Discovery of Complex Behaviors through Contact-Invariant Optimization

Igor Mordatch

Emanuel Todorov

Zoran Popovié

University of Washington

Figure 1: A selection of motions synthesized by our algorithm.

Abstract

We present a motion synthesis framework capable of producing a
wide variety of important human behaviors that have rarely been
studied, including getting up from the ground, crawling, climbing,
moving heavy objects, acrobatics (hand-stands in particular), and
various cooperative actions involving two characters and their ma-
nipulation of the environment. Our framework is not specific to
humans, but applies to characters of arbitrary morphology and limb
configuration. The approach is fully automatic and does not require
domain knowledge specific to each behavior. It also does not re-
quire pre-existing examples or motion capture data.

At the core of our framework is the contact-invariant optimization
(CIO) method we introduce here. It enables simultaneous optimiza-
tion of contact and behavior. This is done by augmenting the search
space with scalar variables that indicate whether a potential contact
should be active in a given phase of the movement. These auxil-
iary variables affect not only the cost function but also the dynam-
ics (by enabling and disabling contact forces), and are optimized
together with the movement trajectory. Additional innovations in-
clude a continuation scheme allowing helper forces at the potential
contacts rather than the torso, as well as a feature-based model of
physics which is particularly well-suited to the CIO framework. We
expect that CIO can also be used with a full physics model, but leave
that extension for future work.

CR Categories: 1.3.1 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation 1.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: Physics-Based Animation, Control

1 Introduction

Automated synthesis of complex human behaviors is one of the
long-standing grand challenges in computer graphics, that would

also have an impact on robotics, biomechanics, and movement neu-
roscience. An automated synthesis method would ideally be capa-
ble of creating motions that span the space of all possible human
behaviors. In addition, such a method would not require expert or
labor-intensive authoring in the form of keyframes, reference trajec-
tories, or any specific details of the intended movement. It would
also not require any direct or indirect use of motion capture data. In-
stead, movement details and complexity should emerge from an au-
tomated procedure whose only inputs are intuitive high-level goals
that are easy to specify.

The most progress towards this ambitious agenda has been made in
the domain of walking. After three decades of intensive research,
we now have algorithms that can make simulated humanoids walk
robustly and realistically in response to high-level interactive inputs
such as desired body velocity and orientation. These algorithms are
successful because they exploit domain-specific knowledge: state
machines synchronized to the relatively simple and stereotypical
pattern of foot-ground contacts, reduced models based on inverted-
pendulum dynamics or other features important for walking, and
trajectory optimization methods that rely on customized cost func-
tions and manual specification of contacts. The success of these
methods comes at the price of limited generality: they provide a
unique and different type of model and solution for each of the com-
mon locomotion tasks such as walking, running and jumping. With
the current state-of-the-art in automated motion synthesis, any ad-
ditional complex behavior would require a new movement model
carefully crafted by experts from scratch. Each of these new move-
ment models would require specific domain knowledge carefully
integrated into the motion synthesis algorithm.

This behavior-specific approach to motion synthesis is at odds with
the richness and expressiveness of human motor behavior, exhibited
in seemingly infinite complex movements that do not fall into stan-
dard categories such as locomotion or reaching. Often, these be-
haviors are more challenging than locomotion in the sense that they
involve longer, more complex (spatially and temporally) movement
plans, and less stereotypical or cyclic movements. Examples in-
clude movements that use more than just legs, or just arms, but that
use other parts of the body, movements that can represent the full
space of interactions between the human body and the ground and
other arbitrary objects in the environment, complex manipulations
of objects by one or many humans collaboratively, hand-walking,
climbing — to name just a few.

In this paper we present a step towards a more general yet fully
automated framework for behavior synthesis, capable of produc-

ing a wide variety of less commonly studied but important human
behaviors. These include getting up from the ground, crawling,
climbing, moving heavy objects, acrobatics (hand-stands in partic-
ular), and various cooperative actions involving two characters and
their manipulation of the environment. The framework is not spe-
cific to humans, but can synthesize behaviors for other imagined
morphologies.

1.1 The key idea: Contact-Invariant Optimization (CIO)

As with prior methods for automated behavior synthesis, our CIO
method also comes down to exploiting domain-specific knowledge.
The important difference is that the domain to which our method
is tailored is much larger, and includes any behavior of any artic-
ulated character where contact dynamics are essential. This is a
very large domain because almost all limb movements performed
on land are made for the purpose of establishing contact with some
object (including the ground) and exerting forces on it. A suitable
set of contacts provides actuation: once you grasp an object you
can manipulate it; once you plant your feet on the ground you can
generate forces on your torso. Complex movements tend to have
phases within which the set of active contacts remains invariant.
Such invariance greatly reduces the space of candidate movements.
In complex behaviors and in complex environments, however, it is
difficult to know in advance what these contact sets should be and
how they should change from one phase to the next. Unlike prior
work on walking where contact information was specified manually
and left outside the scope of numerical optimization, discovering
suitable contact sets is the central goal of optimization in our ap-
proach. Once this is done, optimizing the remaining aspects of the
movement tends to be relatively straightforward.

Intuitively, CIO is a way of reshaping a highly discontinuous and
local-minima-prone search space of movements and contacts, into
a slightly larger but much better-behaved and continuous search
space that enables optimization strategies to find good solutions.
The main technical innovation in the CIO method is the introduc-
tion of scalar variables that indicate whether a potential contact
should be active in a given phase. These auxiliary variables affect
not only the cost function but also the dynamics (by enabling and
disabling contact forces), and are optimized together with the move-
ment trajectory. In this way we provide the optimizer with abstract
but nevertheless useful information: namely that movements should
have phases, and that the contact set should remain invariant within
each phase. The specific sets of active contacts that are suitable for
each phase of each behavior are then discovered by the optimizer
fully automatically. Additional innovations include a continuation
scheme allowing helper forces at the potential contacts rather than
the torso, as well as a feature-based model of physics which is par-
ticularly well-suited to the CIO framework.

2 Related Work

Early approaches to synthesizing human motion have been able to
produce a wide repertoire of skills [Hodgins et al. 1995; Hodgins
and Pollard 1997; Wooten and Hodgins 2000], but required expert
manual specification for each new task. Since then, a lot of fruitful
work has focused specifically on the task of locomotion. Simpli-
fied dynamical systems representing walking [Kajita et al. 2001;
Kuo et al. 2005], running [Seipel and Holmes 2005], push recovery
[Pratt et al. 2006] and uneven terrain navigation [Manchester et al.
2011] have been proposed that are well suited to analysis and con-
trol. The results were extended to full-detail bipeds [Yin et al. 2007;
chi Wu and Popovic 2010; de Lasa et al. 2010] and quadrupeds
[Coros et al. 2011]. [Srinivasan and Ruina 2005; Mordatch et al.
2010] have tried to capture different modes of locomotion within

a single controller, though they still assume a fixed pattern of foot
contacts that are specific to locomotion. Others proposed to in-
telligently combine individual controllers [Faloutsos et al. 2001;
da Silva et al. 2009; Coros et al. 2009; Muico et al. 2011], although
they still rely on existence of base controller libraries.

A more general approach to motion synthesis has been to pose
the problem as trajectory optimization, subject to user constraints
[Witkin and Kass 1988]. However, for all but the simplest problems
the energy landscape of the optimization is very high-dimensional,
prone to many local minima, and even discontinuous due to contact
phenomena. To alleviate these issues, many approaches make use
of human motion capture data to restrict the search space around
stereotypical motions and pre-specify contact events [Popovic and
Witkin 1999; Kalisiak and van de Panne 2001; Fang and Pollard
2003; Safonova et al. 2004; Liu et al. 2005]. [Liu et al. 2006]
adapts motion capture data and contacts to multi-character inter-
actions. By optimizing contact times for cyclic patterns, [Wampler
and Popovic 2009] is able to synthesize gaits for a wide variety of
non-humanoid characters from scratch.

Rather than placing restrictions on the optimization problem, sev-
eral methods have focused on shaping the energy landscape to be
smoother and better behaved. To widen the solution feasibility re-
gion, [Van De Panne and Lamouret 1995] initially use unphysical
helper forces to aid the character and reduce them as optimization
progresses, while [Yin et al. 2008] parametrizes the difficulty of
the task itself. [Brubaker et al. 2009; Todorov 2011] reformulate
contact as a smooth, rather than discontinuous phenomenon, where
contact forces are always active, but smoothly diminish with the
distance to the ground. The latter method has demonstrated success
for continuous optimization of cyclic gaits [Erez et al. 2011]. [Jain
and Liu 2011] accurately models characters with soft tissue, and
shows improvements in stability and robustness for simple track-
ing algorithms. However, applying these formulations to general
trajectory optimization problems remains difficult, because contact
decisions are made implicitly as a (highly non-linear) function of
the character’s pose. Some methods such as [Muico et al. 2009;
Ye and Liu 2010; Liu 2009] directly include contact forces as vari-
ables to be optimized, but they only have limited ability to manip-
ulate contact state. By contrast, our contact variables make contact
decisions explicit in the optimization.

Reasoning about contact events for navigation and object manipu-
lation has also been considered by several planning approaches in
robotics. [Kuffner et al. 2003; Chestnutt 2007; Hauser et al. 2008;
Kolter et al. 2008; Bouyarmane and Kheddar 2011] decompose the
problem into two stages, first planning foot or hand placements and
then synthesizing a motion trajectory that follows those placements.
The two stages are only loosely coupled, and may not always pro-
duce the most efficient strategies. By contrast, our approach jointly
plans both the contact events and the motion trajectory, and is able
to exploit any synergies between the two.

The importance of temporally-extended actions and their poten-
tial to speed up optimization has been recognized in Reinforce-
ment Learning, and has led to the Options framework [Sutton et al.
1999]. In that framework however the temporally-extended actions
(loosely corresponding to our movement phases) have to be speci-
fied in advance, while we discover them automatically.

3 Rationale and Overview

Our work was motivated by the observation that contact interac-
tions are essential for most animal and human movements. Pre-
vious work on motion synthesis through numerical optimization
has either pre-defined the contact interactions, or expressed them as
functions of the movement trajectory and thereby optimized them

indirectly, almost as a side effect of trajectory optimization. Our
reasoning was that, if contacts are essential, they should play a more
central role. This suggested optimizing over auxiliary decision vari-
ables which directly specify when and where contacts are made.
Our first attempts to develop such a method failed in interesting
ways. We defined discrete variables specifying contacts between
pairs of objects, and a continuous feedback control method that
pushed the character along trajectories consistent with this high-
level contact specification. We found that, even though setting such
discrete variables was relatively easy for humans (resulting in a
novel way of motion scripting), optimizing them automatically was
basically intractable. This was partly because discrete optimiza-
tion is generally hard, and partly because it is difficult to tell what
constitutes a good set of contacts without simultaneously consider-
ing the detailed trajectory that instantiates them. These difficulties
suggested that decisions regarding contact interactions should be
encoded as continuous rather than discrete variables, and should be
optimized simultaneously with the movement trajectory.

Continuous specification of desired contacts naturally leads to the
idea of weights in cost functions. The contact-related auxiliary vari-
ables we use here (denoted ¢; > 0 for contact ¢) have the follow-
ing semantics: if ¢; is large contact ¢ must be active (i.e. the cor-
responding bodies must be touching), while if ¢; is small we do
not care what happens at contact . Another important observation
is that complex behaviors are naturally decomposed into phases,
and the set of contacts remains invariant in each phase. The con-
tact forces are not invariant (on the contrary, they change a lot) but
the presence or absence of a contact is. This suggests making c; ¢
piece-wise constant over time, i.e. defining c; 4y Where ¢ (t) is
the movement phase at time ¢{. The most direct approach at this
point would be to define auxiliary cost terms weighted by ¢; . If
we did that, however, the optimizer will immediately set all ¢’s to
zero and effectively eliminate our auxiliary costs. One way to pre-
vent this would be to constrain the sum of the ¢’s, but this amounts
to telling the optimizer how much overall contact it should use in a
given behavior, and we do not know the answer in advance.

Another way to prevent the optimizer from eliminating the auxiliary
costs — which is what is use here — is to make the auxiliary variables
c also affect the dynamics, in such a way that setting them to zero
would be suboptimal. Since they are associated with contacts, the
natural way to enter the dynamics is to allow contact forces to be
generated at contact ¢ only when the corresponding c; is large. This
has another unexpected benefit: instead of finding the active con-
tacts and performing various calculations that depend on the output
of the collision detector (and are therefore non-smooth and difficult
to optimize over), we can assume that the active contacts are those
whose c’s are large, resulting in simpler computations with smooth
output. The approach outlined above does require all potential con-
tacts to be enumerated in advance, and an auxiliary variable ¢; to
be defined for each of them.

Finally, we introduce a simplified physics model consistent with
our contact-centric approach. Instead of parametrizing the joint-
space configuration of the character and using forward kinematics
to compute end-effector positions and orientations, we parameter-
ize the end-effectors and use inverse kinematics to define the joint-
space configuration. In this way the optimizer can work directly
with the end-effectors to which the auxiliary variables are associ-
ated. Kinematic constraints (i.e. fixed limb sizes and joint limits)
are enforced as costs, and the dynamics are simplified by assuming
that all mass is concentrated at the torso. We do not yet know if
this physics simplification was necessary, and will find out in future
work.

4 Contact-Invariant Optimization

We now describe the CIO method in detail. We begin with a general
formulation that can be adapted to different types of physics models
and tasks. We then describe our specific simplification of physics,
followed by details of the behavioral tasks and the numerical opti-
mization procedure.

4.1 General formulation and contact-invariant cost

Let s denote the real-valued solution vector that encodes the move-
ment trajectory and auxiliary variables. The trajectory can be rep-
resented directly by listing the sequence of poses, or by function
approximators such as splines (which is what we use here). All we
require is that the character pose q: (s) is a well-defined function
of s at each (discrete) point in time 1 < ¢ < T'. The auxiliary vari-
ables ¢; 44 (s) > 0 are also included in s. The overall movement
time 7" is partitioned into K intervals or phases, and 1 < ¢ (t) < K
is the index of the phase to which time step ¢ belongs. In our cur-
rent implementation the number of phases is predefined and their
durations are equal, although in principle these parameters can also
be optimized in an outer loop. 1 < 7 < N is an index over “end-
effectors”. Here end-effector does not refer to an entire rigid body
(e.g. a hand or a foot), but to a specific surface patch on one of the
rigid bodies. These patches are the only places where contact forces
can be exerted, as explained below. The function p; (q) € R? re-
turns the center of patch .

The CIO method computes the optimal solution s™ by minimizing
a composite objective function L (s) in the form

L (s) = Lci (s) + Lpnysics (S) + Lask (8) + Luins (s) (1)

Lcr is a novel contact-invariant cost introduced here. Lphysics pe-
nalizes physics violations; we enforce physical consistency using a
soft cost rather than a hard constraint because this enables power-
ful continuation methods. Ltask specifies the task objectives, and
is the only term that needs to be modified in order to synthesize a
novel behavior. Lyint is optional and can be used to provide hints
(e.g. ZMP-like costs are used here) in the early phases of optimiza-
tion. Continuation methods are implemented by weighting these
costs differently in different phases of optimization; see below.

The contact-invariant cost Ly is defined as

Lot (s) =Y cigw (5) (e (8)I° + 1€ (s)]) @

e;,+ is a 4D contact-violation vector for end-effector ¢ at time ¢. Re-
call that a large value of ¢; 4(;) means that end-effector 7 should be
in contact with the environment during the entire movement phase
¢ (t) to which time ¢ belongs. Thus when c is large we want the
corresponding e to be small. This vector encodes misalignment in
both position and orientation. The first 3 components of e are the
difference vector between the end-effector position p; (q¢) and the
“nearest point” on any surface in the environment (including other
body segments). The last component of e is the angle between
the surface normal at the nearest point and the surface normal at
the end-effector. The cost Lcr penalizes both e and its velocity &
which corresponds to slip.

Our definition of “nearest point” is unusual in an important way:
we effectively use a soft-min instead of a min operator. Let n; (p)
denote the actual nearest point to p on surface j. Define the weights

1

= 3)
1+|p—n;(p)° %

n;(P)

where & = 10" is a smoothness parameter. A virtual nearest point
is then obtained by normalizing the weights 7; to sum to 1, and
computing the weighted average of the n;’s. Intuitively, when p;
is far from any surface (and ¢; is large), the cost Lcr will push it
towards some average of the surface “mass”. When p; gets close
to a surface, it will be pushed towards the nearest point on that sur-
face. This construction also makes Lcr smooth, which facilitates
numerical optimization.

4.2 Inverse dynamics and physics-violation cost

Next we describe the physics-violation cost Lpnysics. This cost has
two components. One is general and depends on our novel formu-
lation of contact dynamics which is essential to the CIO method.
The other is specific to the simplified model of multi-body dynam-
ics described below — which can be replaced with a full physics
model without modifying the rest of the method. In this subsection
we focus on a single time step and omit the time index ¢.

Let f € R®Y denote the vector of contact forces acting on all N
end-effectors. We have a 6D vector per contact because we allow
torsion around the surface normal, and furthermore the origin of
the contact force is allowed to move inside the end-effector surface
patch. Thus, unlike previous work which models contact as a sum
a multiple contact points, we model an entire contact surface patch,
allowing us to reason about contact at a coarser scale and speed up
the optimization. Note that all potential contacts are considered at
all times, and so the dimensionality of the contact force vector re-
mains constant, resulting in smoothness of the cost. Contact forces
here are associated with individual end-effectors and not with pairs
of contacting bodies. We only model contacts at pre-defined end-
effectors, although our definition is sufficiently general to include
surface patches on any body part.

Let J (q) € RV*P denote the Jacobian matrix mapping general-
ized velocities q to contact-space velocities for the contact model
described above; D = dim (q) is the number of degrees of freedom

in the character. Let 7 (q, q, §) denote the inverse of the smooth
dynamics, which equals the sum of contact and applied forces:

7(a,¢,8) = J(q)" £+ Bu 4)

Here u is the vector of applied forces/controls in the actuated space.
They are mapped to the full space by the matrix B, which has zeros
in the rows corresponding to “’root” forces and torques acting on the
torso or on passive objects. The smooth inverse dynamics are

7(9,4,4) =M (q)§+C(q,4)q+g(q) (5)

where M is the inertia matrix, C' the matrix of Coriolis and cen-
trifugal terms, and g is gravity.

Our goal now is to complete the inverse dynamics computation, and
in particular recover f, u given 7, J, B. We do this by minimizing
the squared residual in (4) subject to friction-cone constraints on f
and quadratic regularization for f and u. Thus we have the follow-
ing quadratic programming (QP) problem:

2 ~,

]JT¥+ Bii — TH + "W + a” Ru

f,u= argmin
£

B ©)
subjectto Af <b

The pose-dependent matrix A (q) and vector b (q) encode the stan-
dard pyramid approximation to the friction cone which makes the
inequality constraints linear. They also include linear inequality
constraints that restrict the origin point of each contact force to
the surface patch of its corresponding end-effector. Currently these
patches are rectangles. For end-effectors that are allowed to grab

(i.e. hands) we omit the friction-cone constraints, allowing both
positive and negative normal forces.

The control regularization matrix R is constant and symmetric posi-
tive definite. The contact force regularization matrix W depends on
the auxiliary variables: W is diagonal and its 6 diagonal elements
corresponding to the i-th contact force vector are

ko
Wi =—5—— 7
e v W
for all j between 6i — 5 and 6. We used ko = 1072, k; = 1073,
The components of W corresponding to hand end-effectors were
four times larger, because hands are generally weaker than feet.

The quadratic program (6) is convex and therefore has a unique so-
Iution — which can be found using a number of algorithms. Here
we used a specialized sequential solver due to [Lee and Goswami
2010] because it is easy to implement efficiently, although the re-
sults obtained with an off-the-shelf QP solver were very similar.

In summary, inverse dynamics are computed by first computing the
quantities 7 (s),J(s),A(s),b(s),W (s) as described above,
and then solving (6) which yields f (s) and u (s). Re-introducing
the time index ¢, the physics-violation cost is

Lpnysics (8) = Z ‘

Note that even if this cost can be reduced to zero by a certain choice
of f and u, the actual f and u computed in (6) will generally be
different because of the extra regularization terms.

2

Ji (s)T fi (s) + Bue (s) — 7 (s))

4.2.1 Trade-off between Lcr and Lpyysics

Let us now examine how the two cost terms Lcr and Lpnysics de-
fined in (2) and (8) are affected by the auxiliary variables c. The
term Lct achieves its global minimum of zero when all ¢’s are set
to zero. However this makes the W matrix in (7) large, contact
forces become expensive, and the QP solver for (6) prefers to vi-
olate physics rather than use large contact forces — which in turn
leads to a substantial Lpnysics term. Conversely if all ¢’s are large,
the QP solver is able to reconcile any trajectory with the inverse dy-
namics model by generating contact forces at all end-effectors, in-
cluding those that are not actually in contact. This makes Lpnysics
small, but now Lcg is large because end-effectors that are not in
contact have large c’s. Thus the optimal trade-off is achieved when
¢; is large only for end-effectors that are in contact, and furthermore
the trajectory can be generated using contact forces only at those
end-effectors. In other words, at the optimal solution the auxiliary
variables c correspond to the contacts that end up being active.

Since the controls u are constrained to act in the actuated space,
root helper forces (often used in prior work for continuation) are
not allowed here. If we were to allow such forces the above trade-
off in terms of ¢ would no longer hold. On the other hand, the ability
of our method to generate contact forces from a distance provides
an even more effective continuation method: non-physical behavior
in the early phases of optimization is still possible, but it is always
associated with potential contacts, making it easier to transition to
physically-realistic contact dynamics later in optimization.

4.2.2 Simplified physics model

While the CIO method as described above can be used with stan-
dard physics models as implemented in existing physics engines,
our implementation relies on a simplified model yielding a favor-
able trade-off between physical realism and optimization efficiency.

Instead of representing the pose q directly and then computing the
end-effector positions p; (q) using forward kinematics, we repre-
sent the end-effector positions as well as their orientations directly
(i.e. as functions of spline parameters contained in s) and then de-
fine the pose q using inverse kinematics; see Appendix. All mass
is assumed to be concentrated at the root bodies: the torso of each
character, as well as any passive objects. Non-smooth movements
of the (now-massles) limbs are avoided by including an accelera-
tion cost described later. The inverse dynamics are still in the form
(4) and the quadratic program defining the contact force and control
is still in the form (6), but all computations are now simplified.

Representing the pose in terms of end-effector positions and orien-
tations makes it difficult to enforce kinematic constraints exactly.
However we turn this to our advantage, by introducing an addi-
tional continuation method that allows limbs to stretch and joint
limits to be violated early in optimization. This is done by adding
quadratic costs to Lpnysics, that penalize any deviations of the limb
lengths from their reference values as well as any joint limit vio-
lations. We also penalize penetration of the character’s body parts
(approximated for collision with capsules shown in figure 2) against
the environment, or other body parts.

4.3 High-level goals and task cost

The cost Lask (s) encodes the high-level goals of the movement.
It includes task-specific terms specifying the desired outcome, and
generic terms (integrated over time) specifying that the movement
should be energy-efficient and smooth:

Lrasic () =) _ o (ar (8))+Y_ [If: (8)I|*+l[ue ()] +1&e ()]

)
Here ¢, are task-specific terms which only depend on the final pose
qr, and b is an index over different tasks. Several tasks can be com-
posed together, such as combining a standing task with the moving
to target task. We use the above general form of Lrasx for all tasks
except for kicking/punching. In that case we specify an ¢ at reg-
ular intervals when each target should be hit, and also include de-
pendence on § because we want the targets to be hit with a certain
end-effector velocity.

The general procedure for constructing the task-specific costs ¢ is
to identify a vector of positional (and optionally velocity) features
h;, (q) that are key to task b, define the desired feature values h; at
the end of the movement (or at other important points in time such
as target hits), and then construct ¢ as

& (ar () = |[hs (ar (s)) = by |® (10)

In this way, a final position task £,0s can be specified by using hpos
that selects torso position, and setting hy,, to the desired position.
Final orientation task /g4, can be defined similarly for torso facing
direction. Standing task {sana can be expressed by using a com-
bination of hgung and hj,,q which specifies that the center of torso
should be between two feet, the feet be fully extended, and the torso

direction be aligned with the vertical direction vector.

The relative importance of the different features can be adjusted by
scaling the corresponding elements of h.

4.4 Heuristic sub-goals and hint cost

In the absence of good initialization — which in the present context
would correspond to motion capture data or other detailed user in-
puts we aim to avoid — numerical optimization can be sped up by
providing heuristic sub-goals early on, and then disabling them near

convergence. Such heuristics (also known as shaping) are not meant
to be part of the true cost, but rather guide the solution to a region
from where the true cost can be optimized efficiently. We found that
even though most of the behaviors we studied could be synthesized
without such heuristics, in some cases (particularly those involving
two characters) a certain type of heuristic helps. This heuristic is
based on the ZMP stability criterion used in locomotion, where the
objective is to keep the “zero moment point” z (q, q) in the convex
hull of the support region [Vukobratovic and Borovac 2004]. Let
n (z) denote the nearest distance (in a soft-min sense) to z point in
the convex hull. We compute n by expressing it as a convex com-
bination of the end-effector positions: n = >, A;p; where X\; > 0
and), A; = 1, and solving for the coefficients A using quadratic
programming regularized by the same weights W as in (7). Then
the hint cost is

Luine (s) = Y_ max (||z¢ (s) — n (2 (5))] —€,0)* (1)

This is a half-quadratic starting € away from the convex hull. The
parameter ¢ is used to adjust how strictly we want to enforce the
ZMP stability criterion.

4.5 Numerical optimization and continuation

We optimize the composite cost L (s) defined in (1) using an off-
the-shelf implementation of the LBFGS algorithm. The dimension-
ality of the vector s is (12(N + 1) + N)K, where again N is the
number of end-effectors and K is the number of movement phases.
The specific representation s used here is defined in (12) and (13) of
Appendix A. We use K between 10 and 20 depending on the com-
plexity of the task. Each phase lasts 0.5 sec. The inverse dynamics
and cost are evaluated at 0.1 sec intervals (note that the analytical
spline representation allows us to evaluate the dynamics and cost at
any point in time). The gradient VL (s) which is needed for nu-
merical optimization is approximated using finite differences (with
e = 10%). Our implementation of finite differences takes advan-
tage of the fact that many of the cost terms depend only on the pose
at a single point in time, and do not need to be recomputed when
the rest of the trajectory is perturbed.

Continuation is implemented by weighting the four terms in (1) dif-
ferently in different phases of the optimization process (not to be
confused with movement phases). The optimization process has
three phases as follows. In Phase 1 only Lrask is enabled. This
causes the optimizer to rapidly discover a movement that achieves
the task goals without being physically realistic. In Phase 2 we en-
able all four terms, except Lpnysics is down-weighted by 0.1 so that
physical consistency is enforced gradually. In Phase 3 we fully en-
able all terms except for Luint — which is no longer needed and is
undesirable at this point, because we do not want it to affect the fi-
nal solution. Qualitatively, Phase 1 corresponds to rapid discovery
combined with wishful thinking; Phase 2 corresponds to cautious
enforcement of physical realism while being guided by optional
hints; Phase 3 corresponds to refinement of the final solution. The
solution obtained at the end of each phase is perturbed with small
zero-mean Gaussian noise (to break any symmetries) and used to
initialize the next phase. The initialization for Phase 1 is completely
uninformative — a static initial pose. We found that using such con-
tinuation is often important. Exactly the same continuation scheme
was successful in all of the diverse behaviors we studied, and so our
method does not need behavior-specific adjustments.

Each stage of the optimization takes between 250-1000 iterations,
depending on the complexity of the problem. The total time to syn-
thesize each animation clip ranges between 2 to 10 minutes on a
quad-core 2.3GHz Intel Xeon machine.

5 Results

By using the tasks ¢, described in section 4.3 we can synthesize a
wide variety of behaviors.

Getting Up, Walking, Climbing By using only /s.na described
in section 4.3 and using an initial pose of the character lying on the
ground, we synthesize the motion of getting up. Different initial
poses (such as lying on the back, or on the stomach) result in differ-
ent getting up strategies, as seen in the accompanying video. If the
character is initially standing, £ana is satisfied by simply continu-
ing to stand. By using Zsanq task in combination with £, task and
an initially-standing pose, we induce walking. The pattern of foot
contacts typical of walking is not specified and emerges automati-
cally from our optimization. £y, task is shown in the corresponding
video with a white crosshair.

By using only #sana and £y tasks, but changing the environment
to include an obstacle, a range of strategies emerges from simply
stepping over the obstacle, to using hands to prop the character up,
to using hands to grip and climb a really tall obstacle. The coeffi-
cient of friction p on the foot contacts is 2 to allow foot plants on
completely vertical slopes. Hand contact forces do not have friction
cone or positivity constraints to reflect the ability of hands to grip.

Handstands, Punches, Kicks Modifying #s.nq by swapping feet
for hands in the specification and commanding that feet should
point upwards, we create a handstand task fpandstand. When only
this task is active and the character is initially standing, they will
make a series of preparatory movements and prop themselves up
onto their hands. fhandgsiana can similarly be combined with €50, and
Lgir tasks.

To generate striking motions such as punches and kicks, we create
Like task that specifies positions and velocities for limb end effec-
tors at various points in time. For punches, we specify random tar-
get at every second movement phase (every third phase for kicks).
We also add /g task to make the character face every target. The re-
sult is a character striking targets as if they were known in advance,
while staying balanced enough to make subsequent strikes.

Non-Human Character Morphologies We also tested our algo-
rithm with characters of different morphologies, such as a biped
with a wide torso and quadruped with short legs. The optimiza-
tion was successful in getting up, walking and climbing scenarios,
with strategies appropriate for each morphology. For example, ani-
mal trot pattern of contacts (moving front leg and opposite hind leg
together) emerges for quadruped walking without explicitly being
specified.

Interaction with Objects Additional prop objects can be intro-
duced and their trajectories included as variables in the optimiza-
tion. An object has auxiliary contact variables for every character’s
hand, indicating that the end effector is gripping the object. The
terms Lpnysics and Loy now apply to the object as well. The object
is able to generate contact forces that move it around, but Ly term
for object now requires that hand end effector has to be touching
the surface of the object.

Tasks similar to £, and g are used to specify final position and
orientation of the object. From only these two tasks, the strategy of
the character having to pick up and carry the object to the destina-
tion emerges (in particular, no tasks are specified for the character).

Intuitively, the cost terms form the following dependency: to move
the object, Lpnysics requires contact forces, which requires active

contacts. Then L requires character’s hand end effectors to be
touching the object. Then limb length constraints require that char-
acter be close enough to the object to touch it. This may require
walking up to it, and so on.

Interaction Between Characters Our algorithm can be ex-
tended to jointly optimizing for the motion of multiple characters.
For the task of moving the object above, multiple characters dis-
tribute the workload and cooperate to pass the object from one to
the other. We can control the workload distribution by increasing
the penalty on contact forces in equation (9) for one of the charac-
ters, and making the other character do most of the object carrying
work.

Two characters also cooperate to achieve tasks impossible for one,
such as £,0s for one of the characters specifying a target location
above character’s height. Because contacts can be made with the
surfaces of other characters, the task is achieved by one character
climbing on top of the other.

6 Conclusion and Future Work

In this paper we presented a fully automated framework for synthe-
sizing a wide range of movement behaviors, and demonstrated its
effectiveness on complex and rarely studied behaviors. Our frame-
work is agnostic to the morphology of the character, and indeed we
showed that movement behaviors can be created for significantly
different types of characters. The contact-invariant optimization
method could likely be applied to other domains where constraint-
driven phases bifurcate the optimization space making it very hard
to find solutions numerically. We developed an effective continua-
tion scheme suitable for our optimization method.

We also introduced a feature-based physics model that allows for
efficient consideration of dynamic aspects in the inner loop of the
optimization procedure. This relaxation naturally comes at a cost.
We model the character’s kinematics and contact interactions with
the environment in detail, but represent its dynamics as a single
rigid body and do not model the limb dynamics. This simplification
effectively results in limbs with infinitely strong muscles (and no
penalty for using them), which in turn can lead to energy-inefficient
motions such as using bent knees for support, having arms extended
against gravity, or occasional out of place sitting. The latter occurs
because sitting minimizes the sum of squared contact forces, but
does not consider the effort required to get back up. These lim-
itations may be removed by using full-body inverse dynamics to
calculate the character’s joint torques, and penalizing the torques or
some related quantity.

The key advantage of our framework is the simultaneous optimiza-
tion of contacts and smooth portions of the movement. This was
made possible by introducing an auxiliary decision variable for
each potential contact, and keeping these variables constant within
each phase. As a result, we were able to optimize very long and
temporally complex movement sequences that have previously re-
mained beyond the reach of numerical optimization methods. The
price we had to pay was that the potential contact points (or rather
patches) had to be pre-defined. We are of course penalizing pene-
trations everywhere, but this is not the same as actively optimizing
over active contacts. One way to remove this limitation is to sim-
ply increase the number of potential contacts and cover the entire
body with sufficient density. Another simplification we make is to
penalize any relative velocity at contacting end effectors (see (2)),
which results in trajectories that do not have any noticeable slip-
ping. Instead, in a low friction environment character moves overly
conservatively, making sure contact forces do not travel outside the

friction cone and is unable to exploit possible slipping when plan-
ning motions.

The style of the motions was not the focus of this work, and could
use a lot of improvement, particularly for low-energy motions such
as walking where humans use every bit of physiology (which we
do not model) to their advantage. Since our method performs long-
horizon trajectory optimization, we should be able to incorporate
biomechanically-inspired cost terms from [Wang et al. 2009] to
shape the stylistic aspects of the motion.

In all our examples, standard methods for local gradient-based opti-
mization were able to find good solutions efficiently. This is one of
the key advantages of our framework. Still, the use of global opti-
mization could provide more robust exploration of the space of mo-
tions, especially for tasks such as getting up that have a wide range
of possible and equally good solutions. In such cases we would
prefer to produce multiple solutions, and select the ideal one.

In the examples presented here the number and duration of phases
was fixed. Generally, we have found no problems in overestimat-
ing the number of movement phases required to complete an ac-
tion. The character typically uses up extraneous movement phases
by keeping still or sitting down before or after completing the task.
Underestimating the number of phases is more problematic and can
result in very energy inefficient or completely unphysical leaps in
the motion. However, a fixed number of phases would not be as
much of an issue if the task costs were reformulated as running
costs and the system was used in model-predictive, or online replan-
ning setting. In that case the number of phases would correspond
to a future planning horizon, and not dictate the total duration of
the motion. The number and duration of phases could also be opti-
mized, although we have not tested this.

Perhaps the most exciting direction for future work is applying CIO
to a full physics model that takes into account the limb inertias
and non-linear interaction forces. Indeed we formulated the CIO
method so that it is directly applicable to such a model. We expect
this to significantly enhance the realism/style of the resulting move-
ments, particularly in behaviors where saving energy is important.
While we do not anticipate any significant obstacles, how efficient
the method will be in the context of these more challenging opti-
mization problems remains to be seen. It may turn out that a hybrid
approach is preferable, where we first use the present simplified
model to obtain a solution that already looks quite good, and then
optimize with respect to a full physics model to refine the solution.

References

BOUYARMANE, K., AND KHEDDAR, A. 2011. Multi-contact
stances planning for multiple agents. In /CRA, 5246-5253.

BRUBAKER, M. A., SIGAL, L., AND FLEET, D. J. 2009. Estimat-
ing contact dynamics. In /CCV, 2389-2396.

CHESTNUTT, J. 2007. Navigation Planning for Legged Robots.
PhD thesis, Carnegie Mellon University.

CHI WU, J., AND Popovic, Z. 2010. Terrain-adaptive bipedal
locomotion control. ACM Trans. Graph. 29, 4.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009.
Robust task-based control policies for physics-based characters.
ACM Trans. Graph. 28, 5.

COROS, S., KARPATHY, A., JONES, B., REVERET, L., AND
VAN DE PANNE, M. 2011. Locomotion skills for simulated
quadrupeds. ACM Trans. Graph. 30, 4, 59.

DA SILVA, M., DURAND, F., AND Poprovic, J. 2009. Linear
bellman combination for control of character animation. ACM
Trans. Graph. 28, 3.

DE LASA, M., MORDATCH, 1., AND HERTZMANN, A. 2010.
Feature-Based Locomotion Controllers. ACM Trans. Graphics
29, 3.

EREZ, T., TASSA, Y., AND TODOROV, E. 2011. Infinite-horizon
model predictive control for periodic tasks with contacts. In
Robotics: Science and Systems.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In SIGGRAPH, 251-260.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis
of physically valid human motion. ACM Trans. Graph. 22, 3,
417-426.

GRASSIA, F. S. 1998. Practical parameterization of rotations using
the exponential map. J. Graph. Tools 3 (March), 29-48.

HAUSER, K. K., BRETL, T., LATOMBE, J.-C., HARADA, K.,
AND WILCOX, B. 2008. Motion planning for legged robots
on varied terrain. 1. J. Robotic Res. 27, 11-12, 1325-1349.

HODGINS, J. K., AND POLLARD, N. S. 1997. Adapting simulated
behaviors for new characters. In SSIGGRAPH, 153-162.

HoDGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In SIG-
GRAPH, 71-78.

JAIN, S., AND L1U, C. K. 2011. Controlling physics-based charac-
ters using soft contacts. ACM Trans. Graph. (SIGGRAPH Asia)
30 (Dec.), 163:1-163:10.

KAIJITA, S., MATSUMOTO, O., AND SAIGO, M. 2001. Real-time
3D walking pattern generation for a biped robot with telescopic
legs. In Proc. ICRA, 2299-2306.

KALISIAK, M., AND VAN DE PANNE, M. 2001. A grasp-based
motion planning algorithm for character animation. Journal of
Visualization and Computer Animation 12, 3, 117-129.

KOLTER, J. Z., RODGERS, M. P., AND NG, A. Y. 2008. A control
architecture for quadruped locomotion over rough terrain. In
ICRA, 811-818.

KUFFNER, J. J., NISHIWAKI, K., KAGAMI, S., INABA, M., AND
INOUE, H. 2003. Motion planning for humanoid robots. In
ISRR, 365-374.

Kuo, A. D., DONELAN, J. M., AND RUINA, A. 2005. Energetic
consequences of walking like an inverted pendulum: step-to-step
transitions. Exercise and sport sciences reviews 33, 2 (Apr.), 88—
97.

LEE, S.-H., AND GOoswAMI, A. 2010. Ground reaction force con-
trol at each foot: A momentum-based humanoid balance con-
troller for non-level and non-stationary ground. In IROS, 3157—
3162.

Liu, C. K., HERTZMANN, A., AND PoPoviC, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Trans. Graph. 24, 3, 1071-1081.

Liu, C. K., HERTZMANN, A., AND PoprovIc, Z. 2006. Composi-
tion of complex optimal multi-character motions. In Symposium
on Computer Animation, 215-222.

Liu, C. K. 2009. Dextrous manipulation from a grasping pose.
ACM Trans. Graph. 28, 3.

MANCHESTER, I. R., METTIN, U., IIDA, F., AND TEDRAKE, R.
2011. Stable dynamic walking over uneven terrain. 1. J. Robotic
Res. 30, 3, 265-279.

MORDATCH, I., DE LASA, M., AND HERTZMANN, A. 2010. Ro-
bust physics-based locomotion using low-dimensional planning.
ACM Trans. Graph. 29, 4.

Muico, U., LEE, Y., PopoVIC, J., AND POPOVIC, Z. 2009.
Contact-aware Nonlinear Control of Dynamic Characters. ACM
Trans. Graphics 28, 3, 81.

Muico, U., Poprovic, J., AND Popovic, Z. 2011. Composite
control of physically simulated characters. ACM Trans. Graph.
30, 3, 16.

Porovic, Z., AND WITKIN, A. P. 1999. Physically based motion
transformation. In SIGGRAPH, 11-20.

PRATT, J., CARFF, J., AND DRAKUNOV, S. 2006. Capture point:
A step toward humanoid push recovery. In in 6th IEEE-RAS
International Conference on Humanoid Robots, 200-207.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S.
2004. Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM Trans. Graph. 23,
3,514-521.

SEIPEL, J. E., AND HOLMES, P. 2005. Running in three dimen-
sions: Analysis of a point-mass sprung-leg model. I. J. Robotic
Res. 24, 8, 657-674.

SRINIVASAN, M., AND RUINA, A. 2005. Computer optimization
of a minimal biped model discovers walking and running. Nature

(Sept.).

STEPHENS, B. 2011. Push Recovery Control for Force-Controlled
Humanoid Robots. PhD thesis, Carnegie Mellon University.

SUTTON, R., PRECUP, D., AND SINGH, S. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in rein-
forcement learning. Artificial Intelligence 112, 181-211.

Toporov, E. 2011. A convex, smooth and invertible contact
model for trajectory optimization. In /CRA, 1071-1076.

VAN DE PANNE, M., AND LAMOURET, A. 1995. Guided opti-
mization for balanced locomotion. In 6th Eurographics Work-
shop on Animation and Simulation, Computer Animation and
Simulation, September, 1995, Springer, Maastricht, Pays-Bas,
D. Terzopoulos and D. Thalmann, Eds., Eurographics, 165-177.

VUKOBRATOVIC, M., AND BOROVAC, B. 2004. Zero-moment
point - thirty five years of its life. 1. J. Humanoid Robotics 1, 1,
157-173.

WAMPLER, K., AND PoPovIC, Z. 2009. Optimal gait and form
for animal locomotion. ACM Trans. Graph. 28, 3.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Opti-
mizing Walking Controllers. ACM Trans. Graphics 28, 5, 168.

WITKIN, A., AND KASS, M. 1988. Spacetime Constraints. In
Proc. SIGGRAPH, vol. 22, 159-168.

WOOTEN, W. L., AND HODGINS, J. K. 2000. Simulating leaping,
tumbling, landing, and balancing humans. In /CRA, 656—662.

YE, Y., AND L1Uu, C. K. 2010. Optimal feedback control for
character animation using an abstract model. ACM Trans. Graph.
29, 4.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon:
simple biped locomotion control. ACM Trans. Graph. 26, 3, 105.

RFOOT

rN

LrooT
— '
Ceroor /‘ I oor

U
LFOOT

Figure 2: Simplified Character Model. The features used in our
character description with collision capsule geometry overlaid.

YIN, K., COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M.
2008. Continuation methods for adapting simulated skills. ACM
Trans. Graph. 27, 3.

A Simplified Character Model

Our simple model specifies character’s state q(s) at a particular
time through a small number of features, rather than a full set of
joint angles.

X:[pc e P1.N T1..N]T (12)

Where p. and r. are torso position and orientation, respectively,
and p;, r; are end effector positions and orientations for each limb
1 (see figure 2). Rotations are represented with exponential map
[Grassia 1998] because of its suitability in trajectory optimization.

From the above features, we can reconstruct the actual character’s
pose, including limb base locations b;, which can be derived from
local location points on the torso. We assume character’s limbs
have two links, which allows us to analytically solve for middle
joint location m; and orientations of the two links. For limbs that
have more than two links, it would be necessary to use an iterative
inverse kinematics method to derive the individual joint locations.

We define the motion with positions and velocities of our features at
the boundaries between phases. Cubic splines with knots at phase
boundaries are used to define a continuous feature trajectory from
which positions, velocities, accelerations at any point in the trajec-
tory can be computed. Combining contact variables for the phase
into a vector c, the solution vector s € RUZNHTDFME hat we
optimize is

1" (13)

s = [X1..Kk X1..K CIl..K

The dynamics of our simple model correspond to those of a single
rigid body with multiple forces acting on it from rectangular contact
surfaces. In this setting, contact forces can efficiently be solved
using either the approach of [Stephens 2011] or [Lee and Goswami
2010].

