
New Directions for Self-Destructing Data Systems

Roxana Geambasu, Tadayoshi Kohno, Arvind Krishnamurthy, Amit Levy, Henry Levy
University of Washington

Paul Gardner
Vuze, Inc.

Vinnie Moscaritolo
PGP Corporation

ABSTRACT
This paper seeks to advance the state of the art in practical self-
destructing data systems that secure sensitive data from disclosure in
our highly mobile, social-networked, cloud-computing world. Our
work facilitates the automatic, timed, and simultaneous destruction
of all copies of a self-destructing data object (such as a message or
file) without any explicit action by the user and without relying on
any single trusted third party.

We make three contributions to the study of self-destructing data.
First, we present Cascade, an extensible framework for integrating
multiple key-storage mechanisms into a single self-destructing data
system. Cascade enhances resistance to attack by combining the se-
curity advantages of a diverse set of key-storage approaches. Sec-
ond, we introduce Tide, a new key-storage system for self-destructing
data that leverages the ubiquity and easy deployment of Apache
Web servers throughout the Internet. Third, based on our earlier
work on Vanish and in light of recent attacks against the Vuze DHT,
we demonstrate how to significantly harden Vuze and other DHTs
against Sybil data-harvesting attacks, making DHTs applicable as
key-storage systems under Cascade.

To validate our approach, we designed, implemented, deployed,
and measured these systems. We prototyped the extensible Cascade
system with support for Tide, Vuze, and OpenDHT. We prototyped
the Tide key-storage system on Apache, deployed it on over 400
PlanetLab nodes in the Internet, and demonstrated that the structure
is highly immune to attack. Finally, we designed and deployed a
set of defenses to Sybil data-harvesting attacks in the live Vuze P2P
system and measured them at full scale in the million-node DHT;
our results demonstrate that these defenses provide a three-order-
of-magnitude improvement over the original Vuze DHT, rendering
data-harvesting attacks extremely impractical.

1. INTRODUCTION
Storage is cheap. Data lives forever. The Internet never for-

gets. These truths profoundly affect the interactions between peo-
ple and modern computing systems. Some computer users, aware
of these properties, adjust their behavior accordingly: for example,
they avoid using email for personal communications, preferring the
phone instead. Others do not store personal information on mobile
computing devices, such as laptops, when crossing international bor-
ders for fear of international corporate espionage [46]. An unfortu-
nate few, however, are suddenly surprised when their lack of caution
or understanding of the permanent nature of data wrecks havoc with
their personal or professional lives. Well-known examples involve
the exposure of sensitive communications of celebrities and politi-
cians [5, 47], although such oversights can affect us all [33]. For
example, the hacking of Google China exposed emails belonging to
reporters and activists to still unknown parties [25].

Self-destructing data systems are designed to address these con-
cerns. Their goal is to destroy data after a pre-specified timeout,

regardless of where the data is stored or archived and despite tech-
nology that may make such deletion challenging. As a result, such
systems prevent the exposure of “old” data that is past its useful life.
Self destruction is implemented by encrypting data with a key and
then escrowing the information needed to reconstruct the decryp-
tion key with one or more third parties. Assuming that the key-
reconstruction information disappears from the escrowing third par-
ties at the intended time, encrypted data will become permanently
unreadable: (1) even if an attacker obtains a copy of the encrypted
data and the user’s cryptographic keys and passphrases after the
timeout, (2) without the user or user’s agent taking any explicit ac-
tion to delete it, (3) without needing to modify any stored or archived
copies of that data, and (4) without the user relying on secure hard-
ware. Once the key-reconstruction information disappears, data own-
ers can be confident that their data will remain inaccessible to pow-
erful attacks, whether from hackers who obtain copies of backup
archives and passphrases or through legal means.

This paper strives to advance the state of the art in self-destructing
data systems. Past research has explored two ends of a spectrum. At
one end is the centralized approach, as exemplified by the Ephemer-
izer [30, 34] or the revocable backup system [8]. Centralized systems
are difficult to scan or crawl externally, but a centralized structure is
open to legal exposure and internal hacking attacks (such as Google
China). A centralized system must also be trusted, but that trust may
be unwarranted, as was the case for Hushmail [37].

At the other end of the spectrum is Vanish, based on a highly de-
centralized system (the Vuze DHT) with millions of privately owned,
autonomous computers and no single trusted party. The DHT-based
system is difficult to attack after data timeout; system churn makes it
difficult or impossible to learn which nodes held data in the past, and
legal attacks are challenging due to geographical dispersion (e.g.,
Vuze DHT nodes are distributed across 200 countries). However,
the openness of most DHTs and their security-insensitive design
makes Sybil data-harvesting attacks easily mountable, as was re-
cently demonstrated [49].

Our work makes three contributions, building on Vanish concepts
but advancing them in important new directions. First, we introduce
Cascade, which takes a hybrid approach to self-destructing data.
Cascade combines the best properties of the range of alternatives de-
scribed above. It integrates multiple key-storage systems in a single
framework so that the system as a whole is stronger than any indi-
vidual component. That is, an attacker must compromise all of its
key-storage components in order to violate the privacy properties we
target. By providing this framework we raise the bar against attack
significantly, forcing the attacker to use multiple, disparate means to
break the system (e.g., both technical and legal attacks, or perhaps
both legal and illegal attacks).

Second, we introduce Tide, a new key-storage system for self-
destructing data that is positioned between Vanish and the Ephemer-
izer on the design spectrum. Tide harnesses the ubiquity and easy
deployment of Apache Web servers. Like Vanish, Tide relies on mul-

tiple, autonomous, distributed systems; like the Ephemerizer, each
system is a (possibly well-known) centralized server. Tide leverages
strengths of both types of systems: it cannot easily be crawled or
subverted by a single-site attack.

Third, we discuss in significant depth our security analysis of
the Vuze DHT. In light of the recent Sybil data-harvesting attacks
on Vuze and Vanish, and general skepticism about DHTs, we be-
lieve it is necessary to assess: (1) the extent to which those attacks
exploited particular design weaknesses in Vuze, and (2) how sim-
ple security-sensitive DHT design changes can thwart such attacks.
Therefore, we performed an extensive measurement-based study of
the Vuze DHT and designed a set of defenses to resist the Sybil data-
harvesting attack. We believe that our results should inform the de-
sign of all current and future DHTs.

To evaluate our contributions, we implemented a proof-of-concept
Cascade prototype and added extensions for Tide, Vuze, and OpenDHT.
We also implemented a Tide prototype based on the highly popular
Apache Web server, deployed it on over 400 nodes on the PlanetLab
global distributed system, and measured its reliability, performance,
and security, showing that it is highly immune to infiltration attacks.
Further, we designed practical defenses and deployed them in the
Vuze DHT. While our study was not intended to investigate all pos-
sible attacks on open DHTs, our results show that these defenses in-
crease the complexity of a Sybil data-harvesting attack by over three
orders of magnitude, making such attacks extremely impractical for
all but the most serious and highly provisioned attackers. Moreover,
to the best of our knowledge, this is the first experimental study of
new, deployed security mechanisms at scale, in a live million-node
DHT with real users.

Overall, by strengthening the Vuze-based Vanish system, intro-
ducing a new key-storage system with complementary strengths and
weaknesses (Tide), and creating an encompassing architecture to in-
tegrate these and other components (Cascade), we have provided
further evidence for the feasibility of self-destructing data systems.
Informed by these new research results, we are now integrating Cas-
cade into PGP Virtual Disk and preparing an Internet-Draft to extend
RFC-4880 (OpenPGP Message Format) to formally specify the in-
teraction between Cascade and PGP (so that OpenPGP messages can
be encapsulated with both Cascade and PGP public keys). Finally,
we are planning to make all source code for Cascade and Tide avail-
able in the near future; source code for our deployed Vuze defenses
is already available in Vuze’s CVS.

2. SELF-DESTRUCTING DATA SYSTEMS
Control over data lifetime will become increasingly important as

more public and private activities are captured in digital form, whether
in the cloud or on personal devices. Self-destructing data systems
can help users preserve some control, by ensuring that data becomes
permanently unavailable after a pre-specified timeout. We now de-
scribe key properties of our threat model for self-destructing data
systems and review how Vanish addressed these properties as back-
ground for understanding our current work.

2.1 Threat Model
Self-destructing data systems [8, 24, 34] seek to prevent retroac-

tive disclosure attacks against sensitive data. In these systems, users
identify certain data as ephemeral, encapsulate that data in a van-
ishing data object (VDO), and specify a timeout for it. For exam-
ple, a user can create a VDO that contains a private message for
a friend. The VDO might then be stored, copied, or transmitted
over a network. The self-destructing data system ensures that all
copies of the VDO become permanently unreadable after the time-
out. This includes copies that may be cached or archived, online or

offline, by both end systems and intermediate systems (Web servers,
backup systems, etc.). Self-destructing data systems target scenarios
in which users would prefer that their sensitive data disappear early
rather than have it fall into the wrong hands after the timeout.

The concept of a retroactive attack is key. Specifically, we seek
to protect against an adversary attempting to learn the contents of a
specific VDO after its timeout. For example, a hacker might try to
access communications – including files, emails, or messages – that
were exchanged between certain parties in the past, or a legal en-
tity might subpoena old data or communications, or an opportunistic
corporate espionage attacker might try to steal secrets from a laptop.
Self-destructing data does not protect against attackers who target a
specific VDO prior to its timeout. For example, if a hacker breaks
into a user’s email account, self-destructing emails that are still read-
able (as well as future emails the hacker might see) are not protected,
while those that have timed out are protected.

In a retroactive attack, the attacker targets a specific VDO days,
weeks, months, or even years after it has timed out. Before that, we
assume that the attacker does not know that a specific user or VDO is
of interest. Once the attacker identifies a VDO as a target, however,
we assume that he can obtain a copy of the VDO, as well as the
user’s secret keys and passphrases, from prior to timeout. Old data
can be obtained from replicas, backup tapes, storage residues, etc.
Keys can be obtained by legal means (e.g., judges ordering people
to produce their passwords or keys) or by breaking or stealing users’
passphrases (e.g., a user writes his passphrase on an easily accessible
sticker).

Although the attacker identifies a specific VDO as a target only
after its timeout, the attacker may run untargeted precomputations
at any point in time, in preparation for future targeted attacks.1 Un-
targeted precomputations are mounted against the self-destructing
data system as a whole, not against any specific user or VDO. For
example, if the self-destructing data system uses third-party servers
to store critical information for a limited period of time, an attacker
could try to opportunistically harvest that information, in the hope
that it might prove useful in the future. The attacker might compro-
mise some of the servers, for instance, or infiltrate the system with
his own servers. Note that harvesting the necessary data at a sin-
gle point in time is insufficient; because the attacker does not know
which VDOs may be of interest in the future, he must continuously
harvest critical information for as many VDOs as possible, 24 hours
a day, 365 days a year.

Finally, we assume that users communicating via self-destructing
data objects are trustworthy. For example, users exchanging VDO-
encapsulated sensitive emails trust each other to view those emails;
they also trust each other never to save cleartext copies of a VDO’s
sensitive data. This assumption is realistic for self-destructing data
systems and distinguishes our threat model from that of digital rights
management (DRM) systems, which assume user untrustworthiness.

Self-destructing data systems let users create ephemeral data (such
as files) and ephemeral communications (such as emails or text mes-
sages) with a critical guarantee: once that data has timed out, it will
be expunged and forever safe from discovery and abuse.

2.2 The Vanish System
This research extends our previous work on the Vanish [24] sys-

tem. Vanish encapsulates data with a pre-specified timeout by: (1)
encrypting the data with a random symmetric key that is never re-
vealed to the user, (2) splitting that key into multiple pieces (shares)
using threshold secret sharing [36], (3) scattering key pieces across

1The notion of untargeted precomputation is not unique to our threat model.
For example, to prepare for a password-breaking attack, the attacker can pre-
compute an untargeted dictionary with hashes of common passwords.

randomly chosen nodes in a global-scale, distributed peer-to-peer
(P2P) system, and (4) bundling information necessary to retrieve key
pieces with the encrypted data. This resulting bundle, or VDO, can
be stored on the user’s computer, sent in an email, or stored on a
remote server. To reconstruct the message before the pre-specified
timeout, someone with access to the VDO uses the bundled informa-
tion to retrieve the key shares, reconstruct the key, and decrypt the
data. The VDO can be further encapsulated using PGP to deny ac-
cess to unauthorized parties, such as the email provider, prior to the
timeout (recall that a retroactive attacker may learn the user’s PGP
keys/passphrases after the timeout).

The Vanish prototype used the commercially supported, global-
scale Vuze DHT, which is part of the Vuze P2P system.2 Vanish re-
lies on two properties of the DHT to prevent key pieces from being
recovered well after their specified timeouts. First, the DHT system
supports a standard timeout mechanism that makes a key piece pro-
grammatically unrecoverable following its timeout. Second, DHTs
have significant churn of various types, including nodes coming and
going, nodes receiving new dynamic IP addresses, nodes assuming
ID ranges previously controlled by other nodes, etc. This churn
makes it difficult to determine which physical nodes stored given
pieces of the key in the distant past. The use of global-scale dis-
tributed systems further deters recoverability, since key pieces may
be stored across different legal jurisdictions.

We chose the Vuze DHT as a key storage backend for Vanish be-
cause of its popularity, global distribution, and large scale, which
was estimated at over 1M nodes.3 In addition, like other DHTs,
Vuze is self managing, i.e., there is no single trusted entity in charge.
It has recently been shown that the original Vuze DHT used by Van-
ish was highly vulnerable to data-harvesting attacks.4 Specifically,
Wolchok et al. [49] show that an efficient Sybil [21] attack could
be mounted against Vuze; in so doing, attackers could harvest dur-
ing the non-targeted precomputation phase a large fraction of the
key pieces stored by Vanish in the DHT. This work shows the extent
to which the Vuze DHT was not designed to support systems like
Vanish; hence (and in retrospect), it is not surprising that a Vuze-
based Vanish system is not sufficiently secure. Noting that the Van-
ish concept is much broader than the single data point of its initial
prototype, the question remains: is it possible to build a Vanish-like
self-destructing data system that makes such attacks impractical?

This paper reconsiders self-destructing data systems based on highly
distributed components. We examine several questions. First, can
we define an extensible high-level architecture that combines the
strengths of multiple, diverse key-storage systems to substantially
increase security? Second, can we design new types of key-storage
systems that share the benefits of DHTs, but mitigate their weak-
nesses? Third, in light of the Sybil attack on Vuze, can we strengthen
the security of a deployed DHT so that it can play an important role
in self-destructing data systems? We answer these questions begin-
ning with the next section.

3. CASCADE: MULTI-BACKEND ARCHITEC-
TURE FOR SELF-DESTRUCTING DATA

This section presents Cascade, an extensible framework for inte-
grating multiple key-storage mechanisms into a single self-destructing
data system. An attack against Cascade succeeds only if the attacker
can compromise all of the diverse components upon which the sys-
2A DHT, or distributed hash table, implements a simple (index,value) hash
table interface over a large collection of P2P nodes.
3DHT use has grown significantly; there are now DHTs estimated to be five-
or six-million nodes.
4Data-harvesting attacks are related to, but different than, traditional node-
crawling attacks considered in the past [41, 42, 43].

tem is built. We now describe Cascade’s design principles and archi-
tecture.

3.1 Design Principles
Cascade’s architecture is guided by three key design principles:

Combine diverse components with different strengths. It is often
said that a system is only as secure as its weakest link. In Cascade,
on the other hand, we seek to build a system that is as secure as
the union of its defenses. Cascade is a unified self-destructing data
framework for multiple key-storage systems, or backends. Adding
new key-storage components to Cascade should strengthen the sys-
tem against confidentiality attacks; if not, it should never weaken
the system. Combining different defenses with orthogonal security
properties under different adversarial models can significantly in-
crease the cost of an attack and take the possibility of a mountable
attack outside of the reach of potential adversaries. A successful at-
tack must subvert all of the combined system’s backend components.

Apply both defense-in-depth and redundancy. Related to the pre-
ceding principle, Cascade provides defense-in-depth under a single
adversarial model. While the greatest value for Cascade is obtained
when it combines multiple backends that are secure under different
adversarial assumptions, it can also combine multiple backends be-
lieved to be secure under the same adversarial model. This provides
redundancy if one of those assumptions proves to be incorrect.

Support future innovation. Cascade’s design must be extensible
to allow the inclusion and incremental deployment of new key stor-
age backends. Therefore, Cascade provides an environment within
which experimental, often unproven approaches can be deployed
while simultaneously benefiting from the security offered by other,
better proven approaches. For example, our currently deployed, sig-
nificantly strengthened Vuze backend can foster the gradual deploy-
ment of our new Apache-based Tide backend. Without composabil-
ity, deployability would be a major roadblock for Tide.

3.2 Cascade Architecture
Figure 1(a) shows the high-level architecture of the Cascade multi-

backend system. At the top are self-deleting data applications, which
might include email, messaging, social networking, file systems, etc.
An application interacts with Cascade through the Cascade Applica-
tion API, which encapsulates data into a VDO and later decapsulates
that data from the VDO.5 Encapsulation and decapsulation requests
are handled by Cascade’s extensible core. The core functions on the
same principles as the original Vanish system: it encapsulates the
data, generates a key K, splits it into key shares, scatters those shares
for temporary storage on random components of a backend storage
system, and then deletes all local copies of K. Cascade’s core dif-
fers from Vanish in two ways. First, it supports share distribution
across an arbitrary and extensible set of backend systems. Second, it
uses a flexible hierarchical secret sharing (HSS) scheme to compose
these backends for security. While the literature on hierarchical se-
cret sharing is broad, we find that the naive approach is ideally suited
for our case: simply split the key or key share at each internal node
of the tree with the desired secret sharing parameters.

As an example, Figure 1(a) shows how an HSS scheme can be
used to compose three very different backend systems: the Vuze
DHT, a large set of Cascade-enabled Web servers (called Tide, which
we describe in the next section), and OpenDHT (a DHT which is
open to all clients but, despite its name, has strong restrictions on

5For simplicity, we reuse Vanish’s acronym for self-destructing objects
(VDOs); however, as will become clear in this section, Cascade VDOs differ
from Vanish VDOs in that their structure supports Cascade’s main principles:
extensibility and composability.

Cascade Extensible Core

K
K1 K2 K3

K1 1K1 2K1 3 K2 1K2 2K2 3K2 4 K3 1 K3 2

Vuze
Extension

Extension API

Vuze DHT Tide Web Servers OpenDHT

…

…

…

…

Cascade Application API

Firefox
Plugin

PGP Encypted
Drive

…

data VDO = <header, E
K

(data)>

3/3

2/3 3/4 1/2

Tide
Extension

Extension API
OpenDHT
Extension

Extension API

A
pp

s
C

as
ca

de
 C

a
sc

ad
e

B

ac
ke

nd
s

(a) Cascade Architecture.

Cascade Application API:
encapsulate(data, timeout, [HSS params]) => vdo
decapsulate(vdo) => data / error

Cascade Backend Extension API:
generateUri([incomplete uri]) => backend-specific uri
put(backend-specific uri, share, timeout)
get(backend-specific uri) => share / error

(b) Cascade APIs.

3/3

2/3 3/4 1/2

uri1 1uri1 2 uri1 3 uri2 1 uri2 2 uri2 3 uri2 4 uri3 1 uri3 2

urii j = backendIDi:backend-specific-urii j

Examples:
uri1 1 = vuze:<160b random DHT index>
uri2 1 = tide:http://pgp.com/tide/<256b random index>

(c) Hierarchical Secret Sharing Tree in VDO Header.

Figure 1: The Cascade Multi-Backend Architecture, APIs, and Headers. (a) Architectural components and APIs in Cascade. (b) Cascade application
and backend extension APIs. (c) Example of a hierarchical secret sharing (HSS) tree; urii j corresponds to the Cascade URI of share Ki j in Figure (a).

which nodes can become full DHT participants). The encryption key
K is split into three shares (K1, K2, and K3), all of which are needed
to reconstruct key K. Each share is then itself split into multiple
sub-shares (K11, K12, etc.) using varied, backend-specific threshold
parameters. Finally, sub-shares are submitted for temporary stor-
age to the three backends. In the example shown, the three original
shares (K1, K2, and K3) are all required in order to reconstruct K;
this forces an attacker to compromise both Vuze and OpenDHT and
at least three of the four selected Tide Apache servers to capture the
VDO.

Other HSS constructions are possible, and their structures are dic-
tated by the application. For example, suppose Alice (alice@company1.
com) sends an email to Bob (bob@company2.com). A Cascade im-
plementation, packaged with the email client, could check for the ex-
istence of Tide servers at http://company1.com/tide and http:
//company2.com/tide and store key shares on those servers. This
entire structure can be further augmented with Vuze, OpenDHT, and
other randomly selected Tide servers. This architecture has two prin-
cipal advantages. First, it puts company1.com and company2.com
in control of the timeout of key shares used in their communica-
tion.6 If Alice’s company fails to securely delete its shares in time,
Bob’s company can delete its own shares and cause their commu-
nications to self-destruct. This scenario would be useful to ensure
the cleanup of sensitive communications between a large company
with strict policies, like Microsoft or Google, and its possibly less
well-managed contractors. Second, the storage of shares on other
backends, like Vuze and random Tide servers, provides additional
defense-in-depth. (Although our architecture is supportive of arbi-
trary hierarchies, our prototype implementation currently supports
only three levels, as shown in Figure 1(a).)

Cascade Key Storage Systems. The Cascade architecture is ag-
nostic to these key storage backend choices; each backend simply

6Recall from Section 2.1 that the threat model in self-destructing data sys-
tems is orthogonal to that of DRM systems. Alice and Bob only use Cascade
for sensitive exchanges and, in doing so, explicitly trust each other not to save
cleartext copies of the emails.

stores (index,value) pairs and can retrieve each pair up to its speci-
fied timeout, after which that value can never be recovered. Cascade
is designed to support timeouts ranging from several hours up to a
week. A crucial design goal in Cascade is to cleanly and elegantly
support the composition of multiple key storage backends, includ-
ing ones that have not yet been invented. To achieve this goal, we
maintain the Cascade core completely independent of the underly-
ing key storage backends and support dynamic loading of backend
extensions that understand the specifics of the varied key storage sys-
tems. All extensions export a simple, unified API, called the Cascade
Extension API, summarized in Figure 1(b). With the help of this in-
frastructure, inserting new backends into the system becomes trivial.
For example, our Tide, Vuze, and OpenDHT extensions consist of
merely 151, 827, and 386 lines of Java code, respectively, which
deal almost exclusively with details of each storage system.

VDO Structure. Similar to Vanish, a Cascade VDO bundles to-
gether: (1) information describing how to retrieve the VDO’s key
shares (i.e., where the shares were stored), and (2) the application
data encrypted under the split key K. The key information is in-
cluded in the VDO’s header, along with other metadata, such as spec-
ifications of the encryption and compression algorithms, the VDO’s
timeout, etc.

To be able to retrieve and compose key shares back into the origi-
nal key K upon decapsulation, Cascade saves placement and secret-
sharing information in the header of a VDO in the form of an HSS
tree. Figure 1(c) shows the HSS tree corresponding to the example
in Figure 1(a); inner nodes specify secret-sharing parameters (num-
ber of shares and threshold), while leaves specify the “locations”
where each share was placed. Share locations are in the form of
share URIs, which are composed of two fields: a backend identifier,
which uniquely identifies a dynamically loaded backend extension,
and a backend-specific URI, which identifies the share within the
backend. Backend-specific URIs are generated and interpreted by
the corresponding backend extensions (API function generateUri)
and are opaque to the Cascade core. For example, our Vuze backend

extension generates a 160-bit DHT index that indicates where in the
Vuze DHT the share is stored. Our Tide backend extension, on the
other hand, selects both the URL of the Cascade-enabled Web server
and the index under which the share is “hidden” on that server.

3.3 Summary
Cascade is an extensible framework for composing multiple, het-

erogeneous backend key-storage systems. The system supports sim-
ple APIs, both for applications and backend systems, and uses a
flexible hierarchical secret sharing scheme that applications can cus-
tomize to achieve desired security properties. We have implemented
a Cascade Java prototype along with the backend extensions shown
in Figure 1(a), ported our self-destructing-web-data Firefox plugin [24]
to Cascade, and plan to make all source code available.

4. THE TIDE KEY-STORAGE SYSTEM
This section presents our second major contribution to self-destructing

data: Tide, a novel key store for Cascade that combines beneficial
properties of both centralized services and decentralized P2P sys-
tems. A DHT’s decentralization, global distribution, and autonomy
make it hard to subpoena, while its openness and churn make it vul-
nerable to data-harvesting attacks. In contrast, centralized systems
can deflect data-harvesting attacks (e.g., by protecting the data using
ACLs or other protection mechanisms) but are also more vulnerable
to legal attacks [48] and hacking [25]. Tide merges these strengths
in order to overcome such limitations.

Tide leverages both the thousands of Web servers across the planet
and the ease of deploying new Web servers with freely available
components, such as Apache. Tide can be deployed in many ways.
It is capable of scattering VDO key shares across a randomly cho-
sen set of independent Web sites. These sites might include a global
collection of organizations, companies, universities, and even indi-
viduals. Tide can also be deployed on private Web servers, or in
other configurations. Slightly modified to support Tide, the Web
sites maintain shares for a specified time limit; when the limit for
a share expires, its server erases that share. Each share in Tide is
protected by association with a random 256-bit index. To retrieve a
share, a client must know its index, which makes guessing or scan-
ning impossible (the index is effectively a password or capability).
Tide can be used as the single key store in Cascade or composed
with other key-storage systems to increase security, as described in
Section 3.

Tide was designed to: (1) be simple, lightweight, and easily de-
ployable, (2) avoid undeleted share residues, and (3) avail itself to
deployment scenarios that are resilient to malicious infiltration. The
first goal evokes our belief that a small module that is easy to under-
stand, audit, and deploy increases our chance of adoption by many
Web sites. In addition, Tide’s ease of deployment facilitates host-
ing by end users, e.g., a group of friends could run their own private
Tide Web servers to secure their communications. Our second and
third goals address the primary two threats in a Tide-like system:
post-timeout attacks targeted against Web sites that used to store the
shares of a specific timed-out VDO, and pre-timeout untargeted key-
share harvesting via infiltration in the set of Tide Web servers.

In this section, we present the design of our simple, easy-to-deploy
Tide prototype based on the popular Apache Web server. We first
show how our prototype’s design achieves the first two goals, then
we describe techniques for resisting malicious infiltration in the con-
text of various deployment opportunities, and finally we present mea-
surements of our early prototype against attacks.

4.1 The Tide Apache Module
To maximize deployability, we designed and implemented a Tide

prototype that leverages the widespread adoption of the Apache Web
server and its modular structure. Our prototype is a small, lightweight,
and dynamically loadable Apache module that allows clients to tem-
porarily use an Apache Web service as a simple (index,value) storage
system. Our module contains 826 lines of C code and can be easily
inspected – perhaps even model-checked – for vulnerabilities.

Tide Apache Module Design. Our goal of simple and lightweight
implementation requires us to reject complicated, heavy, or stateful
protocols. The Tide Apache module exposes an almost trivial REST
interface that mirrors Cascade’s backend API and offers two simple
functions: put and get. The Tide extension running on a user’s
machine invokes these functions to store a key share in a specific
Apache server for a specified period of time. Our module maintains
little state other than a size-limited table of temporary (index,value)
pairs. The module currently runs on one Web server, but larger sites
can redirect all requests for the Tide URL to a specific Web server.

The Tide module explicitly seeks to avoid share residues. To mini-
mize the risk of improper cleanup of shares at the timeout, we main-
tain (index,value) pairs only in primary memory and never persist
them to disk. For security, we never swap server memories to disk
(most Web servers avoid swapping as well for performance [3]).
There are several caveats, however. If the Web server runs in a
VMware ESX virtual machine, its memory might be swapped to
disk during memory reallocation from one VM to another; other
VMMs, like Xen, do not support memory sharing, so they never
swap a VM’s memory except during suspends and migrations. Thus,
Amazon EC2-powered Web servers are currently safe, since EC2
is based on Xen, and no suspensions and migrations are possible.
While our in-memory policy of dealing with residues is imperfect,
its deficiencies are counterbalanced by our use of secret sharing and
by the retroactive-attack model. It is unlikely that a large propor-
tion of key shares on disparate servers preserve residues for weeks
or months after the timeout. Pinning data in volatile memory does
cause all data to be lost when an Apache server is restarted. However,
threshold secret sharing helps mitigate such losses probabilistically.
Section 4.3 evaluates both security and availability.

Finally, since Tide relies on volunteer opt-in, we must ensure
that our system remains unobtrusive to the server’s general function-
ing. We therefore install harsh limits on the size of each index and
value, the maximum memory consumption, and the maximum time-
out. Standard rate-limiting mechanisms can also be used to limit the
amount of traffic serviced by our module. These limits are config-
urable on a per-Tide-module basis, and a single Apache server can
host multiple Tide instances, each with its own URL and configura-
tion. For example, the PGP administrator could launch a public Tide
module that responds to all requests for http://pgp.com/tide/
public and enforces a set of Draconian limits. At the same time, he
could instantiate a private Tide module for PGP’s employees, con-
figure it for the URL http://pgp.com/tide/internal, perform
.htaccess-based authentication, and impose more relaxed limits.

Integration with Cascade. Due to Cascade’s extensibility, inte-
gration of the Apache-based Tide system is trivial. We wrote a
151-line Cascade extension in Java for the Tide backend (see Fig-
ure 1) that simply relays puts and gets from the Cascade core to
the appropriate Tide Apache server. The server is directly deter-
mined from the share URI, which includes both the server’s URL
and the index within that server. To generate a new share URI (func-
tion generateUri in Figure 1(b)), the extension simply chooses a
random server URL from a database of known Tide servers and con-
catenates it with a random 256-bit index.

4.2 Deployment Options and Infiltration Defenses
We have identified three deployment options for Tide: (1) well-

known trusted servers, (2) private servers, and (3) a world-wide de-
ployment. We now discuss each option, focusing on ways to prevent
malicious infiltration in each case.

Well-Known Trusted Servers. The simplest deployment option
is for several well-known and trustworthy entities to embed Tide
modules into their Apache frontends. For example, we could imag-
ine that potential early adopters might include Web sites controlled
by privacy advocates (e.g., pgp.com), freedom-of-speech supporters
(e.g., rsf.org, eff.org), open-information supporters (e.g., kernel.org,
sourceforge.net, wikipedia.org), and academic institutions (e.g.,
cs.washington.edu). A list of such servers could be preconfigured
in Cascade or published in a manner similar to Tor directory servers.
As with Tor, a user must trust the list provider not to infiltrate the list
with malicious Web servers. That may be acceptable, particularly if
the user audits the list and selects only a subset of servers that he
or she most trusts (e.g., one might select only .edu domains). Such
an infiltration defense will not be effective against an attacker who
compromises individual trusted servers, however the use of secret
sharing provides some defense. Section 4.3 quantifies the percent-
age of servers that an attacker must infiltrate or compromise in order
to compromise Tide in a realistic deployment scenario.

Private Tide Servers. The communicants themselves – or their
employers – might also host Tide Web servers for the timely de-
struction of their communications. For example, when Alice sends
a self-destructing email from her account (alice@company1.com)
to Bob (bob@company2.com), the Cascade software on Alice’s com-
puter could automatically search for Tide servers at http://www.
company1.com/tide and http://www.company2.com/tide and,
if present, incorporate those Web servers into the secret-sharing hi-
erarchy. Similarly, groups of individuals can host private servers for
their friends; private servers are likely to be safe from malicious in-
filtration unless human engineering attacks are used.

World-Wide Deployment. While the preceding solutions can re-
sist infiltration, they exhibit little geographical diversity, scale poorly
with an increased user population, and may be heavyweight for users.
For example, imagine that all 500M Facebook users wanted to send
and receive self-destructing messages every 10 minutes; a small set
of well-known, heavily rate-limited Tide servers would likely not
scale to this task.

As a more scalable, lightweight, and exciting deployment oppor-
tunity, imagine a world where most Apache web servers (half of all
Web servers in the world [31]) have enabled the Tide module. In
this world, different VDOs created by a range of users would choose
different Apache servers on which to store their VDO key shares.
Users might even choose specific amounts of geographical diversity.
Such a deployment would be truly scalable. The biggest challenge
with world-wide deployments is the possibility of infiltration attacks.
As a defense, users might employ a PGP-like web-of-trust model in
order to incorporate new Tide servers into their databases. For exam-
ple, if Bob receives an email from Alice, and Bob trusts Alice, then
he might incorporate Alice’s list of trusted servers into his own list
of servers. We leave the full investigation of this solution for future
work.

Each deployment scenario has advantages and disadvantages. Cas-
cade’s compositional architecture allows them to be used individu-
ally and in combination. We note once again that for all preceding
cases, the use of threshold secret sharing provides resistance against
small numbers of server failures. Similarly, a user need not trust all
servers since no single server has sufficient knowledge to reconstruct

a decryption key. Finally, the VDO is never stored in Cascade or any
of the Tide key servers. We next evaluate the security, reliability,
and performance of our prototype Tide system in the context of the
first deployment model, the only scenario our current prototype fully
implements.

4.3 Evaluation
To evaluate our Tide prototype in a realistic global setting, we de-

ployed Tide-enabled Apache Web servers on 462 PlanetLab nodes.
These nodes are servers scattered all around the world and should
approximate a realistic deployment. The goal of our study was to
quantify these tradeoffs: (1) VDO availability, (2) VDO security,
and (3) VDO operation performance. We examine availability in the
context of server crashes or reboots. We derive secret sharing pa-
rameters that guarantee VDO availability throughout their lifetime.
And we study VDO security when some of the servers are compro-
mised. Finally, we evaluate the performance of VDO encapsulation
and decapsulation operations on globally distributed Tide servers.

In the experiments, a VDO’s encryption key, K, is split into N
shares, each of which is stored at a randomly chosen Tide Planet-
lab node. The critical parameter of the secret sharing scheme is the
threshold ratio, which determines the percentage of the N shares that
are required to decapsulate the VDO. We use interchangeably the
terms “threshold ratio” and “M : N” ratio, where M out of N shares
are required for decryption. For example, if 40 out of 50 shares are
required, the threshold ratio is 80%.

VDO Availability. In the absence of real Web server uptime and re-
boot data, we leveraged the uptime information obtained from our
462 Planetlab servers.7 To estimate VDO availability, we simu-
late VDOs under various numbers of shares and threshold ratios and
compute the probability that any given VDO would remain available
until its timeout, given crashes and reboots.

Server churn is typically small (e.g., the median node lifetime in
our Planetlab trace is 59 days). Therefore, it is not difficult to achieve
good availability guarantees for VDOs with timeouts of up to a week.
In particular, for most values of N (N ≥ 5), we can identify a range
of threshold ratios that ensure VDO availability with high probabil-
ity. However, our goal is to find the ratio that provides the optimal
tradeoff between security and availability. Higher ratios provide bet-
ter security (an attacker must infiltrate a larger number of servers)
but result in lower availability (a smaller number of failures makes
the VDO unavailable).

Figure 2(a) graphs the maximum threshold ratio (M : N) neces-
sary to guarantee VDO availability with a probability > 0.99999 for
various numbers of shares and three timeouts (8 hours, 2 days, and 1
week). For an 8-hour timeout (the Cascade default), scattering shares
across 30 servers yields a maximum threshold ratio of 90%; i.e., with
very high confidence, at least 90% of those 30 servers will remain
up during the VDO’s 8-hour lifetime. However, for larger timeouts,
such as one week, the required threshold ratios are much lower. In
this case, again with 30 shares, the maximum ratio Tide can support
is around 60% (i.e., requiring more than 18 of the 30 shares to recon-
struct the VDO or risks losing the VDO prematurely). The reason
is intuitive: during one week, there is a higher chance that servers
will have rebooted or crashed than during any 8-hour period, and we
must therefore adjust the secret sharing threshold ratio to account for
that.

VDO Security. We evaluate security in the context of an adversary
who controls a fraction f of the Tide servers. The adversary can
achieve control either by infiltrating into or compromising some of

7We believe that our approach is conservative and that our results likely un-
derestimate VDO availability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 T
hr

es
ho

ld
 R

at
io

 M
:N

 T

o
E

ns
ur

e
A

va
ila

bi
lit

y

Number of Shares (N)

Timeout = 8h
Timeout = 2 days
Timeout = 1 week

(a) Availability.

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100

P
ro

ba
bi

lit
y

of
 V

D
O

 C
om

pr
om

is
e

Percent of Compromised Servers

N=5
N=10
N=30
N=60
N=90

(b) Security.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Shares N
(Use Max M:N for Availability)

Encapsulation
Decapsulation

(c) Performance.

Figure 2: Evaluation of Planetlab Tide Deployment. (a) Maximum threshold ratio required to ensure VDO availability with probability > 0.99999 for
increasing number of shares and various timeouts. (b) VDO capture probability with percentage of compromised servers, for various numbers of shares. (c)
Encapsulation and decapsulation times with the number of shares. In (b) and (c), for each number of shares we use the maximum threshold ratio for 8-h
availability.

the Web servers in a non-targeted precomputation attack, or by com-
promising the specific Web servers that used to store key shares for
a specific VDO in a post-timeout targeted attack.

Given that VDO shares are placed at random on the servers, cap-
turing VDOs is probabilistic. To assess the probability that an at-
tacker captures a VDO, we use a simple combinatorial model that
takes f and the VDO parameters (N, threshold ratio M : N) as in-
puts. Figure 2(b) shows the probability of VDO compromise as the
fraction of compromised servers increases for various numbers of
shares. For each value of N, we use the maximum allowable thresh-
old ratio M : N to ensure availability for the 8-hour default Cascade
timeout. Using N = 30 again as an example, we see that an attacker
who has compromised 80% of those servers (24 servers) will capture
only 15% of the VDOs given the 90% threshold ratio (Figure 2(b),
third curve from the left). Hence, in the context of a real-world de-
ployment like our Planetlab Tide experimental setup, we conclude
that using N = 30 shares and a threshold ratio of 90% provides both
good availability for 8-hour timeouts and good security.

VDO Operation Performance. We evaluate Tide performance by
measuring encapsulation and decapsulation times against our Plan-
etLab deployment. Each encapsulation/decapsulation involves re-
quests to N servers in parallel and we performed 10,000 operations
of each type. Figure 2(c) shows the encapsulation and decapsula-
tion runtimes for various numbers of shares (N); for each value of N,
we again use the maximum threshold that ensures VDO availability
for 8 hours. As the number of shares increases, VDO encapsula-
tion times increase close to linearly while VDO decapsulation times
quickly level off. This is because encapsulation needs to await re-
sponses from all N servers, while decapsulation waits only for the
fastest M shares to arrive.

Overall, encapsulation and decapsulation times remain under 1.3s
and 600ms, respectively. In the case of the recommended parameters
for our Planetlab deployment, using N = 30 shares and a threshold
ratio of 90% leads to 484ms decapsulation times and 820ms encap-
sulation times. As we demonstrated in our original Vanish paper,
much of the encapsulation time can be hidden from users via sim-
ple prepush mechanisms, which proactively split random encryption
keys and store their shares in preparation for a user’s encapsulation
request [24]. Similarly, decapsulation times can be hidden via simple
prefetch mechanisms.

4.4 Summary
Tide is a novel key-storage backend that leverages the advantages

of both distributed and centralized key-storage systems. We have
implemented Tide as a simple, lightweight Apache-based Cascade

module and deployed and measured it on PlanetLab. Our measure-
ments demonstrate the viability of this approach in real-world set-
tings.

5. STRENGTHENING A DEPLOYED DHT
As noted, the properties of communal DHTs make them tempting

components in our composable architecture. Yet it is precisely these
properties that also make DHTs vulnerable to Sybil data-harvesting
attacks. An attacker who joins the DHT with enough nodes can po-
tentially harvest most or all of the data stored in the DHT. This weak-
ness was recently shown to be a serious concern for Vanish running
on the Vuze DHT [49].

This section examines simple, practical measures that can signifi-
cantly strengthen DHTs in the face of Sybil data-harvesting attacks.
We deployed and experimentally evaluated these new defenses in
Vuze. Our results show that they can raise the cost of a harvesting
continuous attack on Vuze by three orders of magnitude. To the best
of our knowledge, defenses against such attacks have never been de-
ployed and evaluated experimentally in a large, live DHT at scale.

This section’s contribution is the design, deployment, and measurement-
based evaluation of practical DHT defenses to Sybil data-harvesting
attacks in the live, million-node Vuze DHT. The results of our work
are much broader than Vuze. Relative to other contemporary DHTs,
Vuze is comparatively small, e.g., approximately one million nodes
compared to over five million for the uTorrent DHT.8 We postulate
that our defenses would be even more potent if applied to larger
DHTs.

Finally, we recognize that other attacks could be mounted against
deployed DHTs. Our goal, however, is to focus on a particular attack
– the Sybil data-harvesting attack – and advance the state of the art
in understanding and defending against this attack from a practical,
measurement-driven perspective.

5.1 The Data-Harvesting Attack
The data-harvesting attack is an untargeted precomputation-phase

attack that aims at capturing as many key shares from the DHT as
possible under the assumption that those key shares might be useful
in decapsulating (currently unknown) VDOs in the future. Two as-
pects of the original Vuze design made it particularly vulnerable to
data-harvesting attacks.

1. Overly provisioned replication. The Vuze design ensures data
availability in the face of churn in two ways. First, when a
new node joins the DHT, its neighbors quickly push copies of

8Estimation is based on measurements from a uTorrent plugin.

all their contents to it (called push-on-join replication). This
allows a malicious node to obtain all the data in its ID-space
vicinity within a few minutes. Second, every node replicates
each of its values to its 19 closest neighbors every 30 minutes.
This replication level is a large security loophole and, as we
will show, is unnecessary for availability.

2. Lack of protection against Sybil attacks. A node’s location in
the Vuze DHT (viz., its identity) is determined as a function of
its IP address and port. In the Vuze design, a single physical
machine can fabricate up to 64K identities (for a given IP ad-
dress), which gives it huge freedom to place itself in the DHT.
Restricting this ability is crucial to defending against Sybil at-
tacks.

In an example scenario, the adversary infiltrates the original Vuze
DHT with a large number of nodes (Sybils), places them at dis-
tinct locations in the DHT (i.e., assumes different IDs), and archives
all of the shares that the nodes receive. The Clearview paper [49]
showed that an adversary can mount this attack using a small num-
ber of physical machines, each hosting a large number of Sybils that
communicate through distinct ports. Each Sybil remains at a DHT
location only for a short period of time, collects data replicated by
the nearby nodes, and then hops to a different location to repeat the
process.9 Because self-destructing data is intended to protect against
retroactive attacks, a data-harvesting attack must be performed con-
tinuously – 24 hours a day, 365 days a year – since the attacker lacks
a-priori knowledge of what shares it will need in the future.

5.2 Increasing Security against Sybil
Data-Harvesting Attacks

Guided by the above observations, we modified Vuze’s design as
follows:

1. Limit data dissemination by altering the replication algorithm
and drastically tuning its parameters to significantly increase
security while preserving availability.

2. Limit DHT ID fabrication by imposing harsh limits on the set
of IDs that can be fabricated from one physical machine and
from various network IP prefixes (e.g., from within a corpora-
tion’s or other organization’s network).

Table 1 summarizes our defenses and their intended effects. We
describe these defenses in detail below, but we foreshadow our re-
sults with this high-level summary.

1. Defenses significantly increase attack costs. Our modifica-
tions increase the cost of mounting a data-harvesting attack
by over three orders of magnitude. For instance, if the attack
were to be performed from an EC2-priced cloud computing
infrastructure, the attacker would have to invest $7M/year as
opposed to the $5K/year required to compromise Vuze prior
to our modifications.

2. Data-harvesting becomes infeasible for most attackers. Our
modifications require the attacker to exhibit high levels of IP-
prefix diversity, such as control over 24 distinct /16 IP address
blocks. This makes the data-harvesting attack impractical for
all but a few multi-national companies or ISPs.

3. Defenses have little or no negative impact on the DHT. We
show that our changes have a negligible impact on system
properties such as availability and DHT size. In fact, some
of our measures (e.g., disabling push-on-join and reducing
replication) lower DHT load. Our defenses are also simple
and practical; they were implemented by one developer in two
days and ≈ 1,500 lines of code.

9The hopping aspect is an innovation of the Clearview paper along with their
efficient Sybil infrastructure.

While our defenses are specifically designed to frustrate data-harvesting
attacks, some of them may have wider applicability. In particular,
our limited ID-fabrication scheme may be valuable for limiting the
impact of other Sybil-driven attacks, such as routing attacks [39].
By being the first live DHT to deploy these defenses, we also hope
that our hardened Vuze deployment will become a testbed for other
researchers seeking to study DHT security at scale.

5.2.1 Limiting Data Dissemination
To limit data dissemination, we alter Vuze’s replication mecha-

nism in three ways. First and most obvious, we disable push-on-
join-replication, which allowed an attacker to join with an extremely
low number of simultaneous nodes and still capture a majority of the
shares during an 8-hour period [49].

Second, we designed and deployed a new replication algorithm,
called conditional replication. Conditional replication follows four
principles: replicate only when needed, replicate only by the amount
needed, ensure a minimum time between consecutive replications,
and allow some data loss. The first two principles avoid creating a
new replica unless the number of replicas has dropped below a spec-
ified threshold. The third principle lets us protect against attacks
where colluding nodes might attempt to force a node into replicating
prematurely (a variant of the cuddling attack described Clearview [49]).
Finally, Cascade tolerates some data loss and prefers it to
over-replication.

With conditional replication, a Vuze node considers replicating a
value only when a specified minimum replication interval has passed
since the value was last replicated or stored. More important, a node
first checks to see how many replicas exist for the value before repli-
cating. If the number of existing replicas is at or above a specified
replication factor, no replication is performed; otherwise, the node
bumps the number of value replicas back to the replication factor. We
were careful to implement the replica survey so that no new attacks
are exposed (e.g., during the replica survey, neither the surveying
node nor the responding node reveals full indexes of stored values).

Our final change to Vuze’s replication consists of a measurement-
driven configuration of replication parameters based on real churn
conditions. We stress that this is not a mere fine-tuning of param-
eters. Rather, we show that today’s default replication parameters
grossly over-estimate the churn in the Vuze DHT.10 For example, a
coarse replication interval of 4 hours and a small replication factor
of 5 are sufficient. Compared to the Vuze default of 30 minute, 20-
way replication, these modifications represent dramatic changes to
the Vuze replication mechanism.

5.2.2 Limiting DHT ID Fabrication
Our next defense seeks to limit an attacker’s ability to infiltrate

the DHT at very large scale. Many techniques for this have been
proposed in the literature and are reviewed in Section 6, e.g., [9, 21,
28, 50]. As previously noted, the Vuze design allowed an attacker to
create large numbers of Vuze virtual nodes (Sybils) on a single IP ad-
dress: one node for every allocatable port, or close to 64K nodes/IP.
To limit the number of nodes that an attacker can emulate, we intro-
duce a new lightweight, yet effective formula for computing DHT
IDs. The revised node ID calculation caps the number of nodes that
an attacker with limited IP diversification can create in a DHT. Pre-
vious work has proposed relying on IP diversity to detect routing
attacks [23]. However to the best of our knowledge no one has in-
corporated IP diversity requirements in DHT ID calculations.

In Vuze and many other DHTs, a joining node’s ID is generated by
computing the SHA1 hash of the node’s publicly visible address (IP)
and port number (P), i.e., H(IP,P) = SHA1(IP || P), where || is the

10Results from two-year-old studies also suggest relatively low churn [22].

Defense Effect Status
Disable on-join-replication Limits data dissemination Deployed, used by all Vuze apps
Conditional replication Limits data dissemination Deployed, used by Cascade
Reduce replication factor (3x impact) Limits data dissemination Deployed, used by Cascade
Increase min. replication interval (80x impact) Limits data dissemination Deployed, used by Cascade
Prefix-based ID calculation Raises bar for Sybil Implemented, to be deployed and

enforced in future release∗
NAT traversal (2x impact on direct puts) Raises bar for Sybil Implemented, not deployed
Port to larger DHTs (up to 6x impact) Raises bar for Sybil Not implemented

Table 1: Vuze Data-Harvesting Defenses, Effects, and Deployment Status. ∗We delayed deploying the prefix defense because it would prevent
us from conducting the large-scale attacks needed for measurements in this section. We intend to deploy it in the near future.

bitstring concatenation. One can restrict to k the number of identi-
ties that a given node can utilize by using the modified hash function,
H(IP,P) = SHA1(IP || (P%k)), where % denotes the modulus op-
eration. A node can generate at most k distinct DHT identities by
using different ports from the same IP address.

We modify this hash function to also limit the number of nodes
that can participate from a given IP prefix. Let IP[1], . . . , IP[4] be
the first through fourth bytes of an IP address, with IP[1] being the
most significant (e.g., 128 in the case of the IP 128.18.15.3). The
following function generates IDs for nodes joining the DHT and de-
termines their “locations” in the DHT:

H(IP,P) = SHA1(IP[1] || (IP[2] || (IP[3] || (IP[4] || (P % k4))
% k3) % k2) %k1)

This function H(·) limits an IP to at most k4 identities and also
caps the number of identities that can be generated by /8, /16, and
/24 prefixes to k1, k2, and k3, respectively. As a concrete example,
the University of Washington (UW) uniquely controls a 16-bit IP
prefix (128.208) and can generate IP addresses 128.208.0.0 through
128.208.255.255.11 UW can therefore create up to 64K unique IP
addresses that could be deployed in a Vuze Sybil attack if it were
malicious. However, by setting k2 to 2K, for example, we reduce
by a factor of 32 the number of DHT positions that UW (and all
other /16 owners) can occupy in the DHT – from 64K positions to
2K positions. If a successful Sybil attack requires placement at, say,
64K positions, then UW would need to co-opt at least another thirty-
one /16 networks to collaborate in the attack. Moreover, assuming
that we also set k4 = 4 nodes, a user or hacker who controls one or a
few IP addresses in each /16 would not be able to mount the attack.
Rather, an attacker must either control the routers of all thirty-two
/16 networks or 500 IP addresses in each /16 network. This would
be a formidable task for UW.12

There are two issues with our scheme. First, this technique pre-
vents some nodes from operating as full participants in the DHT,
e.g., only k4 nodes could fully participate from behind a NAT. A
node that cannot participate will not store values on behalf of other
DHT nodes and will not be reached by others’ lookups. However, it
can still operate as a DHT client, i.e., the node can still perform its
own stores and lookups. Such nodes can use BitTorrent swarms and
store or read Cascade shares.13 Second, a potential negative effect
of our IP-based ID limitation is the possible reduction of the DHT’s
size. In particular, if some nodes were prevented from participating
in the DHT’s maintenance traffic (e.g., storage, replications, etc.),
then the DHT would appear smaller than it actually is. We evaluate
this effect in detail in Section 5.3.2.

11While others can spoof UW’s IP addresses, spoofing has no value for a data-
harvesting attack, because the attacker would not receive the return packets
with data values. Route hijacking is also possible, though continuously hi-
jacking a large number of routes for an extended period of time (years) poses
an unprecedented challenge.

12We believe that we can be equally as effective in filtering in the large, flat
IPv6 address space, however a detailed discussion is beyond the scope of this
paper.

13This distinction between client nodes and full-participant nodes is part of
the design in some DHTs. In OpenDHT, only some select nodes are allowed
to participate fully, while others can be clients of the system.

5.3 Detailed Evaluation
We performed extensive experiments against the 1M-node Vuze

DHT to evaluate the revised system’s security against Sybil data-
harvesting. To the best of our knowledge, this is the first study
of deployed security defenses in a DHT at scale. We focus here
on a small set of issues: (1) the security/availability tradeoff for
conditional replication, (2) the impact of conditional replication on
data-harvesting attacks, and (3) the effect of IP-prefix-based admis-
sion control. We were unable to experiment with the original push-
on-join mechanism (which the Clearview paper is based upon) be-
cause Vuze has disabled that insecure mechanism altogether. While
our evaluation focuses on Vuze, our findings are broadly applicable
and could guide new architectures for even larger-scale DHTs (e.g.,
uTorrent, which has over 5M nodes).

To measure availability, we stored 1,000 values in the Vuze DHT
for each set of replication parameters. We attempted to retrieve the
values every 10 minutes for 16 hours (a typical timeout in Cascade).
To measure the effectiveness of a data-harvesting attack, we join the
Vuze DHT with nodes from various locations at UW and Amazon
EC2 (distributed over different /16s). We use a modified version of
the Clearview Sybil software [49] to create 1,000 DHT nodes per IP
and up to 12,000 nodes per /16 network.14 We ran a data-harvesting
attack with 10K, 25K, 50K, and 72K simultaneous attack nodes in
the Vuze DHT. The Sybil nodes hopped every replication period. We
experimented with multiple replication and hopping intervals (from
1 to 8 hours). We found that a replication interval of 4 hours provides
high levels of both availability and security. For each Clearview ex-
periment, we stored at least 9,000 values per replication factor.

5.3.1 Evaluating Conditional Replication
This section evaluates conditional replication, focusing on the se-

curity/availability tradeoff and the impact of conditional replication
on data harvesting attacks.

Availability Under Conditional Replication. Conditional replica-
tion seeks to limit data dissemination without hurting availability.
Figure 3(a) shows the effect of the replication factor on single-share
availability. We see that the availability of DHT values degrades
with time, but some of that loss is reclaimed by periodic (once in
4 hour) conditional replication events, as shown by the graph’s up-
spikes. With a replication factor of three, approximately 21% of the
values are permanently lost by 8 hours. However, at five replicas
and above, availability stays above 95% during the 16-hour interval.
These results confirm our assumption that the Vuze default replica-
tion policy is significantly over-engineered and over-provisioned for
real churn conditions.

Our use of threshold secret sharing is designed to withstand some
share loss. Figure 3(b), which shows VDO availability for 60 shares
and a threshold ratio of 85%, illustrates the thresholding effect of
secret sharing. VDO availability remains close to 1 when the ex-

14Our attack is more aggressive than the one used in Clearview [49].
Clearview benefits from push-on-join replication but avoids receiving direct
puts in an effort to limit incoming traffic. As we will show, direct puts
become more important to the attack due to our significantly increased repli-
cation interval. We therefore enabled our Sybils to receive direct puts.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

S
in

gl
e-

S
ha

re
 A

va
ila

bi
lit

y
(%

)

Time (h)

3 replicas
4 replicas
5 replicas
7 replicas
9 replicas

11 replicas
20 replicas

(a) Single-Share Availability.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

V
D

O
 A

va
ila

bi
lit

y
(%

)

Time (h)

3 replicas
4 replicas
5 replicas
7 replicas
9 replicas

11 replicas
20 replicas

(b) VDO Availability.

Figure 3: Availability Under Conditional Replication. (a) Availability of a single share for conditional replication with 4h replication interval and 3–11
replicas and for the default 20-way, every-30-minutes replication in Vuze. (b) Availability of a VDO under the above replication parameters and for 60 shares and
a threshold ratio of 85%.

pected availability of a single share exceeds 0.85, but it degrades
significantly for lower values. The graph demonstrates that using
five replicas and a minimum replication interval of 4 hours results in
near-perfect availability for our parameters.

The Data-Harvesting Attack Under Conditional Replication. To
evaluate the impact of conditional replication on data-harvesting at-
tacks, we joined the DHT using a large number of Sybil attack nodes,
with each performing the hopping attack every replication interval.
Figure 4(a) shows the probability of capturing individual DHT val-
ues with 25,000 simultaneous attack nodes as a function of val-
ues’ ages (i.e., the time since the values were stored in the DHT).
Lines are shown for different replication factors, all using a 4-hour
minimal-replication interval. The figure quantifies the probability of
the two types of captures: those due to direct puts (the points at
age = 0) and those due to replication (the points around age = 4, 8,
and 12 hours). Conditional replication significantly reduces the at-
tacker’s share capture: the top curve shows the original Vuze 20-way
replication policy, which results in nearly 100% capture at 8 hours,
compared to 40% capture at 8 hours for conditional replication with
a replication factor of 5.

Conditional replication changes the nature of the attack. First,
our 4 hour minimal-replication interval severely limits the number
of chances that an attacker has to capture a share during its lifetime.
This implies that the attacker must hop less frequently and instead
maintain a much larger continuous presence in the DHT. Second,
the proportion of shares captured during any individual replication
event is much smaller than the proportion of shares captured during
the initial direct puts. This is partly due to a large proportion of Vuze
nodes being firewalled, which makes the DHT seem much smaller
from a direct put perspective (see Section 5.3.3 for details) and also
partly due to conditional replication pushing shares to fewer nodes
than its replication factor. For instance, if only two of five replicas
have left the system since the last replication event, then conditional
replication makes only two new replicas.

Compromising a VDO is much more difficult than compromising
a single DHT value. Figure 4(b) illustrates the dramatic threshold-
ing effect of secret sharing on VDO security. For 2 to 12 replicas,
it shows the probability of the attacker capturing a given VDO (with
N = 60 shares) using 25,000 simultaneous attack nodes hopping ev-
ery 4 hours. For each of the replication factors, we use the maximum
threshold ratio allowable to ensure VDO availability for the default
8h timeout. The graph’s V shape illustrates an interesting tradeoff
and the presence of an optimum replication factor. For small repli-
cation factors (e.g., two replicas), churn greatly affects the availabil-
ity and persistence of the shares, requiring us to use extremely low
threshold ratios. This results in poor security. From the graph, the
optimal choice for replication factor is clearly five, which provides

a probability of VDO compromise of approximately 10−10 with a
threshold ratio of 0.85. As the replication factor increases above
five, the small increase in allowable threshold ratio does not offset
the increase in per-share capture that we saw in Figure 4(a), result-
ing again in poor security.

Figure 4(c) shows the probability of VDO compromise for an in-
creasingly powerful attacker, measured by the number of simultane-
ous nodes it maintains in the DHT at all times. The graph compares
conditional replication under our recommended parameters with the
default Vuze 20-way replication policy. For conditional replication,
we show results for two different timeouts: 8h (the default in Cas-
cade) and 16h. Points on the graph indicate results directly obtained
from our experiments with various simultaneous attacker nodes, while
lines indicate the predictions of a simple probabilistic model seeded
with the measurements from the 10,000-simultaneous-node experi-
ment.

With conditional replication and VDO timeouts between 8 and 16
hours, attackers would require from 50,000 to 70,000 DHT nodes
(Sybils) continuously in the DHT (365 days/year) to have a 10%
chance of capturing any given VDO. Conservatively, we set the “safety”
threshold (shown on the graph) to a much lower VDO compromise
probability: 10−3. Although an attacker will have little incentive
to operate at such low capture probabilities, we conclude that for
the timeouts that Cascade is designed for, an attacker needs at least
50,000 simultaneous nodes that maintain a continuous presence in
the DHT. We integrate these results with our Sybil-restriction ID cal-
culation scheme to assess the overall security of Cascade in Sec-
tion 5.4.

Overall, the graph illustrates the radical improvement achievable
by conditional replication relative to the default Vuze replication
policy. For the default Vuze policy (after removing push-on-join
replication), an attacker with only 5,000 simultaneous nodes can
compromise nearly 99% of the VDOs within 8 hours. In compar-
ison, conditional replication leads to an order-of-magnitude increase
in the number of nodes an attacker must maintain in the DHT at
all times. The improvement is even more dramatic if one considers
push-on-join replication, which allowed an attacker to hop every few
minutes. As we will discuss in Section 5.4, these increases lead to
a several order-of-magnitude increase in the cost of an EC2-based
data-harvesting attack relative to the original Vuze.

5.3.2 Evaluating Prefix-Based ID Calculation
We next estimate the extent to which our revised node ID calcu-

lation can limit Sybil attacks. As noted in Section 5.2.2, the goal of
our ID calculation is to significantly reduce the ability of a particu-
lar organization to place Sybil nodes in the DHT. However, limiting
DHT identity fabrication could reduce the number of nodes that can

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16P
ro

b.
 S

in
gl

e-
S

ha
re

 Is
 C

ap
tu

re
d

B
y

T
hi

s
A

ge

Value Age (h)

3 replicas
5 replicas
7 replicas
9 replicas

11 replicas
Vuze Default

(a) Share Compromise vs. Time.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

2 4 6 8 10 12 14 16 18Default

P
ro

b.
 o

f V
D

O
 C

om
pr

om
is

e
(N

=
60

)

Replicas (Use Max. M:N For Availability)

(b) VDO Compromise vs. Replicas.

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

P
ro

b.
 o

f V
D

O
 C

om
pr

om
is

e
(N

=
60

)
(L

og
sc

al
e)

Number of Simultaneous Sybils

"Safety" threshold

Default replication, timeout=8h
Cond. replication, timeout=16h
Cond. replication, timeout=8h

(c) Compromise vs. Simultaneous Nodes.
Figure 4: The Data-Harvesting Attack Under Conditional Replication. (a) Single-share compromise probability over time by attacker with 25K si-
multaneous nodes, conditional replication with 4-h minimum replication interval, replication factors 3–11. Points labeled “Vuze Default” correspond to 20-way,
every-30-minute replication. (b) VDO compromise probability with the number of replicas, 60 shares; we use the maximum threshold ratios that guarantees
VDO availability for 8h. (c) VDO compromise probability with increased attackers.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

P
er

ce
nt

 o
f D

H
T

 N
od

es
 In

cl
ud

ed
 In

P

re
fix

es
 w

ith
 <

=
 N

 n
od

es

Number of Nodes (N) - logscale

/16 prefixes with 910 or fewer nodes
account for 95% of the DHT nodes

/32 prefix
/24 prefix
/16 prefix
/8 prefix

Figure 5: Evaluation of IP-Prefix-Based ID Calculation. Percentage of
DHT nodes covered by prefixes (CDF). Remarkably, for /16s, prefixes with 910
nodes or fewer account for 95% of the DHT size.

participate in the DHT. If the number of DHT participants is reduced
substantially, there would be too few nodes to share the storage load;
as a result, the DHT could suffer and be easier to attack.

To examine this benefit-cost tradeoff, we collected data on DHT
membership from a Vuze version server to which all nodes run-
ning the default Vuze application report. In a 24h period, we saw
1,842,628 nodes (IP-port pairs) that originated from 1,724,363 dis-
tinct IPs. We then quantified the change in DHT size for different
prefix-based ID limiting parameters.

For the standard IP prefix lengths (/8, /16, and /24), Figure 5 shows
the percentage of DHT nodes (y axis) that would be included by pre-
fixes with a given maximum node limit (x axis). (For the /32-prefix
line, we show the percent of DHT nodes that would be included by
IPs with at most a certain number of ports/IDs.) The graph shows
that for all prefix lengths except /8, the presence in the DHT of any
specific prefix is surprisingly small. For example, /16 prefixes with
910 or fewer nodes account for 95% of the nodes in our trace. Sim-
ilarly, /24 prefixes with 10 or fewer nodes and IPs with 2 or fewer
ports each account for 95% of the DHT nodes.

These results suggest that harsh limits can be imposed on the num-
ber of nodes that come from each prefix. We choose our limits con-
servatively based on these results as follows: k4 = 5 (at most 5 IDs
from any IP); k3 = 50 (at most 50 IDs from any /24 prefix); k2 =
2,500 (at most 2,500 IDs from any /16 prefix); and k1 = unlimited
(an unlimited number of IDs from any /8 prefix).15 Overall, choos-
ing these values reduces the number of distinct IP-Port pairs in our
trace from 1,842,628 to 1,575,786 distinct IDs, a reduction in DHT
size of only 15% (which we believe is an overestimate due to the 24-
hour-long trace). Thus, harsh per-prefix restrictions will have only a

15Limits on /8s are also possible and result in only slightly larger DHT size
reduction. However, given that the threat from the few companies owning /8s
today is remote, we decided not to impose such limits at this time.

marginal impact on DHT performance, but will significantly toughen
the DHT’s ability to withstand Sybil attacks.16

5.3.3 Further DHT Improvements: Size Matters
The size of a DHT can itself be a defense against data harvesting.

In general, the larger the DHT, the more nodes and other resources
(IPs, storage, etc.) required by the adversary. We describe two size-
related issues.

First, the existence of firewalls and NAT devices has an impact
on a DHT’s apparent size. Using measurements collected by Vuze
servers, we know that about half of the participating nodes sit be-
hind firewalls or NATs. While Vuze implements a NAT traversal
mechanism, it applies it only to BitTorrent traffic and not to DHT
traffic. The absence of NAT traversal does not prevent the neighbors
of a firewalled node from reaching it; the node pings its neighbors
periodically, opening up holes in its firewall for two-way communi-
cation with its neighbors. However, nodes that are far away in ID
space (i.e., most nodes in the DHT) will find the firewalled node in-
accessible and drop it from their routing tables. As a result, the DHT
“looks” half its actual size from a direct-put perspective, but will
replicate data to all of its nodes during periodic replication. For the
attacker, this means that direct puts are twice as profitable as they
should be. For this reason, we believe that enabling NAT traversal
would be another effective defense against data-harvesting.

More important, we note that all analysis presented here is based
on Vuze, whose size is estimated to be around 1M simultaneously
connected nodes [22]. Recently, other DHT systems have grown
enormously in size, e.g., measurements estimate the uTorrent DHT

16We delayed deployment of the IP prefix restriction because it would have
prevented us from mounting a large-scale attack, which was required for
many of the measurements presented in this section. We have implemented
and intend to deploy this defense in the near future.

to be over 5M nodes. Assuming that our availability and security re-
sults scale nearly linearly with DHT size (an assumption which may
not be completely accurate, but which is not critical to our over-
all discussion), an attacker would require approximately 250,000 si-
multaneous DHT nodes (Sybils) running year-round to compromise
a Cascade-like system on uTorrent.

5.4 Summary and Synthesis
This section presented and evaluated a set of simple, strong de-

fensive measures that a DHT can deploy to increase its resistance
to data-harvesting attacks. The combined strategies of limiting data
dissemination (through careful replication design) and limiting DHT
ID fabrication (through an ID admission control mechanism) raise
the bar for a DHT attacker by many orders of magnitude. In addi-
tion, the size of today’s largest DHTs adds another 5-fold increase in
attack complexity compared to Vuze.

We acknowledge that DHTs are open, complex structures and do
not argue that they are invulnerable, especially in the context of other
known or unknown attacks (described in Section 6). However, our
results suggest that simple defenses work. Attackers have a number
of deployment options available. First, they can rent machines from
a cloud provider, such as Amazon EC2 or Rackspace. Second, they
might own the machines used for the attack. In either case, one ma-
jor roadblock will be the limited number of IP address spaces they
can control. In particular, our results show that attackers need to
fabricate in total at least 60,000 distinct DHT IDs in order to have
even a slim chance of capturing any given VDO (10−3) in Vuze; this
number increases significantly for uTorrent. Under our IP-limiting
ID calculation policy, this means that attackers must have access to
12,000 IPs scattered in 1,200 distinct /24 IP prefixes and in 24 dis-
tinct /16 IP prefixes. Few attackers today have access to such re-
sources without contracting with major international companies or
ISPs. As a relevant data point, as of Feb. 2010, Amazon EC2 con-
trols IP subblocks from only 9 distinct /16s [2], making the evaluated
attack on EC2 impossible.

Also worth considering is the real dollar cost of running or rent-
ing resources, including computing, power, and networking. As
shown in Section 5.3.1, attackers need to maintain 50,000 simul-
taneous nodes continuously in the DHT (in addition to having ac-
cess to 60,000 distinct DHT IDs); hence, they must pay for 10,000
rented machines at all times (365 days a year, 24 hours a day) since
each rented machine can generate at most five distinct DHT IDs
(k4 = 5). As a point of reference, if rental happens from an in-
frastructure provider with EC2-like pricing (8.5c/h/machine), then
attackers’ cost for the evaluated attack would exceed $7M/year. In
contrast, the attack cost against the original Vuze was estimated at
$5,000/year [49]. Our simple and practical measures result in a three
order-of-magnitude increase in the cost of the estimated attack.

In the case of illegal rentals, such as botnets, the yearly cost will
be much lower but may remain relevant given the minuscule yield
one could expect from an attack against a single DHT key-storage
system in Cascade. Attackers need to mount a reliable, continuous
(24x365) attack in the hope of gaining the opportunity to blackmail
or trap some individual – at the time unknown – in the future. This
may well be beyond the capability of today’s botnets, which are typ-
ically used for short-term, transient attacks (such as spam or DDOS
attacks), and where the failure or loss of some of the botnet nodes
during attack is irrelevant to the outcome. In addition, compared to
using botnets for spam, the business model here is at best unclear.
Finally, we note that attacking a DHT is not beyond the capability
of a government, although again the value of this attack is unclear in
the Cascade composition environment.

6. RELATED WORK
Protecting the Privacy of Past Data. Self-destructing data systems
have been proposed before. Examples include the Ephemerizer fam-
ily of solutions [30, 34], revocable backup systems [8], commercial
products that support self-destructing emails [15], and Vanish [24].
Except for Vanish, all these systems require trust in one or a small
set of dedicated centralized key-storage services. In contrast, Vanish
shuns trust in any single centralized service and instead scatters key
pieces over a decentralized P2P DHT for temporary storage. In this
paper, we uniquely observe that these two approaches address com-
plementary threats. We propose Cascade, an extensible architecture
that allows combinations of these and other key-storage systems to
deflect the union of these threats.

We also propose the Apache-based Tide key store, which strikes a
balance between decentralized, open-membership P2P systems and
centralized, closed-membership services. Tide is related to hyper-
encryption, an information-theoretically secure encryption scheme
proposed by Rabin [35], which leverages a decentralized collection
of dedicated machines; these machines continuously serve random
pages of data, where each page can be read at most twice. Tide
differs from hyper-encryption in its goals (self-destructing data as
opposed to information-theoretic secure communications between
two parties sharing a secret key) and complexity (e.g., a recent im-
plementation of hyper-encryption [26] describes a process through
which two communicants must interactively reconcile which server
pages they accessed, whereas Tide’s use of threshold secret sharing
creates no such need). Finally, Tide proposes and evaluates a con-
crete and lightweight implementation that can take advantage of the
wide-spread deployment of Apache Web servers to facilitate adop-
tion. Tide is thus a valuable component in a composite Cascade
self-destructing data system.

The goals of self-destructing data systems share commonalities
with many other cryptographic techniques, including forward-secure [7,
12], key-insulated [6, 18], intrusion-resilient [16, 17], and exposure-
resilient [11, 19, 20] cryptography. Like self-destructing data sys-
tems, all of these techniques aim at ensuring confidentiality of past
data in front of present attacks. They differ in their models and
assumptions. Forward-secure and exposure-resilient schemes as-
sume that an attacker has zero or partial visibility into past cryp-
tographic state; our model places no such restrictions. Caching,
backup archives, and the threat of legal actions might allow the at-
tacker to either view past cryptographic state and passphrases, or
force the user to decrypt his data. Key-insulated and intrusion-resilient
systems also introduce new trusted agents or secure hardware, which
we seek to avoid. Whereas self-destructing data systems target data
that may be accessed asynchronously until the timeout, ephemeral
key exchanges and recent advances like OTR [1, 10] are suited for
online, interactive communications.

The threat model of self-destructing data systems may seem sim-
ilar to that of DRM systems. However, the two must not be con-
founded: self-destructing data systems assume that end-users who
have access to a VDO during its lifetime are trusted, whereas DRM
systems target precisely untrusted users. This critical trust assump-
tion is realistic in the context of self-destructing data (a user sending
a sensitive email to another user will indeed trust that user not to save
a cleartext copy of the data). DRM and self-destructing data systems
should be thought of as orthogonal.

Security via Redundancy. The Cascade architecture observes that
the security of a self-destructing data system can be escalated by
combining two or more implementations of key-storage systems.
The advantages of composing multiple systems is well-known, dat-
ing back to at least N-version programming [4], and with clear use

cases within computer security, e.g., electronic voting [32]. Thresh-
old secret sharing [36], even by itself, has at its core the fundamen-
tal notion of distributing trust amongst multiple actors under the as-
sumption that some – though not all – of the actors may fail or be
untrustworthy. The advantages with multiple systems may be coun-
teracted if the different systems exhibit the same mistakes or weak-
nesses [27]. Cascade mitigates this concern by imposing only a small
generic interface (see the Cascade backend API in Section 3) and by
employing enormously different, often orthogonal implementations
of that interface, ranging from P2P DHTs to Apache Web servers.

DHT Attacks and Defenses. There has been a tremendous body of
work on malicious DHT attacks as well as defenses against them.
A comprehensive survey [39] describes most known attacks: black-
holing routing tables, partitioning DHTs, corrupting data, Eclipse
attacks, etc. Other works provide quantitative studies of the impact
of such attacks [40, 45] and propose defenses [13, 38, 29]. The pro-
posed defenses include mechanisms for securing routing table main-
tenance and message forwarding [13], robust lookups through a di-
verse set of nodes [14], techniques to prevent a particular region of
the keyspace from being hijacked by adversaries [38], and resource
allocation mechanisms to protect against DoS attacks [29]. Vuze cur-
rently employs a weak version of one of these defenses [14]; it uses
20-way path redundancy, which can protect against some forms of
routing attacks. Vuze lookups can be further strengthened by using
routes that maximize AS diversity [23].

The common theme in these attacks is that they are aimed at dis-
rupting the DHT’s functioning by degrading its performance, avail-
ability, or integrity. Such attacks are indeed the most relevant threats
for traditional applications deployed on DHTs, e.g., torrent tracking
and P2P file systems. While these attacks apply to DHT-based self-
destructing data systems as well, a more potent threat is to harvest
the data stored in the DHT without disrupting its operations. This pa-
per examines data harvesting attacks and provides effective defenses
against them. It is also worth noting that the data harvesting attack
examined in this paper is distinct from node crawling [41, 42, 43],
where measurement nodes infiltrate the DHT and perform repeated
random-index lookups to obtain comprehensive node membership
information. Data harvesting is fundamentally different from node
crawls as the target data is “hidden” within a gigantic address space
(e.g., its presence is not revealed by routing tables), and the attacker
has to rely on either direct puts or replication events to harvest the
data. Data-harvesting attacks have only recently been shown to be
feasible on deployed DHTs [49, 44]. To the best of our knowledge,
until this work, no defenses against such attacks have been deployed
and measured on large-scale, live DHTs.

Finally, our paper also contributes a simple yet surprisingly ef-
fective technique for limiting identity fabrication, also known as
the Sybil attack [21]. Many defenses have been proposed to com-
bat Sybil attacks. These include strong identities minted by a log-
ically centralized authority [21], computational puzzles and band-
width contributions to make peers prove that they are not Sybils [9],
and leveraging social networks [50, 28]. Unfortunately, none of
these defenses have been adopted by today’s DHTs like Vuze, in
part because no real need was perceived in the context of existing
applications, and in part because many of them were deemed too
complex or heavyweight. We instead propose simpler measures that
cap the number of DHT IDs that an attacker with limited IP diversi-
fication can create in a DHT. Our proposal relies on IP addresses as
weak identities and separates service nodes from client nodes, i.e.,
anyone can obtain service from a DHT (get or put values), but only
a limited number of clients from a given IP or prefix can serve as
DHT nodes.

7. CONCLUSIONS
This paper presented several contributions to the state of self-

destructing data systems. We described the Cascade architecture,
an extensible framework for integrating heterogeneous key-storage
systems. We presented Tide, an Apache-based key-storage system
that combines the advantages of DHTs, such as wide-scale distri-
bution, with advantages of centralized systems, such as resistance
to crawling attacks. And we presented our extensive experiments
with Vuze, demonstrating that a security-sensitive design can sig-
nificantly raise the bar for attackers of DHTs, particularly for Sybil
data-harvesting attacks. Overall, we believe that this work moves
practical self-destructing data systems much closer to reality.

8. REFERENCES

[1] C. Alexander and I. Goldberg. Improved user authentication in
off-the-record messaging. In WPES, 2007.

[2] Amazon.com. Announcement: Amazon EC2 public IP ranges. http://
developer.amazonwebservices.com/connect/ann.jspa?annID,
2010.

[3] Apache. Apache performance tuning.
http://httpd.apache.org/docs/2.0/misc/perf-tuning.html,
2009.

[4] A. Avizienis and L. Chen. On the implementation of N version
programming for software fault tolerance during program execution. In
Proc. of COMPSAC, 1977.

[5] BBC News. US mayor charged in SMS scandal.
http://news.bbc.co.uk/2/hi/americas/7311625.stm, 2008.

[6] M. Bellare and A. Palacio. Protecting against key exposure: Strongly
key-insulated encryption with optimal threshold. Applicable Algebra in
Engineering, Communication and Computing, 16(6), 2006.

[7] M. Bellare and B. Yee. Forward security in private key cryptography. In
M. Joye, editor, CT-RSA, 2003.

[8] D. Boneh and R. Lipton. A revocable backup system. In USENIX
Security, 1996.

[9] N. Borisov. Computational puzzles as Sybil defenses. In Proc. of the Intl.
Conference on Peer-to-Peer Computing, 2006.

[10] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication,
or, why not to use PGP. In WPES, 2004.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai.
Exposure-resilient functions and all-or-nothing transforms. In B. Preneel,
editor, EUROCRYPT 2000, 2000.

[12] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key
encryption scheme. In EUROCRYPT 2003, 2003.

[13] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
Secure routing for structured peer-to-peer overlay networks. In Proc. of
Symposium on Operating Systems Design and Implementation, 2002.

[14] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. J. Anderson.
Sybil-resistant DHT routing. In ESORICS, 2005.

[15] Disappearing Inc. Disappearing Inc. product page.
http://www.specimenbox.com/di/ab/hwdi.html, 1999.

[16] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung.
Intrusion-resilient public-key encryption. In CT-RSA, 2003.

[17] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. A generic
construction for intrusion-resilient public-key encryption. In T. Okamoto,
editor, CT-RSA, 2004.

[18] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key
cryptosystems. In EUROCRYPT 2002, 2002.

[19] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in
exposure-resilient cryptography. In EUROCRYPT 2001, volume 2045,
2001.

[20] Y. Dodis and M. Yung. Exposure-resilience for free: The case of
hierarchical ID-based encryption. In IEEE International Security In
Storage Workshop, 2002.

[21] J. R. Douceur. The Sybil attack. In Proc. of IPTPS, 2002.
[22] J. Falkner, M. Piatek, J. John, A. Krishnamurthy, and T. Anderson.

Profiling a million user DHT. In Proc. of IMC, 2007.
[23] M. J. Freedman and R. M. Tarzan. Tarzan: A peer-to-peer anonymizing

network layer. In Proc. ACM CCS, 2002.
[24] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing

data privacy with self-destructing data. In Proc. of Usenix Security, 2009.
[25] Google. Google defends against large-scale Chinese attacks. http:

//www.techcrunch.com/2010/01/12/google-china-attacks/,
2010.

[26] J. K. Juang. Practical implementation and analysis of hyper-encryption.
Master’s Thesis, 2009.

[27] J. C. Knight and N. G. Leveson. An experimental evaluation of the
assumption of independence in multiversion programming.
12(1):96–109, Jan. 1986.

[28] C. Lesniewski-Lass and M. F. Kaashoek. Whanaungatanga: Sybil-proof
distributed hash table. In USENIX Symposium on Networked Systems
Design and Implementation, 2010.

[29] P. Maniatis, T. Giuli, M. Roussopoulos, D. S. H. Rosenthal, and
M. Baker. Impeding attrition attacks in P2P systems. In Proc. of ACM
SIGOPS European workshop, 2004.

[30] S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A hybrid
PKI-IBC based ephemerizer system. In International Information
Security Conference, 2007.

[31] Netcraft. Web server survey.
http://news.netcraft.com/archives/2010/01/07/january_
2010_web_server_survey.html, 2009.

[32] P. G. Neumann. Security criteria for electronic voting. In National
Computer Security Conference, 1993.

[33] News 24. Think before you SMS. http://www.news24.com/News24/
Technology/News/0,,2-13-1443_1541201,00.html, 2004.

[34] R. Perlman. The Ephemerizer: Making data disappear. Journal of
Information System Security, 1(1), 2005.

[35] M. O. Rabin. Provably unbreakable hyper-encryption in the limited
access model. In IEEE Information Theory Workshop on Theory and
Practice in Information-Theoretic Security, 2005.

[36] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[37] R. Singel. Encrypted e-mail company Hushmail spills to feds. http://

blog.wired.com/27bstroke6/2007/11/encrypted-e-mai.html,
2007.

[38] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against
Eclipse attacks on overlay networks. In Proc. of ACM SIGOPS European
Workshop, 2004.

[39] E. Sit and R. Morris. Security considerations for peer-to-peer distributed
hash tables. In Proc. of IPTPS, 2002.

[40] M. Srivatsa and L. Liu. Vulnerabilities and security threats in structured
overlay networks: A quantitative analysis. In Proc. of Annual Computer
Security Applications Conference, 2004.

[41] M. Steiner and E. W. Biersack. Where is my Peer? Evaluation of the
Vivaldi Network Coordinate System in Azureus. In Proc. of Networking,
2009.

[42] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of KAD.
In Proc. of IMC, 2007.

[43] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer
Networks. In Proc. of IMC, 2006.

[44] D. Stutzbach, R. Rejaie, and Y. Guo. Large-scale monitoring of DHT
traffic. In Proc. of IPTPS, 2009.

[45] A. Tran, N. Hopper, and Y. Kim. Hashing it out in public: Common
failure modes of DHT-based anonymity schemes. In Proc. of WPES,
2009.

[46] U.S. National Counterintelligence Center. Annual report to congress on
foreign economic collection and industrial espionage.
http://fas.org/irp/ops/ci/docs/fecie_fy00.pdf, 2008.

[47] washingtonpost.com. Palin’s Yahoo account hacked.
http://voices.washingtonpost.com/the-trail/2008/09/17/
palins_yahoo_account_hacked.html, 2008.

[48] WebProNews. Email being used more in divorce cases.
http://www.webpronews.com/topnews/2008/02/11/
email-being-used-more-in-divorce-cases, 2008.

[49] S. Wolchok, O. S. Hofmann, E. W. Felten, J. A. Halderman, C. J.
Rossbach, B. Waters, and E. Witchel. Defeating Vanish with low-cost
Sybil attacks against large DHTs. In Proc. of NDSS, 2010.

[50] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. SybilGuard:
defending against sybil attacks via social networks. ACM SIGCOMM,
2006.

