encountered this. Thus, even
though in principle the IP header length field can be influenced by
an application or OS configuration, in practice it is usually safe for
an OS classification tool to use this field.

Table 2 presents a summary of our detailed analysis. An “x” in
a cell signifies that the indicated field’s value is likely to be influ-
enced by the specific category, while a dot in a cell signifies that
it is hypothetically possible for the value to be influenced by the
category, but it is very unlikely that this would be encountered in
practice.

4.2.2 How much overfitting occurs in our models?
Our next step is to evaluate the likelihood that overfitted fields

will be used by classifiers in our model. To do this, we first quantify
the value of each field in our probe data to the classifiers used by our
fingerprinting tool. Because all classifiers share a common goal of
identifying and using high-value fields to build their classification
models, if we find that the majority of high-value fields in our probe
data are prone to overfitting, then by extension we can conclude that
any classifier we use will likely suffer from overfitting.

Intuitively, high-value fields discriminate between many differ-
ent machines in the training data. For example, if we find that some
field F is always set to 0 for Windows machines and 1 for Linux
machines, then F has a high value in discriminating between our
evaluation machines at the most general classification level. We
employ a standard way of quantifying the “value” of a field by us-
ing information gain. The information gain of a field captures how
useful knowing the field’s value is when correctly classifying the

0

10

20

30

40

50

60

70

80

90

level 0 level 1 level 2 level 0 level 1 level 2

fie

ld
s

other overfitting
non-determinism overfitting
OS source code only

OS distribution hierarchy OS kernel hierarchy

71%
63%

10%

71%

5% 8%

Figure 4: Overfitting in OS classification. This figure shows the num-
ber of high-value fields that are prone to overfitting and therefore likely
to be included in a tool’s classification model, as a function of the label
classification hierarchy and level used while training. We also show the
number of non-overfitting-prone fields in the “OS source code” cate-
gory; the italicized numbers show the percentage of fields used that fall
in “OS source code.”

329 evaluation machines. The higher the information gain, the bet-
ter the field can discriminate between machines.

Given our probe data, for each field we split the evaluation ma-
chines into subsets based on the value of that field. Information
gain allows us to evaluate which field best splits the machines into
subsets. The field with the highest information gain is selected and
recorded, and we repeat this field selection and machine splitting
process on its derived subsets. This process recurses until either all
remaining subsets contain machines with the same classification, or
no subset can be further subdivided. The resulting set of recorded
fields constitutes the highest valued fields in our probe data.

Given a set of high-valued fields returned by our algorithm and
the manually constructed set of overfitting sources (summarized in
Table 2), we can calculate the distribution of high-value fields prone
to overfitting versus those that are not. This lets us quantify how
much overfitting we expect to occur in the models generated by our
classifiers.

To perform this analysis, we randomly selected 263 of the 329
machine instances (80%) as a training set, and used our algorithm
to construct the set of high-value fields in the training data gathered
from all 50,000 probes sent to each instance six times. As well,
so that we could explore the impact of classification granularity
on overfitting, we repeated this process for each of the the label
classification levels presented in Table 1.

For each high-value field produced by our algorithm, we refer to
its sources of behavior differences from Table 2, and count a field
as an instance of overfitting if any of its sources are other than “OS
source code.” Figure 4 shows our results. Every model falls prey
to some overfitting, though the degree of overfitting is higher as the
classification granularity becomes more fine-grained. Interestingly,
there is less overfitting when using labels from the OS kernel hi-
erarchy; an automatic tool is more able to find genuine differences
between Linux kernel versions than between Linux distributions.

Despite our efforts to weed out non-deterministic fields by send-
ing six repeats of a probe, many slipped through and polluted our
models. At scale, we stumbled across unlucky coincidences that
make non-deterministic fields seem deterministic. For example,
one of our probe packets always elicits the value 0 in the IP ID
response field from Windows XP machines, but non-deterministic
values from BSD. When these responses happen to flow over the
same number of network hops for each of the six probes, the IP
TTL field also seems deterministic. In combination, the IP check-

sum field appears to have a deterministic value for Windows XP
under this probe packet, despite the fact that IP checksums are ac-
tually non-deterministic. Thus, the checksum field appears to have
high value, leading classifiers to mistakenly adopt a rule that clas-
sifies an instance as Windows XP if it observes responses with this
“unlucky” checksum value.

Classifiers exacerbate the impact of misidentified non-determin-
istic fields. Because classification algorithms hone in on field value
differences that appear to distinguish between OS versions, non-
deterministic values tend to fool our learning process into mis-
takenly considering these fields as genuinely discriminative. The
tools and models have no way to distinguish legitimate behavioral
differences from rare, unlucky coincidences, and at scale and fine
granularity, these rare coincidences seem to be more frequent than
genuine, stable distinguishing criteria.

4.3 OS classification accuracy
We now evaluate the accuracy of our automatically generated

fingerprinting tools at solving the OS classification problem. In
this subsection, we explore the limits of how well automatic tools
can perform for OS classification if overfitting is eliminated as a
confounding factor, and we compare that to tools that are allowed
to fall prey to overfitting.

Given a test machine, a fingerprinting tool will emit a single label
that it believes matches the test machine. We define a simple metric
for evaluating the performance of a tool: the accuracy of a tool is
the percentage of test machines for which a tool returned the correct
OS label. We evaluate this metric for our fingerprinting tools by
creating a learner using each of the 5 different classification model
construction algorithms chosen from the Weka toolset. For each
learner, we repeat all experiments three times: once when we allow
our learner to use overfitting-prone fields, once when we constrain
our learner to “good” fields that we manually vetted as not being
prone to overfitting using Table 2, and once using Nmap.

Each experiment averages our accuracy metric over a standard
10-fold cross validation of the evaluation machines. We randomly
split the evaluation machines into 10 equally sized sets. For each of
these 10 splits, we consider the machines in the first split to be test
machines and the machines in the remaining 9 splits to be training
machines. We then send all 6x50,000 probe packets to each of the
training machines. The response packets are passed to the learner
to construct the fingerprinting tool, and we record the percentage
of correctly labeled test machines classified by the tool. The final
accuracy metric for the tool is the result of averaging the individual
accuracy percentages returned by each of the 10 folds.

We also repeated this learning and 10-fold cross-validation us-
ing each of the label classification levels from Table 1. Finally,
we compared the accuracy of our automatically generated tools to
that of Nmap version 4.6.9. As previously mentioned, to make
the comparison fair, we replaced the extensive classification record
database that ships with Nmap with one constructed using Nmap
records gathered from the training machine sets.

Figure 5(a) shows our results for the kernel classification hierar-
chy and Figure 5(b) shows our results for the distribution classifica-
tion hierarchy. For brevity, we only show results for the SMO and
RandomForest learners and for Nmap. The remaining 3 learners
performed comparatively. At coarse-grained levels of both classifi-
cation hierarchies, all tools are quite accurate. At level 0, i.e., when
classifying machines as Windows, Linux, BSD, or Solaris, our fully
automatic tools are more than 98% correct, as are the same tools
with overfitting manually removed. Even at level 1 in the kernel
hierarchy, our tools are correct more than 97% of the time. This
confirms the results in Caballero et al.’s prior work [6].

0%

20%

40%

60%

80%

100%

o

fo
re

st

sm
o

nm
ap

 o

fo
re

st

sm
o

nm
ap

 o

fo
re

st

sm
o

nm
ap

 o

ac
cu

ra
cy

auto auto-prone

level 0 level 1 level 2
(a) Kernel classification hierarchy.

0%

20%

40%

60%

80%

100%

o

fo
re

st

sm
o

nm
ap

 o

fo
re

st

sm
o

nm
ap

 o

fo
re

st

sm
o

nm
ap

 o

ac
cu

ra
cy

auto auto-prone

level 0 level 1 level 2
(b) Distribution classification hierarchy.

Figure 5: OS classification accuracy. This chart shows the accuracy of
our OS classification tools for 2 Weka learning algorithms: Random-
Forest and SMO. Nmap accuracy is also shown. Graph (a) shows accu-
racies for the kernel classification hierarchy, while graph (b) shows the
accuracies for the distribution classification hierarchy. Two versions of
our tools are considered: one where overfitting-prone fields are allowed
(auto-prone), and one where overfitting-prone fields removed (auto).

At finer granularity levels in both hierarchies, all tools begin to
run into trouble. Overfitting causes our fully automatic tools to lose
their ability to distinguish between some sets of machines. As a
result, at level 1 of the distribution classification hierarchy our tools
emit the correct label only 62% of the time. At level 2, accuracy
drops to less than 30%.

At the kernel classification hierarchy, our fully automatic tools
are correct 85% of the time at level 2. However, the equivalent tools
with manually eliminated overfitting perform worse, with 60% ac-
curacy. Similarly inflated accuracies exist for both classification
hierarchies. These accuracy inflations show that fully automatic
tools are using overfitted fields at finer granularities, resulting in
overly optimistic accuracy. Nmap remains competitive with all of
our tools, and it particularly shines at level 2 of the kernel classifi-
cation hierarchy, a level of granularity for which Nmap is known to
be well-suited. However, even Nmap cannot finding enough distin-
guishing features at the lowest classification levels.

4.3.1 Effects of training bias
Our previous analysis suggests that automatic fingerprinting tools

perform as well as manually crafted tools like Nmap. However, this
analysis did not consider the effects of training bias. Training bias
can occur when a tool weights its classifications using the probabil-
ity distribution of class labels that it encountered during training. In
this subsection, we show that training bias in our data substantially
affects the accuracy of our automatically generated tools.

To quantify the effect of training bias, we performed two exper-
iments. In the first experiment, we randomly selected 50 Fedora
machines and 50 Ubuntu machines from our evaluation set. We ran
a 10-fold cross validation on these machines to calculate the accu-

 precision recall accuracy confidence

ubuntu 52.4% 100% evenly
biased fedora 100% 8%

54% 55.3%

ubuntu 90% 100% Ubuntu
biased fedora 100% 0%

90% 91.4%

Figure 6: Effects of training bias. The precision, recall, accuracy,
and confidence values for an OS classification tool using RandomFor-
est with an even biased training population (50% Ubuntu and 50%
Fedora) or with a heavy bias (90% Ubuntu and 10% Fedora).

racy of a RandomForest learner-based fingerprinting tool. In our
second experiment, we heavily biased the population with Ubuntu
machines so that we had 90 Ubuntu machines and 10 Fedora ma-
chines. Any substantial difference in accuracy between the two
experiments will illustrate how training bias affects our results.

In addition to accuracy, we calculated three metrics:

• precision: the percentage of test instances correctly classified
with label C out of all test instances labeled as C by our tool.

• recall: the percentage of test instances correctly classified with
label C out of all test instances that are labeled with class C in
the ground truth.

• confidence: for correctly classified test instances, the average
confidence returned by a learner’s model that the label it emit-
ted was correct. 100% confidence indicates that the learner was
absolutely certain about the correctness of the labels it returned.

Figure 6 confirms that our automatically generated tools are af-
fected by training bias at lower levels of the classification hierarchy.
Accuracy in the even biased training data is barely higher than ran-
dom, and confidence is low, indicating a failure of our tool to find
enough distinguishing features. Fedora’s low recall of 8% shows
that few of the 50 Fedora instances are ever correctly labeled.

There is a large increase in both accuracy and confidence in the
Ubuntu-biased training data. The learner’s model is latching onto
the bias to guess “Ubuntu” when unsure, and because the training
data is so skewed to Ubuntu, these guesses are often correct. No
Fedora instances are ever correctly classified (0% recall).

Unfortunately, because our full set of 329 machines is skewed
towards Ubuntu Linux, the training bias we see in these small scale
experiments also affect our results in Section 4.3. To observe this,
we recorded the confidence values for all of our fingerprinting tools
at each classification level using 10-fold cross validation on all 329
machines. We find that except for course-grained levels of classifi-
cation, all of our tools again have low confidence value (from 7% to
33% at level 2 of the distribution hierarchy). As in our previous ex-
periments, the automatically generated tools lack confidence when
they emit labels, and are relying on biased best guesses to classify
test machines, artificially inflating the tools’ accuracy results.

This bias is precisely why we needed to modify Nmap to make
a training population-driven “best guess” in the case that it could
not distinguish between some classes. Without this modification,
Nmap’s accuracy fell from 21% to 7.5% at level 2 of the OS distri-
bution classification hierarchy.

4.4 Summary
Our evaluation suggests that automatic fingerprinting tools for

OS classification suffer from several limitations when fingerprint-
ing at scale or with fine-grained classification labels. A fingerprint-
ing tool must overcome mechanical issues while collecting data,

such as coping with packet loss and identifying and eliminating
non-deterministic fields. As well, automatic fingerprinting tools
are prone to overfitting their models to packet response features
that are influenced by factors other than true operating system dif-
ferences. As the scale of the problem increases and granularity
becomes more fine-grained, it becomes harder to find genuine and
stable discriminative features. As a result, at scale, an automatic
tool is more likely to stumble across rare, unlucky coincidences
that pollute its model, or to fall prey to training bias in the absence
of discriminative features.

5. RELATED WORK
Our paper builds on the prior work of Cabellero et al. [6], who

first presented the notion of automatically generated fingerprinting
tools. We explored the practical challenges and fundamental limi-
tations that arise at scale to confound the accuracy of these tools.

Comer and Lin probed TCP stacks to find flaws, protocol vio-
lations, and vendor-specific design decisions [7]. Later work ex-
plored passively identifying TCP implementations by looking at
packet traces [15], and identified some of the challenges in reliably
analyzing TCP traffic. Pahdye et al. used active TCP fingerprinting
to study thousands of web servers, characterizing the differences to
learn about congestion control mechanisms used in the Internet and
to identify compliant TCP implementations [14].

The most prominent TCP fingerprinting tool used for remote
OS classification is Nmap [21]. Nmap sends 16 carefully crafted
probe packets, calculates a fingerprint based on probe responses,
and matches the fingerprint against a database of known OS’s fin-
gerprints. The closest match is returned. Other tools such as snifp [3]
and synscan [20] perform fingerprinting by sending a small number
of well-formed packets to a single TCP port.

Using ICMP for remote OS fingerprinting has also been sug-
gested [1]. Xprobe [2] uses ICMP to avoid detection by IDSs, and
also addresses problems with noise from firewalls, packet shap-
ing devices, and user settings such as sysctls. They use a “fuzzy”
matching algorithm as an alternative to Nmap that is more robust
to small, noise-induced fingerprint variations.

Greenwald et al. investigated optimizing Nmap’s probes to avoid
IDSs [10]. They analyze Nmap’s probes and responses to find
the features with the most information gain. They showed that
a competitive version of Nmap can be constructed using only 2
to 3 valid TCP SYN probe packets. Prior work has explored im-
proving Nmap’s classification algorithm accuracy using neural net-
works [5]. Other work used logic to specify the OS fingerprinting
problem and automated reasoning to arrive at the answer [9].

Passive fingerprinting using traffic traces has been explored by
siphon [18] and p0f. Motivated in part by p0f, Beverly et al. pro-
pose a passive fingerprinting technique using Web logs [4]. Their
classification database is dynamically constructed from web logs,
and a naïve Bayesian classifier is used to classify the OS. Lipp-
mann et al. provide a general overview and comparison of the var-
ious tools and techniques for passive OS fingerprinting [13]. In ad-
dition, they develop their own technique that returns approximate
matches from an OS database using k-nearest neighbor when no ex-
act match is available. An overview of passive tools and techniques
is provided by Spangler et al. [19].

Techniques have been developed to either mask or spoof the
identify of a machine. Smart et al. developed a tool for sanitiz-
ing the responses from a network stack to mask the machine from
OS fingerprinting tools. Newer Linux-specific tools such as ipper-
sonality and morph modify the network behavior of the machine to
match user-specified input behavior. Virtual honeypots spoof the

behavior of a network stack to create the illusion of many different
machines and attract network intrusion attempts [16].

Fingerprinting has been extended beyond TCP stacks to iden-
tify physical devices. Franklin et al. fingerprint drivers on wire-
less devices by measuring signals generated when scanning for ac-
cess points [8]. A technique for identifying remote machines us-
ing small deviations in clock skew was explored and evaluated by
Kohno et al. [12].

6. CONCLUSIONS
In this paper, we evaluated the accuracy of automatic OS finger-

printing tools. Extending the earlier work of Cabellero et al. [6], we
examined the limitations and challenges of automatically generated
tools in more realistic and challenging scenarios, such as when us-
ing fine-grained classification labels or when applying the tool in
large-scale scenarios. Our tools employed a range of state-of-the-
art machine learning algorithms in to provide a realistic assessment
of these tools in practice.

We found that automatic OS fingerprint generation faces four
major challenges. First, at scale and fine granularity, it is difficult
for any tool (manual or otherwise) to find generalizable and suf-
ficiently discriminative probe packets and classification rules; OS
variants are simply difficult to distinguish from each other. Second,
automatic tools are prone to non-representative bias in the training
data. If encountered, the accuracy of the tool during testing might
be substantially different than its accuracy when used in the wild.
Third, automatic tools are prone to overfitting, in which they mis-
take an unlucky coincidence for a useful probe or rule. At scale,
these unlucky coincidences are more frequently encountered than
useful rules, and they tend to pollute the tools’ classification mod-
els with flawed rules that are unstable or do not generalize. Fourth,
fully automatic tools cannot easily exploit semantic knowledge of
protocols or generate multi-packet probes and attributes, and as
such they are at a disadvantage with respect to manual, expertly
generated tools. Overall, these challenges can confound the abil-
ity of automatically generated OS fingerprinting tools to work in
realistic scenarios.

Acknowledgments
We thank Roxana Geambasu and our anonymous reviewers for
their helpful feedback and guidance. This work was supported in
part by the National Science Foundation under grants CNS-0627367,
CNS-0430477, and CNS-0722000, a Torode Family Endowed Ca-
reer Development Professorship, and gifts from Nortel Networks
and Intel Corporation.

7. REFERENCES
[1] O. Arkin. ICMP usage in scanning: The complete know-how.

Technical report, The Sys-Security Group, June 2001.
[2] O. Arkin, F. Yarochkin, and M. Kydyraliev. The present and

future of Xprobe2: The next generation of active operating
system fingerprinting. Technical report, The Sys-Security
Group, July 2003.

[3] P. Auffret. Sinfp, unification de la prise d’empreinte active et
passive des systèmes d’exploitation. In Proceedings of the
Symposium sur la Sècuritè des Technologies de l’Information
et des Communications, Rennes, France, June 2008.

[4] R. Beverly. A Robust Classifier for Passive TCP/IP
Fingerprinting. In Proceedings of the 5th Passive and Active
Measurement Workshop (PAM 2004), Antibes Juan-les-Pins,
France, 2004.

[5] J. Burroni and C. Sarraute. Using neural networks for remote
OS identification. In Proceedings of the Pacific Security
Conference (PacSec ’05), Tokyo, Japan, November 2005.

[6] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang,
D. Song, and A. Blum. FiG: Automatic fingerprint
generation. In Proceedings of the 14th Annual Network and
Distributed System Security Symposium (NDSS ’07), San
Diego, CA, February 2007.

[7] D. E. Comer and J. C. Lin. Probing TCP implementations. In
Proceedings of the USENIX Summer 1994 Technical
Conference, Boston, MA, June 1994.

[8] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk,
and D. Sicker. Passive data link layer 802.11 wireless device
driver fingerprinting. In Proceedings of the 15th USENIX
Security Symposium, Vancouver, B.C., Canada, July 2006.

[9] F. Gagnon, B. Esfandiari, and L. E. Bertossi. A hybrid
approach to operating system discovery using answer set
programming. In Proceedings of the 10th IFIP/IEEE
International Symposium on Integrated Network
Management, Munich, Germany, May 2007.

[10] L. G. Greenwald and T. J. Thomas. Toward undetected
operating system fingerprinting. In Proceedings of the First
USENIX Workshop on Offensive Technologies (WOOT ’07),
Boston, MA, August 2007.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: An update.
SIGKDD Explorations, 11, 2009.

[12] T. Kohno, A. Broido, and K. Claffy. Remote physical device
fingerprinting. In Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2005.

[13] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein.
Passive operating system identification from TCP/IP packet
headers. In Proceedings of the ICDM Workshop on Data
Mining for Computer Security (DMSEC), Melbourne, FL,
November 2003.

[14] J. Pahdye and S. Floyd. On inferring TCP behavior. In
Proceedings of the 2001 ACM SIGCOMM Conference, San
Diego, CA, August 2001.

[15] V. Paxson. Automated packet trace analysis of TCP
implementations. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, Cannes,
France, September 1997.

[16] N. Provos. A virtual honeypot framework. In Proceedings of
the 13th USENIX Security Symposium, Washington, DC,
August 2003.

[17] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[18] C. Smith and P. Grundl. Know your enemy: Passive
fingerprinting. Identifying remote hosts without them
knowing. Technical report, Honeynet Project, March 2002.

[19] R. Spangler. Analysis of remote active operating system
fingerprinting tools. Technical report, June 2003.

[20] G. Taleck. SYNSCAN: Towards complete TCP/IP
fingerprinting. In Proceedings of the Canada Security West
Conference (CanSecWest ’04), Vancouver B.C., Canada,
April 2004.

[21] F. Yarochkin. Remote OS detection via TCP/IP
fingerprinting (2nd generation).
http://nmap.org/book/osdetect.html, January
2007.

IP Fields

Version, IHL, TOS, Len, Id, Flags, Offset, TTL,
Proto, Chksm, Src IP, Dest IP

TCP Fields

Src Port, Dest Port, Seq, Ack, Offset, Reserved,
Flags, Window, Chksm, Urgent Ptr, Payload?,
Option Order, MMS, WScale, Timestamp.TSval,
Timestamp.TSecr, SAckOK, SAck.left, SAck.right,
SAck.more, Other options

Figure 8: List of Response Fields. This figure shows a list of the IP
and TCP fields whose values were used by our learner in generating
fingerprinting tools.

Version: 4 IHL: 20 TOS: 20 Len: 72

id: 28375 Flags: 0 Offset: 0

TTL: 64 Proto: 0 Checksum: 0x01d0

Source IP: 192.168.1.2

Dest IP: 192.168.1.3

Src Port: 12345 Dest Port: 22

Seq: 680293119

Ack: 3718159213
Offset:
52

Checksum: 0xb46e

Rsvd
: 0

Flags
: 227 Window: 5116

Urgent Ptr: 30664

IP

TCP

Version: 4 IHL: 5 TOS: 0 Len: 64

id: Nondet Flags: 2 Offset: 0

TTL: 64 Proto: 6 Checksum: Nondet

Source IP: Ignore

Dest IP: Ignore

Src Port: Ignore Dest Port: Ignore

Seq: Nondet

Ack: 680293120
Offset:
11

Checksum: Nondet

Rsvd
: 0

Flags
: 18 Window: 65535

Urgent Ptr: 0

IP

TCP

Options: [NOP, WScale: 23, SAckOK,
Timestamps: (TSval: 426876180, TSecr:
1484700161), SACK: 3329661679-3718405661,
MMS: 20403, EOL]

Options: [MMS: 1460, NOP, WScale: 1, NOP,
NOP, Timestamp: (TSval: Nondet, TSecr:
426876180), SAckOK, EOL]

Probe Packet #2 Summary Response Packet: BSD 6.0

Learner Input: BSD 6.0

Packet
Number

IP
Version

TCP
Window

TCP Option
Order... ...TCP

Flags

Packet 1

Packet 2 4 65535 [MMS, NOP, ...,
EOL]18

...

Packet 50,000

Figure 7: Experimental Data Example. This figure shows the IP and
TCP fields and values of an actual probe packet and the summary re-
sponse packet returned by a FreeBSD 6.0 training machine in our ex-
periments. The feature vector for this machine containing the response
data from all 50,000 probe packets is also shown.

APPENDIX
A. EXPERIMENTAL DATA EXAMPLE

In Section 3, we described the design and implementation of our
automatic fingerprint generation tool, as well as the data sets we
used for evaluation. We discussed how probe packets were sent to
a set of training machines, and how the responses were then sent to
a learner responsible for generating the fingerprinting tool. Figure 8
shows a list of all the IP and TCP fields whose values we included in
the data sent to our learners. Figure 7 provides a detailed example
of the kind of probe packets, response packets, and learner input
that we used in our experiments.

Figure 7 shows the IP and TCP fields and values of an actual
probe packet that we sent to our training machines. We also show a
summary response packet for this probe from a FreeBSD 6.0 train-
ing machine. Recall that we send each probe packet to each training
machine a total of 6 times, collapsing the responses into a single
“summary response packet” to weed out non deterministic fields.
This resulting summary response packet is what we record for a
probe’s response. Note that some fields in the summary response
packet in Figure 7 such as the IP Checksum were deemed non-
deterministic by our implementation during the response packets
collapsing procedure.

Each of our 50,000 probe packets generated a similar summary
response packet for this machine. As we show in Figure 7, the
input passed to our learner for this training machine consisted of
a feature vector of the IP and TCP field values from all 50,000
such summary response packets. Each training machine used by
the learner during an experiment generated the same feature vector,
but presumably with different values.

