
Comet: An active distributed key-value store

Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno,
Arvind Krishnamurthy, Henry M. Levy

University of Washington

Abstract
Distributed key-value storage systems are widely used in

corporations and across the Internet. Our research seeks to
greatly expand the application space for key-value storage sys-
tems through application-specific customization. We designed
and implemented Comet, an extensible, distributed key-value
store. Each Comet node stores a collection of active storage
objects (ASOs) that consist of a key, a value, and a set of han-
dlers. Comet handlers run as a result of timers or storage oper-
ations, such as get or put, allowing an ASO to take dynamic,
application-specific actions to customize its behavior. Handlers
are written in a simple sandboxed extension language, provid-
ing properties of safety and isolation.

We implemented a Comet prototype for the Vuze DHT, de-
ployed Comet nodes on Vuze from PlanetLab, and built and
evaluated over a dozen Comet applications. Our experience
demonstrates that simple, safe, and restricted extensibility can
significantly increase the power and range of applications that
can run on distributed active storage systems. This approach fa-
cilitates the sharing of a single storage system by applications
with diverse needs, allowing them to reap the consolidation ben-
efits inherent in today’s massive clouds.

1 Introduction
The last decade has seen the rise of distributed stor-
age systems built on loosely coupled collections of au-
tonomous computers. For example, Amazon’s S3 [3]
provides a key-value storage service for external Web
clients. Amazon’s Dynamo [17], Apache Cassandra [5],
and Project Voldemort [38] provide reliable and scalable
key-value stores for company-internal applications (for
Amazon, Facebook, and LinkedIn, respectively). On the
global Internet, DHTs provided by BitTorrent-based sys-
tems, such as Vuze [58] and uTorrent [56], store metadata
for millions of clients using peer-to-peer file-sharing ap-
plications. And finally, researchers have developed com-
plete file systems on top of untrusted clients in widely
distributed P2P environments [2, 14, 44].

Distributed storage systems offer many advantages
over their centralized counterparts. For example, a de-
centralized structure supports scalability; the lack of cen-
tralized management enhances automatic load balancing;
and the use of replication in a highly distributed environ-
ment can improve reliability and data availability. We
therefore expect Dynamo-like storage systems to become
commonplace as generic application infrastructures in the
future, both inside of the enterprise and as shared services
on the Internet.

A significant limitation of such systems for generic
application support, however, is that different applica-
tions have different needs. As an example, each Dynamo
application inside of Amazon runs its own Dynamo in-
stance [17], even though a single instance might be log-
ically better and more resource efficient. In our own
work on Vanish [25] – a security-oriented DHT applica-
tion – we needed to make application-specific parame-
ter and policy changes to Vuze (a million-node commer-
cial DHT) in order to harden it against attack. While
these changes were conceptually simple, e.g., modi-
fying the storage replication algorithm, deploying our
changes took months of work with Vuze’s DHT designer.
Other Vuze applications may wish to make their own
application-specific changes or enhancements, but doing
so is neither feasible nor supportable, and it doesn’t scale.
We believe that with the huge consolidation benefits of
shared cloud storage services, either inside or outside of
the enterprise, supporting specialization of storage ser-
vices can have high payoffs in the future.

This paper presents Comet, a next-generation, flexi-
ble, distributed storage system, which opens the world
of distributed storage to a new set of more complex stor-
age applications. In particular, Comet permits multiple
applications to share a single Comet instance, while en-
abling each application to change the behavior of its stor-
age elements to suit its own requirements. For example,
a storage element can make decisions based on its access
history, its current number of replicas, the time of day,
etc. Therefore Comet can easily support different stor-
age lifetimes, access methods, access control schemes, or
replication schemes for different storage-element types,
in a way that makes them easy to deploy and test. Using
Comet, we can also carry out interesting measurement-
based experiments from within the DHT.

Comet implements active storage objects (ASOs). An
active storage object consists of a key, an associated value
(an untyped blob), and optionally, a set of simple han-
dlers. An ASO’s handlers execute as a result of com-
mon storage events on the object (such as get and put)
or from timer events that its handlers request. As a result,
an ASO can modify its environment, monitor its execu-
tion, and make dynamic decisions about its state.

The design of an extensible system for this environ-
ment presents a set of interesting design questions. For
example, what features should the system provide for ap-

plications and which can (and should) be left out? What
is the proper tradeoff between power and safety? How
can client nodes be confident that active storage objects
will not cause damage or interference? How can we pre-
vent the use of active storage objects to mount a DDoS at-
tack? And overall, how can we extend the storage system
without losing its principal characteristics? Our Comet
design considers these and other issues.

The remainder of this paper describes our goals, ar-
chitecture, experience, and evaluation of Comet. To pro-
vide concrete insight into Comet’s design and potential,
we implemented a Comet prototype and used it to cre-
ate and deploy a set of over a dozen Comet applications.
Our prototype leverages Vuze: each Comet instance is
an extended Vuze client that can execute Comet active
storage objects while also serving as a full participant
in the million-node Vuze DHT. Comet applications are
written in Lua – a common application-extension lan-
guage. We modified the Lua runtime to meet our iso-
lation and safety requirements, providing a safe sandbox
for handler execution. To test our applications we ran our
Comet clients from several hundred PlanetLab nodes and
measured their behavior. Overall, our experience demon-
strates that a highly restrictive but active distributed stor-
age system can provide significant power to simultane-
ously support applications with diverse storage needs.

2 Related Work
The concept of extensible systems has been widely ex-
plored in the past in several domains. Extensible operat-
ing systems have been proposed that support application-
specific needs [6, 46, 28]. Active networks allow code
to be downloaded along with network data and executed
within the network infrastructure (e.g., on routers) to ex-
tend network services [60, 54]. Active messages execute
a small amount of user code with each message recep-
tion [57]. Click explored the design of an extensible
router [30]. Database triggers allow applications to define
procedural code that is executed in response to database
operations [35].

In the context of storage systems, Watchdogs [7] ex-
tends the Unix file system, allowing a user-mode process
to interpose on file operations for specific files to change
access semantics. Several projects have proposed the
integration of CPUs and disks to create intelligent disk
storage systems that can provide on-board application-
specific functions, e.g., for decision support systems, data
mining, and image processing [29, 41, 1].

DHTs are increasingly used to support a variety of dis-
tributed applications, such as file-sharing, distributed re-
source tracking, end-system multicast, publish-subscribe
systems, distributed search engines, and even data-center
applications. Some of these systems (e.g., as CFS [14],
i3 [52], and PAST [44]) can be implemented using the

traditional put/get interface, but many others (e.g., Mer-
cury [8], CoralCDN [21], Scribe [45], and Bayeux [64])
require customized interfaces and are implemented by
altering the underlying DHT mechanisms in significant
ways. Our work provides the ability to extend a DHT
without requiring a substantial investment of effort to
modify its implementation.

Deployed DHTs don’t currently offer good semantics
and security. However, people do know how to make
them consistent [32, 34] and harden then against at-
tacks [11, 16, 48, 26, 59]. The reason DHTs do not cur-
rently implement these techniques is that there has not yet
been a deployed application that truly needed strong se-
mantics and security. For example, the Vuze design per-
ceived many threats as irrelevant [23] and deployed few
defenses against them. However, after the new, more de-
manding Vanish application was proposed [25], the Vuze
DHT responded by embracing a variety of effective secu-
rity measures. In addition to enabling new applications
atop DHTs, we hope to drive the design of these systems
towards well-understood, yet unadopted levels of security
and consistency.

3 Goals
Comet is a distributed key-value storage system. Like
other such systems, a Comet storage object is a
<key,value> pair. Unlike previous systems, however,
Comet’s design facilitates extensible, active storage ob-
jects. A Comet application performing a put can there-
fore include, along with a key and value, a small set of
handlers for that object. The node receiving the put
stores the handlers along with the key and value, registers
the handlers for events that they specify, and executes the
handlers when their respective events occur.

Comet’s system goals are:

1. Flexibility. Comet should be easily customizable to
achieve our target functions described below.

2. Isolation and safety. A client node running Comet
should be protected from the execution of handlers
(e.g., an executing handler cannot corrupt the node or
use unlimited resources). Handlers should not be able
to mount messaging attacks on other nodes.

3. Performance. The performance of gets/puts on a
Comet ASO with null handlers should be the same
as on a non-active system, and execution of handlers
should have only negligible performance impact.

Isolation and safety are particularly important to our
architecture. While Comet can be used in different envi-
ronments, we designed it to enable wide-scale, outside-
the-firewall deployment on autonomous nodes, similar to
P2P systems and DHTs. Users downloading Comet must
trust it and have guarantees about its behavior. For this
reason, Comet enforces four important restrictions:

1. Limited knowledge: an ASO is not aware of other ob-
jects or resources stored on the same node and has no
direct way to learn about them.

2. Limited access: an object handler can manipulate
only its own value and cannot modify the values of
other objects on its storage node.

3. Limited communication: an active storage object can-
not send arbitrary messages over the network.

4. Limited resource consumption: an ASO’s resource
usage is strictly bounded, e.g., the system limits the
amount of computation and memory it can consume.

We are specifically not attempting to build a general-
purpose distributed programming system, such as Planet-
Lab [4, 36]; such a system would be unacceptable in our
target environment and inappropriate (and unnecessary)
for our needs. Rather, our goal is to support relatively
simple specializations or actions on simple storage ob-
jects. Even very simple specializations can provide a sig-
nificantly more powerful storage system that enables new
types of applications. We therefore take a lightweight and
limited approach. As examples, an ASO should be able
to perform the following functions:

• Statistics gathering. Collect statistics about its use,
e.g., by counting the number of gets and puts.

• Information tracking. Log information, such as a list
of IPs that performed get operations on its value or a
recent history of the values it stored.

• Time awareness. Take time-based actions, e.g., to
make periodic changes to its state or self-destruct af-
ter a timer has elapsed.

• Location awareness. Make location-based decisions,
e.g., choosing where to store based on nodes’ network
locations.

• Access control. Implement simple access control
policies on its own.

• Replication. Implement different replication policies.

• Storage system measurement. Provide insight into the
behavior of the distributed storage system as seen by
clients executing within the system itself.

As we shall see, the only long-term state available to a
handler is its object’s value; therefore, any logs, counts,
etc., must be stored as part of that value. However, an ac-
tive object can choose to report only a subset of its stored
value record on a get, or it can selectively report different
values to different callers based on call parameters.

The following sections describe Comet’s architecture.
In particular, we discuss the tradeoffs required to provide
flexibility while also achieving isolation and safety.

4 Architecture and Implementation
This section describes Comet’s active storage architec-
ture and prototype implementation. One could imagine
running Comet in various environments, e.g., an inside-
the-firewall corporate deployment or a distributed envi-
ronment with autonomous untrusted nodes. We focus our
current architecture and prototype on the latter.

4.1 Architecture
Figure 1(a) shows the high-level architecture of our
Comet distributed storage system. The Comet storage
system consists of three basic components. First is the
routing substrate (Figure 1(a) bottom), which imple-
ments the value/node mapping, allowing a client to find
nodes that store specific data items. In the case of a DHT,
for example, the routing substrate typically applies a hash
function to the key to compute the IDs of nodes that store
the associated value. However, other routing substrates
may locate values in other ways.

The second component is the key-value store, which
maintains a set of key-value pairs on each node. A key-
value storage system typically exports a simple get/put
interface. While existing storage systems store arbitrary,
untyped byte strings, the Comet storage system stores ac-
tive storage objects (ASOs). An ASO consists of a key
and its associated state (i.e., a value, stored as an untyped
byte string), along with optional code that operates on
that state. The code is structured as a set of handlers that
specify how the object behaves, i.e., how it modifies its
state when certain events occur. For example, an ASO’s
onGet handler is invoked whenever a remote client per-
forms a get operation to access an object. This handler
might perform some simple operation, such as increment-
ing a counter for the number of gets or appending the
client’s IP address to a log structure. The counter or the
log structure would be stored as part of the ASO’s state
that can be accessed by the handler.

The third architectural component is the active runtime
system. The runtime system handles ASO invocations
and provides the security policy and execution environ-
ment. An application running on a remote client specifies
the initial state and handlers for an ASO when initially
storing the object via a put operation. When a client per-
forms a get or a put, it can optionally request a cryp-
tographic checksum of the code associated with the tar-
get ASO. This can serve as an integrity check that the
client’s initial put is to a key with no associated ASO
and that subsequent operations are performed on ASOs
created by the application. In most implementations, a
Comet node distrusts remote nodes and client applica-
tions; therefore, the runtime component of the active sub-
system implements and enforces an ASO execution sand-
box (Figure 1(a), top). Our Comet prototype uses a lan-
guage sandbox based on Lua [43] to prevent a handler

Key-Value Store

ASO2

Routing Substrate

ASO1

- state
- code (handlers)

Storage Node

Remote
Storage Node

Application /
User

put/get/delete

Active Subsystem

Security
Policies

ASO API ASO Handlers

ASO
Runtime

External
Interaction

K1 ASO1

ASO2K2

S
a

nd
b o

x

(a) Architecture.

getSystemTime() → UTC
getIP() → node’s external IP
getID() → node’s DHT ID
getKey() → ASO’s key
deleteSelf(): deallocate ASO
get(key, [args]) → value, nodes storing copies
put(key, value[, nodes])
lookup(key) → nodes closest to a key

(b) ASO API.
Figure 1: Comet Architecture and APIs. (a) depicts the decomposition of a Comet node into two vertical components - the
core Comet code, which is trusted from the node’s perspective, and the ASO code which is arbitrary and, therefore, untrusted. (b)
details the API exposed to ASOs.

from accessing outside state and to constrain the ASO
from consuming too many computational and memory re-
sources on the host. The ASO runtime consults a security
policy module, which specifies all execution limits.

While some applications may be satisfied by an en-
tirely sandboxed execution, many would benefit from an
ASO’s limited ability to interact with or “sense” its en-
vironment. For example, to implement the conditional
replication scheme we added to Vuze for Vanish, an ASO
requires knowledge of the number of replicas in the DHT
and the time of day (to enforce the desired minimum
replication interval). For this reason, the active subsys-
tem exposes a small API (called the ASO API) to the
handlers.

4.2 Active Storage Object API
Table 1 and Figure 1(b) show the handler and ASO run-
time APIs, respectively. The handler API supports invo-
cations based on the primary storage functions – put, get
– as well as an onTimer handler to be executed period-
ically (e.g., once every 10 minutes) during the object’s
lifetime. For example, an ASO could directly implement
a custom replication policy in its onTimer handler.

The ASO runtime API is the only way for an ASO
to interact with its environment outside of the sandbox.
Our design supports two types of useful interactions: (1)
obtaining information about the local node, and (2) ex-
ecuting various storage system operations. The former
category includes functions to obtain the time of day, the
hosting machine’s external IP address, etc. The latter in-
cludes functions to interact with other storage system ob-
jects. The ASO API was not designed to be entirely gen-
eral; rather, our goal was to provide a minimal interface,
informed in part by our requirements of security, privacy,
and isolation. We tested this interface by implementing

and running over a dozen applications on our Comet pro-
totype. Interestingly, we were able to build a relatively
diverse set of applications with a surprisingly small in-
terface, which has remained relatively stable through the
project. This suggests that a small interface, like the one
shown in Figure 1(b), can support a wide variety of appli-
cations. Naturally, there are limitations. For example, we
explicitly prohibit any direct network-level interactions
with remote nodes on the Internet. While this feature
might be desirable to certain measurement applications,
its DDoS implications would be unacceptable.

onGet(caller[, callbackID, payload])
Invoked when a get is performed on the ASO. Returns a value which will
be passed back to the caller. Instead of returning a value immediately, the
handler could also perform a put at the optional callbackID sometime in the
future. The handler also takes an optional payload argument of arbitrary
type.
onPut(caller)
Invoked upon initial put when the object is created. Returns the value that
should be stored by the node (e.g., itself or nil).
onUpdate(new value, caller)
Invoked on an ASO when a put overwrites an existing value. Returns the
value that should be stored, e.g., new value if it should be replaced, or itself
if not.
onTimer()
Invoked periodically. This handler has no return value. It is used to perform
periodic maintenance such as replication.

Table 1: ASO Handler Calls.

4.3 Language Based Sandbox
Our Comet prototype focuses on a DHT environment
composed of a large number of untrusted autonomous
nodes that cooperate to support the distributed active stor-
age system. In this environment, the key challenges in-
clude providing a strong sandbox and limiting ASO re-
source consumption. We briefly describe how our system
addresses these challenges using a language based sand-
box.

The Comet prototype required an ASO programming
environment that reflected our needs for simple extensi-
bility, flexibility, performance, isolation, and safety. To
meet these needs, we chose Lua [43], a lightweight and
easily constrained scripting language. A dynamically
typed, imperative and functional programming language,
Lua is most commonly used for coding application ex-
tensions. In this context, it lets users add or modify fea-
tures in video game engines, Web servers, version control
systems and other applications (specific examples include
World of Warcraft, SimCity 4, Adobe Photoshop Light-
room, and Squeezebox Jive Platform). Several properties
make Lua well suited for implementing ASOs. First, it
employes a small set of programming constructs (includ-
ing first-order functions) and a small number of data types
(including tables, which are heterogeneous associative ar-
rays). Second, Lua compiles to simple bytecode, which
makes it relatively easy to sandbox. Finally, ASOs writ-
ten in Lua are concise and small when serialized; the Lua
ASOs we implemented are all under 1.5KB, about five to
ten times smaller than Java equivalents.

Comet represents ASOs as Lua tables that encapsulate
both persistent state and the handlers to be invoked on
that state. Lua tables can implement basic arrays, asso-
ciative arrays, or both. While an associative array can
contain any name-value mappings, we treat certain asso-
ciations as handlers. In particular, if the ASO table con-
tains an associative array with the names “onGet,” “on-
Put,” “onUpdate,” or “onTimer” – and those names are
associated with values that are Lua functions – then the
runtime invokes those functions when the corresponding
events occur. Our runtime system serializes Lua tables
into a byte stream for transmission to a storage node on a
put request.

We made several modifications to the standard Lua in-
terpreter for the Comet runtime system. We sandbox
ASOs by removing all but the core libraries from the
runtime, leaving only a math package, string manipula-
tion, and table manipulation. As a result, handlers are
extremely restricted: they have no direct network access,
no system execution capabilities, no thread creation capa-
bilities, and no file system access. We also strictly bound
the amount of resources that a handler can consume. For
example, the runtime limits both the number of bytecode
instructions that a handler can execute and the amount of
memory it can consume. If a handler exceeds either of
these limits, the runtime terminates its execution.

The Comet runtime exposes a DHT wrapper object to
handlers, which allows an ASO to communicate with its
environment. The ASO can learn information about the
hosting node, including the external IP address and the
current system time. It can also perform a restricted set
of DHT operations. For example, it can perform get and
put operations on replicated copies of its value stored at

other nodes. In the API presented in Section 4.2, these
operations return values or neighboring node IDs. How-
ever, since these operation are slow in the DHT setting
and may block for seconds or even minutes, we chose to
implement them using function callbacks. Each such op-
eration takes an optional parameter, a function which ac-
cepts the result as its parameter. For example, instead of
returning a value, a get operation takes a function which
is eventually passed the result of the operation. The op-
eration returns immediately with no value, and the get
is actually performed after the ASO execution has com-
pleted. While this presents a slightly different paradigm
to the user, we think this provides a greater ability to op-
timize the performance of Comet-based applications.

4.4 Comet Prototype Implementation
We built the Comet prototype on the Vuze DHT, which
supports the widely used Vuze BitTorrent client. The
DHT is used mainly for distributed tracking of torrents;
however it has been used in research as well [27, 25].

Vuze implements the Kademlia routing protocol, in
which each node is assigned a 160-bit ID based on the
SHA1 hash of its IP address and port. Basic DHT opera-
tions (get, put, and remove) take a 160-bit key, perform
a lookup to find nodes whose ID is close to that key, and
then send a read or store RPC to those nodes.

We minimally extended the Vuze interface to conform
to Comet’s abstract operations. For example, we aug-
mented get to allow a caller to pass an arbitrary byte-
string argument. This supports a parameterized get op-
eration, where the ASO can return different values de-
pending on the parameter (analogous to the semantics for
GET in HTTP).

Allowing extensibility in a DHT environment creates
challenges, e.g., it has the potential to provide a platform
for DDoS attacks. Therefore, in addition to the Lua re-
source restrictions described previously, we limit DHT
communications that ASOs can perform in two ways.

First, we do not allow an ASO to perform operations on
arbitrary DHT keys or nodes, but rather only on specific
key-node pairs. An ASO may communicate with any of
its neighboring nodes that are responsible for replicas of
the ASO. We also allow the ASO to communicate with
key-node pairs that have interacted with it in the past,
once for each such interaction. To enable this function-
ality, we extended Comet requests to include the ID of
the requesting node and the ID of a local key contained
within the node. If an ASO receives a get request with
a key ID specified, it gains the capability for a one-time
operation on that key to the node that issued the request.
The ASO can then either return a value immediately and
exhaust its one-time capability, or save that capability
for future use. This mechanism allows applications to
respond to DHT requests at a future point in time, es-

pecially if the requested data is not currently available.
We do not allow ASOs to pass these capabilities between
each other as doing so would enable a malicious node
to mount DDoS attacks. In Section 5 we discuss signed
ASOs, which do not have these restrictions.

Second, Comet imposes rate limits on the number of
messages generated by an ASO, either to neighboring
nodes storing replicas or to arbitrary key-node pairs that
have interacted with it in the past. This prevents misbe-
having ASOs from exhausting the bandwidth resources of
the Comet nodes hosting them. We discuss these security
issues further in Section 7.

5 Applications
This section seeks to demonstrate both the range of stor-
age behaviors that Comet can support and the ease with
which those behaviors can be implemented. To do this,
we describe several of the active storage applications
we have implemented, deployed, and measured on our
Comet PlanetLab prototype. We provide code snippets to
show how simply these actions can be programmed in our
Lua-based ASO environment. In Section 6, we present
measurements from some of these examples.

5.1 Customizable Replication
Most DHTs specify a fixed replication policy for stored
values, requiring applications to conform to that pol-
icy. In contrast, Comet ASOs can provide their own
application-specific replication mechanisms, e.g., con-
trolling the replication factor, the replication interval, and
the choice of nodes on which the object will be repli-
cated. This flexibility is useful for applications that place
varying degrees of emphasis on performance, availabil-
ity, locality, and security. For instance, a security sensi-
tive application (such as Vanish) might use a small num-
ber of replicas and long replication intervals, limiting the
dispersion of its objects stored in the DHT. On the other
hand, an application that values availability might repli-
cate frequently to a large number of nodes.

Listing 1 shows how an ASO can define a customized
replication policy. In this example, the onTimer han-
dler wakes up periodically, invokes lookup to deter-
mine a list of nodes closest to the ASO’s key, executes
selectGoodNodes1 to identify a subset of nodes that will
serve as replicas, and then stores a copy of itself on the
selected nodes using put. We have also implemented a
timer handler that replicates only when the number of ex-
isting replicas falls below a certain threshold; this lowers
communication overhead and mitigates data harvesting
attacks for security sensitive applications, reflecting the
changes we made to Vuze after we published Vanish [25].

1The Lua code for selectGoodNodes is omitted for brevity. It im-
plements an application-specific policy for choosing replicas.

� �
function aso:handleLookup(nodes)

nodes = self.selectGoodNodes(nodes)
dht.put(dht.getKey(), self, nodes)

end
function aso:onTimer()

dht.lookup(dht.getKey(), self.handleLookup)
end� �

Listing 1: Smart Replication
5.2 Controlling Data Access
Comet objects can implement various policies that con-
trol how data stored in the objects is accessed. We illus-
trate a few such examples.

Timeouts and Limited-read values: ASOs can be
used to implement objects that will be accessible for only
a limited, application-specified time. Such objects are
meaningful for security applications such as Vanish [25],
which provide support for self-destructing digital data by
storing cryptographic keys in a DHT.

Listing 2 shows the handler code required to imple-
ment application-specific timeouts. Each replica stores a
timestamp when the object is created (stored) and then
deletes the object after 60 minutes using a timer handler.
In addition, the onGet handler prevents the object’s con-
tents from being accessed after the timeout but before it
is deleted by a timer handler.� �
function aso:onPut(value)

self.timeout = dht.getSystemTime() + 60∗MINUTES
return self

end
function aso:onTimer()

if (dht.getSystemTime() > self.timeout) then
−− delete local ASO
dht.deleteSelf()

end
end
function aso:onGet()

if (dht.getSystemTime() > self.timeout) then
−− delete local ASO
dht.deleteSelf()
return nil

end
return self

end� �
Listing 2: Timeouts

An ASO can also choose to delete itself after it has
been read – providing a “limited-read value” – where
each replica can be read at most once. In addition to
its use for self-destructing data, limited-read values could
be used in settings where objects represent tasks and are
deleted once they have been claimed by worker nodes.
The object then serves as a synchronizing construct be-
tween the task’s producer and consumer.

Listing 3 implements limited-read values. When a get
is performed, the node records the fact that the value has
been read. It then propagates the request to every other
replica by overwriting them with nil. Note that the ob-
ject does not delete itself immediately, but rather stays
around for a while and periodically attempts to delete
other replicas to ensure that copies on nodes with tran-
sient connectivity issues [22] are eventually deleted. Note
also that concurrent gets issued to different replica nodes
might successfully read the value. In general, as with
other distributed storage systems, consistent update of
replicated values would require the use of heavy-weight
consensus operations. Comet does not currently provide
such primitives. ASO handlers do however provide the
ability for replicas to detect and correct inconsistencies,
e.g., ASOs can compare and reconcile replica contents
through periodic invocations of the onTimer handler.� �
function aso:onGet()

if (self.read) then return nil end
self.read = dht.getSystemTime() + 30∗MINUTES
dht.put(dht.getKey(), nil) −−deletes replicas
return self

end
function aso:onTimer()

if (self.read) then
dht.put(dht.getKey(), nil) −−deletes replicas
if (dht.getSystemTime() > self.read) then

dht.deleteSelf()
end

end
end� �

Listing 3: Limited-Read Values

Data Subscription: An ASO can allow clients to “sub-
scribe” so that they will be notified when the ASO re-
ceives a new value. In Listing 4, when the subscriber
performs a get, the ASO saves the subscriber’s network
location (callerNode) and a key that will serve as the
subscriber’s recipient of the value (callbackKey). When
a value update occurs, the ASO distributes the value to
all registered subscribers – the runtime ensures that the
ASO distributes these values only to clients who have
actually performed a get on the ASO. In the example
shown, the ASO clears its subscriber list after its put op-
erations; subscribers must then re-subscribe if they’re still
interested. Later we will describe an implementation of a
scalable publish-subscribe scheme based on this design.

Sensitive values: ASOs can implement various forms
of access control policies. For instance, Listing 5 pro-
vides read access to the object’s value only if the client
can present a predetermined password akin to a feature
already provided by some DHTs, like OpenDHT [40]. A
client provides the password as an argument to the get

� �
aso.pending = {}
function aso:onGet(callerNode, callbackKey)

if(self.value) then
return self.value

end
self.pending[callerNode] = callbackKey
return nil

end
function aso:onUpdate(callerNode, value)

self.value = value
for callerNode,key in pairs(self.pending) do

dht.put(key, value, {callerNode})
end
self.pending = {}

end� �
Listing 4: Pub-sub

request.
There are a few issues with the code provided above,

especially if it were to be extended to support password-
protected updates. A malicious node could claim to store
the object but simply serve as a proxy for clients’ requests
and thereby implement man-in-the-middle attacks. This
could be solved by exposing basic encryption primitives
to the ASO, like a secure hash function and/or public key
cryptographic primitives. For example, instead of passing
the plaintext password to the ASO, the client hashes the
concatenation of the password with its IP/port, thus the
ASO can verify that the request is not being forwarded
by a malicious node. The ASO’s security can be further
strengthened by public/private key pairs, with the ASO
storing the public key and clients authenticating them-
selves by presenting a message signed with the corre-
sponding private key. With these enhancements, a ma-
licious node storing a copy of the object cannot overwrite
the contents of other replicas since it doesn’t possess the
private key.� �
function aso:onGet(caller, callerId, password)

if (password == ‘‘mypass1234’’) then
return ‘‘Well kept secret’’

end
return nil

end� �
Listing 5: Password

An application could use multiple mechanisms for
controlling data access, e.g., it could use timeouts in con-
junction with password-protected access. While Comet
does not allow ASOs to register multiple handlers for a
given storage operation, the developer can combine all of
the desired mechanisms into a single handler. Though
this might increase programming complexity, it allows
the application developer to control how different mech-
anisms interact with each other and provides the basis for
a predictable and deterministic execution model.

5.3 Measurements and Monitoring
DHT Measurements: ASOs provide a platform for
instrumenting and measuring the DHT using the DHT
nodes themselves. This enables a more detailed and com-
prehensive view of the DHT and helps provide accurate
estimates of DHT properties such as churn, node lifetime
distribution, transient inconsistencies, etc.

For instance, Listing 6 tracks the k closest nodes to the
ASO and stores the information it learns as part of the
object state. A measurement application can create ob-
jects of this type, store them at multiple locations within
the DHT, and obtain snapshots of DHT membership by
retrieving the objects’ contents using get operations.� �
aso.neighbors = {}
function aso:handleLookup(nodes)

self.neighbors[dht.getSystemTime()] = nodes
end
function aso:onTimer()

dht.lookup(dht.getKey(), self.handleLookup)
end� �

Listing 6: Lifetime

While this measurement could be performed by nodes
that are not part of the DHT (as in earlier work [20, 50]),
measurements from within the DHT can provide more ac-
curate data. For example, the lifetime measurement could
be carried out by a client that interactively crawls the
routing tables of the DHT nodes and then uses heartbeat
messages to monitor the uptimes of the nodes it learns
about. This approach could provide faulty data, however,
if the DHT contains firewalled nodes that do not receive
or respond to such heartbeat messages.2 On the other
hand, firewalled nodes still communicate with neighbors,
for example to replicate values. Therefore, measurements
performed from ASOs within the DHT can be more ac-
curate, as we will demonstrate later.

Monitoring uses: An ASO can also maintain audit
trails, e.g., indicating where it has been stored thus far,
who has read or updated the object, etc. Such tasks are
particularly useful for debugging and aid in rapid proto-
typing. For example, this may help a developer to learn
whether a new ASO replication mechanism is operating
properly. Alternately, logs can also be used for forensics.
Listing 7 illustrates a monitoring application that tracks
the nodes storing and accessing a value.

This specific implementation comes with a few
caveats. Each replica may have a different view of the
list of nodes that have stored or read the value. To address
this, the experimenter needs to get the union of the lists
stored in all the replicas, consolidating them as a post-
processing step.

2In fact, about half the nodes in P2P DHTs are firewalled [23].

� �
replicaIps, hostIps, accessorIps = {}
function aso:onGet(callerIp)

table.insert(self.accessorIps, callerIp)
return self

end
function aso:onPut(caller)

table.insert(self.accessorIps, caller.getIP())
table.insert(self.hostIps, dht.localNode.getIP())
return self

end
function aso:handlePut(nodes)

for i,v in ipairs(nodes) do
table.insert(self.replicaIps, v.getIp())

end
end
function aso:onTimer()

dht.put(dht.getKey(), self, 20, self.handlePut)
end� �

Listing 7: Monitoring
5.4 Smart Rendezvous
DHTs are used for rendezvous in many distributed sys-
tems. In P2P file-sharing systems such as BitTorrent, the
DHT is used as a distributed tracker either with or as a
replacement for a centralized tracker. That is, peers that
want to download a particular file use the DHT to iden-
tify other peers who are downloading or sharing the file.
The downside with current DHT-based distributed track-
ers, however, is that they result in random overlay con-
nections, as there is no mechanism to enforce more intel-
ligent peer-matching techniques.

With Comet we can address this limitation by using
ASOs to track participating nodes, as well as construct
peer lists that are optimized for a requesting node. Peers
could be matched in order to lower inter-node laten-
cies [33], maximize reciprocation probability based on
peer bandwidths [37], or lower ISP costs [62, 12]. We
have implemented one such matching scheme that uses
the nodes’ network coordinates to predict inter-node la-
tencies and provides a list of nearby peers to each joining
node. We describe this in depth in Section 6.3.2.

5.5 Signed ASOs
The examples discussed so far adhere to the strict security
policy we set out: ASOs cannot perform operations on ar-
bitrary DHT keys or nodes. We now consider uses where
we relax this assumption, but require that the ASO code
be signed by the DHT administrator after manual verifi-
cation of its security properties. As we will see below,
this allows the DHT to deploy new functionality and ser-
vices by using signed ASOs that access arbitrary DHT lo-
cations, but are safe (i.e., they do not enable DoS attacks
of targeted DHT nodes).3 We have considered signed

3In some cases, the safety of the ASO code could presumably be ver-
ified automatically, e.g., by using sophisticated compile-time analysis;

ASOs in particular as a mechanism that a DHT’s devel-
oper or administrator could use for testing and evaluation
of new features, before they are added to the main-line
DHT code.

Recursive Get: Vuze and many other DHTs support
iterative routing for key lookups. In this approach, the
node performing the lookup is involved in every step of
the routing operation, i.e., it identifies the target node by
repeatedly querying DHT nodes to find other nodes that
are closer to the target key. An alternative is to perform
recursive routing, where intermediate nodes on the route
pass the lookup directly to nodes that are closer to the
key. Iterative lookup provides greater control to the node
performing the lookup (e.g., it can control lookup paral-
lelism), but it comes at the cost of increased latency. If
both forms of lookup are available, an application would
use recursive lookups by default, but fall back on iterative
lookups after persistent failures [15].

With signed ASOs it is possible to implement recursive
lookups even though the underlying DHT supports itera-
tive lookup by default (as is the case with Chord, Kadem-
lia, and Vuze). The node initiating the lookup creates a
query ASO, which contains a reference to itself, and a lo-
cal callback ID where it would like to receive the answer.
When the signed ASO is created its onPut handler is in-
voked; the handler queries the local routing table to find
a live node that is closest to the target key, stores a copy
of the signed ASO on this node, and deletes itself from
the current node. This process is repeated until one of
the nodes storing the target is reached, and the onUpdate
handler of the target ASO sends the object’s value back
to the original node, which initiated the request.

Caching and Hierarchical Publish-Subscribe: This
idea can be extended to accomplish both caching and hi-
erarchical publish-subscribe data delivery. For caching,
the onUpdate handler can be modified to communicate
the object not only to the requesting node but also to the
intermediate node that conveyed the request. The number
of intermediate nodes to which the object is replicated can
be determined by gathering and analyzing statistics on
object popularity (also accomplished using simple han-
dler code), so that only popular objects are replicated at
multiple nodes (as in Beehive [39]). To implement hierar-
chical publish-subscribe, intermediate nodes propagate a
subscription event to the next node in the lookup process
only if they haven’t done so before and maintain state
for subsequent queries routed to them. When a value is
published, it is propagated through a dissemination tree
so that the communication load is distributed across all
intermediate nodes (as in Scribe and Bayeux [45, 64]).

studying this is part of future work.

5.6 Summary
This section described a set of example storage objects
that we have implemented using Comet. Through these
examples, it should be clear that with very small exten-
sions (on the order of a few lines or a few tens of lines
of code), a Comet application can create a wide range of
powerful storage object behaviors that would be impossi-
ble in existing distributed storage systems or DHTs.

6 Evaluation
We deployed Comet on approximately 200 PlanetLab
hosts and evaluated our design in three steps. First, we
characterize the resource utilization of the various appli-
cations that we developed. Second, we measured micro-
benchmarks to understand the overheads associated with
active storage objects. Lastly we report on our experi-
ences with prototyping applications using Comet.

6.1 Application Characteristics
Table 2 shows resource consumption requirements for
our Comet applications. The Max Instructions column
gives the number of dynamic Lua instructions required
to execute the most expensive handler, while Execution
Time gives the execution time for that handler. Where
this value is data sensitive, we provide an estimate based
on the expected maximum value. Code Size shows the
size of each ASO with the minimum amount of data and
Max Size is the maximum size to which the ASOs might
grow for that application. From the table we see that most
ASOs execute fewer than 100 Lua instructions and are
smaller than 1KB in size.

Application Max
Instructions

Execution
Time

Code
Size

Max
Size

Replication < 10 4µs 0.223K < 1K
Smart Replication < 100 6µs 0.444K < 1K
Timeouts ≈ 10 4µs 0.434K < 1K
Limited-Read Value ≈ 10 4µs 0.553K < 1K
Sensitive Value < 10 4µs 0.230K < 1K
Pub Sub 10,000s 54µs 0.498K 100K
Hierarchical Pub Sub 100s 6µs 0.673K 1K
Lifetime (External) 100s 6µs 1K 6K/hr
Lifetime (Internal) < 100 6µs 1.776K ≈ 3K
Monitoring ≈ 10 4µs 0.971K 3K/hr
Smart Rendezvous 1,000s 14µs 1.107K 10K
Recursive Get ≈ 50 6µs 0.714K ≈ 1K

Table 2: Expected Application Resource Consumption

6.2 Performance and Overheads
We report on simple microbenchmark measurements to
compare the CPU and memory costs of Vuze and Comet.
These experiments were run on an quad-core machine
with Xeon processors clocked at 2.67GHz.

Single-Node Throughput. In this experiment, concur-
rent get operations are performed on many values stored
in the target node. We measure the throughput of get

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

Lo
g(

Th
ro

ug
hp

ut
) (o

pe
rat

ion
s p

er
 se

co
nd

)

O�ered load (concurrent operations)

Vuze (Not active)
0 instructions

10K instructions
100K instructions

1M instructions

(a) Single-Node Throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 100 1000 10000 100000 1e+06

M
em

or
y

co
ns

up
tio

n
in

 M
B

Log(Number of values stored)

Comet - Null values
Vuze - Null values

(b) Memory Footprint.

Figure 2: Microbenchmarks.

requests that return successfully using a closed feedback
loop. All operations are issued locally on the node, so
that network latency does not affect throughput.

Figure 2(a) compares the throughput of objects with
different ASO execution costs, expressed as the number
of Lua bytecode instructions executed per handler. Both
Comet and Vuze experience peak throughput when the
number of concurrent operations is equal to the num-
ber of cores (eight). ASOs with zero instructions per
handler are functionally equivalent to Vuze values as
they simply return themselves. The peak throughput of
Comet ASOs is about 60% smaller than the peak through-
put of Vuze (1.4M operations per second as opposed to
3.5M operations per second). This shows the cost of
the Comet/Lua execution environment. Previous mea-
surements [49] show that the typical DHT load on Vuze
clients in the wild is at most a few hundred operations
per second, which makes the additional Comet overhead
relatively insignificant in this context. As we increase
the computational complexity of the average ASO (1K to
1M instructions per handler), the throughput decreases,
but still remains well above the maximum current Vuze
workload.

Operation Latency. At the 90th percentile, with maxi-
mum throughput (8 concurrent operations in our exper-
iments), a request involving 100 Lua instructions has a
latency of about 300 microseconds. For handlers with
1M instructions (two orders of magnitude more than our
most compute-intensive handlers), it is 13 milliseconds.
The latency for a Vuze DHT lookup is on the order of
seconds, therefore the latency imposed by even extremely
computationally intensive ASOs is not significant.

Memory Footprint. In this experiment, we store in-
creasing numbers of values in the nodes. For the Vuze
nodes, the string “hello world” is stored at different keys,
while for Comet nodes we store an equivalent Lua ASO
which returns the same string upon a get request. Fig-
ure 2(b) compares the memory footprint of the Vuze and

Comet nodes as we increase the number of stored ob-
jects. Again using the median number of values stored
per Vuze node (around 400), the difference in memory
consumption at this level is negligible (about 36MB for
both Comet and Vuze). Long lived DHT nodes can store
10,000s of values, and the highest observed is around
30,000 values [49]. In these rare cases, our overhead rela-
tive to Vuze is about 27%, but even then the total memory
footprint is still reasonable.

We next consider a workload where Comet object
sizes are exponentially distributed with an average size
of 10KB. In this case, a node with 500MB can store on
average 50,000 values. If we assume an order of mag-
nitude more values per node than in Vuze (4,000 instead
of 400), and an order of magnitude larger values (10KB
instead of 1KB limit imposed by Vuze), the median node
would consume about 80MB (40MB of startup memory
costs and another 40MB for the ASOs) in memory.4

6.3 Application Experience
We now report on our experiences in prototyping and de-
ploying some of the applications described in Section 5.

6.3.1 Measuring Node Lifetimes

We revisit the experiment performed by Falkner et al. [20]
to measure the lifetimes of nodes in the Vuze DHT. This
experiment was done by performing random get opera-
tions from several Vuze clients in order to gather approxi-
mately 300K IPs participating in the DHT. The collection
of nodes was then pinged every 2.5 minutes to check for
liveness. The authors observed that nearly half the nodes
were immediately unavailable after first being detected.
One weakness of the methodology employed is that the
clients could not differentiate nodes that are unreachable
because of NATs from those that have left the DHT. Us-
ing measurement nodes that have active communication
channels with NATed DHT nodes would help minimize

4Vuze and Comet consume about 40MB without storing any values.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
u
m

u
la

tiv
e
 f
ra

ct
io

n

Duration in DHT since first observation

External Measurement

Internal Measurement

Figure 3: Node Lifetimes in Vuze.

measurement bias, but would require the measurement to
be performed by nodes that are within the DHT.

Comet enables researchers to deploy experiments us-
ing measurement ASOs executed on nodes that are part
of the DHT. To demonstrate the feasibility of this ap-
proach, we deployed Comet on 190 geographically dis-
persed PlanetLab nodes and integrated them into the pro-
duction Vuze DHT. The measurement ASOs are stored
on the Comet nodes, and they gather information about
unmodified Vuze nodes that are adjacent (in the DHT)
to the Comet nodes. We stored a lifetime measurement
ASO (a variant of the code shown in Listing 6) at each of
the Comet nodes, allowed the nodes to perform measure-
ments for several days, and then collected and analyzed
the data from these nodes.5 Figure 3 plots the measure-
ment data obtained from our experiments and compared
to the lifetime data obtained by measurement nodes that
are not integrated into the DHT (as in [20]). We observe
that the measurements performed from within the DHT
provide higher estimates for node lifetimes. The reason
is that DHT-internal measurement nodes are able to tra-
verse NATs in communicating with their neighbors. The
difference is significant; we measured the median node
lifetime as 3.1 hours, as opposed to an estimate of 0.5
hours obtained through conventional external measure-
ments. Measurement ASOs are thus valuable tools in
characterizing DHTs and provide more accurate data for
tuning parameters such as replication factor, routing par-
allelism, etc.

6.3.2 Smart Rendezvous

In Section 5, we proposed a way to employ intelligent
peer tracking for distributed P2P trackers using ASOs.
We evaluate the usefulness of this application by deploy-
ing a distributed tracker built with Comet ASOs. As with
traditional distributed trackers, clients participating in a
P2P swarm (such as a BitTorrent download) register their

5As Comet is not currently deployed by Vuze, the measurement
ASOs are stored only on the nodes that we control. A more extensive
deployment would allow us to obtain more samples quickly.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250

C
um

ul
at

iv
e

fra
ct

io
n

Latency between paired nodes (ms)

Vivaldi
Random

Figure 4: Proximity of BitTorrent peers.

participation by storing their IP addresses under the ap-
propriate DHT key. In addition, clients also store their
network coordinates (computed using Vivaldi [13]) along
with their IP information. When clients contact the dis-
tributed tracker to obtain peer lists, the tracker ASO esti-
mates the network latency between pairs of nodes using
the supplied network coordinates and returns peers that
are likely to be close to the requesting node. To evaluate
this approach in practice, we deployed a tracker ASO on
a Comet node in PlanetLab, while 190 PlanetLab nodes
acted as peers in the swarm reporting their Vivaldi coordi-
nates to the tracker and requesting good peers with which
to communicate. Figure 4 depicts the effectiveness of this
strategy compared to the default strategy of returning a
random subset of peers to the requesting node. The graph
shows a CDF of the measured latencies between peers
under the two different matching schemes. The median
value for the ASO-implemented Vivaldi intelligent peer
matching is 47ms compared to a median of 72ms for the
default scheme, a 35% latency improvement.

6.3.3 Vanish

Comet grew in part out of our experience specializing the
Vuze DHT for Vanish [25], a self-destructing data sys-
tem. Vanish used Vuze for key storage, however, Wol-
chock et al. [61] showed that the Vuze system was ex-
tremely open to a Sybil data harvesting attack that is able
to scan the DHT for values. The attack worked in part
because of Vuze’s overly zealous replication policy – a
high replication factor, coupled with a policy to repli-
cate to new nodes immediately. In response, we set out
to deploy new replication mechanisms and other anti-
Sybil defenses in Vuze [24]. While these mechanisms
were straightforward, deploying them required the co-
operation of Vuze’s designer and was an arduous and im-
perfect process. While many iterations would have been
necessary to fully test and optimize policies, we often
had only one shot to catch the two-month release cycle.6

6It takes a week or more from release until 80% of the nodes in
Vuze adopt changes. This is in addition to a typical release cycle Vuze

For the same reason we were unable to test individual
changes in isolation as they had to be shipped in bundles
in order to make progress in reasonable time.

We have used Comet to re-implement several of the
changes that we deployed in Vuze. Those changes in-
clude the customizable replication scheme described in
Section 5 (particularly a scheme that replicates only when
the number of replicas falls below a threshold) and vari-
able object lifetimes. As we showed in Section 5, both
of these changes are trivial to program as Comet ASOs.
Perhaps even more important, testing and re-deployment
in Comet is significantly easier, as it does not require a
redistribution of the entire DHT code base. Instead, new
mechanisms can be deployed by overwriting the handler
code for existing objects and using the updated bytecode
for subsequently created objects, without requiring the in-
volvement of the DHT administrators.7 Had Comet ex-
isted at the time we deployed Vanish, it would have been
possible to customize the DHT for the security require-
ments of the application from the start, and to optimize
those policies to Vanish’s requirements.

7 Security Analysis
The classic security goals for DHTs include resilience to
attacks that: violate the system’s ability to robustly store
data [48], disrupt routing [48, 11], identify the partici-
pating nodes in the DHT [53, 51], and harvest copies of
data stored within the DHT [61]. There are numerous
well-known techniques aimed at violating these goals, in-
cluding Sybil attacks [19], Eclipse attacks [47], and many
others [55]. And there are also many known mechanisms
for protecting against such attacks, including the use of
strong identities minted by a logically centralized author-
ity, computational puzzles and bandwidth contributions
proofs [9, 16, 18, 63, 10], and architectures built upon so-
cial network structures [31, 63]. A production DHT with
ASO support must consider such classic security goals,
and can leverage known countermeasures for the corre-
sponding threats. (Although, as exemplified by Vuze and
other popular DHTs, a DHT for ASOs may decide that
the risks associated with these threats are minimal, and
hence not deploy the known defenses.)

The security concerns of DHTs with signed ASOs
are roughly those of conventional DHTs without ASOs
(since the signed ASOs can be viewed as “vetted” parts
of the DHT system itself); we therefore do not consider
signed ASOs further. Empowering DHTs with unsigned
ASOs does, however, create a new potential attack vec-
tor not present in conventional DHTs – namely, attacks

employs, which spans about a month.
7In general, updating the handler code for existing objects would

require the application to keep track of its ASOs. In the case of appli-
cations such as Vanish, where objects are transient and have timeouts
in the order of a few hours, we can also let existing objects just expire
without explicitly updating them.

via malicious ASOs. We seek to ensure that a malicious
ASO cannot: infer private information about or damage
its Comet hosting node; infer information about or af-
fect the properties of other ASOs stored within Comet;
or infer private information about or affect the proper-
ties of other Comet nodes and arbitrary computers on
the Internet. To place these goals in context, we stress
that while an attacker could always use her own custom
software to communicate with Comet in arbitrary ways,
including putting to or getting from arbitrary ASO keys
and communicating with the broader Internet in arbitrary
ways, our goals – if attained – imply that ASOs cannot
be used to amplify the attacker’s resources or capabili-
ties. For example, an attacker should not be able to create
an ASO “worm” that spreads virally, mounting a DDoS
attack against a victim ASO or device on the Internet.

We find that it is possible to meet these goals using
three architectural features: (1) restricting system access,
(2) restricting resource consumption, and (3) restricting
within-Comet communication. We consider each in turn.

Restricting system access. We designed the ASO API
to be highly restrictive. The API explicitly restricts an
ASO’s ability to infer private information about its host
or to affect the host’s state. The API similarly restricts an
ASO’s ability to interact with arbitrary devices on the In-
ternet. For example, the API limits an ASO’s IO capabil-
ities to explicitly defined DHT operations; arbitrary disk,
network, and other IO operations are prohibited. The API
also prevents an ASO from introspecting its host; e.g., al-
though we allow the ASO to learn its host’s external IP,
we explicitly prevent the ASO from learning its host’s in-
ternal IP. Without these restrictions, an ASO could poten-
tially read private files on the host’s disk, write sensitive
files, attempt to DoS an arbitrary remote node, map the
network topology of internal IP networks, and so on. The
Lua sandbox provides a simple mechanism for achieving
this isolation. Namely, we removed the IO system call
interface and exposed one containing only the restricted
DHT operations instead.

Despite these restrictions, it may be possible for an
ASO to infer (minimal) information about the hosting
node via side-channels. For example, the time it takes
an ASO to perform a computation could leak informa-
tion to the ASO about the speed of the hosting processor.
At the extreme, it may be feasible to infer modest infor-
mation about other applications running on the hosting
node [42]. We believe that such attacks are low risk in
the Comet environment and do not consider them here.

Restricting resource consumption. Comet also signif-
icantly limits an ASO’s ability to consume resources on
its hosting node. Our prototype limits both the memory
and CPU consumption of ASOs.

Memory. The Comet active runtime keeps a running

sum of the memory footprint of an ASO. Hard limits can
be set on the total memory consumption of an object;
ASOs which exceed this limit are evicted. Our current
prototype limits ASOs to 100kB.

CPU. The Comet runtime similarly keeps a running
count of bytecode operations performed. We envision
multiple policies for constraining CPU use. The naive
policy limits each ASO to at most a limited number of
instructions per handler invocation. Since not all Lua op-
erations are equally costly, a more sophisticated policy
would assign different weights to different Lua opera-
tions (e.g., more cost for a table lookup than an addition).
The limit could also be enforced over a fixed duration of
time (such as 30 minutes) rather than upon each handler
invocation (which might occur much more frequently).
Our current prototype implements the naive restriction
and allows 100K instructions per handler invocation.

Comet provides support for exception handling in or-
der to help debug faulty ASOs that exceed the system-
imposed resource limits. Handlers can catch resource ex-
haustion exceptions and store the relevant handler state
as part of the ASO. The developer can then retrieve this
stored state and inspect it to determine why the handler
exceeded the resource limits. Further, operations that re-
turn values, e.g., gets, provide the stack trace as a return
value in the case of an exception. We found these fea-
tures to be useful in debugging many of the applications
that we prototyped using Comet.

Restricting within-Comet communications. There
are two classes of communications that we must consider:
communications between one ASO and another, and call-
back communications to a caller.

Communications between ASOs. Allowing arbitrary
between-ASO communications in Comet could lead to
abuse. For example, suppose a malicious ASO stored
under one key copies itself to a large number of other
keys slowly over time, and then simultaneously all ASOs
initiate connections to a victim ASO stored under some
target key. Such an attack allows an attacker to am-
plify her resources: the attacker invests minimal effort
to seed the original malicious ASO, yet the ultimate at-
tack DDoSes nodes hosting the target key. Comet takes
a Draconian approach toward protecting against such at-
tacks: the ASO API only allows ASOs to communicate
if they are stored under the same key, whether co-located
on the same Comet node or on another node within the
DHT. Our system further rate-limits communications per-
formed by a particular ASO. Each Comet node allots a
limited number of network communications per time pe-
riod for every ASO it hosts. Though we have not ex-
perimentally ascertained appropriate rate-limiting param-
eters, the applications we present could all work with ap-
proximately the same number of network operations as is
required for a value in the current Vuze DHT - about 20

every timer interval.

8 Conclusions
This paper described Comet, an active distributed key-
value store. Comet enables clients to customize a dis-
tributed storage system in application-specific ways us-
ing Comet’s active storage objects. By supporting ASOs,
Comet allows multiple applications with diverse require-
ments to share a common storage system. We imple-
mented Comet on the Vuze DHT using a severely re-
stricted Lua language sandbox for handler programming.
Our measurements and experience demonstrate that a
broad range of behaviors and customizations are possi-
ble in a safe, but active, storage environment.

9 Acknowledgements
This work was supported in part by the National Science
Foundation under grants NSF-0627367, NSF-0614975,
NSF-0619836, NSF-0722004, and NSF-0963754, by the
Google Fellowship in Cloud Computing, and by the
Wissner-Slivka Chair. We thank Paul Gardner for his
support on Vuze, and David Wetherall and our shepherd
Wilson Hsieh for their helpful feedback on the paper.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Programming

model, algorithms and evalaution. In Proc. of the 8th Conference
on Architectural Support for Programming Languages and Oper-
ating Systems, October 1998.

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
Farsite: Federated, available, and reliable storage for an incom-
pletely trusted environment. In Proc. of OSDI, 2002.

[3] Amazon S3. http://aws.amazon.com/s3/.

[4] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcom-
ing the Internet impasse through virtualization. IEEE Computer,
38(4), April 2005.

[5] Apache Cassandra. http://cassandra.apache.org/.

[6] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fi-
uczynski, C. Chambers, and S. Eggers. Extensible, safety and
performance in the SPIN operating system. In Proc. of the 15th
ACM Symp. on Operating systems Principles, December 1995.

[7] B. N. Bershad and C. B. Pinkerton. Watchdogs – extending the
UNIX file system. Computer Systems, 1(2), 1988.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Support-
ing scalable multi-attribute range queries. In Proc. of SIGCOMM,
2004.

[9] N. Borisov. Computational puzzles as Sybil defenses. In Proc. of
the Intl. Conference on Peer-to-Peer Computing, 2006.

[10] N. Borisov. Computational puzzles as Sybil defenses. In Proc. of
the Intl. Conference on Peer-to-Peer Computing, 2006.

[11] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure routing for structured peer-to-peer overlay networks.
SIGOPS Oper. Syst. Rev., 2002.

[12] D. R. Choffnes and F. E. Bustamante. Taming the Torrent: A
practical approach to reducing cross-ISP traffic in P2P systems.
In Proc. of SIGCOMM, 2008.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a de-
centralized network coordinate system. In Proc. of SIGCOMM,
2004.

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. of SOSP, 2001.

[15] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Mor-
ris. Designing a dht for low latency and high throughput. In NSDI,
2004.

[16] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. J. An-
derson. Sybil-resistant DHT routing. In ESORICS, 2005.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store. In Proc. of
SOSP, 2007.

[18] J. Dinger and H. Hartenstein. Defending the Sybil Attack in
P2P Networks: Taxonomy, Challenges, and a Proposal for Self-
Registration. In Intl. Conf. on Availability, Reliability and Secu-
rity, 2006.

[19] J. R. Douceur. The Sybil attack. In Proc. of IPTPS, 2002.
[20] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Ander-

son. Profiling a million user DHT. In Proc. of IMC, 2007.
[21] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing

content publication with coral. In NSDI, pages 239–252, 2004.
[22] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica.

Non-transitive connectivity and DHTs. In WORLDS’05, pages
10–10, Berkeley, CA, USA, 2005. USENIX Association.

[23] P. Gardner. personal communication, 2009.
[24] R. Geambasu, T. Kohno, A. Krishnamurthy, A. Levy, H. M. Levy,

P. Gardner, and V. Mascaritolo. Cascade: A compositional ap-
proach to self-destructing data. In Preparation, 2010.

[25] R. Geambasu, T. Kohno, A. Levy, and H. Levy. Vanish: Increasing
data privacy with self-destructing data. In Proc. of the USENIX
Security Symposium, August 2009.

[26] K. Hildrum and J. Kubiatowicz. Asymptotically Efficient Ap-
proaches to Fault-Tolerance in Peer-to-peer Networks. In Proc.
of International Symposium on Distributed Computing, 2004.

[27] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-
preserving P2P data sharing with OneSwarm. In Proc. of SIG-
COMM, 2010.

[28] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno,
R. Hunt, D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti, , and
K. Mackenzie. Application performance and flexibility in exoker-
nel systems. In Proc. of SOSP, 1997.

[29] K. Keetong, D. Patterson, and J. Hellerstein. A case for intelligent
disks (IDISKs). ACM SIGMOD Record, 27(3), August 1998.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. In Proc. of the 17th ACM Symp. on
Operating Systems Principles, December 1999.

[31] C. Lesniewski-Lass and M. F. Kaashoek. Whanaungatanga:
Sybil-proof distributed hash table. In Proc. of NSDI, 2010.

[32] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access
in Distributed Hash Tables. In Proc. of IPTPS, 2001.

[33] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: An Information
Plane for Distributed Services. In OSDI, 2006.

[34] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A fault-
tolerant algorithm for atomic mutable DHT data. Technical Re-
port MIT-LCS-TR-993, MIT, June 2005.

[35] Mysql Database Triggers. http://dev.mysql.com/doc/
refman/5.0/en/triggers.html.

[36] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir. Experiences
implementing PlanetLab. In Proc. of OSDI, 2006.

[37] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. Do in-
centives build robustness in BitTorrent? In NSDI, 2007.

[38] Project Voldemort. http://project-voldemort.com/.
[39] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup per-

formance for power-law query distributions in peer-to-peer over-
lays. In Proc. of NSDI, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[40] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT ser-
vice and its uses. In Proc. of SIGCOMM, 2005.

[41] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large-
scale data mining and multimedia. In Proc. of 24th International
Conference on Very Large Databases, August 1998.

[42] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you,
get off of my cloud: exploring information leakage in third-party
compute clouds. In Proc. of CCS, 2009.

[43] W. C. F. Roberto Ierusalimschy, Luiz Henrique de Figueiredo. Lua
- an extensible extension language. Software: Practice and Expe-
rience, 26(6):635–652, 1999.

[44] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. of SOSP, 2001.

[45] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification infrastruc-
ture. In Proc. of the Third International COST264 Workshop on
Networked Group Communication, 2001.

[46] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing With Dis-
aster: Surviving Misbehaved Kernel Extensions. In OSDI, 1996.

[47] A. Singh, T.-W. Ngan, P. Druschel, , and D. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In INFOCOM,
2006.

[48] E. Sit and R. Morris. Security considerations for peer-to-peer dis-
tributed hash tables. In Proc. of IPTPS, 2002.

[49] M. Steiner and E. W. Biersack. Crawling AZUREUS. Technical
report, Institut Eurecom, Networking and Security Department,
2008.

[50] M. Steiner, E. W. Biersack, and T. Ennajjary. Actively monitoring
peers in KAD. In Proc. of IPTPS, 2007.

[51] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of
KAD. In Proc. of IMC, 2007.

[52] I. Stoica, D. Adkins, S. Zhuang, S. S. nker, and S. Surana. Internet
indirection infrastructure. In Proc. of SIGCOMM, 2002.

[53] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer
Networks. In Proc. of IMC, 2006.

[54] D. L. Tennenhouse and D. J. Wetherall. Towards an active net-
work architecture. ACM SIGCOMM Computer Communications
Review, April 1996.

[55] G. Urdaneta, G. Pierre, and M. V. Steen. A Survey of DHT Secu-
rity Techniques (to appear). ACM Computing Survey, 2010.

[56] uTorrent. http://www.utorrent.com.

[57] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrated communication and
computation. In Proc. of ISCA, 1992.

[58] Vuze, Inc. http://www.vuze.com.

[59] P. Wang, I. Osipkov, N. Hopper, and Y. Kim. Myrmic: Secure and
Robust DHT Routing. Technical report, University of Minnesota,
2007.

[60] D. Wetherall. Active network vision and reality: Lessons from a
capsule-based system. In Proc. of the 17th ACM Symp. on Oper-
ating Systems Principles, December 1999.

[61] S. Wolchok, O. S. Hofmann, E. W. Felten, J. A. Halderman, C. J.
Rossbach, B. Waters, and E. Witchel. Defeating Vanish with low-
cost Sybil attacks against large DHTs. In Proc. of NDSS, 2010.

[62] H. Xie, R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz.
P4P: Provider portal for P2P applications. In Proc. of SIGCOMM,
2008.

[63] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. Sybil-
Guard: defending against sybil attacks via social networks. Proc.
of SIGCOMM, 2006.

[64] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Ku-
biatowicz. Bayeux: an architecture for scalable and fault-tolerant
wide-area data dissemination. In Proc. of NOSSDAV, 2001.

