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Abstract
Users depend on correct compiler optimizations but floating-point
arithmetic is difficult to optimize transparently. Manually reasoning
about all of floating-point arithmetic’s esoteric properties is error-
prone and increases the cost of adding new optimizations.

We present an approach to automate reasoning about precise
floating-point optimizations using satisfiability modulo theories
(SMT) solvers. We implement the approach in LifeJacket, a system
for automatically verifying precise floating-point optimizations for
the LLVM assembly language. We have used LifeJacket to verify 43
LLVM optimizations and to discover eight incorrect ones, including
three previously unreported problems. LifeJacket is an open source
extension of the Alive system for optimization verification.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs

Keywords Verification, Floating-point arithmetic, SMT, LLVM

1. Introduction
Floating-point arithmetic is the de facto standard for representing
operations on real numbers in code. Since programmers expect good
running times from their programs, languages and compilers often
recognize floating-point as a primitive type and optimize floating-
point operations. Many of these optimizations are implemented
as highly local transformations in the basic blocks of a program,
transformations called peephole optimizations. When compiler de-
velopers create these optimizations, they have to carefully consider
all possible inputs and make sure that the optimizations do not alter
the meaning of programs.

Unfortunately, the developers’ manual reasoning might be error
prone. Figure 1 shows an example of an invalid transformation im-
plemented in LLVM 3.7.1. We discuss the specification language
in more detail in Section 3.2 but, at a high-level, the transformation
simplifies +0.0− (−0.0− x) to x, an optimization that is correct
in the realm of real numbers. Because floating-point numbers distin-
guish between negative and positive zero, however, the optimization
is not valid if x = −0.0, because the original code returns +0.0
and the optimized code returns −0.0. While the zero’s sign may be
insignificant for many applications, the unexpected sign change may

cause a ripple effect. For example, the reciprocal of zero is defined
as 1/+0.0 = +∞ and 1/−0.0 = −∞.

This example illustrates the difficulty [8] of wrestling with
floating-point’s unintuitive features (e.g. signed zeros, limited preci-
sion, rounding, special values, and non-associativity). While these
properties may seem overtly complex, the IEEE 754-1985 standard
and its stricter IEEE 754-2008 successor were carefully designed
for non-expert users. Before the standardization, there were a wide
range of incompatible floating-point implementations with occasion-
ally bizarre properties: for example, one implementation provided
numbers that were not equal to zero for comparisons but were treated
as zeros for multiplication and division [14]. Despite advances in
standardization, program correctness and reproducibility still rest
on a fragile interplay between developers, programming languages,
compilers, and hardware implementations.

Incorrect optimizations can silently corrupt programs by altering
their semantics. Floating-point optimizations, though, may some-
times take advantage of the representation’s inherent imprecision;
their changes may negatively affect the precision of floating-point
expressions. In fact, some compilers address the tension between
speed and reproducibility by dividing floating-point optimizations
into two groups, precise and imprecise optimizations, where im-
precise optimizations are optional (e.g. the -ffast-math flag in
clang). While precise optimizations retain the original semantics,
imprecise ones produce reasonable results on common inputs (e.g.
not for special values) but are arbitrarily bad in the general case. Our
work focuses on precise optimizations because they are both more
amenable to verification and arguably harder to get right.

We present LifeJacket, a tool that allows LLVM developers to
verify precise floating-point optimizations, alleviating the challenge
of manually reasoning about edge cases. LifeJacket builds on
Alive [10], a tool for verifying LLVM optimizations, extending
it with floating-point support. Our contributions are as follows:

• We describe the background for verifying precise floating-point
optimizations in LLVM and propose an approach using SMT
solvers.
• We implement the approach in LifeJacket1, an open source fork

of Alive that adds support for floating-point types, floating-
point instructions, floating-point predicates, and certain fast-
math flags.
• We validate the approach by verifying 43 optimizations. Life-

Jacket finds 8 incorrect optimizations, including three previously
unreported problems in LLVM 3.7.1.

In addition to the core contributions, our work also lead to the
discovery of issues in Z3 [7], the SMT solver used by LifeJacket,
related to floating-point support.

1 https://github.com/4tXJ7f/alive

https://github.com/4tXJ7f/alive


Name: PR26746
%a = fsub -0.0, %x
%r = fsub +0.0, %a

=>
%r = %x

Figure 1. Incorrect transformation involving floating-point instruc-
tions in LLVM 3.7.1.

2. Related Work
Alive is a system that verifies LLVM peephole optimizations.
LifeJacket is a fork of this project that extends it with support
for floating-point arithmetic. We are not the only ones interested in
verifying floating-point optimizations; after our submission, two of
the Alive authors independently announced Alive-FP, an extension
of Alive with the same goal [6].

Our work intersects with the areas of compiler correctness,
optimization correctness, and analysis of floating-point expressions.

Research on compiler correctness has addressed floating-point
arithmetic and floating-point optimizations. CompCert, a formally-
verified compiler, supports IEEE 754-2008 floating-point types
and implements two floating-point optimizations [3]. In CompCert,
developers use Coq to prove optimizations correct, while LifeJacket
proves optimization correctness automatically. Darulova et al. [5]
describe a technique to compile programs over real numbers into
floating-point programs with guaranteed precision.

Regarding optimization correctness, researchers have explored
both the consequences of existing optimizations and techniques
for generating new optimizations. Recent work has discussed con-
sequences of unexpected optimizations [16]. In terms of new op-
timizations, STOKE [13] is a stochastic optimizer that supports
floating-point arithmetic and verifies instances of floating-point op-
timizations with random testing. Souper [1] discovers new LLVM
peephole optimizations using an SMT solver. Similarly, Optgen
generates peephole optimizations and verifies them using an SMT
solver [4]. All of these approaches are concerned with the correct-
ness of new optimizations, while our work focuses on the correctness
of existing ones. Vellvm, a framework for verifying LLVM trans-
formations using Coq, also operates on existing transformations but
does not do automatic reasoning.

Researchers have explored estimating floating-point round-off
errors [15] and improving the accuracy of floating-point expres-
sions [11]. These efforts are more closely related to imprecise op-
timizations and provide techniques that could be used to analyze
them. Lee et al. [17] describe a semi-automatic technique to verify
mixed floating-point and bit manipulations at a machine code level.
Z3’s support for reasoning about floating-point arithmetic relies on
a model construction procedure instead of naive bit-blasting [18].

3. Background
Our work verifies LLVM floating-point optimizations. These op-
timizations take place on LLVM assembly language, a human-
readable, low-level language. The language serves as a common rep-
resentation for optimizations, transformations, and analyses. Front
ends (like clang) generate output in this language and back ends
consume it to generate machine code for different architectures.

Our focus is verifying peephole optimizations implemented in
LLVM’s InstCombine pass which replaces small subtrees in the
program tree without changing the control-flow graph. Alive verifies
some InstCombine optimizations, but does not support optimizations
involving floating-point arithmetic. Instead of building LifeJacket
from scratch, we extend Alive with the machinery to verify floating-
point optimizations. To give the necessary context for discussing

our implementation (§ 4), we describe LLVM’s floating-point types
and instructions (§ 3.1) and give a brief overview of Alive (§ 3.2).

3.1 Floating-Point Arithmetic in LLVM
In the following, we discuss LLVM’s semantics of floating-point
types and instructions. This information is largely based on the
LLVM Language Reference Manual for LLVM 3.7.1 [2] and the
IEEE 754-2008 standard. For completeness, we note that the lan-
guage reference does not explicitly state that LLVM floating-point
arithmetic is based on IEEE 754. However, the language reference
refers to the IEEE standard multiple times, and LLVM’s floating-
point software implementation APFloat is explicitly based on it.

Floating-point types LLVM defines six different floating-point
types with bit-widths ranging from 16 bit to 128 bit. Floating-point
values are stored in the IEEE binary interchange format, which
encodes them in three parts: the sign s, the exponent e and the
significand t. The value of a normal floating-point number is given
by: (−1)s×(1+21−p× t)×2e−bias, where bias = 2w−1−1 and
w is the number of bits in the exponent. The range of the exponents
for normal floating-point numbers is [1, 2w − 2]. Exponents outside
of this range are used to encode special values: subnormal numbers,
Not-a-Number values (NaNs), and infinities.

Floating-point zeros are signed, meaning that −0.0 and +0.0
are distinct. While most operations ignore the sign of a zero, the
sign has an observable effect in some situations: a division by zero
(generally) returns +∞ or −∞ depending on the zero’s sign, for
example. As a consequence, x = y does not imply 1

x
= 1

y
. If x = 0

and y = −0, x = y is true, since floating-point 0 = −0. On the
other hand, 1

x
= 1

y
is false, since 1

0
=∞ 6= −∞ = 1

−0
.

Infinities (±∞) are used to represent an overflow or a division
by zero. They are encoded by setting t = 0 and e = 2w − 1.
Subnormal numbers, on the other hand, are numbers with exponents
below the minimum exponent; normal floating-point numbers have
an implicit leading 1 in the significand that prevents them from
representing these numbers. The IEEE standard defines the value
for subnormal numbers as: (−1)s× (0+21−p× t)×2emin , where
emin = 1− bias.

NaNs are used to represent the result of an invalid operation (such
as ∞ −∞) and are described by e = 2w − 1 and a non-zero t.
There are two types of NaNs: quiet NaNs (qNaNs) and signalling NaNs
(sNaNs). The significand encodes the type of NaN and debug infor-
mation in some implementations. Operations generally propagate
qNaNs and quiet sNaNs. If one of the operands is qNaN, the result is
qNaN. If the operand is an sNaN, an exception may be raised, or that
operand may be converted to a qNaN.

Floating-point exceptions occur in situations such as division by
zero or computation involving an sNaN. By default, floating-point
exceptions do not alter control-flow but raise a status flag and return
a default result (e.g. a qNaN).

Floating-point instructions In its assembly language, LLVM de-
fines several instructions for binary floating-point operations (fadd,
fsub, fmul, fdiv, . . . ), conversion instructions (fptrunc, fpext,
fptoui, uitofp, . . . ), and allows floating-point arguments in other
operations (e.g. select). We assert that floating-point instructions
cannot generate poison values (values that cause undefined behavior
for instructions that depend on them) or result in undefined behavior.
The documentation is not entirely clear but our interpretation is that
undefined behavior does not occur in the absence of sNaNs and that
sNaNs are not fully supported.

While IEEE 754-2008 defines different rounding modes, LLVM
does not yet allow users to specify them. As a consequence, the
rounding performed by fptrunc (casting a floating-point value to a
smaller floating-point type) is undefined for inexact results.



Flag Description Formula

nnan Assume arguments and result are not NaN. Result undefined over NaNs. ite (or (isNaN a) (isNaN b) (isNaN r)
(x (_ FP <ebits> <sbits>)) r

ninf Assume arguments and result are not ±∞. Result undefined over ±∞. ite (or (isInf a) (isInf b) (isInf r))
(x (_ FP <ebits> <sbits>)) r

nsz Allow optimizations to treat the sign of a zero argument or result as insignificant. or (a = b) (and (isZero a) (isZero b))

Table 1. Fast-math flags that LifeJacket supports. The isNaN and isInf are not part of the SMT-LIB standard but are supported in Z3’s
Python interface and used for illustration purposes here. The variable x is a fresh, unconstrained variable, a and b are the SMT formulas of the
operands, r of the result. The formula for nsz replaces the standard equality check a = b.

Fast-math flags Some programs either do not depend on the exact
semantics of special floating-point values or do not expect special
values (such as NaN) to occur. To specify these cases, LLVM binary
operators can be annotated with fast-math flags, which allow LLVM
to do additional optimizations with the knowledge that special
values will not occur. Table 1 summarizes the fast-math flags that
LifeJacket supports. There are two additional flags, arcp (allows
replacing arguments of a division with the reciprocal) and fast
(allows imprecise optimizations), that we do not support.

Discussion The properties of floating-point arithmetic discussed
in this section hint at how difficult it is to manually reason about
floating-point optimizations. The floating-point standard is complex,
so compilers do not always follow it completely—as we mentioned
earlier, LLVM does not currently support different rounding modes.2

Similarly, it does not yet support access to the floating-point environ-
ment, which makes reliable checks for floating-point exceptions in
clang impossible, for example. This runs counter to the IEEE stan-
dard, which defines reproducability as including “invalid operation,”
“division by zero,” and “overflow” exceptions.

3.2 Verifying Transformations with Alive
Alive is a tool that verifies peephole optimizations on LLVM’s
intermediate representation; these optimizations are expressed (as
input) in a domain-specific language. At a high level, verifying an
optimization with Alive takes the following steps:

1. The user specifies a new or an existing LLVM optimization using
the Alive language.

2. Alive translates the optimization into a series of SMT queries
that express the equivalence of the source and the target.

3. Alive uses Z3, an SMT solver, to check whether any combi-
nation of inputs makes the source and target disagree. If the
optimization is incorrect, Alive returns a counter-example that
breaks the optimization.

Alive specializes in peephole optimizations that are highly
local and do not alter the control-flow graph of a program. This
type of optimization is performed by the LLVM InstCombine
pass in lib/Transforms/InstCombine and InstructionSimplify
in lib/Analysis.

Alive can also generate code for an optimizer pass that performs
all of the verified optimizations. We do not discuss this feature
further since LifeJacket does not yet support it for floating-point
optimizations. In the following, we discuss the Alive language and
the role of SMT solvers in proving optimization correctness.

Specifying transformations with the Alive language In Alive,
each transformation consists of a list of preconditions, a source
template, and a target template. Alive verifies whether it is safe to
replace the instructions in the source with the instructions in the

2 More details: http://lists.llvm.org/pipermail/llvm-dev/
2016-February/094869.html.

Incorrect:

%r = fdiv %x, undef
=>

%r = undef

Correct:

%r = fdiv %x, undef
=>

%r = NaN

Figure 2. Example of a problematic optimization using undef on
the left and a better version on the right. If %x is NaN then %r can
only be NaN, so %r cannot be undef.

target given that the preconditions hold. Figure 1 is an example of a
transformation written in Alive. It has no preconditions, so it always
applies. Its source and target instructions are delimited by “=>”.

Preconditions are logical expressions enforced by the compiler
at compile-time and Alive takes them for granted. The predicate
isNormal(%x) in the precondition, for example, means that the
optimization only applies when %x is a normal floating-point value.

In Alive, the arguments for instructions are either inputs (e.g.
%x), constant expressions (e.g. C or C1 + C2), or immediate values
(e.g. 0.0). Inputs model LLVM registers, constant expressions cor-
respond to computations that LLVM performs at compile-time, and
immediate values are constants in the LLVM source code and thus
known to Alive at verification-time. Inputs and constant expressions
may be used as subjects for predicates in the precondition. Alive
interprets the instructions in the sources and targets as expression
trees, so the order of instructions does not matter, only the depen-
dencies. Verifying the equivalence of the source and the target is
done on the root of the trees.

In contrast to actual LLVM code, the Alive language does not
require type information for instructions and inputs. Instead, it
uses the types expected by instructions to restrict types and bit-
widths of types. Then, it issues an SMT query that encodes these
constraints to infer all possible types and sizes of registers, constants,
and values. This mirrors the fact that LLVM optimizations often
apply to multiple bit-widths and makes specifying optimizations less
repetitive. Alive instantiates the source and target templates with the
possible type and size combinations and verifies each instance.

Undefined values (undef) in LLVM represent values that are
not defined, such as results of reads from uninitialized memory.
They return arbitrary bit-patterns when read and may be of any type.
For each undef value in the target template, Alive has to verify
that any value can be produced, and for each undef value in the
source, Alive may assume any convenient value. Figure 2 is a known
incorrect optimization in LLVM that LifeJacket confirms and that
illustrates this concept: The source template cannot produce all
possible bit-patterns, so it cannot be replaced with undef.3

Verifying transformations with SMT solvers Alive translates the
source and target template into SMT formulas. For each possible
combination of variable types in the templates, it creates SMT
formulas for definedness constraints, poison-free constraints, and the

3 Discussion on this optimization: https://groups.google.com/d/
topic/llvm-dev/iRb0gxroT9o/discussion

http://lists.llvm.org/pipermail/llvm-dev/2016-February/094869.html
http://lists.llvm.org/pipermail/llvm-dev/2016-February/094869.html
https://groups.google.com/d/topic/llvm-dev/iRb0gxroT9o/discussion
https://groups.google.com/d/topic/llvm-dev/iRb0gxroT9o/discussion


return values for the source and target. Alive checks the definedness
and poison-free constraints of the source and target for consistency.
These checks are not directly relevant to floating-point arithmetic,
so we do not discuss them further. Instead, we deal more directly
with the execution values of the source and target.

An optimization is only correct if the source and the target
always produce the same value. To check this property, Alive asks
an SMT solver to verify that preconditions ∧ src_formula 6=
tgt_formula is unsatisfiable—that there is no assignment that
makes the formula true. If there is, the optimization is incorrect:
there is an assignment for which the source value is different from
the target value. When Alive encounters an incorrect optimization, it
uses the output of the SMT solver to return a counterexample. This
counterexample consists of input and constant assignments that lead
to different source and target values.

Ultimately, Alive relies on the Z3 SMT solver to determine
whether an optimization is correct. LifeJacket would have been
impossible without Z3’s floating-point support, which was added
less than a year ago in version 4.4.0 and implements the SMT-LIB
standard for floating-point arithmetic [12].

4. Implementation
Our implementation extends Alive in four major ways: it adds
support for floating-point types, floating-point instructions, floating-
point predicates, and fast-math flags. In the following, we describe
our work in those areas, briefly comment on our experience with
floating-point support in Z3, and conclude with a discussion of the
limitations of the current version of LifeJacket.

Floating-point types LifeJacket implements support for half,
single, and double floating-point types. Alive itself provides
support for integer and pointer types of arbitrary bit-widths up to 64
bit. Following the philosophy of the original implementation, we do
not require users to explicitly annotate floating-point types. Instead,
we use a logical disjunction in the SMT formula for type constraints
to limit floating-point types to bit-widths of 16, 32, or 64 bits. Then,
we use Alive’s existing mechanisms to determine all possible type
combinations for each optimization (as discussed in Section 3.2).

Adding a new type requires us to relax some assumptions, e.g.
that the arguments of select are integers. Additionally, we modify
the parser to support floating-point immediate values.

Floating-point predicates and constant functions LifeJacket
adds precondition predicates and constant functions related to
floating-point arithmetic.

Recall that preconditions are logical formulas that describe facts
that must be true for an optimization to apply; they are fulfilled
by LLVM and assumed by Alive. In the context of floating-point
optimizations, preconditions may include predicates about the type
of a floating-point value (e.g. isNormal(%x) to make sure that %x is
a normal floating-point number) or checks to ensure that conversions
are lossless.

Constant functions mirror computation performed by LLVM at
compile-time and are evaluated by Alive symbolically at verification-
time. For example, the constant function fptosi(C) (not to be
confused with the instruction) converts a floating-point number to
a signed integer, corresponding to a conversion that LLVM does
at compile time. Constant expressions (expressions that contain
constant functions) can be assigned to registers in the target template,
mirroring the common pattern of optimizing operations by partially
evaluating them at compile-time.

In contrast to Alive, LifeJacket supports precondition predicates
that refer to constant expressions in target templates. For example,
some optimizations have restrictions about precise conversions, and
we express those restrictions in the precondition. If the target con-
verts a floating-point constant to an integer with %c = fptosi(C),

double fmod(double x, double y) {
double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);

}

(= abs_y (abs y))
(= r (remainder (abs x) abs_y))
(= r’ (ite (isNeg r) (+ RNE r abs_y) r))
(= fmod (ite (xor (isNeg x) (isNeg r’)) (- r’) r))

Figure 3. The fmod function implemented using IEEE remainder
as suggested by the C standard and an informal representation of
the implementation used by LifeJacket.

then the precondition can ensure that the conversion is lossless by
including sitofp(%c) == C (which guarantees that converting the
number back and forth results in the original number). If the pre-
condition were sitofp(fptosi(C)) == C, then fptosi(C) in
the precondition and in %c would be independent. Because of their
independence, %c would stay unrestricted and LifeJacket would
find a counterexample where the bit-width of %c was too small to
represent the converted value.

Floating-point instructions Our implementation supports bi-
nary floating-point instructions (fadd, fsub, fmul, fdiv, and
frem), conversions involving floating-point numbers (fptrunc,
fpext, fptoui, fptosi, uitofp, sitofp), the fabs intrinsic,
and floating-point comparisons (fcmp). Most of these instructions
directly correspond to operations that the SMT-LIB for floating-
point standard supports, so translating them to SMT formulas is
straightforward. Next, we discuss our support for frem, fcmp, con-
versions, and the equivalence check for floating-point optimizations.

The frem instruction does not correspond to remainder as
defined by IEEE 754 but rather to fmod in the C POSIX library,
so translating it to an SMT formula involves multiple operations.
Both fmod and remainder calculate x − n ∗ y (where n is x

y
),

but fmod rounds toward zero whereas remainder rounds to the
nearest value and ties to even. Figure 3 shows how the C standard
defines fmod in terms of remainder for doubles [9, §F.10.7.1] and
the corresponding SMT formula that LifeJacket implements. The
formula uses a fixed rounding mode because the rounding mode of
the environment does not affect fmod.

The fcmp instruction compares two floating-point values. In ad-
dition to the two floating-point values, it expects a third operand,
the condition code. The condition code determines the type of com-
parison. There are two genres of comparison: ordered comparisons
can only be true if none of the inputs are NaN and unordered com-
parisons are true if any of the inputs is NaN. LLVM supports an
ordered version and an unordered version of the usual comparisons
such as equality, inequality, greater-than, etc. Additionally, there
are condition codes that just check whether both inputs are not NaN
(ord) or any of the inputs are NaN (uno).

Optimizations involving comparisons often apply to multiple
condition codes. To allow users to efficiently describe such opti-
mizations, LifeJacket supports predicates in the precondition that
describe the applicable set of condition codes. For example, there
are predicates for constraining the set of condition codes to either
ordered or unordered conditions (ordered(CC)/unordered(CC)).
We also support predicates that express relationships between mul-
tiple condition codes. This is useful, for example, to describe an
optimization that performs a multiplication by negative one on both
sides: to replace a comparison between -x and C with condition



code C1 by a comparison between x and -C with the condition code
C2, we use the swap(C1, C2) predicate.

When no sensible conversion between floating-point values
and integers is possible, LLVM defaults to returning undef. For
conversions from floating-point to integer value (signed or unsigned),
LifeJacket checks whether the (symbolic) floating-point value is
NaN, ±∞, too small, or too large, and returns undef if necessary.
Conversions from integer to floating-point values similarly return
undef for values that are too small or too large.

Recall that LifeJacket must determine the unsatisfiability of
precondition ∧ src_formula 6= tgt_formula to verify opti-
mizations. The SMT-LIB standard defines two equality operators
for floating-point, one implementing bit-wise equality, and one im-
plementing the IEEE equality operator. The latter operator treats
signed zeros as equal and NaNs as different, so using it to verify
optimizations would not work, since it would accept optimizations
that produce different zeros and reject source-target pairs that both
produce NaN. The bit-wise equality works, because SMT-LIB uses
a single NaN value (recall that there are multiple bit-patterns that
correspond to NaN). While this is convenient, it also means that we
cannot model different NaNs. We discuss the implications of this
limitation later.

Fast-math flags LifeJacket currently supports three of the five
fast-math flags that LLVM implements: nnan, ninf, and nsz.

LifeJacket handles the nnan and ninf flags in a similar way
by modifying the SMT formula for the instruction on which the
flag appears. As Table 1 shows, if the instruction’s arguments or
result is a NaN or ±∞, respectively, the formula returns a fresh
unconstrained variable that it treats as an undef value. This is a
direct translation from the description in the language reference and
works for root and non-root instructions.

The nsz flag is different: instead of relaxing the requirements for
the behavior of the instruction for certain inputs and results, it states
that the sign of a zero value can be ignored. This primarily affects
how LifeJacket compares the source and target values: it adds a
logical conjunction to the SMT query that states that the source and
target values are only different if both are nonzero (shown in Table 1).
The flag itself has no effect on zero values at runtime, meaning that
it does not affect the computation performed by instructions with the
flag. Thus, we do not change the SMT formula for the instruction.

Since the nsz flag has no direct effect on how LLVM does
matching, this flag also does not change the significance of the
sign of immediate zeros (e.g. +0.0) in the optimization templates.
Instead, we mirror how LLVM determines whether an optimization
applies. In LLVM, optimizations that match a certain sign of zero
do not automatically apply to other zeros when the nsz flag is
set. For example, an optimization that applies to fadd x, -0.0
does not automatically apply to fadd nsz x, +0.0. If applicable,
developers explicitly match any zero if the nsz flag is set. We mirror
this design by implementing an AnyZero(C) predicate, which
makes C negative or positive zero.

Limitations While Section 5 shows that LifeJacket is a useful
tool, it does not support all floating-point types and imprecise
optimizations, uses a fixed rounding mode, and does not model
floating-point exceptions and debug information in NaNs.

Currently, LifeJacket does not support LLVM’s vectors and the
two 128-bit and the 80-bit floating-point types. Supporting those
would likely not require fundamental changes.

There are many imprecise optimizations in LLVM. These opti-
mizations need a different style of verification because they do not
make any guarantees about how much they affect the program output.
A possible way to deal with these optimizations would be to verify
their correctness for real numbers and estimate accuracy changes by
randomly sampling inputs, similarly to Herbie’s approach [11].

LifeJacket’s verification ultimately relies on the SMT-LIB stan-
dard for floating-point arithmetic. The standard corresponds to IEEE
754-2008 but it only defines a single NaN value and does not distin-
guish between signalling and quiet NaNs. Thus, our implementation
cannot verify whether an operation with NaN operands returns one of
the input NaNs, correctly propagating debug information encoded in
the NaN, as recommended by the IEEE standard. In practice, LLVM
does not attempt to preserve information in NaNs, so this limita-
tion does not affect our ability to verify LLVM optimizations. We
do not model floating-point exceptions, either, since LLVM does
not currently make guarantees about handling floating-point excep-
tions. Floating-point exceptions could be verified with separate SMT
queries, similar to how Alive verifies definedness.

LifeJacket currently rounds to nearest and ties to the nearest even
digit, mirroring the most common rounding mode. Even though
LLVM does not yet support different rounding modes, we are
planning to add this support to LifeJacket soon.

Limited type and rounding mode support and missing floating-
point exceptions make our implementation unsound at worst: Life-
Jacket may label some incorrect optimizations as correct, but opti-
mizations labelled as incorrect are certainly wrong.

Working with Z3 We found Z3’s floating-point support very
effective despite its relative youth. We use the Z3 master branch
because of issues in the most recent release’s implementation and
Python API. During the development of LifeJacket, we reported
issues—all of which were fixed quickly—and fixed a few issues
in the Python API ourselves. This suggests that LifeJacket is an
interesting test case for floating-point support in SMT solvers.

5. Evaluation
To evaluate LifeJacket, we translated 54 optimizations from LLVM
3.7.1 into the Alive language and tried to verify them. We discovered
8 incorrect optimizations and verified 43 optimizations to be correct.
In the following, we outline the optimizations that we checked and
describe the bugs that we found.

We performed our evaluation on a machine with an Intel i3-
4160 CPU and 8 GB RAM, running Ubuntu 15.10. We compiled
Z3 commit 2250728 with GCC 5.2.1, the default compiler, used
the qffp tactic for quantifier-free formulas and bv for formulas
with quantifiers, and chose a 30 minute timeout for individual
SMT queries. Table 2 summarizes the results for different source
files: AddSub contains optimizations with fadd/fsub at the root,
MulDivRem with fmul/fdiv/frem, Compares deals with fcmps
and Simplify contains simple optimizations for all instructions.

Using this process, LifeJacket found 43 out of 54 optimizations
to be correct. LifeJacket timed out on three optimizations. The
AddSub optimization that times out contains a sitofp instruction
and verification is slow for integers with a large bit-width. The two
MulDivRem optimizations that timeout both contain nsz flags and
AnyZero predicates. Similar optimizations without those features
do not timeout. Out of the eight optimizations that LifeJacket
found to be incorrect, five had been previously reported. The bug
in Figure 1 had already been fixed in a newer version of LLVM
when we discovered it. The rest of the reported bugs resemble the
example in Figure 2 and are all caused by an unjustified undef in
the target (PR26862/PR26863). Figure 4 depicts the three previously
unreported incorrect optimizations that we reported to the LLVM
developers. We discuss these bugs in the next paragraphs.

PR26958 optimizes (0−x)+x to 0. The implementation of this
optimization requires that the nnan and the ninf flag each appear
at least once on the source instructions. We translate four variants
of this instruction: one where both flags are on fsub, one where
both are on fadd and two where each instruction has one of the
flags. As it turns out, it is not enough to have both flags on either



Name: PR26958
Precondition: AnyZero(C0)
%a = fsub nnan ninf C0, %x
%r = fadd %x, %a

=>
%r = 0.0

Name: PR26943
%a = select i1 %c, 0.0, C
%r = frem %x, %a

=>
%r = frem %x, C

Name: PR27036
Precondition: hasOneUse(%a) &&

hasOneUse(%b) &&
WillNotOverflowSignedAdd(%x, %y)

%a = sitofp %x
%b = sitofp %y
%r = fadd %a, %b

=>
%c = add nsw %x, %y
%r = sitofp %c

Figure 4. New bugs in LLVM 3.7.1 found by LifeJacket.

File Verified Timeouts Bugs

AddSub 7 1 1
MulDivRem 3 2 1
Compares 11 0 0
Simplify 22 0 6

Total 43 3 8

Table 2. Number of optimizations verified, timeouts, and bugs.

of the instructions. For the case where both flags are on fsub, the
transformation is invalid if %x is NaN or ±∞. The nnan and ninf
flags require the optimized program to retain defined behavior over
NaN and ±∞, so %r must be 0.0 even for those inputs (if they
resulted in undefined behavior, any result would be correct). If %x is
NaN, however, then there is no value for %a that would result in %r
being 0.0 because NaN added to any other number is NaN.

PR26958 optimizes fmod(x, c ? 0 : C) to fmod(x, C)
(select acts like a ternary and frem corresponds to fmod). The
implementation of this optimization shares its code with the same
optimization for the rem instruction that deals with integers. For inte-
gers, rem %x, 0 results in undefined behavior, so the optimization
is valid. The POSIX standard specifies that fmod(x, 0.0) returns
NaN, though, so the optimization is incorrect for frem because %r
must be NaN and not frem %x, C if %a is 0.0.

PR27036 illustrates the last incorrect optimization that Life-
Jacket identified. It transforms (float) x + (float) y into
(float) (x + y), replacing an fadd instruction with a more ef-
ficient add. This transformation is invalid, though, since adding
two rounded numbers is not equivalent to adding two numbers and
rounding the result. For example, assuming 16-bit floating-point
numbers, let %x = -4095 and %y = 17. In the portion of the source
formula %a = sitofp %a, %a cannot store an exact number and
stores -4094 instead. The target formula, though, can accurately
represent the result -4078 of the addition.

Our results confirm that it is difficult to write correct floating-
point optimizations; we found bugs in almost all the LLVM files
from which we collected our optimizations. Unsurprisingly, all
of these bugs relate to floating-point specific properties such as
rounding, NaN, ±∞ inputs, and signed zeros. This demonstrates
that these edge cases are difficult to reason about.

6. Conclusion
In an ideal world, programming languages and compilers are
boring. They do what the user expects. They exhibit the same
behavior with and without optimization, at all optimization levels,
and on all hardware. “Boring,” however, is surprisingly difficult to
achieve, especially in the context of the complicated semantics of
floating-point arithmetic. With LifeJacket, we hope to make LLVM’s
precise floating-point optimizations more predictable (and boring)
by automatically checking them for correctness.
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