
Scientific Programming
Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

80 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP July/August 2014

M
ost computing scientists know something about
the dangers of treating floating-point numbers
as if they’re real numbers. We even know some
folk wisdom intended to avoid the dangers.

Test for nearness instead of equality. If the standard library
has a function to compute a hypotenuse, use it instead of
x y2 2+ . Use (x − y) . (x + y) instead of x2 − y2. Compute

sums in order of decreasing magnitude—or is it increasing
magnitude?

Sometimes we apply these rules habitually. Sometimes we
apply them after tracing a reproducible error to an obvious
problem. Sometimes we fire them at our code from a shotgun
because it gives obviously wrong answers after many hours of
apparently proper functioning. But most of the time, we can’t
tell whether this folk wisdom actually improves anything.

The typical prescription—error analysis—is time-
consuming and requires expertise that most of us can’t seem
to find the time to obtain. We’re apparently stuck between
the two extremes of ignorance and certainty. Unfortunately,
the initial and continuing costs of certainty often make
ignorance more practical.

In almost every other software development task, testing
and debugging is a practical middle ground. We gain knowledge
and confidence about an algorithm’s implementation by its
behavior on representative inputs, using informal arguments
about path coverage and similarity. With the right tools, testing
and debugging floating-point code is no different, and can
drastically improve its accuracy and reliability.

These tools and the principles behind them can be
used for more than just fixing badly behaved floating-point
code: they can also help us determine whether our research
questions themselves are buggy. For concreteness, let’s
first concentrate on debugging the code that answers the
questions, and then expand our scope.

You Could Have Invented Floating-Point Math
While easier than error analysis, floating-point debugging
still requires some background knowledge. Therefore, we
need to review what every computing scientist really needs
to know about floating point. This includes

 ■ how floats are distributed on the real line;
 ■ how error is defined and how to measure it; and
 ■ how errors originate and propagate.

For all of these, it helps to know something about how
floating-point numbers are represented.

Floating-point numbers are little more than scien-
tific notation encoded as bits. It’s instructive, and not
that difficult, to formalize the rules we’ve all learned
for manipulating numbers in scientific notation by
coding up floating-point math from scratch. Fortunately,
we can ignore all those capricious rules about significant
figures.

Any real number x that can be put in scientific notation
can also be put in the form

x = s . m . 10e, (1)

where s is −1 or 1, m is a natural number, and e is an
integer. For example, to put −1.23456789 . 10−10 in this
form, extract the sign, move the decimal point 8 places to
the right, and subtract 8 from the exponent to get −1 .
123456789 . 10−18.

Because computers operate more efficiently on powers of
two than on powers of 10, floating-point numbers represent
real numbers that can be put in the form

x = s . m . 2e, (2)

Practically Accurate Floating-Point Math

Neil Toronto and Jay McCarthy | Brigham Young University

With the right tools, floating-point code can be debugged like any other code, drastically improving its
accuracy and reliability.

SCIentIFIC ProgrAMMIng

CISE-16-04-Sciprog.indd 80 28/07/14 7:01 PM

www.computer.org/cise 81

where s ∈ {−1, 1}, m ∈ , and e ∈ , as before. In a float,
s is called the sign, m is called the significand (an old-school
and somewhat confusing synonym is mantissa), and e is
called the exponent.

To code up floats in the Racket programming language
(see the sidebar on Racket and its design),1 we first define a
new struct type to represent a float:

#lang typed/racket

(struct float ([sign : Integer]

 [significand : Natural]

 [exponent : Integer])

 #:transparent)

The first line of our program, #lang typed/racket, tells
Racket that we’re using the typed dialect. The next few lines
define the struct type for floats, containing three fields
with types Integer, Natural, and Integer. (We could have
used [sign : (U −1 1)] to tell Typed Racket that the sign
can be only −1 or 1, but it would make working with the
sign field more difficult.) It’s important to note that Natural
and Integer instances aren’t limited to the system’s word
size or to any other maximum size at all: they’re big integers.
The #:transparent flag tells Racket, among other things,
to not hide a printed float’s fields.

Using x = s . m . 2e as a guide, we define a function to
convert floats to exact rationals:

(: rat (−> float Exact-Rational))
(define (rat x)

 (match-define (float s m e) x)

 (* s m (expt 2 e)))

The first line declares that the function rat takes
arguments of type float and returns Exact-Rational
instances, which are represented internally by reduced
quotients of big integers. The line (match-define (float
s m e) x) unpacks argument x’s fields. The next line,
(* s m (expt 2 e)) simply encodes the formula s . m . 2e
in Racket.

If we run the program we have so far in the DrRacket
IDE, an interactions window opens with a friendly welcome
and a “>” prompt. We should try a few test cases.

One way to represent 80 as a float is 1 . 10 . 23. In the
interactions window, we write (float 1 10 3), press Enter,
and see

> (float 1 10 3)

(float 1 10 3)

DrRacket has printed the results of applying the float
function to arguments 1, 10, and 3: a float with fields 1,

10, and 3. So far, so good. Converting it to an exact rational
works as expected:

> (rat (float 1 10 3))

80

Another correct test case is as follows:

> (rat (float −1 23 −6))

−
26
34

.

That is, − ⋅ ⋅ =−−1 23 2 23
64

6 .

Multiplying float instances is easy, using the properties
of multiplication and the identity 2 2 21 2 1 2e e e e⋅ = + . If
x s m e
1 1 1 2 1= ⋅ ⋅ and x s m e

2 2 2 2 2= ⋅ ⋅ , then

x x s m s m

s s m m

e e
1 2 1 1 2 2

1 2 1

2 21 2⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

() ()

() (22 2 1 2) .⋅ +e e
 (3)

The Racket Programming
Language

Racket’s syntax (see www.racket-lang.org) is similar to

Lisp’s, so expect nested parentheses and (notation

prefix). But it goes far beyond Lisp in its ability to define

new languages as libraries. One new language that ships with

Racket is Typed Racket, in which all the code in this article

is written.

Racket and its libraries are open source (Lesser General

Public License, or LGPL). They’ve been under development for

20 years by PLT, a group of programming language researchers

who put correctness first but aim for practical applicability. As a

result, Racket’s libraries are broad and reliable, and its runtime

performance is good. In particular, Racket’s floating point is both

standards-compliant and fast: within a factor of 3 of C’s speed

when carefully tuned, which Typed Racket accelerates to within

a factor of 1.5.

Racket ships with an integrated development environment

(IDE) called DrRacket. Originally developed for teaching

programming, it’s unobtrusive and useful for both students and

experts. DrRacket provides programmers with abilities that most

IDEs don’t, such as the ability to manipulate pictures and store

them in programs as literal values, as easily as if they were

simply numbers.

CISE-16-04-Sciprog.indd 81 28/07/14 7:01 PM

Scientific Programming

82 July/August 2014

Using the last formula as a guide, we define

(: mul (−> float float float))
(define (mul x1 x2)

 (match-define (float s1 m1 e1) x1)

 (match-define (float s2 m2 e2) x2)

 (float (* s1 s2) (* m1 m2) (+ e1 e2)))

Checking it against Racket’s exact rational arithmetic,
we get

>(

>(rat (mul (float 1 10 3)

* /)80 23 64

28
3
4

−

−

(float 1 23)))− −

−

6

28
3
4

as expected.
Implementing addition is more involved, requiring

shifting the significand of one float to line up its “decimal
point” with the other float’s, but it’s certainly within the
reach of anyone reading this article. Figure 1 gives a Typed
Racket implementation.

Floats on the number Line
Instances of float are different from typical floating-point
numbers in one crucial way: because a float’s significand and
exponent are big integers, there’s no bound on their size. While
this might seem like an improvement, it’s actually kind of a curse.

Multiplication can double the number of bits required to
store the significand. For example, multiplying two floats with
4-bit significands can result in a float with an 8-bit significand:

> (mul (float 1 15 0) (float 1 15 0))

(float 1 255 0)

Addition is worse: the number of bits required to store
the result’s significand depends on the difference in the
arguments’ exponents. For example, the following sum has
a 1 + 16 − (−16) = 33-bit significand, computed from two
1-bit significands:

> (add (float 1 1 16) (float 1 1 −16))
(float 1 4294967297 −16)

Division and irrational functions like square root are
even worse: most results require infinitely many bits. We
clearly need to limit the significand’s range.

An unbounded exponent is also a curse. For example,
it would take billions of terabytes to store just the exponent
field of exp(exp(exp(100))).

At this point, we could review how floats are packed
into bit fields to be stored in memory. But it takes a lot of
work to turn those details into intuition, which we could get
just as easily by visualizing the floats on the number line. An
exhaustive visualization is infeasible for standard float sizes—
billions of floats can be packed into the smallest standard
size, 32 bits—so let’s take a look at 6-bit floats.

The 6-bit floats we’ll use have one sign bit to represent
s ∈ {−1, 1}, two significand bits to represent m ∈ [4..7],
and three exponent bits to represent e ∈ [−4..1]. They’re
encoded as bits in a way that gives them the same properties
as standard 32-, 64-, and 128-bit floats. Figure 2 shows their
positions on the extended real line, except those that encode
the error value not-a-number (NaN).

Because there are finitely many 6-bit floats, they aren’t
infinitely dense like rational numbers or instances of float.
Consequently,

 ■ every float has at least one closest neighbor;
 ■ floats can be enumerated in their natural order; and
 ■ every extended real number is either a float or is between

two floats.

As an example of the last consequence, 19 is between 14
and ∞. Also, p is between 3 and 3.5, but is closer to 3, so
with 6-bit floats, p = 3. Many struggling math students, and
some historic lawmaking bodies, would heartily approve.

To keep the numeric labels from overlapping, Figure
2 has to “zoom in” to the floats near zero, twice. Because
there are the same number of floats between every two
neighboring powers of two, floats are quite dense near zero
and quite sparse away from it. This has somewhat surprising
consequences. For example, every 6-bit float above 22 =
4 is an integer, and every 6-bit float above 23 = 8 is even.
Likewise, every 64-bit float above 252 is an integer, and
every 64-bit float above 253 is even.

Floats that can be written s . m . 2e, where (for 6-bit floats)
s ∈ {−1, 1}, m ∈ [4..7], and e ∈ [−4..1], are called normal. The

(: add (−> float float float))

;; Returns the exact sum of two floats

(define (add x1 x2)

 (match-define (float s1 m1 e1) x1)

 (match-define (float s2 m2 e2) x2)

 (define d (− e1 e2))

 (define n

 (if (< d 0)

 (+ (s1 m1) (s2 m2 (expt 2 (− d))))

 (+ (s2 m2) (s1 m1 (expt 2 d)))))

 (float (if (< n 0) −1 1) (abs n) (min e1 e2)))

Figure 1. An implementation of exact floating-point addition.

CISE-16-04-Sciprog.indd 82 28/07/14 7:01 PM

www.computer.org/cise 83

strange range of m helps ensure that the encoding of non-NaN
floats is unique. If we allowed m = 0, then 0 could be represented
by both 1 . 0 . 20 and 1 . 0 . 21, among others.

But if so, 0 can’t be a normal float. One exponent field bit
pattern is thus reserved for specially encoding 0 and the next
three uniformly spaced floats, which are called subnormal. For
standard 64-bit floats, there are 252 −1 positive subnormals,
uniformly spaced in the open interval (0, 2−1,022).

Another exponent field bit pattern is reserved for
specially encoding −∞, ∞, and NaN.

There are two floating-point zeros. It’s occasionally useful
to distinguish their signs, but we’ll regard them as equal.

One fact Figure 2 can’t show is that 6-bit and standard-size
floats are cleverly encoded to make it easy to enumerate them in
their natural order. In particular, the encoding of any non-NaN
float x, interpreted as a signed magnitude integer, or an integer
whose most significant bit determines whether it’s positive or
negative, is the signed index of x on the number line. For example,
the 6-bit encoding of 1 is 0011002, or 12. The encoding of −1 is
1011002, which, as a 6-bit signed magnitude integer, is −12.

We’ll define ord(x) to be a float x’s signed ordinal index,
so that ord(1) = 12 and ord(−1) = −12 for 6-bit floats.
Figure 3 gives C implementations of ord and its inverse ord−1
for 64-bit floats. Racket’s 64-bit implementations of ord and
ord−1 are provided by its math library as flonum−>ordinal
and ordinal−>flonum.

We care about the ordinal indexes of floats because
they enable us to measure error and to design effective
randomized testing strategies. For now, let’s focus on
measuring error.

Measuring Floating-Point error
Functions that return approximations can at best be close to
correct, so we need a natural way to measure the amount of
error in their outputs. For a float x that approximates a real
number r, the most obvious error measure is the distance

between them, or |x − r|. This is called absolute error, and it’s
usually the wrong measure.

To see why, we’ll first define fl(r) to be the nearest float
to a real number r. In case of a tie, fl(r) is the nearest float
with an even significand. If r is too large, fl(r) = ±∞.

–14

–4

–1 –7/8 –5/8 –7/16 –3/8 –5/16–1/4–3/16–1/8–1/16 1/16 3/161/8 1/4 5/16 3/8 7/16 1/2 5/8 3/4 7/8 1±0

subnormal subnormal

–3½ –2½

–½

–1½ –1¼ –1 1 1¼ 1½ 1¾ 2 2½ 3 3½ 4–2

–¾

–3

–12 –10 –8 –7 –6 –5 –4 4 5 6 7 8 10 12 14 ∞–∞

–1¾

Figure 2. The positions of all 58 non-not-a-number (NaN), 6-bit floats on the extended real line.

int64_t double_to_ordinal(double x) {

 double y = fabs(x);

 int64_t n = *((int64_t*)(&y));

 return x <= 0.0 ? -n : n;

}

double ordinal_to_double(int64_t n) {

 int64_t m = n < 0 ? -n : n;

 double x = *((double*)(&m));

 return n < 0 ? -x : x;

}

Figure 3. C implementations of ord(x) and ord–1 (x) for 64-bit
floats. This code should work correctly on any system that stores
floats with the same endianness as integers.

MPFR

The Multiple-Precision Float with correct Rounding (MPFR;

www.mpfr.org) library is an open source project whose goal is

to provide well-defined, standards-compliant, efficient, multi-

precision floating-point functions. Its contributors take great

pains to prove that the algorithms it uses always produce correctly

rounded results.

CISE-16-04-Sciprog.indd 83 28/07/14 7:02 PM

Scientific Programming

84 July/August 2014

With 64-bit floats, |fl(exp(100)) − exp(100)| ≈ 1.61 .
1027, which is a ludicrous amount of error for the closest
approximation of exp(100)—it’s about 1.5 times the
diameter of our galaxy in micrometers. The problem here is

the sparseness of 64-bit floats near exp(100): the floats on
either side of it are 292 ≈ 4.95 . 1027 apart!

The standard way to measure floating-point error
relativizes absolute error by dividing it by the distance
between neighboring floats near r:

error
ulp fl

(,)
(())

x r
x r

r
=

− . (4)

Here, ulp(y) is y’s unit in last place, which is defined as the
magnitude of the lowest-order bit in y ’s significand, or equivalently
the distance from y to the next float from y away from zero. (If the
next float from y is an infinity, ulp(y) is the distance to the next
float toward zero.) It’s easy to compute ulp(y) using ord and ord–1.

There’s a nice intuitive interpretation of error(x, r):
it corresponds closely with the number of floating-point
numbers from x to r. For example, with 6-bit floats,

error
ulp

(,)
()

8 14
8 14

14
6
2

3=
−

= = . (5)

This interpretation admits fractional numbers of floats as
well. For example,

error fl((exp()),exp()) .100 100 1 61 10
2

0
27

92≈
⋅

≈ ..325. (6)

That is, fl(exp(100)) and exp(100) are about 0.325 floats
apart. Generally, if fl(r) is finite, then error fl((),) .r r ≤ 0 5,
meaning that the nearest float to a real number r is no more
than half a float, or half an ulp, away.

Racket’s math library provides ulp and error as flulp
and flulp-error. (Racket’s 64-bit floating-point function
names usually start with fl.) To use flulp-error to
debug floating-point functions, we need correct values for
its second argument. Racket’s built-in exact rationals can
represent correct values, at least for the results of arithmetic.
For example,

> (require math)

> (flulp-error (/ 1.0 7.0) (/ 1 7))

0.2857142857142857

For irrational functions such as exp, we can appro-
ximate correct values closely with high-precision floats.
Racket’s math library provides such floats by wrapping the
C library MPFR,2 the most accurate multiprecision floating-
point library in existence (see the “MPFR” sidebar). For
example,

> (flulp-error (flexp 100.0)

 (bigfloat−>real
 (bfexp (bf 100.0))))

0.32516258740803655

IEEE 754-2008 Compliance

The first floating-point standard, IEEE 754-1985, was introduced

to stem the tide of proliferating floating-point formats and imple-

mentations. It requires all basic functions to be correctly rounded—

essentially, to be as accurate as possible. Consumer chip makers,

who didn’t have to support legacy floating-point units, embraced the

standard with uncharacteristic zeal. The 2008 update addressed am-

biguities and added a list of recommended basic functions.

As computing scientists, we should seek and emphatically

support IEEE 754-2008 compliance. It makes our computations

more accurate and our scientific results repeatable.

It seems most modern desktop hardware is mostly compliant,

and system libraries are catching up. Unfortunately, many

compilers still aggressively optimize floating-point code in a way

that breaks compliance.

The following short Racket program tests hardware and system

library compliance with IEEE 754-2008:

#lang racket

(require math/utils)

(test-floating-point 10000)

This program tests Racket’s basic functions, as well as additional

math library functions whose implementations are very sensitive

to noncompliance, on thousands of deterministic and 10,000

random arguments, against MPFR. An automated process runs

a similar program on a compliant system every time a Racket

developer uploads changes to ensure Racket remains compliant.

According to reports from Racket users who have run the

program on their own systems, it appears that

 ■ arithmetic and square root are almost universally correctly

rounded;
 ■ on many systems, trigonometric functions are correctly rounded

for arguments near zero, but return values with a few ulps error

for very large arguments; and
 ■ on a small handful of systems, exp(x) or trigonometric func-

tions are accurate near zero but have error up to hundreds of

ulps when x is large.

IEEE 754-2008 doesn’t specify which floating-point functions

are implemented in hardware, so it’s difficult to make a general

statement about whether the errors are caused by hardware

floating-point units or system libraries.

CISE-16-04-Sciprog.indd 84 28/07/14 7:02 PM

www.computer.org/cise 85

The expression (bf 100.0) returns an MPFR floating-
point number, or a bigfloat, which by default has a 128-bit
significand. Then bfexp computes exp(100) with high
precision, and bigfloat−>real converts the result to an
exact rational.

We’ll frequently use bigfloat functions to estimate error
in the outputs of 64-bit floating-point functions, so it’s
helpful to abstract away the details. We define

(: fun-error (−> (−> Flonum Flonum)
 (−> Bigfloat Bigfloat)
 (−> Real Flonum)))
(define ((fun-error f f*) r)

 (define x (fl r))

 (flulp-error (f x)(bigfloat−>real (f* (bf x)))))

Given a 64-bit floating-point function f and a bigfloat
function f*, fun-error produces a function that accepts a real
number r and returns an estimate of the error in (f (fl r)),
in ulps. To use it to measure the error in flexp, for example,

> ((fun-error flexp bfexp) 100)

0.32516258740803655

which is the same as before.

Now that we can get flexp’s error as a function, it’s
easy to plot. Figure 4a is a transcript from DrRacket’s
interactions window, plotting (fun-error flexp bfexp).
(In Racket, plots are values that are defined in a way that
causes DrRacket to print them as graphics.) It appears that
on this system, for arguments between 0 and 2, (fun-error
flexp bfexp) never returns a value greater than 0.5. If so,
flexp is accurate within half an ulp—as accurate as it can
possibly be.

According to the IEEE 754-2008 floating-point stan-
dard,3 such accuracy is expected. Section 4.3 says

Except where stated otherwise, every operation shall be
performed as if it first produced an intermediate result
correct to infinite precision and with unbounded range,
and then rounded ...

More precisely, if f is a floating-point implementation
of f, and x is the exact floating-point representation of a
real value x, then (f x) must be the exact floating-point
representation of fl(f (x)). Operations that are computed
this accurately, as mandated by IEEE 754-2008, are called
correctly rounded.

Let’s test another function. First, we’ll define an abstraction
similar to fun-error but for × → functions:

0.4

0.3

0.2ex
p(

x)
 e

rr
or

0.1

0
0 0.5 1

x
1.5 2

(a)

0.5

0.4

0.3

0.2

0.1

0
1

0.5

0

–0.5

–1 –1

–0.5

0

0.5

x ax
is

y axis

1

(b)

> (require plot/typed)

> (plot (function (fun-error flexp bfexp) 0 2)

 #:x-label "x"

 #:y-label "exp(x) error")

> (plot3d (contour-intervals3d

 (fun2d-error fl— bf—)
 —1 1 —1 1))

Figure 4. Error plots for basic functions that are correctly rounded in accordance with IEEE 754-2008. (a) Exponentiation and
(b) subtraction.

CISE-16-04-Sciprog.indd 85 28/07/14 7:02 PM

Scientific Programming

86 July/August 2014

(: fun2d-error

 (−> (−> Flonum Flonum Flonum)
 (−> Bigfloat Bigfloat Bigfloat)
 (−> Real Real Flonum)))
(define ((fun2d-error f f*) rx ry)

 (define x (fl rx))

 (define y (fl ry))

 (flulp-error (f x y) (bigfloat−>real
 (f* (bf x) (bf y)))))

The plot of (fun2d-error fl− bf−) in Figure 4b
suggests subtraction is correctly rounded on this system. The
trough in the center demonstrates an additional, useful fact:
when x and y are within a factor of two of each other, or
1 2 2≤ ≤x y/ , then x − y is not only correctly rounded but
is exact.

It would be nice if low error in basic functions’ outputs
meant that every floating-point formula had low error.
If that were true, this article could end now with no more
than an impassioned plea to hardware makers and compiler

writers to adhere to IEEE 754-2008 (see the related sidebar).
Unfortunately, we’re not so lucky.

error Propagation
The most disappointing and difficult fact about floating-
point error is that it isn’t compositional: low error in a
formula’s subterms doesn’t guarantee low error in the formula
itself. One consequence is that correctly rounded functions
are guaranteed to have low error only when their arguments
are exact. We’ll use this consequence to demonstrate the
problem.

Suppose we give fllog an argument with just one ulp
error. We can do that using flnext, which returns the next
64-bit float toward positive infinity. We then measure the
error of its log:

> (flulp-error (fllog (flnext 1.1))

 (bigfloat−>real
 (bflog (bf 1.1))))

14.572897331748424

This isn’t terrible. 64-bit floats have 53-bit significands.
Being 14.6 ulps off means that the log2(14.6) ≈ 3.87
low-order significand bits are bad, so the result’s 53-bit
significand still has about 49 bits precision.

But really, how bad can it possibly get?
Unfortunately, there’s effectively no bound on how bad

it can get:
> (flulp-error (fllog (flnext 1.0001))

 (bigfloat−>real
 (bflog (bf 1.0001))))

16381.87167545197

> (flulp-error (fllog (flnext 1.00000000001))

 (bigfloat−>real
 (bflog (bf 1.00000000001))))

137438953470.5061

In the last example, we have only 16 bits precision. For
perspective, this is just a little more precise than 22 7≈ π.

This sensitivity to argument error seems to get worse as
the argument approaches 1. Let’s plot how sensitive log is
to error in arguments between 0 and 2 to find out if that’s
true. This time, we’ll plot a lambda, or an anonymous
function, instead of using a function like fun-error to create
a function to plot.

Figure 5 contains the transcript from DrRacket’s
interactions window. The spike at x = 1 looks perfectly
dreadful, but it’s actually worse than it looks. If we were
to zoom into it by plotting at ever-narrower intervals that
contain 1, we’d find that the spike goes all the way up to
infinity. There’s no limit to how much log can magnify its
argument’s error.

x

lo
g(

x+
ul

p(
x)

)
er

ro
r

0 0.5 1 1.5 2

100

200

300

400

500

> (plot (function
 (lambda (r)
 (define x (fl r))
 (flulp-error (fllog (flnext x))
 (bigfloat—>real
 (bflog (bf x)))))
 0 2)
 #:x-label "x"
 #:y-label "log(x+ulp(x)) error")

Figure 5. How log(x) magnifies error in x.

CISE-16-04-Sciprog.indd 86 28/07/14 7:02 PM

www.computer.org/cise 87

Log-One-Pea? Exp-Em-One?

It might seem like a stretch to say log1p(x) = log(1 + x) and

expm1(x) = exp(x) − 1 are common functions. They should

be, because they so often provide an escape from log’s and

exp’s badlands. If the language you use for scientific computing

doesn’t have them, submit a bug report.

There’s a classic joke pertinent to our situation:

[Doctor arrives to find patient bending joint backwards,
 biting armpit, or other grotesque action.]
Patient: Doctor, it hurts when I do this.
Doctor: Then don’t do that!

We can’t demand that fllog be more accurate if it’s already
as accurate as it can possibly be. We can’t apply fllog only to
exact arguments because the outputs of other floating-point
functions are almost always approximate. All we have left is,
“Then don’t do that!” Don’t apply fllog to an approximate
result that’s near 1.

Is this normal? Unfortunately, yes. Most common
real-valued functions, even when their floating-point
implementations are correctly rounded, have subdomains on
which they magnify argument error in their outputs. These
places are often called ill-conditioned, but that term doesn’t
fill anyone with the right amount of dread. Instead, we’ll call
those subdomains the badlands.

High error in floating-point code isn’t caused by
rounding exact results to the nearest float. It’s caused by
wandering into the badlands with a rounded result.

Avoiding the Badlands
The main task in debugging floating-point math is figuring
out when we’ve wandered into the badlands with an
approximation and then rewriting parts of our code so we
don’t do that.

It’s therefore essential to know where common
functions’ badlands are. Figures 6 and 7 have plots and
formulas for the badlands of the most common floating-
point functions. To derive them, we’ve made the definition
of badlands more precise: they’re the parts of the domain in
which error is magnified about 4 or more times, without
considering additional rounding error. In other words, the
badlands reduce precision by two bits or more, as well as
add rounding error.

Perhaps surprisingly, some common functions don’t
have badlands, such as multiplication and arctangent. We
can confidently apply them to approximations.

Figure 6 identifies the badlands for x − y as

1
2

2≤ ≤x y/ . (7)

In other words, the badlands are where x and y are
within a factor of two of each other. This is the same
subdomain on which floating-point subtraction is exact
when x and y are exact, so whether subtraction in the
badlands is prudent or deadly depends only on exactness.
The universe is clearly messing with us, but at least it’s
made this important subdomain of × easier to
remember.

If f : → is differentiable, its badlands, as we’ve
defined the term, can be estimated by solving

x f x
f x
⋅ ′

≥
()

()
4 (8)

for x, where f ′ is the first derivative of f. The left-hand
side is called f ’s condition number at x. There are more
general condition number formulas for multivariate
functions, but they’re more complicated than we need to
get into.

We say the badlands can be “estimated” because the
condition number formula doesn’t account for any floating-
point details. But the fact that such a simple formula can
estimate how much f magnifies floating-point error is
telling: it means that f ’s badlands are primarily a property
of f itself, and much less a property of its floating-point
implementation.

We can use the condition number formula to get
some intuition about how to avoid the badlands. When
the denominator f (x) is near zero and the numerator
isn’t, the condition number is large. We should therefore
avoid zero crossings that aren’t at the origin. A canonical
example is log(1) = 0. Another trait to avoid is
exponential growth away from the origin, which makes
the numerator large.

Figures 6 and 7 plot badlands that can be estimated using
condition numbers, which estimate how error is magnified
only for normal floats. Floating-point implementations of some
functions, particularly x/y, x , and log(x), additionally magnify
error without bound when their arguments are approximate and
subnormal.

A sometimes convenient, but complicating fact is
that high error isn’t compositional, either: high error in a
formula’s subterms doesn’t guarantee high error in the
formula itself. For example, applying fllog far enough from
zero reduces error:

> (flulp-error (fllog (flstep 1e10 40))

 (bigfloat−>real
 (bflog (bf 1e10))))

2.11101355742103

CISE-16-04-Sciprog.indd 87 28/07/14 7:02 PM

Scientific Programming

88 July/August 2014

Here, (flstep 1e10 40) is equivalent to 40 iterations of
flnext, starting with 1e10. Computing the log has reduced
error from 40 ulps to 2 ulps.

It’s occasionally useful to reformulate floating-point
math to reduce error. We’ll let error reduction happen by
accident, and use testing to find out where it doesn’t make up
for wandering into the badlands.

Floating-Point test-Debug Cycle
A good test-debug cycle for a floating-point function f pro-
ceeds as follows (also see the sidebar, “Testing and Debug-
ging Support”). First, write a straightforward version f. Next,
write a version f* with higher precision. Then repeat the fol-
lowing steps as necessary:

1. Test f against f* to find high-error subdomains, using
only exact arguments to f.

2. Reformulate f to reduce error.
3. Make the same changes to f*, if necessary.

We’ll demonstrate this test-debug cycle on three functions,
which will illustrate the answers to the following questions.

Q. Are you seriously advocating writing two versions of every
floating-point function?
A. Yes. Admittedly, that answer isn’t very motivating, so
here’s a counterquestion: How certain do you want to be
that your good, bad, or unexpected results aren’t an artifact
of floating-point error?

Q. What kind of numbers should f* use?
A. For arithmetic functions, use exact rationals if your
language or libraries provide them. Otherwise, multiprecision
floats with 128-bit significands seem to work well for testing
most 64-bit floating-point functions.

Q. Why test f only with exact arguments?
A. How f magnifies error when given approximate arguments
is a property of the function it implements. We can’t do
anything about it.

Q. Why make corresponding changes to f*?
A. Unless f* is written using exact rational arithmetic, if
f wanders into the badlands with an approximation, so
does f*.

8

(x + ulp(x)) – (y – ulp(y)) error

6
4
2
0
1

0.5

0

–0.5

–1–1
–0.5

0
0.5

(c)

1

8

6

4

2

0
0 0.5 1 1.5

log(x + ulp(x)) error

exp(–1/4) exp(1/4)
exp(–1/2) exp(1/2)

2 2.5

(a)

8
exp(x + ulp(x)) error

6

4

2

0
–4 –2 0 2 4

(d)

8

6

4

2

0
–4 –2 0 2 4 6 8

expm1(x + ulp(x)) error

(e)

log1p(x + ulp(x)) error
8

6

4

2

0
–1 –0.8

–15/16 –1/2

–0.6 –0.4 –0.2 0

(b)

Operation Badlands

x · y None

x /y x or y subnormal

x x subnormal

log1p(x) – 15
16

x ≤

log(x) 1 1exp – exp4 4x or x subnormal≤ ≤

x – y 1 / 22 x y≤ ≤

x + y 1
22 –x / y≤ ≥

exp(x) | x | 4 ≥

expm1(x) x 4 ≥

Figure 6. Formulas and plots of the badlands for common 64-bit floating-point functions.

CISE-16-04-Sciprog.indd 88 28/07/14 7:02 PM

www.computer.org/cise 89

Q. Why not just use f* instead of f?
A. It’s almost certainly hundreds to thousands of times
slower. Perhaps more importantly, the initial version of f*,
though more accurate than the initial version of f, might not
be accurate enough.

One question without an easy answer is “What kind of
accuracy should I aim for?” This depends strongly on how
f will be used. Racket’s math library generally aims for less
than a few ulps error on the entire domain. But library code
is used in many different, unpredictable ways, so such high
standards make sense. Your project might tolerate 10,000
ulps error, or even millions, and almost certainly doesn’t
touch every floating-point function’s entire domain.

Whatever your project is, we recommend reducing the
subdomain on which error is unbounded, if not eliminating
unbounded error altogether.

Debugging the geometric Distribution
We’ll start debugging with a real task from creating
Racket’s math library. The Geometric distribution’s

Figure 7. Formulas and plots of the badlands for trigonometric 64-bit floating-point functions.

1

2

3

4

–2/3 π

2/3 π

 –5/6 π

5/6 π

sin(θ + ulp(θ)) error

(d)

–1 –0.975 –0.95|0.95 0.975 1
0

2

4

6

8

–sqrt(63/64)

–sqrt(15/16) sqrt(15/16)
 sqrt(63/64)

arcsin(x + ulp(x)) error

(a)

1

2

3

4

 2/3 π 1/3 π

–5/6 π

 5/6 π

–2/3 π –1/3 π

cos(θ + ulp(θ)) error

(e)

–1 –0.995 –0.99|0.8 0.9 1
0

2

4

6

8

–sqrt(255/256)

–sqrt(63/64) cos(1/2)

arccos(x + ulp(x)) error

(b)

Operation Badlands

tan(x) arctan(7)x

sin(x)
5

6
x

cos(x)
1 2

 or
3 3

x x

arctan(x) None

arcsin(x)
63

64
x

arccos(x)
1 255

cos or x
2 256

x

≤

≤ –

≥

≥

≥

≥

≥

π

π

π π≤

(c)

33

444

 1 1 1 1 1 1 1 1 1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

tan(θ + ulp(θ)) error

arctan(sqrt(7))

–arctan(sqrt(7))

Testing and Debugging Support

For testing and debugging floating-point code as described in

this article, a language or library needs

 ■ 64-bit implementations of ord, ord–1, and ulp;
 ■ multiprecision floats (MPFR recommended);
 ■ for each kind of high-precision number, implementations of fl

(correctly rounded) and error;
 ■ plotting on any subinterval of (−∞, ∞) without additional error,

underflow, or overflow; and
 ■ random float and 64-bit integer generation.

Other high-precision numbers, such as exact rationals and

double-doubles, are a plus.

CISE-16-04-Sciprog.indd 89 28/07/14 7:02 PM

Scientific Programming

90 July/August 2014

implementation is partly defined in terms of f : (0, 1) ×
(0, 1) → , defined by

f x y
y

x
(,)

log()
log()

=
−1

. (9)

Following the test-debug procedure, we first define two
straightforward implementations: f, for 64-bit floats, and
f*, for arbitrary-precision bigfloats:

(: f (−> Flonum Flonum Flonum))
(define (f x y)

 (/ (fllog (− 1.0 y))
 (fllog x)))

(: f* (−> Bigfloat Bigfloat Bigfloat))
(define (f* x y)

 (bf/ (bflog (bf− (bf 1.0) y))
 (bflog x)))

We start testing f by plotting (fun2d-error f f*) on
the entire domain. Figure 8a shows the results, which aren’t
terrible so far. We apparently have error less than 4 ulps for
y > 0.1 or so. The plot only suggests that error increases as y
approaches zero.

But really, how bad could it possibly get?
There’s effectively no bound on how bad it can get.

Figure 8b plots the error for y ≤ 10−8. Instead of the
maximum error at just under 8 ulps, in this plot, error is just

6

4

2

0
1

0.8

0.6

0.4

0.2

0
0.2

0.4

0

0.6

x ax
is

y axis 0.8
1

6x108

4x108

2x108

1x10–8

8x10–9

6x10–9

4x10–9

2x10–9

0 0
0.2

0.4

x ax
is

y axis 0.6

0.8
1

1.5

1

0.5

0
1

0.8

0.6

0.4

0.2

0
0.2

0.4

0

0.6

x ax
is

y axis 0.8
1

40

30

20

10

0

8x10–24

6x10–24

4x10–24

2x10–24

0 0
0.2

0.4
x ax

is

0.6
0.8

1

y axis

(a) (b)

(c) (d)

Figure 8. Plots of (fun2d-error f f*) at two debugging stages, in different domains. (a) Initial implementation, entire domain.
(b) Initial implementation, approaching y = 0. (c) Implementation using log1p, entire domain. (d) Implementation using log1p, without

updating the bigfloat implementation to use log1p, near y = 2 · 10−24.

CISE-16-04-Sciprog.indd 90 28/07/14 7:02 PM

www.computer.org/cise 91

under 8 . 108 ulps. Further plots would show that it only
gets worse closer to y = 0. Ugh.

Is this normal? Unfortunately, yes. It’s utterly typical
for a straightforward floating-point implementation of a
real function to have low error on most of its domain and
unbounded error on a small subdomain.

There must be some badlands-wandering going on.
Knowing that f’s error is high when y is near 0.0, it’s not
hard to find the problem: if y is near 0.0, then (− 1.0 y)
is approximate and near 1.0, which is in log’s badlands, so
(fllog (− 1.0 y)) has high error.

What about the rest of f’s definition? The outer division
doesn’t magnify error when its arguments are normal.
(We’ll deal with subnormal arguments only if testing turns
up problems.) For a different reason, (fllog x) should be
fine: x is assumed exact because it’s a function argument, so
it doesn’t matter if x is in log’s badlands.

To fix (fllog (− 1.0 y)), we need a log-like function
with different badlands, such as log1p(x) = log(1 + x),
whose badlands are shown in Figure 6. Replacing log(1 − y)
in the definition of the real function f with log1p(−y)
wouldn’t change f. We could similarly replace (fllog
(− 1.0 y)) in the definition of the floating-point function
f with (fllog1p (− y)), but to change f in a way that
changes only its floating-point error.

Using fllog1p will definitely reduce error: y is exact and
negation is exact, so even if (− y) is in log1p’s badlands, it
won’t matter. So we change f’s definition to

(: f (−> Flonum Flonum Flonum))
(define (f x y)

 (/ (fllog1p (− y))
 (fllog x)))

and plot its error. Figure 8c shows the result. It looks great—
error is apparently bounded by 2 ulps—but we’re not done.

We still need to update f*. If (bf− (bf 1.0) y) is in
log’s badlands, then (bflog (bf− (bf 1.0) y)) at least
quadruples error, even with bigfloats. Because the amount
that error can be magnified is unbounded, at some point,
log’s badlands could make f* less accurate than f! In this
case, it happens near 2e−24, as shown in Figure 8d.

Instead of updating f*, we could increase the number
of bits in the bigfloats that f* computes with. In this case,
it takes bigfloats with 1,074-bit significands to make f*
more accurate than f again! Clearly, using more precision
isn’t always the best approach. Changing f* to avoid log’s
badlands the same way f does is more reliable and results
in faster high-precision code, which means faster and more
reliable testing.

Whether by using more significand bits or changing
f*, we would find through more testing that our updated
implementation of f has less than 2 ulps error everywhere.

Debugging Log of Quotient
The function

h(x, y) = log(x/y) (10)

comes up often when dealing with logarithms, and has an
annoyingly large subdomain for which a straightforward
implementation has high error. Accurate implementation
requires a common technique we didn’t use in the last example:
splitting up the domain. For simplicity, we’ll restrict h to the
first quadrant; that is, h : [0, ∞) × (0, ∞) → .

Figure 9a plots the error in the straightforward 64-bit
float implementation h against the bigfloat implementation
h*. The ridge in the middle suggests that error gets up to at
least 30 ulps near the diagonal x = y.

But really, how bad could it possibly get?
This time, we won’t dignify that silly question with an

answer.
The problem can’t be division, which just adds rounding

error. The problem must be applying floating-point log to the
rounded quotient. According to Figure 6, we can avoid log’s
badlands by not applying it if exp / exp−()≤ ≤ ()1 4 1 4x y ,
but we’ll need a reformulation on that subdomain.

An obvious reformulation to try is log(x/y) = log(x) −
log(y), but this is doomed to fail in the same way. The error
plot looks similar, but has a fatter diagonal ridge. Because
(fllog x) and (fllog y) are approximate, subtracting
them results in high error when they’re within a factor of
two, which happens when x and y are near the diagonal.

Again, we’ll turn to log1p. We need to compute

log(/) log(/)
log (/)

log

x y x y
x y

x y

= + −
= −

=
−

1 1
1 1

1

p

p
yy

. (11)

At this point, we could find the conditions under which
(x − y)/y is in log1p’s badlands and determine whether they
intersect exp / exp−()≤ ≤ ()1 4 1 4x y . Instead, we’ll just
code it up:

(: h (−> Flonum Flonum Flonum))
(define (h x y)

 (define q (/ x y))

 (cond [(<= (flexp −0.25) q (flexp 0.25))
 (fllog1p (/ (− x y) y))]
 [else

 (fllog q)]))

Then we’ll test it, as shown in Figure 9b. We apparently
have error bounded by about 2 ulps. Of course, we should
test it more thoroughly than we can demonstrate in this
article.

CISE-16-04-Sciprog.indd 91 28/07/14 7:02 PM

Scientific Programming

92 July/August 2014

We’re not done debugging h yet, but we stress that, at
this point, it’s good enough for most purposes. It’s also much
more accurate than it was before, with error bounded by
about 2 ulps near the diagonal instead of unbounded. It’s still
fairly simple.

But suppose we’re writing library code, or h’s callers
need it to be extremely solid, or someone using h has
reported there’s occasionally a problem with it. Let’s
see how robust we can make h using just testing and
debugging.

The first problem we’ll find is that it’s hard to find a
problem, at least by generating plots. We need a way to
create unusual arguments. For this, we turn to random
sampling. One effective way to generate unusual com-
binations of floats is to generate uniformly random ordinal
indexes and convert them to floats using ord–1. A Typed
Racket generator that chooses floats this way between a and
b (excluding b) is

(: random-flonum (−> Flonum Flonum Flonum))
;; Returns a random flonum in [a,b)

(define (random-flonum a b)

 (ordinal−>flonum
 (random-integer (flonum−>ordinal a)
 (flonum−>ordinal b))))

We can now use (random-flonum −max.0 +inf.0)
to sample from all finite 64-bit floats, where −max.0 is
defined by the math library as the largest negative float
(approximately −1.8·10308) and +inf.0 is the next float

after +max.0. This tends to return very large and very
small numbers because the exponent field is uniformly
distributed.

It takes only a few random samples to find an x and y for
which ((fun2d-error h h*) x y) is infinite. We’ll define
them temporarily in the interactions window to keep from
having to retype them:

> (define x 5.295588382145396e+229)

> (define y 7.503806844818842e−122)

We get infinite error because (h x y) is infinite but (h*
x y) isn’t:

> (h x y)

+inf.0

> (bigfloat−>flonum
 (h* (bf x) (bf y)))

807.858831263043

Manually computing (h x y) reveals what happened:

> (/ x y)

+inf.0

> (fllog +inf.0)

+inf.0

The exact quotient of x and y is too large to
be approximated by a f loat. We say that (/ x y)
overflows.

Figure 9. Plots of (fun2d-error h h*) before and after debugging. (a) Initial implementation and (b) debugged implementation.

25
20
15
10

5
0

10

8

6

4

2

0 0
2

4
6

x axis

y axis 8
10

1.5

1

0.5

0
10

8

6

4

2

0 0
2

4
6

x axis

y axis 8
10

(a) (b)

CISE-16-04-Sciprog.indd 92 28/07/14 7:02 PM

www.computer.org/cise 93

Similarly, when an exact result is too close to zero, it
underflows to 0.0 or −0.0. That happens, for instance, if we
swap x and y:

> (/ y x)

0.0

Fortunately, the reformulation log(x/y) = log(x) − log(y)
seems to work with low error for these arguments, and would
keep h from prematurely overflowing or underflowing:

> (− (fllog x) (fllog y))
807.8588312630429

Randomized testing finds another, less frequent problem:
when (/ x y) is subnormal, (fllog (/ x y)) has high error.
Using (− (fllog x) (fllog y)) may solve this problem
as well because it doesn’t use division. More testing should
reveal whether (fllog x) and (fllog y) are in subtraction’s
badlands.

The definition of h is now

(: h (−> Flonum Flonum Flonum))
(define (h x y)

 (define q (/ x y))

 (cond [(<= (flexp −0.25) q (flexp 0.25))
 (fllog1p (/ (− x y) y))]
 [(or (<= q +max-subnormal.0)

 (= q +inf.0))

 (− (fllog x) (fllog y))]
 [else

 (fllog q)]))

where +max-subnormal.0 is the largest subnormal 64-bit
float, or the float just before 2−1022. Racket takes about
a minute to apply this version of h to 1 million random
argument pairs and compare its outputs to the high-pre-
cision outputs of h*. The largest reported error is less than
2.1 ulps.

When updating h* to match h, it’s not necessary to test
whether q overflows or underflows. MPFR’s multiprecision
floats can have much larger exponents than 64-bit floats, so
they don’t overflow or underflow as easily.

Debugging 3D Dot Product
What if we can’t find an algebraic trick to get out of the
badlands? When this happens, sometimes the only good
answer is to use more precision. Of course, we can use
the high-precision implementations we use for testing,
but they’re usually quite slow. Fortunately, on systems
with correctly rounded arithmetic—which is the lowest
possible requirement we can think of for a scientific
computing platform—there are faster high-precision
options.

We’ll debug the dot product to demonstrate some
practically accurate, efficient options. We’ll use the definition

dot(x1, y1, z1, x2, y2, z2) (12)
 = x1 . x2 + y1 · y2 + z1 . z2.

This might seem perfectly innocuous, but accurate
implementation is beastly. The first problem is that if
the products x1 . x2, y1 . y2 and z1 . z2 don’t all have the
same sign, the implementation can wander into addition’s
badlands. The second problem is premature overflow. For
example, even if fl(x1 . x2 + y1 . y2) < ∞, we still might
get fl(x1 . x2) = ∞ as an intermediate result, if y1 . y2 is
about as large as x1 . x2 and has the opposite sign.

As before, we start by coding up straightforward imple-
mentations dot and dot*. For dot*, we can use exact ratio-
nal arithmetic instead of bigfloats. If we do, we won’t have
to update dot* to avoid any badlands.

We can’t plot error on a domain with six dimensions, so
we’ll have to settle for random sampling. To avoid dealing
with overflow at first, we’ll sample between −1 and 1.
We’ll have our generator flip a coin to determine whether
to sample uniformly from the floats in [−1, 1] to represent
typical arguments or to sample uniformly from the encodings
of floats in [−1, 1] to represent atypical arguments:

(: random-dot-flonum (−> Flonum))
(define (random-dot-flonum)

 (if (< (random) 0.5)

 (random-flonum −1.0 (flnext 1.0))
 (* 2.0 (− (random) 0.5))))

Using random-dot-flonum to generate arguments for
dot and dot*, we occasionally get errors in the thousands of
ulps. By coding up the addition badlands formula in Figure 6,

Extended-Precision Floats

Some languages provide access to the hardware’s 80-bit

floats, which system libraries use to implement 64-bit

 functions such as pow(x, y) = x y accurately in software. While

an attractive alternative to other higher-precision numbers,

80-bit floats usually don’t seem to have enough precision to

make up for wandering into the badlands.

Some compilers silently replace intermediate 64-bit results

with 80-bit results, which isn’t compliant with IEEE 754-2008.

In practical terms, these compilers break important error-reducing

64-bit algorithms such as Kahan summation and double-double

arithmetic, and ruin portability and scientific repeatability. If

the language you use for scientific computing does this, submit

a bug report.

CISE-16-04-Sciprog.indd 93 28/07/14 7:02 PM

Scientific Programming

94 July/August 2014

we start writing a version of dot that avoids wandering into
addition’s badlands with a rounded result:

(define (dot x1 y1 z1 x2 y2 z2)

 (define x (* x1 x2))

 (define y (* y1 y2))

 (cond [(<= 0.5 (− (/ x y)) 2.0)
 <compute-dot-somehow>]

 [else

 (define d (+ x y))

 (define z (* z1 z2))

 (if (<= 0.5 (− (/ d z)) −2.0)
 <compute-dot-somehow>

 (+ d z))]))

We could replace <compute-dot-somehow> with code
that converts the arguments to exact rationals, applies dot*
to them, and converts the exact result to a float. This works,
and testing the updated dot suggests that its error is bounded
by about 2.5 ulps. This is great, but it’s very slow: about 40
times slower than the initial dot on random arguments. If we

try using bigfloats instead of exact rationals, we’ll find that
the resulting code is hardly faster.

If we could somehow get exact multiplication out of 64-
bit floats, we’d be set. It turns out that there’s a way to do
that, using two 64-bit floats to represent one real number.
These are often called double-doubles. Without going into
details, a double-double is a pair of 64-bit floats, that each
have a 53-bit significand, whose exact sum has 107 bits
precision. Operations on double-doubles work correctly only
on systems with correctly rounded arithmetic.

(Of course, 53 + 53 = 106. The second float’s sign bit
carries information equivalent to one significand bit.)

Racket’s math library exports functions that operate on
double-doubles. Those that only return double-doubles have
the suffix /error (read “with error”). For example,

> (fl*/error 1.1 2.1)

2.3100000000000005

-2.1316282072803005e-16

The exact sum (not the floating-point sum) of these
returned float values is the exact product of 1.1 and 2.1.
Alternatively, the first float value is an approximation, and
the second is its signed rounding error.

Math library functions that accept double-doubles as
arguments have the prefix fl2; for example, fl2+ accepts
four arguments and returns two results. We can use fl2+
and fl*/error to define a high-precision, but reasonably
fast, version of dot, as follows:

(define (slowish-dot x1 y1 z1 x2 y2 z2)

 (define-values (xhi xlo) (fl*/error x1 x2))

 (define-values (yhi ylo) (fl*/error y1 y2))

 (define-values (zhi zlo) (fl*/error z1 z2))

 (define-values (dhi dlo) (fl2+ xhi xlo yhi ylo))
 (define-values (ehi elo) (fl2+ dhi dlo zhi zlo))
 ehi)

Replacing <compute-dot-somehow> with (slowish-dot
x1 y1 z1 x2 y2 z2) in the definition of dot yields an
implementation that’s only about four times slower than the
initial implementation on random arguments, with error
again bounded by about 2.5 ulps.

On the system we use for testing, the updated dot
computes 25 million dot products per second instead of the
initial implementation’s 100 million per second. This might
seem like a bad deal, but there are other considerations. First,
in scientific computing, we should worry more about our
programs being faithful to our models than about computation
speed. Second, so much other code usually surrounds floating-
point computations—for example, code that shuffles data
around, indexes arrays, or decides what to compute—that
taking even a fourfold speed hit hardly matters.

About That Folk Wisdom

Looking to use some floating-point folk wisdom in debugging

your project? We now have the tools to evaluate it.

Test nearness instead of equality. Wise, if done right. Floating-
point epsilon is defined as ε = ulp(1), the distance between 1

and the next float. If x is a normal float, then |x| . ε is between

ulp(x) and 2 . ulp(x). If |x − y| ≤ |x| . (4 . ε), then y is within 4

to 8 ulps of x.

Use the library’s hypotenuse function. Often wise. A library

function should avoid premature overflow from squaring, and may

be correctly rounded.

Use (x − y) . (x + y) instead of x2 − y2. Wise. Half the

time, x2 − y2 wanders into subtraction’s badlands with two

approximations. But (x − y) . (x + y) multiplies approximations,

which doesn’t magnify their error.

Compute sums in some specified order or grouping. Not usually wise.

No ordering or grouping strategy is best in all cases. Use Kahan

summation (http://en.wikipedia.org/wiki/Kahan_summation_

algorithm), double-doubles, or a specialized summation algorithm.1

Reference
1. J. Demmel and Y. Hida, “Accurate and Efficient Floating Point

Summation,” SIAM J. Scientific Computing, vol. 25, no. 4,

2003, pp. 1214–1248.

CISE-16-04-Sciprog.indd 94 28/07/14 7:34 PM

www.computer.org/cise 95

If we’re willing to tolerate more error,
it’s possible to get good performance
using the exact-rational dot*. We can give
ourselves a speed versus accuracy knob to
turn by implementing

1
t

x y t≤− ≤/ (13)

instead of the original addition badlands
formula. Setting the “knob” t to 2 yields
the original formula. With t = 1.1, using
the exact-rational dot* as a fallback makes
dot about nine times slower than the initial
implementation and bounded by about 12 ulps error. With
t = 1.01, dot with exact-rational fallback is only four times
slower but is bounded by about 300 ulps error, according to
randomized testing.

Our current implementation might prematurely over-
flow when given arguments outside of about [−10150, 10150].
We’ll leave debugging premature overflow as an exercise.
A simple solution punts to dot* when dot is given large
 arguments or returns an infinity. A more complicated solu-
tion scales the arguments by powers of two, which is exact
as long as it doesn’t overflow or underflow.

I t’s daunting to think of the millions of lines of floating-
point code that have never been tested and debugged, sim-

ply for lack of tools and a bit of know-how.
It’s probably more daunting to consider testing and

debugging your own project, which is certainly much
larger than the three small examples we’ve shown here. It
can be done, and testing and debugging scales reasonably
well. Start small and work toward larger functions. Move
troublesome formulas into their own functions to debug
them on their own. Document their badlands and avoid
them. Build a parallel high-precision implementation from
the bottom up. Remember that every small improvement
can help a lot.

Also remember to step back and look at the big picture:
you should test and debug your research question, too.
Floating-point data is an approximation of real data, with
up to half an ulp error. This data is often an approximation
itself, with potentially much more error, of some real-life
quantity. Your functions and algorithms have badlands. If
the data is in the badlands and the computed answers are
numbers, these two approximations could make all of their
digits nonsense.

Fortunately, testing a research question can be done
similarly to plotting log’s error sensitivity in Figure 5. Repeatedly
run the code that answers the question on randomly perturbed,
representative data. Are the answers’ errors millions of times

larger than the perturbations? Is some of
the data nonzero but the answers near zero?
Is some of the data far from zero and in an
area of exponential growth? If the answer
to any of these questions is “yes,” your data
might be in the badlands. If so, either your
data and code need more precision, in which
case you’ll be very glad to have a parallel high-
precision implementation, or you need to ask
a different question.

We’ll end with a dirty secret: almost
everything we presented and demonstrated
is error analysis in disguise. The condition
number formula, for example, is straight

out of any numerical methods textbook. But we replaced
the burden of proof with testing, which reduces the burden
on you.

references
1. M. Flatt, “Reference: Racket,” tech. report PLT-TR-2010-1,

PLT Inc., 2010; http://racket-lang.org/tr1.
2. L. Fousse et al., “MPFR: A Multiple-Precision Binary

Floating-Point Library with Correct Rounding,” ACM
Trans. Mathematical Software, vol. 33, no. 2, 2007, pp.
13:1–13:15.

3. “IEEE Standard for Floating-Point Arithmetic,” IEEE Std
754-2008, Aug. 2008, pp. 1–70.

Neil Toronto recently graduated with a PhD from Brigham
Young University, and is a postdoctoral researcher at University
of Maryland, College Park. His research focuses on programming
language support for mathematical computation, and currently
emphasizes Bayesian modeling and inference. Contact him at neil.
toronto@gmail.com.

Jay McCarthy is a visiting assistant professor of computer science at
Vassar College and formerly an assistant professor at Brigham Young
University. His research focuses on the nexus of systems, verification,
and security from the perspective of applied programming language
techniques. McCarthy has a BS in mathematics from the Univer-
sity of Massachusetts, Lowell, and a PhD in computer science from
Brown University. Contact him at jay.mccarthy@gmail.com.

Selected articles and columns from IEEE Computer Society
publications are also available for free at http://Computing-

Now.computer.org.

Build a parallel
high-precision
implementation
from the bottom
up. Remember
that every small
improvement can
help a lot.

CISE-16-04-Sciprog.indd 95 28/07/14 7:02 PM

