Rook: Using Video Games as a Low-Bandwidth Censorship Resistant
Communication Platform

Paul Vines
University of Washington

Tadayoshi Kohno
University of Washington

Tech Report: UW-CSE-2015-03-03
March 20, 2015

Abstract

Censorship and surveillence is increasing in scale, sophis-
tication, and prevalence across the globe. While most
censorship circumvention systems are still focused on es-
caping a given censored region to access Internet content
outside of its control, we address a different but equally
pressing problem: secure and secret chat within a cen-
sored region.

We present Rook as a censorship and surveillence re-
sistant platform for communicaton using online games as
its cover application. The use of online games represents
a novel form of cover application that provides several
features that make them uniquely well-suited for this pur-
pose. Rook transmits data secretly by embedding it in the
network traffic of an online game. To defeat current at-
tacks based on deep-packet inspection and traffic shape
analysis, Rook does not generate any additional packets,
does not change the length of existing packets, and en-
sures packets that are altered are still valid game packets.

For evaluation, we implement Rook using the online
first-person shooter Team Fortress 2. Rook is evaluated
against both active and passive attacks demonstrated in
recent years including anti-mimicry probes, deep-packet
inspection, traffic shape analysis, statistical analyses of
packet payloads and game-specific analyses.

1 Introduction

There are increasing concerns about the privacy of on-
line communications throughout the world: there are sev-
eral countries which have historically acted to both cen-

sor and surveil private communications within their bor-
ders [4, 29]. However, both surveillance and censorship
of the Internet has continued to increase in scale, sophisti-
cation, and prevalence [9, 15, 33]. There have been many
systems developed for attempting to hide communications
on the Internet from censors we will simply refer to these
as circumvention systems. Most of these are designed
with the intent of routing them outside of a censored re-
gion, These systems have many different approaches and
goals with respect to circumventing censorship, evading
surveillance, and what kinds of attacks they can with-
stand. With the development of circumvention systems
there has been an accompanying development in attack
techniques for detecting or blocking them. This has led to
an arms race situation in which circumvention systems are
invented and improved followed closely by attacks against
them similarly being invented and improved.

The focus of most work in reaction to these develop-
ments in censorship remains on enabling users to access
censored websites by routing their traffic outside of their
state’s region. We focus on a related but different prob-
lem: enabling uncensored and unsurveilled communica-
tion between parties within a region of censorship. Re-
cent studies have shown that chat clients with peer-to-peer
capabilities are being censored [5] and there is no funda-
mental reason why a censor cannot block chat programs
that use strong security or are unwilling to cooperate in
censorship.

In this paper we present Rook as a low bandwidth low
latency (approx. 30 bits/second) censorship resistant com-
munication platform. While Rook can be used to secretly



communicate any kind of data, the structure of its net-
work and limitations of its bandwidth make it best suited
for chat applications. We intend Rook to be used to fa-
cilitate secret IRC-like services among users. These ser-
vices can run the Off-The-Record (OTR) protocol [2] be-
tween clients to ensure end-to-end security even from the
Rook server. Rook was partially inspired by recent works
on pushing circumvention systems further into the appli-
cation layer [6, 13], but also represents a new direction
for circumvention systems in several ways: first, it uti-
lizes the normal network traffic of online games to hide
its data; to our knowledge this is first system to leverage
this type of application. Games have a number of fea-
tures that make them ideal host applications for hiding
data which are further explained below. Second, Rook al-
ters the host game traffic in full compliance with the appli-
cation’s protocol; this means an adversary must first com-
mit the resources to develop a program to correctly parse
the application protocol, and then must also commit com-
putational resources to each suspected Rook connection
since the adversary cannot use a stateless single-packet
inspection model to detect a Rook connection. As is the
case with all of these circumvention systems, Rook is not
necessarily undetectable, and we outline possible new re-
search directions for attacks below (see Section 5 and 6).
However, Rook does represent a significant increase in the
cost of trying to detect and block its use.

Many different types of applications have been used
as cover or host applications for previous circumvention
systems. Skype in particular has proven popular because
its calls operate on a peer-to-peer connection and are as-
sumed to be a reasonably legitimate activity for a user to
be engaged in [13, 21]. Multiple TCP/IP-header based
covert channels have also been developed. Online games
provide a similar opportunity but with greater deniability
on the part of users. Traditionally, many online games
have allowed individuals to host their own private servers
to reduce the resource burden on the companies making
the games. This is particularly the case for the genre
of game Rook is primarily focused on: the First Person
Shooter (FPS). The existence of privately-hosted servers
creates opportunities for communities to arise and causes
many regular players of these games to play almost ex-
clusively on one or a handful of servers. This provides
a completely legitimate cover for a Rook user to repeat-
edly connect to the same game server over and over to

communicate with the other Rook users also connecting
to these game servers. Furthermore, legitimate players
will often play for hours at a time, day after day. This
could be significantly more suspicious in the case of an-
other application, such as Skype, repeatedly being used to
contact the same IP for hours at a time every day. Finally,
like VoIP services, games are a widespread and popular
form of network use [26]; we believe a censor would face
similar dissent to a decision to block all Internet-gaming
as they would to blocking all VoIP. The general design
of Rook is not specific to a game, and so if a censor at-
tempted to block Rook by blocking a single game, it could
be adapted to another.

Another advantage of games is that they do not im-
ply actual communication: a Skype connection inherently
implies the two parties are sharing information, while a
game client connecting to a server does not imply any
more communication than the data packets being used to
play the game. Since the connection is not encrypted, an
adversary could easily detect if there is other information
being sent via chat or voice in the game. This creates
a plausible deniability that Rook users are connected in
any way. Where a Skype connection implies two IPs are
exchanging information, a game connection only implies
two IPs happen to be playing the same game, and prob-
ably are not even aware of who the other IP is. Finally,
games provide a way to exchange information while not
interrupting the legitimate activity. In most cases the host
application, if it is even being run, is not performing its
normal operation: e.g., Skype when being used to proxy
web traffic is not also providing a true VoIP conversa-
tion [13, 21]. Instead, the game is actually being played
normally while information is exchanged; the adversary
could plant a user in the same game server and not ob-
serve any significant difference in how a Rook user played
versus a normal legitimate player (see Section 4).

Rook was developed with the FPS as the primary type
of game to be used: this is because of the prevalence of
private servers and the use a robust and low-latency UDP-
based network protocol. The use of UDP allows Rook
to modify game packets without creating any additional
packets and also not effecting legitimate gameplay. FPS
games generally feature between 8 and 128 players on a
server at a time. Each player controls one avatar inside a
3-dimensional game world in which they attempt to ma-
neuver and kill the other avatars. As an example imple-



mentation, Rook uses the FPS Team Fortress 2 [27], based
on the Source Engine from Valve Software. The Rook de-
sign can also be used for other types of games, although it
may require modification particularly in the case of TCP-
based games.

The rest of this paper is laid out as follows: Section 2
describes the design and architecture of the Rook system.
Section 3 describes our example implementation of Rook
for Team Fortress 2. Section 4 contains our evaluation of
Rook against a a variety of current and future proposed
attacks including a game-specific trigram value analysis.
Section S5 describes related works and how Rook’s ap-
proach fits into the context of current circumvention sys-
tem research. Section 6 discusses potential future works
in this space building upon Rook. Section 7 contains a
summary of Rook’s contributions and analysis of our im-
plementation.

2 System Design

Rook is a system to facilitate secretly passing data be-
tween two Rook clients and a Rook server, operating on
machines running game clients and a game server, respec-
tively. In this case, secret is defined as the act of sending
the data being unobservable from to an outside observer,
as well as the contents of the data itself being encrypted.
The data channel between a Rook client and Rook server
is composed of two one-way channels to create an over-
all bidirectional data channel. The creation of the channel
requires a shared secret key between the Rook client and
Rook server.

2.1 Intended Use Model

While Rook is fundamentally capable of secretly trans-
porting any kind of data, specific features and limitations
of both Rook and online games make it particularly suited
towards functioning as a secret chat server. Rook provides
low bandwidth but also real-time communication, this
mostly precludes it from being used for higher-bandwidth
tasks such as normal web-browsing or viewing censored
videos and pictures. Furthermore, because an online game
is being used as the cover application, it would be odd
for a user to connect to a server that is in a distant coun-
try, since such a server would typically have high latency
compared to a more local server.

The intended model for Rook use is a local Rook server
running on a machine that is running one or more pri-

Game Client Game Client

Game Client |

Rook Client

IRC Client

Game Server

Rook Server

Game Client Game Client

IRC Server

Game Client Game Client

Game Client
Rook Client
Rook Client

IRC Client

IRC Client

Figure 1: Example formation of a Rook network: one
Rook server with multiple Rook clients and normal game
clients connected to it.

vate game servers used by both Rook users and normal
game players. This Rook server would then also run a
chat server such as a standard IRC server, that is tun-
neled through Rook. Rook users who possess a shared
key with the Rook server can then group-chat with other
Rook users on the same server as they would on a normal
IRC server, but without having to fear censorship. For
private one-on-one chats Rook users could easily use Oft-
The-Record messaging over Rook to ensure privacy even
from the Rook server. We discuss our prototype imple-
mentation which includes these features in Section 4.

2.2 Threat Model

For the rest of the paper we assume the following threat
model for our monitor adversary, similar to the standard
warden and prisoners threat model used in steganogra-
phy [1]. The monitor is attempting to detect and/or block
the exchange of any information besides legitimate game
information. The monitor is considered to have the fol-
lowing capabilities:

o All network traffic between all client and the server
are observed

e The normal application traffic is unencrypted

e The monitor can store all data observed over a gam-
ing session and run statistical analyses on it

e The monitor has no internal access to the devices
running the game clients and server

e Users can conduct a 1-time secure rendezvous to ex-



change a shared secret key

e The monitor can join the server and observe the ac-
tual gameplay ( this is not possible if the Rook server
is password protected, as some private servers are)

e The monitor does not wish to disrupt legitimate
gameplay of innocent users

e The monitor can conduct some active probing of
game client and servers, but cannot disrupt legitimate
traffic for extended periods of time

e The monitor seeks evidence that information, aside
from normal game data, is being exchanged

2.3 Criteria for Success

Rook is a successful censorship resistant platform if the
monitor cannot either:

e Positively identify use of Rook more often than
falsely identifying legitimate game traffic as use of
Rook

e Successfully disrupt Rook communication without
impacting legitimate gameplay.

We assume that even if Rook becomes popular, it will
still represent a minority of game traffic. Therefore, the
first criterion is subject to this difference, so that even a
small false positive rate in a detection scheme can yield
larger absolute numbers of false positives than true posi-
tives. Additionally, the efficiency and practicality of de-
ploying a given detection scheme should be taken into
account. General-purpose Deep-Packet Inspection (DPI)
techniques, for example, are easier for an adversary to
use on a wide-scale than specialized detectors that require
storing and analyzing entire traffic captures.

2.4 System Overview

The essence of Rook’s scheme for secretly sending data is
to identify portions of game packets that can contain many
different values and then infrequently select a packet
and replace some of that mutable data with other legiti-
mate game values representing the secret data it wishes
to communicate. A key insight underlying Rook is that
game packets can be modified without affecting game-
play if done carefully, because the game assumes unre-
liable transport of packets. On the receiving end, the re-
ceiver does the inverse: it also identifies these mutable
portions of the packet and decodes the values inserted by

the sender back into the secret data. This concept is fun-
damentally simple but grows in complexity in the con-
text of defeating the various kinds of attacks that can be
launched against it. The following sections explain in de-
tail the components of the Rook sending and receiving
scheme and why they are designed the way they are. Ap-
pendix A contains diagrams illustrating the process of the
Rook sender and receiver processes.

2.5 Mutable Fields

Rook relies on finding mutable fields within game pack-
ets. In theory, we could replace any arbitrary bits in the
payload of the packet with the secret data, because the
packet will never be sent to the actual game process on
the other end. However, many bit values are immutable
with respect to the protocol of the particular game being
used.

For example, many games have application-level se-
quence numbers in the payload, and overwriting these
with arbitrary data would cause the application to issue
an error and/or crash.

A relatively easy attack against Rook would be to pas-
sively duplicate game packets as they traverse the network
and try to parse them using the game’s protocol; if they
frequently fail to parse then it is unlikely they are merely
being mangled in-transmission and so reasonable to sus-
pect use of Rook. Therefore, the implementation of Rook
must correctly implement at least part of the game net-
work protocol in order to be able to parse packets and
correctly identify which bits are part of mutable fields.
These are the only bits which are modified when Rook
sends data.

In addition to this requirement, the values of some
fields are reflected by subsequent packets sent by the re-
ceiver of the value. For example, the value of the weapon
switch command sent from the client to the server is re-
flected by subsequent server-to-client messages confirm-
ing which weapon is now selected. A passive attacker
could relatively easily observe the original field being
sent, and then observe whether or not its value was re-
flected in subsequent return packets. If the packet contain-
ing the original field was dropped this field value would
not be reflected and the attacker could suspect the use of
Rook. Fortunately there are relatively few fields like this,
and so the packet parser module for Rook must simply be
set to never alter packets containing these fields.



2.6 Symbol Tables

Unfortunately even if the mutable fields of a game packet
can be correctly determined, not all combinations of these
bits are necessarily valid or reasonable to exist in normal
game traffic.

For example, imagine a mutable field sent from the
server to the client representing the velocity vector of an-
other avatar in the game. That value might be encoded
as a 16-bit float. However, it might be that the velocity
of an avatar is never actually greater than 100.0. If Rook
replaced all 16-bits with arbitrary data it could easily be
spotted by an adversary parsing packets and looking for
velocity vectors with values greater than 100.0.

To prevent this type of attack, Rook does not insert the
raw bits of the data it is sending. Instead, Rook keeps a
symbol table for each mutable field. This symbol table is
constructed by observing normal gameplay at the start of
a game connection. For each mutable field encountered
in the observed data a count of what values it had is kept.
This count is then translated into a frequency of a certain
value appearing in the mutable field. The symbol table
for that mutable field is generated by first pruning values
whose frequencies are more than two orders of magnitude
less than median frequency. Less frequent elements of the
pruned list are then removed until the length of the list is
a power of two; that list is the symbol table for that mu-
table field. To our knowledge, this is a unique approach
for disguising data in a circumvention system; we believe
similar approaches could be adopted by other circumven-
tion systems to improve their undetectability.

When Rook attempts to send data by altering a muta-
ble field, rather than writing k-bits of its secret data to the
field, it instead converts n-bits of secret data into a sym-
bol using the symbol table for that mutable field, where
n=1logy(length of symbol table) <= k. By using a sym-
bol table generated from normal game traffic Rook avoids
sending values that are never or very infrequently seen
and so prevents an adversary from filtering traffic based
on these.

When the altered packet is received by the other Rook
user, the process is reversed to translate from symbols in
mutable fields to secret data bits, using the same symbol
table in reverse. Because of this, it is required that both
sides possess a copy of the same symbol table.

In earlier iterations of Rook a static symbol table was

used, created from a long gameplay packet capture. How-
ever, the n-gram analysis described in Section 4 showed
a flaw in this scheme: the values of some mutable fields
are dependent upon client configurations (such as graph-
ics settings) and thus created anomalous values in Rook
datasets when Rook was used under different settings be-
cause the values in the symbol table never appeared nat-
urally. Instead, Rook now generates a symbol table dy-
namically when the client first connects to the server. This
way, all values sent using Rook represent values not just
possible for the game, but already naturally occurring be-
tween client and server in a given session. Althogh not
shown to be necessary by our analyses, we may add dy-
namically updating symbol tables to future versions of
Rook, as discussed in Section 6.

2.7 Dropping Altered Packets

When Rook receives an altered packet it extracts infor-
mation as described above, but it also drops the packet
in order to minimize the effect running Rook has on the
game. Even though all packets altered by Rook are valid
game packets, their effect could still potentially cause
other players in the game to notice something odd occur-
ring.

For example, if there was a message from the client to
the server relaying a command to turn right, this message
could be overwritten by Rook to instead turn left. De-
pending on the game context, a change like this might be
unnoticeable or might seem strange. The network proto-
cols of the types of games Rook is designed to use are
typically robust to packet drops, so simply dropping the
altered packet has less impact on the game experience
for both the Rook user and other players than letting the
packet reach the game client or server.

2.8 Scheduling Altered Packets

Even though these network protocols are designed to tol-
erate poor network conditions, gameplay does degrade if
too many packets are dropped in a row. Therefore, Rook
is designed to let most packets through; by default it se-
lects roughly one-in-ten packets to be altered. Since the
values inserted by Rook are only legitimate game values,
we cannot send a short flag indicating which packet is the
one that has been altered, because that flag might natu-
rally occur without the sender having written it. Any flag
long enough to be satisfyingly unlikely to occur randomly



is too much overhead for the bandwidth of Rook or would
be easily detectable by an attacker. Therefore the Rook
sender and Rook receiver must pre-schedule which pack-
ets will be altered.

Before this schedule is arranged, the sender and re-
ceiver initially synchronize using a flag value. This flag
value is derived from their shared key to prevent an at-
tacker from either easily enumerating all Rook servers by
sending them flags, or passively detecting Rook channels
by looking for the initial flag value being sent. The sender
picks an arbitrary packet with enough mutable fields to
store the flag, default of 40-bits in length. The sender
then synchronizes their sending schedule based on the se-
quence number of the packet they put the initial flag in.
The receiver scans received packets until they see this
flag; when they receive the flag the receiver also syn-
chronizes its receiving schedule based on that packet’s se-
quence number. In this way, both the sender and receiver
have a synchronized schedule for which packets will be
altered by Rook. In our implementation, the server per-
forms this receiver-side scanning for all clients for the first
5 minutes of their connection and then assumes they are
not potential Rook clients until they reconnect again.

2.9 Shared Deterministic Cryptographic Random
Number Generator (DCRNG)

This solution by itself is not necessarily sufficient because
of the regularity of packets being altered. If the interval
between altered packets is a constant value, an attacker
could launch statistical attacks to compare the values of
sets of packets and would likely easily be able to deter-
mine the difference in a sequence of packets that have all
been altered versus a sequence of completely unaltered
packets.

To avoid this, the sender and receiver use a shared
deterministic cryptographic random number generator
(DCRNG) with a seed derived from their shared secret
key. This DCRNG is used to produce a set of sequence
numbers to use as the shared schedule for which packets
to alter.

2.10 Shared Keys

As the previous two sections show, the Rook client and
server need to share a secret key from which they de-
rive the expected initial flags and DCRNG seeds. This
key exchange must be performed out-of-band once before

the first Rook connection is made. After the first con-
nection is established, however, the client and server can
easily negotiate a new shared key. Furthermore, to ensure
forward secrecy, they can share this key via a standard
Diffie-Hellman key exchange. The method used for the
initial out-of-band exchange is out of scope of this paper.
To further help prevent key compromise from affecting
multiple clients, the Rook server is expected to keep a list
of shared keys, and distribute a different key to each Rook
client.

2.11 Message-Present Bits

A disadvantage of the scheduled sending scheme is that
the receiver must assume the scheduled packet has been
altered, and so must assume any values within its mutable
fields represent secret data. To prevent the receiver from
erroneously interpreting these values when the sender ac-
tually simply had nothing to send, the Rook system uses a
message-present bit in each altered packet. To help avoid
detection the mutable field this message-present bit is in-
serted into is randomly determined using the same syn-
chronized DCRNG described above.

When a sender inserts data into a packet, they insert a
1 for the value of the message-present bit, translated into
a value using the symbol table in the same way all other
data is, indicating data is present. If the sender has no data
to insert, they insert a O for the message-present bit, and
no additional data.

When the receiver attempts to extract hidden data from
the packet, they first check the mutable field containing
the message-present bit. If it is a 1 then they receive the
rest normally, if it is a O then the receiver stops there and
does not attempt to retrieve any hidden data.

2.12 Packet Loss Resilience

The intention of Rook is to serve as a reliable commu-
nication channel. However, it is using a UDP network
protocol built to be robust to missing data rather than re-
transmitting lost packets. Therefore, Rook must include
its own layer of reliable delivery to prevent either natu-
rally poor network conditions or an active adversary from
easily disrupting the communications.

Rook uses a simple sequence-number/sequence-
number-ack header prepended to the message data.
Because all the game protocols so-far observed contain
an incrementing sequence-number in the payload of



Qutgoing Packets
| |seq=7 chk=0x33FF|

| [seq=8chk=0x4432]

E .| Sym. Sym. @
ook Message Dat ‘ rab. Al PiTab. B |
2 |

Bl chk=0x4432] oxrr [ oxes [HiE
t |
Checksum Fixer, |

Figure 2: Rook Sending Process: (1) Rook selects a
packet to alter based on sequence #. (2) Rook parses the
selected packet to find mutable fields. (3) Rook overwrites
mutable field values based on the data to be sent and the
symbol table for that field. Then the checksum is recom-
puted and the packet sent.

the packet, the Rook receiver can easily determine if
a game packet containing Rook data was dropped. In
this case, the receiver simply does not increment its
sequence-number-ack value and the original sender will
understand it needs to retransmit. This is fundamentally
the same mechanism used for reliable delivery in TCP,
but Rook takes advantage of the game already providing
sequence numbers to avoid that overhead.

Keeping the DCRNG synchronized through a packet
loss event is an additional complexity. The solution is for
the Rook system to always generate a fixed number of
random numbers per-packet to use for packet processing
(such as determining which mutable field is the message-
present). When the receiver observes a packet drop based
on the missing game packet sequence number, it simply
generates the fixed number of random numbers just as if
it had received the dropped packet. While the packet data
is lost, the DCRNGs of the sender and receiver stay syn-
chronized so the data can be retransmitted. In this way,
Rook can be robust against packet-dropping attacks that
are not large enought to cause the game connection to be

Incoming Packets
| |seq=7 Ichk=0x33F

|

>/ Packet Selector |
[ Next Seq #: 8] |

|

seq=8[chk=0x4432 -

|
L

Figure 3: Rook Receiving Process: (1) Rook selects the
altered packet based on sequence #. (2) Rook parses the
selected packet to find which bits are in mutable fields. (3)
Rook uses the symbol tables corresponding to the fields to
convert their values back into bits of data. The altered
packet is then dropped before reaching the game.

broken (typically 30 seconds or less).

2.13 Client-Server Connection Setup

A Rook connection consists of two active channels con-
necting a Rook client and Rook server to allow data to
covertly flow in either direction. The Rook system does
not assume these channels are established as soon as the
game connection is established, a Rook server also does
not have any ability to recognize a Rook client except by
data sent over the Rook channel. Therefore, a special con-
nection handshake is needed to establish the two Rook
channels to connect the Rook client and Rook server. The
Rook server contains a list of secret keys, S, that are used
as the shared keys to facilitate the covert channel. A given
Rook client only uses one secret key, S; to connect to
a given server. For simplicity, the following description
of the connection handshake is described as if the Rook
server also only had a single key, ;.

Initialization Both the Rook server and client use their
shared secret key S; to seed their deterministic random
number generators (DCRNGys). The DCRNGsg is then
used to generate a pair of flag values, (F¢,Fs), and two
lists of indices, (Ic,..-,Icn;15,0,----,Is ). The client and
server also each generate an AES key from output of the



Client Server
Init DCRBG Init DCRBG
genF_c genF_c
genF_s genF_s
init AES(IV_c) init AES(TV_s)

send F_c scan for flag. . .
scan for flag. . . find flag
find flag find IV_c
init AES(IV_c)
find Iv_s
init AES(IV_s)

recv ACK

enc(ACK-ACK) Connected.

recv ACK-ACK

Connected.

/

Disconnected.

/

Disconnect

Disconnected.

Figure 4: Rook Connection Handshake

DCRNGg and store the I'Vs to transmit later.

The server inspects packets from each game client that
is not already a Rook client. It performs essentially the
same procedure as a receiver, except there are message-
present bits, and it only checks specific mutable fields
based on pseudorandom indices derived from the shared
key (see above).

Client Sends Flag When the Rook client wishes to con-
nect, they begin filtering outgoing packets to find one with
enough free bits to fit the flag value F. They then em-

bed F¢ into the payload using a slightly modified version
of the sending algorithm above: there are no message-
present bits. The client then uses this packet’s application-
level sequence number to compute its next_packet value to
know when to send next, and begins sending its I'V.

The client also begins listening for Fs in incoming
packets as described above.

Server Finds Flag When the flag value F¢ is detected
the Rook server immediately calculates the next_packet
of its receiver based on this packet’s application-level se-
quence number, just as the Rook client did when it em-
bedded the flag. The client sender and server receiver are
now synchronized, because their next_packet values are
the same and their DCRNGg are synchronized to output
the same random values. The Rook server now begins
receiving the client I'V.

Additionally, when the flag is received, the Rook server
begins attempting to embed Fy into outgoing packets in
the same manner the client embedded F¢ into its outgoing
packets (described above), followed by the server’s IV.

Server Receives IV  When the server receives the
client’s IV, the server initializes its decryptor with the
shared key and client’s IV. The server then waits to receive
an encrypted “ACK” message from the client. When this
is received, it considers both Rook channels to be work-
ing and the connection established, and sends its own en-
crypted “ACK-ACK” message to the client

Client Receives Flagand IV When the client detects Fy
it synchronizes its receiver by generating the next_packet
value. As before when the server received F¢, upon re-
ceiving Fg the client receiver and server sender are now
synchronized.

The client now initializes its decryptor with the server’s
IV and shared secret key from subsequent messages.
When it has received the entire IV, it generates the a
decryptor for the server’s messages. Furthermore, the
client also encrypts an “ACK” message and sends it to
the server.

Client Receives ACK After sending its encrypted
“ACK”, the client waits for the server to send back an
encrypted “ACK-ACK”. When this is received the client
considers both Rook channels to be working and the con-
nection to be established.



2.14 Client-Client Connection Setup

At this point, the client is connected to the server, but
is not communicating with other clients. Fundamentally,
these connections simply consist of the Rook server for-
warding data between the two clients. Depending on the
preferences of the server, it could list all clients connected
to it and allow them to establish conversations with each
other (as with IRC), or it could hide this information and
force clients to already know something like a username
or a secret key to try to message a particular client. When
two clients establish connections to one another they have
the option to establish an Off-The-Record conversation to
ensure confidentiality from the Rook server.

3 Implementation

The preceding section described the design of the Rook
system, which could be applied to any games with certain
network characteristics. To study and evaluate the effec-
tiveness of this system we implemented it for the game
Team Fortress 2. Because Team Fortress 2 is built on the
Source Engine, it shares the same network stack as other
popular Source Engine games including Counter Strike:
Global Offensive, and Day of Defeat: Source. There-
fore, our implementation can also function for these, al-
though the symbol tables would need to be regenerated to
assure they still contain reasonable values for the specific
game. All the testing and evaluation was done using Team
Fortress 2.

The main challenge to implementing Rook for a given
game is reconstructing the packet format for the game.
Both sides of the Rook connection must be able to parse
the packet enough to correctly identify bits that can be
altered without causing the packet to provoke errors from
the real game packet parser. In practice this means the
Rook code needs to be able to successfully parse the most
common types of packets and correctly identify any others
to be safely ignored. A description of what we determined
about the Team Fortress 2 packet structure can be found
in Appendix A.

3.1 Basic Packet Structure

We determined the packet structure of a Source Engine
packet sent from both the server and client to be as fol-
lows:

e 32-bit Sequence Number - increments on each

packet sent, used to determine ordering and dupli-
cate packets

e 32-bit Sequence Ack Number - the sequence number
of the last packet received

e 8-bits of Flags

e 16-bits of checksum computed over the rest of the
packet - uses CRC32 truncated to 16-bits

e 8-bits of reliable state informaton about 8 subchan-
nels

e If one of the flags is set, then 8-bits are read contain-
ing information about choked packets

e Series of net-messages, a 6-bit message type fol-
lowed by n-bits of message data

The difference in packets between the client and server
are the types of net-messages they send, described below.

3.2 Client Messages

The client mainly sends two types of messages: tick and
usercmd.

3.2.1 Tick

The tick message is simply 48 bits of data. It appears to be
necessary for keeping the client and server synched cor-
rectly and uses an incrementing value so it is not a good
mutable field to use.

3.2.2 Usercmd

The usercmd message is a message of potentially 14 fields
containing information about user commands. Each field
is preceded by a 1-bit flag indicating whether that field
has been provided or not. These fields represent all the
in-game actions a player’s avatar can take such as switch-
ing weapons, turning, and moving in different directions.
In all, the messsage can be anywhere from 13 to 359
bits. Multiple of these messages can be found in a single
packet, if the user has issued multiple commands since
the last packet was sent. The majority of the fields are
based on the user actions, and so are good mutable fields
for Rook to use. Some of these fields end up being poor
candidates due to low entropy: the weapon switch field
will typically only have three different values possible at
any given time.

3.3 Server Messages

The server also mainly sends two types of messages: tick
(as above) and PacketEntity.



3.3.1 PacketEntity

The PacketEntity message contains updates for the enti-
ties, the other players and moveable-objects, on the server.
Each entity has a number of properties depending on its
class. Each of these properties may or may not be updated
when the entity is updated. Furthermore, each property is
parsed differently depending on its type. Rook primar-
ily modifies character facing and position fields as these
appear to be the most frequently changing.

4 Evaluation
4.1 Bandwidth and Usability

Our implementation of Rook for Team Fortress 2 cur-
rently operates at 34 bits/second from game client to game
server, and 26 bits/second from game server to game
client. This is relatively low but still useful for the real-
time chat messaging that is the target of this system. As
part of our evaluation, we also incorporated an open-
source implementation of the Off-The-Record [2] chat
protocol to communicate with other Rook clients con-
nected to the same server. The main overhead of the
OTR protocol is in the initial key exchange, which can
take several minutes in the current Rook implementation.
However, after the initial connection is made the secure
messages between clients are not significantly slower than
unencryted Rook messages.

In addition to raw bandwidth and chat service, it is
also important for Rook to avoid disrupting gameplay by
clients to prevent an adversary from easily detecting Rook
users from within the game. Rook was used in the pres-
ence of the built-in Valve Anti-Cheat (VAC) system and
did not trigger any kind of action. Additionally, test users
of the system experienced no significant degradations of
gameplay. The presence of the Rook system intercept-
ing packets did not cause any noticeable latency between
the game client and server. The only effect that was ever
noticeable was failure to switch weapons if the weapon-
switch command was sent in a packet altered by Rook.
No other commands were significantly impacted because
they were generally held for longer than the span of time
for a single packet, and thus subsequent packets that were
not modified by Rook conveyed the command.

As mentioned in Section 2, an attack based on detecting
discrepancies between a predicted game-state and actual
game-state because a packet was dropped by the Rook

10

server is theoretically possible. We consider this attack
out-of-scope for Rook because it would require the adver-
sary to essentially run its own instance of the game server
and client for each connection it wishes to test, which is
impractical on a mass scale. Furthermore, we are not sure
that this attack is even possible, in either our chosen im-
plementation or in most other games, due to inaccessible
state on the server.

4.2 Censorship Resistance

To evaluate the censorship resistance of Rook we classify
the types of attacks we consider into five types:

Anti-Mimicry

Single-Packet Deep-Packet-Inspection

Traffic Shape Analysis

Statistical Multipacket Deep-Packet-Inspection
Game-Specific n-gram Analysis

el

5.
4.2.1 Anti-Mimicry

Anti-mimicry attacks are defined as attempts to probe
and identify Rook servers or clients based on comparing
their response to probes to the response of a normal game
server or client. It has been previously shown [7, 12]
that many anti-surveillance and anti-censorship systems
are vulnerable to these types of attacks.

Rook is not vulnerable to this types of attack because it
is not mimicking the game client and server but actually
running them on either end. In fact, a monitor can even
connect to the server and play normally, including observe
the Rook users playing. Because of this, the client and
server will also respond correctly to probes the monitor
could send, such as malformed packets.

In the case of malformed packets, an active attacker
could attempt to send malformed packets in place of the
packets they believe are being altered by the Rook sys-
tem. Since these are dropped on either side before reach-
ing the game client or server, a malformed packet would
not generate the expected error response. However, the at-
tacker only has a 1/n chance, where n is the packet spac-
ing variable (approximately 10 in standard use, although
the actual packet selection is randomized), of replacing an
altered packet. The rest of the time the attacker will acci-
dentally replace a legitimate game packet. The only errors
visible to a network-level observer are those that cause
the client to disconnect from the server, therefore the at-
tacker would need to send a malformed packet that would



cause a client disconnect. So in (n— 1) /n cases, the game
client is disconnected because the adversary modified a
non-Rook packet. If the user of this client is actually us-
ing Rook, we argue both they and the Rook server would
notice the attacker’s actions and so avoid reconnecting for
some time. In all other cases, the attacker will be dis-
connecting legitimate clients which essentially becomes
the same as blocking the playing of this game on the at-
tacker’s network altogether. Thus, we argue that while
technically possible, implementing this attack would not
be compatible with the adversary’s goals.

An active attacker could also attempt to use malformed
packets to deny Rook service without detecting it. They
could replace mutable field values with other valid values
to cause the Rook receiver to receive a value that corre-
sponds to different data in the symbol table, or that is not
present in the symbol table at all. As above, this attack
will only be effective if the attacker is able to alter the
Rook packets, which are randomly distributed. Unlike the
above attack, this would not cause the game to disconnect
due to malformed data, but it would still degrade legiti-
mate player experience since their commands would be
being overwritten with random values.

4.2.2 Single-Packet Deep-Packet-Inspection

Single-packet Deep-Packet-Inspection (DPI) is what
many censorship regimes appear to currently use to at-
tempt to filter traffic types rather than just blocking IPs or
ports [31]. Similarly to anti-mimicry above, single-packet
DPI approaches could potentially block shallower forms
of obfuscation that only change some values in a packet
to look like another type of traffic. If Rook did not cor-
rectly parse the game packets, an attacker could simply
run a copy of the game network stack to determine if all
packets being sent are correctly formatted.

Rook is not vulnerable to these approaches because it is
fully compliant with the game’s packet specification, and
only uses values from packet data-fields that have been
previously observed. Therefore, any single-packet DPI
approach would never detect packets altered by Rook be-
cause they are still correctly formatted and represent rea-
sonable values in the game. If such an approach was
capable of detecting a packet altered by Rook, it would
also necessarily detect legitimate, unaltered, game pack-
ets because a Rook packet essentially is made of correctly
pieced together fragments of legitimate packets.

11

4.3 Statistics-Based Attacks

While more costly to deploy, and hence less likely, we
now consider attempting to detect Rook using multipacket
statistical analyses to compare normal game traffic to
game traffic altered by the use of Rook.

4.3.1 Data Gathering Methodology

To evaluate the traffic shape analysis and the statistical
DPI attacks discussed below, we created datasets as fol-
lows: a TF2 server with 20 bots is run on one machine on
the LAN. This machine also runs the Rook server in the
datasets using Rook. A second machine on the LAN runs
a TF2 client, connects to the server, and runs the Rook
client with a typical or high-bandwidth (HB) configura-
tion in datasets using Rook. The two configurations only
differ in how often packets are selected to be altered. The
typical configuration alters approximately 1-in-10 game
packets. The high-bandwidth configuration alters 1-in-3
game packets. The purpose of these two configurations is
to show that our attacks are reasonable by showing they
can identify HB-Rook, but that normal Rook use is still
undetectable by them. For datasets using Rook the user
connects to the TF2 server, both the Rook server and Rook
clients observe 600 packets (approximately 60 seconds of
gameplay) in each direction and then create their symbol
tables. The Rook client then connects to the Rook server
and each side sends pseudo-random data at the maximum
data-rate to the server. The packets sent and received af-
ter the Rook connection is made are captured using Wire-
shark for analysis as described below. Each capture is
approximately 7,000 client-to-server packets, and 6,000
server-to-client packets (about 5 minutes of gameplay/ac-
tual Rook use).

We gathered 61 datasets: 20 using Rook in high-
bandwidth configuration; 20 in the typical configuration;
20 of normal gameplay; and finally one of normal game-
play that was used as a baseline for investigating the three
datasets listed above.

During the course of experimental setup, we observed
that many unexpected factors can affect the values sent
in the game packet payloads; these appear to include:
operating system, graphics hardware, and game window
resolution. To give our attacks the best reasonable envi-
ronment, we attempted to hold as many variables in the
experiment stable as possible. In addition to using the



same number of bots in all cases, the game player was
also the same and already had experience in the game, the
class played was the same, the game level played on was
the same, and the level was restarted before each sample.
These essentially reflect the best circumstances an adver-
sary could be expected to capture traffic under, as there
should be as little variance in how the user is playing, the
range of values being sent in packets, and the effects of
network infrastructure on traffic shape.

The above efforts to control the environment for more
consistent analysis contributed to the dataset size, since
the generation could not be automated or parallelized.
However, this size appears reasonable for evaluation since
most of the samples show strong similarities with only a
few outliers.

4.3.2 Traffic Shape Analysis

Traffic shape analysis is conducting statistical analyses on
the size and timing features of the stream of packet traffic
between the client and server. Some previous covert chan-
nels have used timing changes to send secret information,
and some have simply injected extra bytes into application
packets, e.g., [8, 18]. These approaches have the poten-
tial to be detected by comparing statistics between known
normal traffic and suspicious traffic, e.g., average size of
packets or median timing between packets [14].

Rook should not be vulnerable to these approaches be-
cause it does not alter the timing or length of game packets
to embed its information, it only alters individual data-
fields within the packet. Furthermore, using Rook does
not cause any additional packets to be sent, or packets to
be changed in size, by the game server or client, so the
traffic shape should be unaffected.

To evaluate a traffic shape analysis attack, we chose to
extract and compute statistics over the overall bandwidth
and the spacings of packets. The first should not be im-
pacted by the use of Rook unless dropping some packets
results in significant resending of data. However, since the
game protocol is built to be robust to poor network condi-
tions, the bandwidth is not increased by the use of Rook
(see Figs 5). The amount of time between packets was
analyzed by comparing the distribution of packet spac-
ings to the distribution extracted from the baseline traffic
capture using the 2-Sample Kolmogorov-Smirnov (KS)
test for statistical significance. This is a straightforward
strong test for whether two distributions differ signifi-

12

Client Server

Client Server
wol” k| oorfe «
4 | 14000 * b
_ o *| 006 o4 »
w30 8 # | 12000 * ° #
g e *| g 005 03 z
P 0 8 10000 g o g
g
= 4 0.04
] o 8
& -s0 i 8000 o ; 0.2 §
£ i 0.03 ¥
£ -100(o & g | 6000 * *
g o n ¥ * 0.02 iy 0.1
§ -150/° g # | 4000 o001l ® ' .
b5 ° 0.0
—200 2000 @® Normal
° 0 l ' ’ Rook
—250 % HB-Rook

Figure 5: The difference in bandwidth consumed from
the baseline traffic and KS-distance between packet tim-
ing distributions. HB-Rook is clearly distinguishable in
its server bandwidth consumption and timing but Rook is
not.

cantly and has been used to evaluate circumvention sys-
tems like CoCo in the past [11, 13, 14, 16]. The results of
this (see Fig. 5) are two-fold. First, the conservative typ-
ical Rook use is difficult to distinguish from normal un-
altered traffic in terms of bandwidth used and packet tim-
ing. The high-bandwidth configuration of Rook, however,
is clearly visible in both cases for its change to the server
traffic shape. This is because this configuration causes so
many server packets to be altered (and thus dropped on the
client-side) that the server appears to resend data in large
bursts that have significantly different traffic characteris-
tics. This result shows a traffic shape analysis is a valid
potential attack, but is not effective when Rook is used as
intended with a relatively low-packet alteration rate.

As described above, these data are all from packet cap-
tures of a client and server connected on a LAN. In actual
use normal gameplay may have larger variation in traffic
shape from varying network conditions between the game
client and server.

4.3.3 Statistical
Inspection

Multipacket Deep-Packet-

Statistical multipacket DPI is essentially the monitor tak-
ing a packet capture of all the traffic between the client
and server and running statistical tests across the payloads



min var med var avg var max var
0 O |o3s 0
¥| 030 ) 030
025, § ° 0.30 0
0.25 * o
o . B 0.%B° %
v 0.20|0 { O %l 020 V& o
g 0.20 * *
2 * 0.20 g 0201 ¢ %
a 013, 0.15 |
g ° ’ 015| 4 ¥ 015)e X
0100 & & 0.10 ° g t
E 0.10 g 0.10
0.05 0.05|® 0.05
: 0.05 @® Normal
1 ‘ Rook
% HB-Rook

Figure 6: Results of the KS test performed on the distri-
butions of variance across byte positions in client packets
of the same size. Average HB-Rook distance is clearly
higher than normal, average Rook distance is slightly
higher.

min ent med ent avg ent max ent
I
g 8§ 0.16 | 0.25 o o : ::::a
0.20| @ 0 o O % 0.20 * HB-Rook
o 0.14 o
: OE ° O 0.20 g []
o k-4
¢ 8
© 8 0.12 ¥ 8
u 0.15 8 0.15
g 0 : ¥ o ;
+ o
z 30 | 010 4 018 ¥ 8
wu
>~ 010 8 0 0.08|¢g ° g E g 0.10 §
0.10
8% sgt :©§ g
¢ % 006|8 *
0.0528* o oosl @ 1 1% 0w
* 0.04 o ’

Figure 7: Results of the KS test performed on the distri-
butions of entropy computed across eack packet for client
packets of the same size. No feature where Rook or HB-
Rook are clearly distinguishable from all normal samples.

and comparing these results to those obtained from doing
the same process to traffic from a known normal game.
There are many possible tests one could do, and no stan-
dard for using this kind of approach to evaluate a chan-
nel of Rook’s kind. As a starting point, we decided to
adapt methods used in the related area of covert-timing-

min var med var avg var max var
@ HNormal | | #
§ Rook | ¥ 0.25 *| 010 %
% HB-Rook 0.20 0.14 ®
o* | oox
0.20 | 012 *
v 0.15 0.15 i
g ; # 010(° ¢
i R #| 015 »
a : * s* 0.08|0
9 0.10 8 # 0.10 o *
" o 0100 ! 0.06
: 0.05 g 3 g 0.04 §
0.05 : :
g e 0.05 !
8 0.02

Figure 8: Results of the KS test performed on the distri-
butions of variance across byte positions in server packets
of the same size. Average HB-Rook distance is signifi-
cantly higher than normal, average Rook distance is also
somewhat higher.

channels to test Rook’s detectability. In covert-timing-
channel the timing of packets is the information channel
and therefore statistical tests are run on the distributions
of packet timings (similarly to the traffic shape analysis
above) [11]. The analogous channel in Rook is the packet
payloads, so we run the same tests on statistics computed
over the payloads in place of the timing distributions.

Because we only use values that have previously been
observed in normal game traffic, we expect the only po-
tentially detectable difference between the traffic of a nor-
mal game and a game using Rook would be in the distri-
butions of these values. Therefore, we chose to measure
the variance and entropy across each data-field in a normal
game and a game using Rook. We measure the variance
by first grouping packets by size, and then computing the
variance across all these packets at the same byte posi-
tion. This process is repeated for each byte position, and
for each size of packet captured. Entropy was measured
by computing the entropy of each packet for all packets
of the same size. The minimum, median, average, and
maximum of each of these two statistics for each packet
size was extracted to form eight distributions to test. The
distributions of all of these results were compared to the
same distributions derived from the baseline game traffic,

13



min ent med ent avg ent max ent
0.4 0.20]0 0.16 *
' 0.20 * * 8 0 *
: g o 8 0.14|e »
° 0 §
0.3 i e 0153 & 0128 §
o o * . ] g *
2 ‘ 0.13 i S 8% 010 #
£02 g 8 ° i o t
a 8 * R 0.08 3 %
2 010 0103
0.1 1 8 0.06
g S B g o=
o 0.04 |0
0ol8 0.05 0.05|° e
o 0.02| § aoni®
: HB-Rook

Figure 9: Results of the KS test performed on the distri-
butions of entropy computed across each packet for server
packets of the same size. HB-Rook is clearly distinguish-
able in min ent and med ent, Rook is not distinguishable
from normal samples.

and compared using the 2-Sample KS test.

The resulting graphs can be seen in Figs. 6, 8, 7 and 9.
These are each the stated statistic gathered from the sam-
ple traffic compared to the same statistic gathered from a
baseline normal traffic sample using the 2-sample KS test.
As can be seen, a few of these statistics (client variance,
server entropy) show significant success against the high-
bandwidth version of Rook by how easy it is to separate
those data from the rest, showing that they are reasonable
attacks to mount against a system like this. However, as
with the traffic shape analysis attacks, the normal band-
width Rook samples are not distinguishable from normal
traffic.

4.3.4 Game-Specific n-gram Analysis

The final analysis we conducted was a game-specific n-
gram analysis: this is an analysis of the values observed
in the mutable fields of our implementation of Rook for
Team Fortress 2. Using the same packet parsing mod-
ule, we constructed lists of unigrams, bigrams, and tri-
grams for each mutable field for both the client and server.
This analysis is similar to the analysis of variable-bit-rate
encoding in VoIP used to distinguish languages spoken
without decrypting the datastream [32]. It is important

14

10000 Client 140 Server
% 0 @ Normal
2000 120 o 0 . Rook
8 ° % HB-Rook
= g =
8000 g
) 100| @ *
S 7000 § g 3
L]
o *| go|8
6000 | o °
o
o
5000 o 60 z
*
4000 40

Figure 10: Sample of counts of distinct unigrams for one
client field and one server field.

to note that for any of the following attacks, the censor
must have a game-specific implementation of data gather-
ing and analysis tools, not general-purpose statistics like
those used above. This would require an adversary to
build a parsing engine and potentially manually generate
a list of the useful features for detecting a specific game.
Further, for the actual use the adversary must do a full
capture of the traffic and, if blocking is desired, parse and
analyze it in relative real-time.

In the following section we show and discuss the results
of analyzing solely the unigram and trigram data. We also
analyzed the bigram data, but it showed essentially the
same results as the trigram data, and so we exclude it here
for the sake of brevity.

Count of Distinct Trigrams The first analysis we per-
formed was a comparison of the number of distinct tri-
grams in each sample. An n-gram is distinct if Rook only
uses values for mutable fields that have been observed in
normal game data, so the number of distinct unigrams is
never increased by running Rook. The count of unigrams
in both normal and Rook samples can vary, which natu-
rally can lead to more significant variation in bigram and
trigram counts (see Fig. 10). To help correct for this, we
computed an approximation of the function of count of
unigrams to count of bigrams and trigrams based on the
normal data samples and then used this function to base-



20000 9000 500
1 8
gso0| X ¥
- 80003 0 '!‘
£ 15000 ;
S 7500 S
° * -500
2 7000
210000 %
2 6500
v 0 o * —-1000
= o
3 6000
2 5000 ia 5500 |0 _1s00| ©
b -
! 5000 |0
0 4500 -2000

5000 —2 5000 —C 300
1 * 200 8 @#
4000 4000
i *
100
3000 3000 §
0
2000 2000
¢ | -100
1000 1000
) -200
sol
0 oje QW -300
@® nNormal |
~1000 ~1000 ¢ Rook
W HB-Rook

Figure 11: Adjusted counts of distinct trigrams from client traffic. A few outliers for both HB-Rook and Rook.

line each of the sample counts before analyzing. The re-
sults in Figs. 11 12 show that there are a few outliers,
but most of the normal samples and typical Rook sam-
ples are very similar. The high-bandwidth Rook samples,
however, are clearly distinguishable in the server trigram
counts. We believe this is because the server will be re-
placing so many mutable fields that would normally con-
tain new values with previously seen values stored in its
symbol table. This is significant enough to reduce the
number of distinct trigrams by a very noticeable amont.
This shows that high-bandwidth Rook use would easily
be detected. A detector could potentially be developed to
detect the normal Rook traffic, but it would either have a
very high false-negative or false-positive rate. If this is
still considered practical, we provide mitigating solutions
in Section 6.

Frequency Distribution An additional analysis we per-
formed was a comparison of the frequency distribution
of trigrams. If Rook is causing unlikely values to oc-
cur more frequently, then this should influence the fre-
quency with which trigrams including them appear. Per-
forming a 2-sample KS-test on the frequency distributions
of the samples shows a few interesting results (see Figs.
13, 14). For most fields all three sample sets are similar
and intermixed, showing no clear way to distinguish even
the high-bandwidth configuration of Rook. Interestingly

15

in the angle2-pane of Fig. 13 the high-bandwidth Rook
is almost completely distinguishable. However, the KS-
Score indicates those samples are actually more similar
to the baseline-traffic than either the typical configuration
of Rook or the normal gameplay. A similar situation can
be seen in the D and E-panes of Fig. 14 where several
of the typical Rook samples can be distinguished by be-
ing slightly more similar to the baseline than the normal
samples. Given the small differences in KS-Score and the
overall dissimilarity of all samples, especially in the latter
case, this could be a statistical anomaly, as can arise when
many statistics are calculated.

Single-Frame Anomalies In the case of client-
commands, the client could send repeats of the same com-
mand as a result of normal gameplay (for example, hold-
ing the forward button to continue moving forward). In
trigrams, this would create trigrams of the exact same
nonzero value for all three entries. If such a repeating
field was a mutable field in our Rook implementation then
Rook could inject a different value into the field for a
single-frame in the middle of a run of repeating values.
This would create what we call a single-frame anomaly,
where the first and third values of a trigram are the same
value, but the second is different.

We did not intentionally filter these mutable fields from
our Rook implementation. However, there does not ap-



140 A 360 — 2 2200 —S— 3000 —2 3000 —E 320 — 3500 —©
o
O | 3a0|e 2000 E 300| 0

L1200 9 | 50|30 2500 | o 2500 2800 30008
= 8 * 1800 i 8 ]
8 300 g 8 260
T 100|g B % 1600| o 2000 I 2000 2500
= 8 % 280 a -] ° # 240 D 8
2 * 1400 ° o
T |8 ° * ﬁ
5 8|8 260 b4 1500 1500 220 * 2000 °
g 1200 %
= 2408 200
g |e ° 0
2 1000
S gol® ¥ W| 220[8 0 % 1000 1000 180| 0 1500
@ nNormal | #| 200 800 160
’ Rook o ¥ k-4
* HB-Rook|—J 180 600 500 500 140 1000

Figure 12: Adjusted counts of distinct trigrams from server traffic. HB-Rook is clearly distinguished over several

fields from both normal and Rook samples.

0.60 — 2 0.60 — 2 0.80 —C 0.25 —D E | @ Normal
o O % * ’ Rook
0551 o | sa . 07519 8 » O x| 05 % HB-Rook
58| 8 _
0.50 g i §8 .« E 020{, ¢ * % §% 3
[ %
o 0458 056 | § 065| g g 8 i 04l o g olo & %
= o 0.60 ° 18
£ 040 0548 @ % E 0.15° * ° §
a o ° 0.55 8 8 0.3|8 * 8
20353 § * B H E 0.5 *
g 052 0500 o H " °o { %
0-30 oas| & | o1 SO HE| o2 5 #| o4 0 %
0.50 ° O % :
0.25 0.40 * 0 =
0.20 0.48 0.35 0.05 0.1 0.3

Figure 13: Results of the KS test performed on the frequency distributions of trigrams. One field where HB-Rook is
fairly distinguishable but due to being more similar to the baseline sample than normal or Rook samples.

pear to be any consistent difference in number of single-
frame anomalies between normal gameplay and Rook use
(see Fig. 15). We do not show this analysis for the server’s
packets because there are no repeating sequences.

In summary, we evaluated the security of Rook against
five different major attack vectors. It is robust against
standard anti-mimicry, DPI, traffic shape analysis, and
generalized statistical attacks. Further, it is resilient
against game-specific statistical attacks but may be vul-
nerable to a focused adversary devoting resources to a

16

detecting use of Rook on a specific game leveraging full
packet captures. We believe this represents an improve-
ment in the state-of-the-art in this field and still meets a
high level of security since the resources to mount an at-
tack are at the upper bound of our threat model, requir-
ing multipacket statistical analysis using game-specific
knowledge.

5 Related Work

There have been many different approaches taken to en-
abling censorship circumvention or surveillance avoid-



050 — A 055 B 099 —C 1002 100—°E 055 0990 —C
*
o
0.45 e
¥ oso 0.98 o 0% 0.99 g 0.99 g 0.50 oossl® O *
0.40 # Y 3 O * o0 %
° % o 0.97| o 0.98 0.98 o
$03s|° ¥| o045 " 0.45 0.986| @
) ° *
b Bo% 0.96 0.97 0.97 Y
a ° * o
3 030, & % g40 o 0.40 0.984
@ ¢ #| o095 0.96 0.96
0.25|° ' 0 ' ' $
° 03s|° ¥ a 035|e { %/ 0.982|0
020le : 0.94 0.95 0.95 : -
. o * 8 0 0 : Normal
Rook
0.15 0.30 0 0.93 0.94 0.94 0.30 * HB-Rook

Figure 14: Results of the KS test performed on the frequency distributions of trigrams. Two fields where Rook is
distinguishable as being more similar to the baseline than either normal or HB-Rook samples.

a0 A 20 B € 20 10t 7-F
o +]
35| ¢ 8lo () o % 130 °¥ 6| O%
220
30 sl Oul 20 o (12008 F |
°d o
25 o ° 0 | 2000 ¥ 110/0 X
o | b8 oo 8L hgE <ov
e 20 O* o 100 O*
5 0ok 40w 180 3o
S 15§ R og* . 908 i
% % 20N
° e
10 I % 2loow 16038* g (® loos
-] o
SE § okl PO o ¥ I ’ 0
08 ° 60 0l0 Q¥
° 000* o @® Normal
-5 0 120 ¢ Rook
% HB-Rook

Figure 15: Count of Single-Frame Anomalies in client samples. Showing a few outliers from Rook and HB-Rook but

overall not very distinguishable from normal samples.

ance in the past. These have ranged from manipulat-
ing traffic shape attributes such as packet timing and size
[8, 11], to TCP, RTP, and UDP header bits [20, 22],
up to picking specific payloads such as sending specific
DNS-lookups to pass information [3]. Recently there
have been many systems developed which try to slip
past monitors by disguising themselves as normal traffic
[13, 19, 23, 30, 34].

17

Timing Steganography There have been several itera-
tions of systems based on using packet timings to covertly
communicate [8, 11]. These systems are potentially
harder to detect than Rook because the packet timings
they are modifying are already impacted by what other
processes are running on the machine, which is outside of
the attack scope. However, an active adversary can poten-
tially block the channel by adjusting the timing of packets
slightly to destroy the information, or drastically reduce



the bandwidth, without necessarily impacting the legiti-
mate application use. Despite these drawbacks, a timing-
based covert channel like CoCo could actually work ex-
cellently alongside Rook. The bandwidth gain would be
modest, about 5-10 bits/second, but the two systems op-
erate orthogonally to one another and so the risk of detec-
tion would merely be whichever system is the most de-
tectable.

Header Value Steganography Many fields in standard
network protocol headers (TCP, UDP, RTP, etc.) have
been found to be useful for steganographic purposes
[17, 20, 22]. These include the least-significant-bits of
the timestamp, padding values, initial sequence numbers,
and various flags such as do-not-fragment. These covert
channels have an advantage in that they are ubiquitous to
all applications with any standard type of network traffic
and so can easily bypass any application filtering an ad-
versary could put in place. However, attacks against the
covertness of several of these channels have been shown
[24, 25]. Because some of these attributes are not nor-
mally used, statistical attacks can detect anomalies from
their increased use as covert channels.

Furthermore, these schemes are based on the applica-
tion ignoring whether these fields are set or not, so an
adversary can simply normalize them to deny the covert
channel. Rook modifies data that is used by the appli-
cation, so this type of attack degrades legitimate use (as
discussed in Section 4).

Application Protocol Mimicry There have been sev-
eral recent systems based on transforming the appearance
of traffic to evade censorship [21, 28, 30]. These and
others have culminated in the development of Tor’s Obf-
sproxy [6] which uses modules called pluggable trans-
ports to reform traffic to look like an arbitrary proto-
col that is believed to be uncensored or unmonitored.
These types of approaches generally suffer from weak-
ness to active probing: if either end is not actually run-
ning the application the altered traffic would be produced
by, probes from adversaries will be ignored. As shown by
Houmansadr et al., it is very difficult to try to accurately
mimic how a real application will respond to an arbitrary
probe, particularly those which would cause errors [12].
Since Rook actually runs the game client and server, an
active adversary’s probes will be responded to in exactly
the same manner as a normal game client and server. Fur-

18

thermore, depending on the application being mimicked,
an adversary could attempt to determine the legitimacy
of packets by running them through its own copy of the
application. If the mimicry is shallow (to increase band-
width or reduce the work required to create the channel)
then these packets will probably fail this test, providing
another way for an adversary to spot mimicry.

Application Subversion Since these attacks on
mimicry-based systems have been published, there have
been several new systems proposed which hide data at the
application-layer, rather than inserting it at the transport
layer [10, 13, 19, 23, 34]. These approaches are the most
similar to Rook, in that they are essentially sending cor-
rect application data. However, they require the adversary
to not be able to see what that data is. Unlike Rook,
all of these approaches rely on an encrypted channel
between the ends of the application. Current events show
that some censors will force man-in-the-middle attacks
or subverted versions of programs to be used to allow
breaking this encryption. Rook does not its applications
traffic to be encrypted to remain secure.

Castle On 3/19 another paper was put online that also
uses games as covert channels. Their system was named
Castle. On 3/20, we released this as a tech report. The
two works were concurrent and the similarity of naming
is purely coincidental; Castle and Rook use distinctly dif-
ferent mechanisms and types of games to operate and also
target different threat models.

6 Discussion and Future Work

Rook is a new approach to an established problem of cen-
sorship resistant communication. We argue that online
games provide an excellent form of cover for secret com-
munication and have enough mass appeal that a censor
would be reluctant to outright block their traffic. The eval-
uation of our implementation of Rook for Team Fortress
2 shows it to be robust to all currently known forms of
network interference and censorship. Further, the evalu-
ation shows Rook is resistant to potential new forms of
censorship, such as deep-packet statistical analyses and
application-specific analyses, that may become common
tools for censors in the future.

Rook also aims itself at somewhat under-represented
facets of censorship resistance: establishing safe commu-
nication entirely within a censor’s region of control, and



emphasizing keeping plausible deniability for its users.
The current implementation of Rook is functional in ex-
changing message undetected; however, we believe it
could be expanded upon in the following ways:

The first and most obvious extensions from a utilitar-
ian perspective is the implementation of Rook for more
games. We developed the Rook code in a modular fash-
ion so that new modules for interpreting different game
packet protocols can be easily added.

From a system design perspective, a secure bootstrap-
ping mechanism for finding and contacting Rook servers
would be a significant addition to the usability of the
system, and could potentially also be conducted over
the same online game, but perhaps with a higher-latency
mechanism. However, this is a major challenge in circum-
vention systems in general that has not been solved.

Another improvement that could be made to Rook is
making the symbol tables dynamically self-adjusting to
attempt to better preserve the traffic statistics. Essentially
each side would monitor how the packets it altered have
impacted a set of statistics and then modify their symbol
tables to try to minimize the statistical deviance created
by hiding data. This would inevitably reduce bandwidth
to some extent; however, if statistical attacks are a valid
and massively deployed form of detection for Rook, the
tradeoff would be worthwhile to defeat such attacks.

In the space of attacks, Rook prompts several ideas of
more advanced attacks potentially applicable to both it-
self and other application-layer circumvention systems.
Markov-modeling based attacks are potential detectors of
Rook use. The attacker would generate a markov-model
of user behavior based on parsing large normal traffic cap-
tures for the game. The attacker would then try to detect
Rook traffic by looking for play that is particularly dif-
ferent from the model. However, there may not exist a
model that fits all normal players well enough while still
showing Rook as significantly different.

7 Conclusion

In this paper we presented Rook, a system designed to
provide low bandwidth low latency censorship resistant
communication using the network traffic of online games.
Rook represents the first censorship circumvention sys-
tem to utilize online games as a cover for secret commu-
nicaiton. Beyond its novelty, Rook represents a useful ad-
dition to the space of existing circumvention techniques

19

and systems. Unlike many other systems, Rook focuses
on providing secret communication within a censor’s re-
gion of control, and presents greater secrecy and deni-
ability than previous systems by virtue both of how its
communication is hidden and by it being hidden in online
game traffic instead of other applications that would show
more differences between legitimate users and censorship
circumventing users.

Our implementation of Rook shows that it lives up to its
goal of providing bandwidth high enough for chat, includ-
ing over the OTR protocol, while remaining undetectable
using any mass attack methods currently known to be
employed by censorship regimes. Furthermore, Rook
presents a fundamentally greater challenge to detect than
what most current circumvention systems present. An ad-
versary would have to commit resources both to develop
an attack against a particular implementation of Rook, and
allocate computational resources to each game connection
they find suspicious in order to defeat Rook. Even under
targeted attack, we argue novel attack techniques would
need to be developed to definitively detect Rook commu-
nications.

We intend to release our code along with developer
documentation to help others interested in censorship re-
sistant communication extend Rook to operate with many
more games.

8 Acknowledgements

This work was supported in part by NSF Award CNS-
0846065 and by the Short-Dooley Endowed Career De-
velopment Professorship.

References

[1] ANDERSON, R. J., AND PETITCOLAS, F. A. On the limits of
steganography. Selected Areas in Communications, IEEE Journal
on 16,4 (1998), 474-481.

[2] BORISOV, N., GOLDBERG, 1., AND BREWER, E. Off-the-record

communication, or, why not to use pgp. In Proceedings of the

2004 ACM workshop on Privacy in the electronic society (2004),

ACM, pp. 77-84.

(3]
(4]

BOWES, R. Dns cat.

CLAYTON, R., MURDOCH, S. J., AND WATSON, R. N. Ignoring
the great firewall of china. In Privacy Enhancing Technologies
(2006), Springer, pp. 20-35.

[5] CRANDALL, J., CRETE-NISHIHATA, M., KNOCKEL, J., MCK-
UNE, S., SENFT, A., TSENG, D., AND WISEMAN, G. Chat pro-



[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

gram censorship and surveillance in china: Tracking tom-skype
and sina uc. First Monday 18,7 (2013).

DINGLEDINE, R. Obfsproxy.

GEDDES, J., SCHUCHARD, M., AND HOPPER, N. Cover your
acks: pitfalls of covert channel censorship circumvention. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 361-372.

GIFFIN, J., GREENSTADT, R., LITWACK, P., AND TIBBETTS, R.
Covert messaging through tcp timestamps. In Privacy Enhancing
Technologies (2003), Springer, pp. 194-208.

GREENWALD, G., BALL, J., AND RUSHE, D. Nsa prism program
taps in to user data of apple, google and others. The Guardian
(June 2013).

HAHN, B., NITHYANAND, R., GILL, P., AND JOHNSON, R.
Games without frontiers: Investigating video games as a covert
channel. arXiv preprint arXiv:1503.05904 (2015).

HOUMANSADR, A., AND BORISOV, N. Coco: coding-based
covert timing channels for network flows. In Information Hiding
(2011), Springer, pp. 314-328.

HOUMANSADR, A., BRUBAKER, C., AND SHMATIKOV, V. The
parrot is dead: Observing unobservable network communications.
In Security and Privacy (SP), 2013 IEEE Symposium on (2013),
IEEE, pp. 65-79.

HOUMANSADR, A., RIEDL, T., BORISOV, N., AND SINGER, A.
I want my voice to be heard: Ip over voice-over-ip for unobserv-
able censorship circumvention. In The 20th Annual Network and
Distributed System Security Symposium (NDSS) (2013).

KHATTAK, S., SIMON, L., AND MURDOCH, S. J. Systemization
of pluggable transports for censorship resistance. arXiv preprint
arXiv:1412.7448 (2014).

KILLOCK, J. Sleepwalking into censorship. Open Rights Group
(July 2013).

L1, S., SCHLIEP, M., AND HOPPER, N. Facet: Streaming over
videoconferencing for censorship circumvention. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society (2014),
ACM, pp. 163-172.

LLAMAS, D., ALLISON, C., AND MILLER, A. Covert channels
in internet protocols: A survey. In Proceedings of the 6th Annual
Postgraduate Symposium about the Convergence of Telecommuni-
cations, Networking and Broadcasting, PGNET (2005), vol. 2005.

LUCENA, N. B., PEASE, J., YADOLLAHPOUR, P., AND CHAPIN,
S. J. Syntax and semantics-preserving application-layer protocol
steganography. In Information Hiding (2005), Springer, pp. 164—
179.

Lv, J., ZHANG, T., LI, Z., AND CHENG, X. Pacom: Parasitic
anonymous communication in the bittorrent network. Computer
Networks (2014).

20

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

MAZURCZYK, W., AND SZCZYPIORSKI, K. Steganography of
voip streams. In On the Move to Meaningful Internet Systems:
OTM 2008. Springer, 2008, pp. 1001-1018.

MOHAJERT MOGHADDAM, H., LI, B., DERAKHSHANI, M.,
AND GOLDBERG, I. Skypemorph: Protocol obfuscation for tor
bridges. In Proceedings of the 2012 ACM conference on Computer
and communications security (2012), ACM, pp. 97-108.

MURDOCH, S. J., AND LEWIS, S. Embedding covert channels
into tep/ip. In Information Hiding (2005), Springer, pp. 247-261.

RAGNARSSON, B., AND WESTEIN, P. Using git to circumvent
censorship of access to the tor network.

SoHN, T., MooN, J., LEE, S., LEE, D. H., AND LiMm, .
Covert channel detection in the icmp payload using support vec-
tor machine. In Computer and Information Sciences-ISCIS 2003.
Springer, 2003, pp. 828-835.

SOHN, T., SEO, J., AND MOON, J. A study on the covert channel
detection of tcp/ip header using support vector machine. In Infor-
mation and Communications Security. Springer, 2003, pp. 313—
324.

VALVE. Steam and game stats.
VALVE. Team fortress 2.

WANG, Q., GONG, X., NGUYEN, G. T., HOUMANSADR, A.,
AND BORISOV, N. Censorspoofer: asymmetric communication
using ip spoofing for censorship-resistant web browsing. In Pro-
ceedings of the 2012 ACM conference on Computer and commu-
nications security (2012), ACM, pp. 121-132.

WARF, B., AND VINCENT, P. Multiple geographies of the arab
internet. Area 39, 1 (2007), 83-96.

WEINBERG, Z., WANG, J., YEGNESWARAN, V., BRIESEMEIS-
TER, L., CHEUNG, S., WANG, F., AND BONEH, D. Stegotorus:
a camouflage proxy for the tor anonymity system. In Proceedings
of the 2012 ACM conference on Computer and communications
security (2012), ACM, pp. 109-120.

WINTER, P., AND LINDSKOG, S. How china is blocking tor.
arXiv preprint arXiv:1204.0447 (2012).

WRIGHT, C. V., BALLARD, L., MONROSE, F., AND MASSON,
G. M. Language identification of encrypted voip traffic: Alejandra
y roberto or alice and bob? In USENIX Security (2007), vol. 3, p. 3.

XU, X., MAO, Z. M., AND HALDERMAN, J. A. Internet cen-
sorship in china: Where does the filtering occur? In Passive and
Active Measurement (2011), Springer, pp. 133-142.

ZHOU, W., HOUMANSADR, A., CAESAR, M., AND BORISOV,
N. Sweet: Serving the web by exploiting email tunnels. HotPETS.
Springer (2013).



