
PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

Robot Programming
TOMAS LOZANO-PEREZ

82 1

Invited Paper

Abstract-The industrial robot’s principal advantage over traditional
automation is programmability. Robots can perform arbitrary sequences
of pre-stored motions or of motions computed as functions of sensory
input. This paper reviews requirements for and developments in
robot programming systems. The key requirements for robot pro-
gamming systems examined in the paper are in the areas of sensing,
world modeling, motion specification, flow of contrd, and program-
ming support Existing and proposed robot programming systems
fall into three broad categories guiding systems in which the user
leads a robot through the motions to be performed, rohor-level pro-
gramming systems in which the user writes a computer program specify-
ing motion and sensing, and rusk-level programming systems in which
the user specifii operations by their desired effect on objects. A
representative sample of s y s t e m s in each of these categories is surveyed
in the paper.

I. INTRODUCTION

T HE KEY characteristic of robots is versatility; they can
be applied to a large variety of tasks without significant
redesign. This versatility derives from the generality of

the robot’s physical structure and control, but it can be ex-
ploited only if the robot can be programmed easily. In some
cases, the lack of adequate programming tools can make some
tasks impossible to perform. In other cases, the cost of pro-
gramming may be a significant fraction of the total cost of an
application. For these reasons, robot programming systems
play a crucial role in robot development. This paper outlines
some key requirements of robot programming and reviews
existing and proposed approaches t o meeting these requirements.

A. Approaches to R o b o t Programming
The earliest and most widespread method of programming

robots involves manually moving the robot to each desired
position, and recording the internal joint coordinates cor-
responding to that position. In addition, operations such as
closing the gripper or activating a welding gun are specified at
some of these positions. The resulting “program” is a sequence
of vectors of joint coordinates plus activation signals for
external equipment. Such a program is executed by moving
the robot through the specified sequence of joint coordinates
and issuing the indicated signals. This method of robot pro-
gramming is usually known as teaching by showing; in this
paper we will use the less common, but more descriptive,
term guiding [321 .

Robot guiding is a programming method which is simple to

at the Artificial Intelligence Laboratory of the Massachusetts Institute
Manuscript received November 29, 1982. Thisresearch wis performed

of Technology. Support for the Laboratory’s Artificial Intelligence
research is provided in part by the Office of Naval Research under Office
of Naval Research Contract N00014-81-K-0494 and in part by the
Advanced Research Projects Agency under Office of Naval Research
Contracts N00014-80-C-0505 and N00014-82-K-0334.

The author is with the Massachusetts Institute of Technology, Artifi-
cial Intelligence Laboratory, Cambridge, MA 02139.

use and to implement. Because guiding can be implemented
without a general-purpose computer, it was in widespread
use for many years before it was cost-effective t o incorporate
computers into industrial robots. Programming by guiding
has some important limitations, however, particularly regarding
the use of sensors. During guiding, the programmer specifies
a single execution sequence for the robot; there are noloops,
conditionals, or computations. This is adequate for some
applications, such as spot welding, painting, and simple ma-
terials handling. In other applications, however, such as
mechanical assembly and inspection, one needs t o specify
the desired action of the robot in response to sensory input,
data retrieval, or computation. In these cases, robot pro-
gramming requires the capabilities of a general-purpose com-
puter programming language.

Some robot systems provide computer programming lan-
guages with commands to access sensors and t o specify robot
motions. We refer to these as explicit or robot-level languages.
The key advantage of robot-level languages is that they enable
the data from external sensors, such as vision and force, to be
used in modifying the robot’s motions. Through sensing,
robots can cope with a greater degree of uncertainty in the
position of external objects, thereby increasing their range of
application. The key drawback of robot-level programming
languages, relative to guiding, is that they require the robot
programmer to be expert in computer programming and in
the design of sensor-based motion strategies. Hence, robot-
level languages are not accessible to the typical worker on
the factory floor.

Many recent approaches to robot programming seek to pro-
vide the power of robot-level languages without requiring
programming expertise. One appraoch is to extend the basic
philosophy of guiding to include decision-making based on
sensing. Another approach, known as task-level programming,
requires specifying goals for the positions of objects, rather
than the motions of the robot needed to achieve those goals.
In particular, a task-level specification is meant to be completely
robot-independent; no positions or paths that depend on the
robot geometry or kinematics are specified by the user. Task-
level programming systems require complete geometric models
of the environment and of the robot as input; for this reason,
they are also referred to as world-modezing systems. Task-level
programming is still in the research stage, in contrast t o guiding
and robot-level programming which have reached the com-
mercial stage.

B. Goals of this Paper

The goals of this paper are twofold: one, to identify the
requirements for advanced robot programming systems, the
other to describe the major approaches to the design of these

0018-9219/83/0700-0821$01.00 0 1983 IEEE

a22 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

CAMERA 477-

Fig. 1. A representative robot application.

systems. The paper is not meant to be a catalog of all existing
robot programming systems.

A discussion of the requirements for robot programming
languages is not possible without some notion of what the
tasks to be programmed will be and who the users are. The
next section will discuss one task which is likely to be repre-
sentative of robot tasks in the near future. We will use this
task to motivate some of the detailed requirements later in
the paper. The range of computer sophistication of robot
users is large, ranging from factory personnel with no pro-
gramming experience to Ph.D.'s in computer science. It is a
fatal mistake to use this fact to argue for reducing the basic
functionality of robot programming systems to that accessible
to the least sophisticated user. Instead, we argue that robot
programming languages should support the functional require-
ments of its most sophisticated users. The sophisticated users
can implement special-purpose interfaces, in the language
itself, for the less experienced users. This is the approach
taken in the design of computer programming languages; it
also echoes the design principles discussed in [96 1 .

11. A ROBOT APPLICATION

Fig. 1 illustrates a representative robot application. The task
involves two robots cooperating to assemble a pump. Parts
arrive, randomly oriented and in arbitrary order, on two moving
conveyor belts. The robot system performs the following
functions:

1) determine the position and orientation of the parts, using

2) grasp the parts on the moving belts;
3) place each part on a fixture, add it to the assembly, or

put it aside for future use, depending on the state of the
assembly .

a vision system;

The following sequence is one segment of the application.
The task is to grasp a cover on the moving belt, place it on the
pump base, and insert four pins so as to align the two parts.
Note the central role played by sensory information.

1) Identify, using vision, the (nonoverlapping) parts arriving
on one of the belts, a pump cover in this case, and determine
its position and orientation relative to the robot. During this
operation, inspect the pump cover for defects such as missing
holes or broken tabs.

2) Move ROBOT1 to the prespecified grasp point for the
cover, relative to the cover's position and orientation as deter-
mined by the vision system. Note that if the belt continues
moving during the operation, the grasp point will need to be
updated using measurements of the belt's position.

3) Grasp the cover using a programmer-specified gripping
force.

4) Test the measured finger opening against the expected
opening at the grasp point. If it is not within the expected
tolerance, signal an error [61, [1031. This condition may
indicate that the vision system or the control system are
malfunctioning.

5) Place the cover on the base, by moving to an approach
position above the base and moving down until a programmer-
specified upward force is detected by the wrist force sensor.
During the downward motion, rotate the hand so as to null
out any torques exerted on the cover because of misalignment
of the cover and the base. Release the cover and record its
current position for future use.

6) In parallel with the previous steps, move ROBOT2 to
acquire an aligning pin from the feeder. Bring the pin t o a
point above the position of the first hole in the cover, com-
puted from the known position of the hole relative to the
cover and the position of the cover recorded above.

7) Insert the pin. One strategy for this operation requires
tilting the pin slightly to increase the chances of the tip of
the pin falling into the hole [43], [44]. If the pin does not
fall into the hole, a spiral search can be initiated around that
point [61, [3 1 1 . Once the tip of the pin is seated in the hole,
the pin is straightened. During this motion, the robot is
instructed to push down with a prespecified force, to push
in the y direction (so as to maintain contact with the side of
the hole), and move so as to null out any forces in the x
direction [44] . At the end of this operation, the pin position
is tested t o ascertain that it is within tolerance relative to the
computed hole position.

8) In parallel with the insertion of the pin by ROBOT2,
 ROBOT^ fetches another pin and proceeds with the insertion
when ROBOT2 is done. This cycle is repeated until all the pins
are inserted. Appropriate interlocks must be maintained
between the robots to avoid a collision.

This application makes use of four types of sensors:
1) Direct position sensors. The internal sensors, e.g.,

potentiometers or incremental encoders, in the robot joints
and in the conveyor belts are used to determine the position
of the robot and the belt at any instant of time.

2) Vision sensors. The camera above each belt is used to
determine the identity and position of parts arriving on the
belt and to inspect them.

3) Finger touch sensors. Sensors in the fingers are used to
control the magnitude of the gripping force and t o detect the
presence or absence of objects between the fingers.

4) Wrist force sensors. The positioning errors in the robot,
uncertainty in part positions, errors in grasping position, and
part tolerances all conspire to make it impossible to reliably
position parts relative to each other accurately enough for
tight tolerance assembly. It is possible, however, t o use the
forces generated as the assembly progresses to suggest incre-
mental motions that will achieve the desired final state; this
isknownascompZiuntmotion,'e.g., [601,[791,[1011,[1021.

Most of this application is possible today with commerically
available robots and vision systems. The exceptions are in the
use of sensing. The pin insertion, for example, would be done
today with a mechanical compliance device [1021 specially
designed for this type of operation. Techniques for imple-

compliance achievable with mechanical devices.
This is also known as active compliance in contrast to passive

LOZANO-PEREZ: ROBOT PROGRAMMING 823

menting compliant motion via force feedback are known, e.g.,
[7 3] , [751 , [7 9] , [88] ; but current force feedback methods
are not as fast or as robust as mechanical compliance devices.
Current commercial vision systems would also impose limita-
tions on the task, e.g., parts must not be touching. Improved
techniques for vision and compliance are key areas of robotics
research.

111. REQUIREMENTS OF ROBOT PROGRAMMING

The task described above illustrates the major aspects of
sophisticated robot programming: sensing, world modeling,
motion specification, and flow of control. This section dis-
cusses each of these issues and their impact on robot
programming.

A . Sensing

The vast majority of current industrial robot applications
are performed using position control alone without significant
external sensing. Instead, the environment is engineered so as
to eliminate all significant sources of uncertainty. All parts are
delivered by feeders, for example, so that their positions will
be known accurately at programming time. Special-purpose
devices are designed to compensate for uncertainty in each
grasping or assembly operation. This approach requires large
investments in design time and special-purpose equipment
for each new application. Because of the magnitude of the
investment, the range of profitable applications is limited;
because of the special-purpose nature of the equipment, the
capability of the system to respond to changes in the design
of the product or in the manufacturing method is negligible.
Under these conditions, much of the potential versatility of
robots is wasted.

Sensing enables robots to perform tasks in the presence of
significant environmental uncertainties without special-pur-
pose tooling. Sensors can be used to identify the position of
parts, to inspect parts, to detect errors during manufacturing
operations, and to accomodate to unknown surfaces. Sensing
places two key requirements on robot programming systems.
The first requirement is to provide general input and output
mechanisms for acquiring sensory data. This requirement can
be met simply by providing the 1 /0 mechanisms available in
most high-level computer programming languages, although
this has seldom been done. The second requirement is t o pro-
vide versatile control mechanisms, such as force control, for
using sensory data to determine robot motions. This need to
specify parameters for sensor-based motions and to specify
alternate actions based on sensory conditions is the primary
motivationfor using sophisticated robotprogramminglanguages.

Sensors are used for different purposes in robot programs;
each purpose has a separate impact on the system design. The
principal uses of sensing in robot Programming are as follows

1) initiating and terminating motions,
2) choosing among alternative actions,
3) obtaining the identity and position of objects and features

4) complying to external constraints.

The most common use of sensory data in existing systems is
to initiate and terminate motions. Most robot programming
systems provide mechanisms for waiting for an external binary
signal before proceeding with execution of a program. This
capability is used primarily to synchronize robots with other
machines. One common application of this capability arises

of objects,

when acquiring parts from feeders; the robot’s grasping motion
is initiated when a light beam is interrupted by the arrival of a
new part at the feeder. Another application is that of locating
an imprecisely known surface by moving towards it and ter-
minating the approach motion when a microswitch is tripped
or when the value of a force sensor exceeds a threshold. This
type of motion is known as a guarded move [1041 or stop on
force [6] , [731. Guarded moves can be used to identify
points on the edges of an imprecisely located object such as
a pallet. The contact points can then be used to determine the
pallet’s position relative to the robot and supply offsets for
subsequent pickup motions. Section IV-A illustrates a limited
form of this technique available within some existing guiding
systems. General use of this technique requires computing
new positions on the basis of stored values; hence it is limited
to robot-level languages.

The second major use of sensing is in choosing among alter-
native actions in a program. One example is deciding whether
to place an object in a fixture or a disposal bin depending on
the result of an inspection test. Another, far more common,
example arises when testing whether a grasp or insert action
had the desired effect and deciding whether to take corrective
action. This type of error checking accounts for the majority
of the statements in many robot programs. Error checking
requires the ability to obtain data from multiple sensors, such
as visual, force, and position sensors, to perform computations
on the data, and to make decisions on the results.

The third major use of sensing in robot systems is in obtaining
the identity and position of objects or features of objects.
For example in the application described earlier, a vision
module is used to identify and locate objects amving on con-
veyor belts. Because vision systems are sizable programs
requiring large amounts of processing, they often are imple-
mented in separate processors. The robot program must be
able, in these cases, to interface with the external system at
the level of symbolic data rather than at the level of “raw”
sensory data. Similar requirements arise in interfacing to
manufacturing data bases which may indicate the identity
of the objects in different positions of a pallet, for example.
From these considerations we can conclude that robot pro-
gramming systems should provide general input/output inter-
faces, including communications channels to other computers,
not just a few binary or analog channels as is the rule in today’s
robot systems.

Once the data from a sensor or database module are obtained,
some computation must be performed on the module’s output
so as to obtain a target robot position. For example, existing
commercial vision systems can be used to compute the position
of the center of area of an object’s outline and the orientation
of the line that minimizes the second moment. These measure-
ments are obtained relative to the camera’s coordinate system.
Before the object can be grasped, these data must be related
to the robot’s coordinate system and combined with informa-
tion about the relationship of the desired grasp point to the
measured data (see Section 111-B). Again, this points out the
interplay between the requirements for obtaining sensory
data and for processing them.

The fourth mode of sensory interaction, active compliance,
is necessary in situations requiring continuous motion in
response to continuous sensory input. Data from force,
proximity, or visual sensors can be used to modify the robot’s
motion so as to maintain or achieve a desired relationship
with other objects. The forcecontrolled motions to turn a
crank, for example, require that the target position of the

824 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

robot from instant to instant be determined from the direction
and magnitude of the forces acting on the robot hand, e.g.,
[601, [761. Other examples are welding on an incompletely
known or moving surface, and inserting a peg in a hole when
the position uncertainty is greater than the clearance between
the parts. Compliant motion is an operation specific to ro-
botics; it requires special mechanisms in a robot programming
system.

There are several techniques for specifying compliant motions,
for a review see [621. One method models the robot as a spring
whose stiffness along each of the six motion freedoms can be
set [351, [83]. This method ensures that a linear relationship
is maintained between the force which is sensed and the dis-
placements from a nominal position along each of the motion
freedoms. A motion specification of this type requires the
following information:

1) A coordinate frame in which the force sensor reading
are to be resolved, known as the constraint frame. Some
common alternatives are: a frame attached to the robot hand,
a fixed frame in the room, or a frame attached to the object
being manipulated.

2) The desired position trajectory of the robot. This
specifies the robot’s nominal position as a function of time.

3) Stiffnesses for each of the motion freedoms relative to
the constraint frame. For example, a high stiffness for trans-
lation along the x-axis means that the robot will allow only
small deviations from the position specified in the trajectory,
even if high forces are felt in the x direction. A low stiffness,
on the other hand, means that a small force can cause a sig-
nificant deviation from the position specified by the trajectory.

The specification of a compliant motion for inserting a peg
in a hole [62] is as follows: The constraint frame will be
located at the center of the peg’s bottom surface, with its z-
axis aligned with the axis of the peg. The insertion motion
will be a linear displacement in the negative z direction, along
the hole axis, to a position slightly below the expected final
destination of the peg.

The stiffnesses are specified by a matrix relating the Cartesian
position parameters of the robot’s end effector to the force
sensor inputs

f = K A

where f is a 6 X 1 vector of forces and torques, K is a 6 X 6
matrix of stiffnesses, and A is a 6 X 1 vector of deviations of
the robot from its planned path. While inserting a peg in a
hole, we wish the constraint frame to follow a trajectory
straight down the middle of the hole, but complying with
forces along the x- and y-axes and with torques about the
x- and y-axes. The stiffness matrix K for this task would
be a diagonal matrix

K = d i a g (k o , k o , k l , k o , k o , k l)

where ko indicates low stiffness and k l a high stiffness.’
The complexity of specifying the details of a compliant

motion argues for introducing special-purpose syntactic
mechanisms into robot languages. Several such mechanisms
have been proposed for different compliant motion types
[671, 1751, [761, [831.

One key difference between the first three sensor inter-

’ Unfortunately, the numerical choices for stiffnesses are dictated by
detailed considerations of characteristics of the environment and of
the control system [101 1 , 13 5 1 .

action mechanisms and active compliance is extensibility.
The first three methods allow new sensors and modules t o
be added or changed by the user, since the semantics of the
sensor is determined only by the user program. Active com-
pliance, on the other hand, requires much more integration
between the sensor and the motion control subsystem; a new
type of sensor may require a significant system extension.
Ideally, a user’s view of compliant motion could be imple-
mented in terms of lower level procedures in the same robot
language. Sophisticated users could then modify this imple-
mentation to suit new applications, new sensors, or new
motion algorithms. In practice efficiency considerations have
ruled out this possibility since compliant motion algorithms
must be executed hundreds of times a ~ e c o n d . ~ This is not a
fundamental restriction, however, and increasing computer
power, together with sophisticated compilation techniques,
may allow future systems to provide this desirable capability.

In summary, we have stressed the need for versatile input/
output and computation mechanisms to support sensing in
robot programming systems. The most natural approach for
providing these capabilities is by adopting a modern hgh-level
computer language as the basis for a robot programming lan-
guage. We have identified one sensor-based mechanism;
namely, compliant motion, that requires specific language
mechanisms beyond those of traditional computer languages.

In addition to the direct mechanisms needed to support
sensing within robot programming languages, there are mech-
anisms needed due to indirect effects of the reliance on sensing
for robot programming. Some of these effects are as follows:

1) Target positions are not known at programming time;
they may be obtained from an external database or vision
sensor or simply be defined by hitting something.

2) The actual path to be followed is not known at pro-
gramming time; it may be determined by the history of sen-
sory inputs.

3) The sequence of motions is not known at programming
time; the result of sensing operations will determine the actual
execution sequence.

These effects of sensing have significant impact on the
structure of robot programming systems. The remainder of
this section explores these additional requirements.

B. World Modeling

Tasks that do not involve sensing can be specified as a
sequence of desired robot configurations; there is no need
to represent the geometrical structure of the environment in
terms of objects. When the environment is not known a priori,
however, some mechanism must be provided for representing
the positions of objects and their features, such as surfaces
and holes. Some of these positions are fixed throughout the
task, others must be determined from sensory information,
and others bear a fixed relationship with respect to variable
positions. Grasping an object, for example, requires specifying
the desired position of the robot’s gripper relative to the
object’s position. At execution time, the actual object position
is determined using a vision system or on-line database. The
desired position for the gripper can be determined by com-
posing the relative grasp position and the absolute object
position; this gripper position must then be transformed to a

3Reference [2 7] describes a robot system architecutre that enables
different sensors to be interfaced into the motion control subsystem
from the user language level; see also 1751 for a different proposal.

LOZANO-PEREZ: ROBOT PROGRAMMING 825

WORLD

Fig. 2. World model with coordinate frames.

robot configuration. A robot programming system should
facilitate this type of computation on object positions and
robot configurations.

The most common representation for object positions in
robotics and graphics is the homogeneous transform, repre-
sented by a 4 X 4 matrix [751. A homogeneous transform
matrix expresses the relation of one coordinate frame to
another by combining a rotation of the axes and a translation
of the origin. Two transforms can be composed by multiplying
the corresponding matrices. The inverse of a transform which
relates frame A to frame B is a transform which relates B to A .
Coordinate frames can be associated with objects and features
of interest in a task, including the robot gripper or tool.
Transforms can then be used to express their positions with
respect to one another.

A simple world model, with indicated coordinate frames, is
sh’own in Fig. 2 . The task is to visually locate the bracket on
the table, grasp it, and insert the pin, held in a stationary
fixture, into the bracket’s hole. A similar task has been
analyzed in [331 , [931.

The meaning of the various transforms indicated in Fig. 2
are as follows. Cam is the transform relating the camera
frame to the WORLD frame. Grasp is the transform relating
the desired position of the gripper’s frame to the bracket’s
frame. Let Bracket be the unknown transform that relates the
bracket frame to WORLD. We will be able to obtain from the
vision system the value of B k t , a transform relating the bracket’s
frame to the camera’s frame.4 HoZe is a transform relating the
hole’s frame to that of the bracket. The value of Hole is
known from the design of the bracket. Pin relates the frame
of the pin to that of the fixture. Fixture, in turn, relates the
fixture’s frame to WORLD. Z relates the frame of the robot
base to WORLD. Our goal is to determine the transform
relating the endeffector’s (gripper’s) frame E relative to the
robot’s base. Given E and Z, the robot’s joint angles can be
determined (see, for example, [75 I).

The first step of the task is determining the value of Bracket,
which is simply Cam Bkt . The desired gripper position for
grasping the bracket is

Z E = Bracket Grasp.

Since Cam is relative t o WORLD, Bkt relative to Cam, and
Grasp relative to B k t , the composition gives us the desired
gripper position relative to WORLD, i.e., 2 E . At the target

position we want the location of the hole relative to WORLD
to be equal to that of the pin; this relationship can be expressed
as

Bracket Hole =Fixture Pin.

From this we can see that

Bracket = Fixture Pin Hole-‘.

Hence, the new gripper location is

Z E = Fixture Pin Hole-’ Grasp.

The use of coordinate frames to represent positions has two
drawbacks. One drawback is that a coordinate frame, in gen-
eral, does not specify a robot configuration uniquely. There
may be several robot configurations that place the endeffector
in a specified frame. For a robot with six independent motion
freedoms, there are usually on the order of eight robot con-
figurations to place the gripper at a specified frame. Some
frames within the robot’s workspace may be reached by an
infinite number of configurations, however. Furthermore,
for robots with more than six motion freedoms, the typical
coordinate frames in the workspace will be achievable by an
infinite number of configurations. The different configurations
that achieve a frame specification may not be equivalent; some
configurations, for example, may give rise to a collision while
others may not. This indeterminacy needs to be settled at
programming time, which may be difficult for frames deter-
mined from sensory data.

Another, dual, drawback of coordinate frames is that they
may overspecify a configuration. When grasping a symmetric
object such as a cylindrical pin, for example, it may not be
necessary to specify the orientation of the gripper around the
symmetry axis. A coordinate frame will always specify this
orientation, however. Thus if the vision system describes the
pin’s position as a coordinate frame and the grasping position
is specified likewise, the computed grasp position will specify
the gripper’s orientation relative to the pin’s axis. In some
cases this wiU result in a wasted alignment motion; in the
worst case, the specified frame may not be reachable because
of physical limits on joint travel of the robot. Another use of
partially specified object positions occurs in the interpretation
of sensory data. When the robot makes contact with an object,
it acquires a constraint on the position of that object. This
information does not uniquely specify the object’s position,
but several such measurements can be used to update the
robot’s estimate of the object’s positions [6] . This type of
computation requires representing partially constrained
positions or, equivalently, constraints on the position param-
eters [9 4 1 , [141.

Despite these drawbacks, coordinate frames are likely to
continue being the primary representation of positions in
robot programs. Therefore, a robot programming system
should support the representation of coordinate frames and
computations on frames via transforms. But this is not all;
a world model also should provide mechanisms for describing
the constraints that exist between the positions. The simplest
case of this requirement arises in managing the various features
on a rigid object. If the object is moved, then the positions of
all its features are changed in a predictable way. The respons-
ibility for updating all of these data should not be left with
the programmer; the programming system should provide
mechanisms for indicating the relationships between positions

826 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

BLOCK 2

BLOCK I

Fig. 3. Symbolic specification of positions.

so that updates can be carried automatically. Several existing
languages provide mechanisms for this, e.g., AL [671 and
LM [48].

Beyond representation and computation on frames, robot
systems must provide powerful mechanisms for acquiring
frames. A significant component of the specification of a
robot task is the specification of the positions of objects and
features. Many of the required frames, such as the position
of the hole relative to the bracket frame in the example above,
can be obtained from drawings of the part. This process is
extremely tedious and error prone, however. Several methods
for obtaining these data have been proposed:

1) using the robot to define coordinate frames;
2) using geometric models from Computer-Aided Design

(CAD) databases;
3) using vision systems.

The first of these methods is the most common. A robot’s
endeffector defines a known coordinate frame, therefore
guiding the robot to a desired position provides the transform
needed to define the position. Relative positions can be
determined from two absolute positions. Two drawbacks of
this simple approach are: some of the desired coordinate
frames are inaccessible to the gripper, also, the orientation
accuracy achievable by guiding and visual alignment is limited.’
These problems can be alleviated by computing transforms
from some number of points with known relationships t o each
other, e.g., the origin of the frame and points on two of the
axes. Indicating points is easier and more reliable than aligning
coordinate systems. Several systems implement this approach,
e.g., AL [331, [671 and VAL [881, [981.

A second method of acquiring positions, which is likely t o
grow in importance, is the use of databases from CAD systems.
CAD systems offer significant advantages for analysis, docu-
mentation, and management of engineering changes. Therefore,
they are becoming increasingly common throughout industry.
CAD databases are a natural source for the geometric data
needed in robot programs. The descriptions of objects in a
CAD database may not be in the form convenient for the
robot programmer, however. The desired object features may
not be explicitly represented, e.g., a point in the middle of a
parametrically defined surface. Furthermore, positions specific
to the robot task, such as grasp points, are not represented a t
all, and must still be specified. Therefore, the effective use of
CAD databases requires a high-level interface for specifying the
desired positions. Pointing on a graphics screen is one pos-
sibility, but is suffers from the two-dimensional restrictions of

graphics [21. Another method [1 1, [801 is t o describe posi-
tions by sets of symbolic spatial relationships that hold between
objects in each position. For example, the positions of Block 1
in Fig. 3 must satisfy the following relationships:

(f3 Against f l) and (f4 Against f2).

One advantage of using symbolic spatial relationships is that
the positions they denote are not limited to the accuracy of
a light-pen or of a robot, but that of the model. Another
advantage of this method is that families of positions such as
those on a surface or along an edge can be expressed. Further-
more, people easily understand these relationships. One small
drawback of symbolic relations is that the specifications are
less concise than specifications of coordinate frames.

Another potentially important method of acquiring posi-
tions is the use of vision. For example, two cameras can
simultaneously track a point of light from a laser pointer and
the system can compute the position of the point by triangu-
lation [371. One disadvantage of this method and of methods
based on CAD models is that there is no guarantee that the
specified point can be reached without collisions.

We have focused on the representation of single positions;
this reflects the emphasis in current robot systems on end-
point specification of motions. In many applications, this
emphasis is misplaced. For example, in arc-welding, grinding,
glue application, and many other applications, the robot is
called upon to follow a complex path. Currently these paths
are specified as a sequence of positions. The next section
discusses alternative methods of describing motions which
require representing surfaces and volumes. A large repertoire
of representational and computational tools is already avail-
able in CAD systems and Numerically Controlled (NC) ma-
chining systems, e.g., [21 l .

In summary, the data manipulated by robot programs are
primarily geometric. Therefore, robot programming systems
have a requirement t o provide suitable data input, data repre-
sentation, and computational capabilities for geometric data.
Of these three, data input is the most amenable to solutions
that exploit the capabilities of robot systems, e.g., the avail-
ability of the robot and its sensors.

C. Motion Specification
The most obvious aspect of robot programming is motion

specification. The solution appears similarly obvious: guiding.
But, guiding is sufficient only when all the desired positions
and motions are known at programming time. We have post-
poned a discussion of motion specification until after a dis-
cussion of sensing and modeling to emphasize the broader.
range of conditions under which robot motion must be speci-
fied in sensor-based applications.

Heretofore, we have assumed that a robot motion is specified
by its final position, be it in absolute coordinates or relative
to some object. In many cases, this is not sufficient; a path for
the robot must also be specified. A simple example of this
requirement arises when grasping parts: the robot cannot
approach the grasp point from arbitrary directions; it must
typically approach from above or risk colliding with the part.

5A common assumption is that since the accuracy of the robot limits
Similarly, when bringing the part to add to a subassembly,

execution. the same accuracy is sufficient during task sDecification. This the approach path must be specified‘ Paths are
assumption neglects the effect of the robot’s Limited repeatability, how- commonly specified by indicating a sequence of intermediate
ever. Errom in achieving the specified position, h e n compounded with positions, known as via points, that the robot should traverse
the specification errors, might cause the operation t o fail. Further-
more, if the location is used as the basis for relative locations, the between the and positions.
propagation of errors can make reliable execution impossible. The shape of the path between via points is chosen from

LOZANO-PEREZ: ROBOT PROGRAMMING 821

among some basic repertoire of path shapes implemented by
the robot control system. Three types of paths are imple-
mented in current systems: uncoordinated joint motions,
straight lines in the joint coordinate space, and straight lines
in Cartesian space. Each of these represents a different tradeoff
between speed of execution and “natural” behavior. They are
each suitable to some applications more than others. Robot
systems should support a wide range of such motion regimes.

One important issue in motion specification arises due to
the nonuniqueness of the mapping from Cartesian to joint
coordinates. The system must provide some well-defined
mechanism for choosing among the alternative solutions.
In some cases, the user needs to identify which solution is
appropriate. VAL provides a set of configuration commands
that allow the user to choose one of the up to eight joint
solutions available at some Cartesian positions. This mech-
anism is useful, but limited. In particular, it cannot be ex-
tended to redundant robots with infinite families of solutions
or to specify the behavior at a kinematic singularity.

Some applications, such as arc-welding or spray-painting,
can require very fine control of the robot’s speed along a
path, as well as of the shape of the path [9 1 , [7 5] . This type
of specification is supported by providing explicit trajectory
control commands in the programming system. One simple set
of commands could specify speed and acceleration bounds on
the trajectory. AL provides for additional specifications such
as the total time of the trajectory. Given a wide range of
constraints, it is very likely that the set of constraints for
particular trajectories will be inconsistent. The programming
system should either provide a well-defined semantics for
treating inconsistent constraints6 or make it impossible to
specify inconsistent constraints. Trajectory constraints also
should be applicable to trajectories whose path is not known
at programming time, for example, compliant motions.

The choice of via points for a task depends on the geometry
of the parts, the geometry of the robot, the shape of the paths
the robot follows between positions, and the placement of
the motion in the robot workspace. When the environment is
not known completely at programming time, the via points
must be specified very conservatively. This can result in un-
necessarily long motions.

An additional drawback of motions specified by sequences
of robot configurations is that the via points are chosen,
typically, without regards for the dynamics of the robot as
it moves along the path. If the robot is to go through the via
points very accurately, the resulting motion may have t o be
very slow. This is unfortunate, since it is unlikely that the
programmer meant the via points exactZy. Some robot sys-
tems assume that via points are not meant exactly unless told
otherwise. The system then splines the motion between path
segments t o achieve a fast, smooth motion, but one that does
not pass through the via points [751 . The trouble is that the
path is then essentially unconstrained near the via points;
furthermore, the actual path followed depends on the speed
of the motion.

A possible remedy for both of these problems is to specify
the motion by a set of constraints between features of the
robot and features of objects in the environment. The exe-
cution system can then choose the “best” motion that satisfies

these constraints, or signal an error if no motion is possible.
This general capability is beyond the state of the art in tra-
jectory planning, but a simple form has been implemented.
The user specifies a nominal Cartesian path for the robot plus
some allowed deviation from the path; the trajectory planner
then plans a joint space trajectory that satisfies the constraints
[951 .

Another drawback of traditional motion specification is the
awkwardness of specifying complex paths accurately as se-
quences of positions. More compact descriptions of the desired
path usually exist. An approach followed in NC machining
is to describe the curve as the intersection of two mathematical
surfaces. A recent robot language, MCL 1581, has been defined
as an extension t o APT, the standard NC language. The goal
of MCL is to capitalize on the geometric databases and compu-
tational tools developed within existing APT systems for
specifying robot motions. This approach is particularly
attractive for domains, such as aircraft manufacture, in which
many of the parts are numerically machined.

Another very general approach to trajectory specification is
via user-supplied procedures parameterized by time. Paul [741,
[7 5] refers to this as functionally defined motion. The pro-
gramming system executes the function to obtain position
goals. This method can be used, for example, to follow a
surface obtained from CAD data, turn a crank, and throw
objects. The limiting factor in this approach is the speed at
which the function can be evaluated; in existing robot systems,
no method exists for executing user procedures at servo rates.

A special case of functionally defined motion is motion
specified as a function of sensor values. One example is in
compliant motion specifications, where some degrees of
freedom are controlled to satisfy force conditions. Another
example is a motion defined relative to a moving conveyor
belt. Both of these cases are common enough that special-
purpose mechanisms have been provided in programming
systems. There are significant advantages t o having these
mechanisms implemented using a common basic mechanism.

In summary, the view of motion specification as simply
specifying a sequence of positions or robot configurations is
too limiting. Mechanisms for geometric specification of
curves and functionally defined motion should also be pro-
vided. No existing systems provide these mechanisms with
any generality.

D. Flow of Control
In the absence of any form of sensing, a fixed sequence of

operations is the only possible type of robot program. This
model is not powerful enough to encompass sensing, however.
In general, the program for a sensor-based robot must choose
among alternative actions on the basis of its internal model of
the task and the data from its sensors. The task of Section 11,
for example, may go through a very complex sequence of states,
because the parts are amving in random order and because
the execution of the various phases of the operation is over-
lapped. In each state, the task program must specify the
appropriate action for each robot. The programming system
must provide capabilities for making these control decisions.

The major sources of information on which control decisions
can be based are: sensors, control signals, and the world model.
The simplest use of this information is t o include a test at fixed
Places in the Program to decide which action should be taken

6 A special case occurs when the computed path goes through a next, e&, “If (i < j) t hen Signal X else Moveto Y.” One
kinematic It s h p w i b l e in to satisfy trajectory important application where this type of control is suitable
constraints such as speed of the end-effector at the singularity. is error detection and correction.

828

Robot operations are subject to large uncertainties in the
initial state of the world and in the effect of the actions. As
a result, the bulk of robot programming is devoted to error
detection and correction. Much of this testing consists of
comparing the actual result of an operation with the expected
results. One common example is testing the finger opening
after a grasp operation to see if it differs from the expected
value, indicating either that the part is missing or a different
part is there. This type of test can be easily handled with
traditional IF-THEN tests after completion of the operation.
This test is so common that robot languages such as VAL and
WAVE [74] have made it part of the semantics of the grasp
command.

Many robot applications also have other requirements that
do not fall naturally within the scope of the IF-THEN control
structure. Robot programs often must interact with people
or machines, such as feeders, belts, NC machines, and other
robots. These external processes are executing in parallel and
asynchronously; therefore, it is not possible to predict exactly
when events of interest to the robot program may occur.
In the task of Section 11, for example, the arrival of a part
within the field of view of one of the cameras calls for imme-
diate action: either one of the robots must be interrupted so
as to acquire the part, or the belt must be stopped until a
robot can be interrupted. The previous operations may then
be resumed. Other examples occur in detecting collisions or
part slippage from the fingers; monitor processes can be
created to continuously monitor sensors, but they must be
able to interrupt the controlling process and issue robot
commands without endangering ongoing tasks.

It is possible to use the signal lines supported by most robot
systems to coordinate multiple robots and machines. For
example, in the sample task, the insertion of the pins into the
pump cover (steps 6 through 8, Section 11) requires that
ROBOTl and ROBOT2 be coordinated so as to minimize the
duration of the operation while avoiding interference among
the robots. If we let ROBOTl be in charge, we can coordinate
the operation using the following signal lines:

1) GET-PIN?: ROBOT2 asks if it is safe to get a new pin.
2) OK-TO-GET: ROBOT 1 says it is OK.
3) INSERT?: ROBOT2 asks if it is safe to proceed to insert

4) OK-TO-INSERT: ROBOT1 says it is OK.
5) DONE : ROBOT 1 says it is al l over.

the pin.

The basic operation of the control programs could be as follows:

ROBOTl ROBOT2
Wait for COVER-ARRIVED 3:
Signal OK-TOGET

Call PlaceCover-in-Fixture
i : = 1

Wait for INSERT-PIN?
Signal OK-TO-INSERT
if (i < np) then do

[Call Get-Pin-1
i : = i + 11 4:

else do
[Signal DONE
Goto 21

if (i < np) then do
Wait for GET-PIN?

[Signal OK-TOGET
i : = i + 11

Call Insert-Pin-1
Goto 1
. . .

If signal DONE Goto 4
Signal GET-PIN?

Call Get-Pin-2
Signal INSERT-PIN?
Wait for OK-TO-INSERT
Call Insert-Pin-2
Goto 3

Wait for OK-TO-GET

. . .

This illustration of how a simple coordination task could be

PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7 , JULY 1983

done with only binary signals also serves to illustrate the
limitations of the method.

1) The programs are asymmetric; one robot is the master
of the operation. If the cover can arrive on either belt and be
retrieved by either robot, then either an additional signal line
is needed to indicate which robot will be the master or both
robot systems must be subordinated to a third controller.

2) If one of the robots finds a defective pin, there is no
way for it to cause the other robot to insert an additional pin
while it goes to dispose of the defective one. The program
must allocate new signal lines for this purpose. In general, a
large number of signals may be needed.

3) Because one robot does not know the position of the
other one, it is necessary to coordinate them on the basis of
very conservative criteria, e.g., being engaged in getting a pin
or inserting a pin. This will result in slow execution unless
the tasks are subdivided very finely and tests performed at
each division, which is cumbersome.

4) The position of the pump cover and the pin-feeder must
be known by each process independently. No information
obtained during the execution of the task by one robot can
be used by the other robot; it must discover the information
independently.

The difficulties outlined above are the due to limited com-
munication between the processes. Signal lines are a simple,
but limited, method of transferring information among the
processes. In practice, sophisticated tasks require efficient
means for coordination and for sharing the world model
(including the state of the robots) between processes.

The issue of coordination between cooperating and com-
peting asynchronous processes is one of the most active
research areas in Computer Science. Many language mech-
anisms have been proposed for process synchronization,
among these are: semaphores [171, events, conditional critical
regions [391, monitors and queues [11 1 , and communicating
sequential processes [40]. Robot systems should build upon
these developments, perhaps by using a language such as
Concurrent Pascal [11] or Ada [42] as a base language. A
few existing robot languages have adopted some of these
mechanisms, e.g., AL and TEACH [81] , [821. Even the
most sophisticated developments in computer languages do
not address all the robot coordination problems, however.

When the interaction among robots is subject to critical
real-time constraints, the paradigm of nearly independent
control with periodic synchronization is inadequate. An
example occurs when multiple robots must cooperate phys-
ically, e.g., in lifting an object too heavy for any one. Slight
deviations from a pre-planned position trajectory would cause
one of the robots to bear all the weight, leading to disaster.
What is needed, instead, is cooperative control of both robots
based on the force being exerted on both robots by the load
[45 I , [601, [681. The programming system should provide a
mechanism for specifying the behavior of systems more com-
plex than a single robot. Another example of the need of this
kind of coordination is in the programming and control of
multifingered grippers [841.

In summary, existing robot programming systems are based
on the view of a robot system as a single robot weakly linked
to other machines. In practice, many machines including
sensors, special grippers, feeders, conveyors, factory control
computers, and several robots may be cooperating during a
task. Furthermore, the interactions between them may be
highly dynamic, e.g., to maintain a force between them, or
may require extensive sharing of information. No existing

LOZANO-PBREZ: ROBOT PROGRAMMING 8 2 9

robot programming system adequately deals with all of these
interactions. In fact, no existing computer language is adequate
to deal with this kind of parallelism and real-time constraints.

E. Programming Support
Robot applications do not occur in a vacuum. Robot pro-

grams often must access external manufacturing data, ask users
for data or corrective action, and produce statistical reports.
These functions are typical of most computer applications and
are supported by all computer programming systems. Many
robot systems neglect to support them, however. In principle,
the exercise of these functions can be separated from the
specification of the task itself but, in practice, they are inti-
mately intertwined. A sophisticated robot programming sys-
tem must first be a sophisticated programming system. Again,
this requirement can be readily achieved by embedding the
robot programming system within an existing programming
system [751. Alternatively, care must be taken in the design
of new robot programming systems not to overlook the
“mundane” programming functions.

A similar situation exists with respect t o program develop-
ment. Robot program development is often ignored in the
design of robot systems and, consequently, complex robot
programs can be very difficult to debug. The development
of robot programs has several characteristics which merit
special treatment.

1) Robot programs have complex side-effects and their
execution time is usually long, hence it is not always feasible
to re-initialize the program upon failure. Robot programming
systems should allow programs to be modified on-line and
immediately restarted.

2) Sensory information and real-time interactions are not
usually repeatable. One useful debugging tool for sensor-
based programs provides the ability to record the sensor
outputs, together with program traces.

3) Complex geometry and motions are difficult t o visualize;
simulators can play an important role in debugging, for example,
see [3 8 1 , [6 5] , [9 1 1 .

These are not minor considerations, they are central to
increased usefulness of robot programming systems.

Most existing robot systems are stand-alone, meant to be
used directly by a single user without the mediation of com-
puters. This design made perfect sense when robots were not
controlled by general-purpose computers; today it makes little
sense. A robot system should support a high-speed command
interface to other computers. Therefore, if a user wants t o
develop an alternate interface, he need not be limited by the
performance of the robot system’s user interface. On the other
hand, the user can take advantage of the control system and
kinematics calculations in the existing system. This design
would also facilitate the coordination of multiple robots and
make sophisticated applications easier to develop.

Iv. SURVEY OF ROBOT PROGRAMMING SYSTEMS

In this section, we survey several existing and proposed robot
Programming systems. An additional survey of robot pro-
gramming systems can be found in [71.

A. Guiding
All robot programming systems support some form of

guiding. The simplest form of guiding is to record a sequence
of robot positions that can then be “played back”; we call

this basic guiding. In robot-level systems, guiding is used t o
define positions while the sequencing is specified in a program.

The differences among basic guiding systems are a) in the
way the positions are specified and b) the repertoire of motions
between positions. The most common ways of specifying
positions are: by specifying incremental motions on a teach-
pendant, and by moving the robot through the motions,
either directly or via a master-slave linkage.

The incremental motions specified via the teach-pendant can
be interpreted as: independent motion of each joint between
positions, straight lines in the joint-coordinate space, or
straight lines in Cartesian space relative to some coordinate
system, e.g., the robot’s base or the robot’s end-effector.
When using the teach-pendant, only a few positions are u s u d y
recorded, on command from the instructor. The path of the
robot is then interpolated between these positions using one
of the three types of motion listed above.

When moving the robot through the motions directly, the
complete trajectory can be recorded as a series of closely
spaced positions on a fixed time base. The latter method is
used primarily in spray-painting, where it is important to
duplicate the input trajectory precisely.

The primary advantage of guiding is its immediacy: what
you see is what you get. In many cases, however, it is ex-
tremely cumbersome, as when the same position (or a simple
variation) must be repeated at different points in a task or
when fine positioning is needed. Furthermore, we have
indicated repeatedly the importance of sensing in robotics
and the limitations of guiding in the context of sensing.
Another important limitation pf basic guiding is in expressing
control structures, which inherently require testing and
describing alternate sequences.

1) Extended Guiding: The limitations of basic guiding with
respect t o sensing and control can be abated, though not com-
pletely abolished, by extensions short of a full programming
language. For example, one of the most common uses of
sensors in robot programs is to determine the location of
some object to be manipulated. After the object is located,
subsequent motions are made relative to the object’s coordinate
frame. This capability can be accomodated within the guiding
paradigm if taught motions can be interpreted as relative t o
some coordinate frame that may be modified at execution
time. These coordinate frames can be determined, for example,
by having the robot move until a touch sensor on the end-
effector encounters an object. This is known asguarded motion
or a search. This capability is part of some commercial robot
systems, e.g., ASEA [3] , Cincinatti Milacron [4 1] , and IBM
[321, 1921. This approach could be extended to the case
when the coordinate frames are obtained from a vision system.

Some guiding systems also provide simple control structures.
For example, the instructions in the taught sequence are given
numbers. Then, on the basis of tests on external o r internal
binary signals, control can be transferred to different points
in the taught sequence. The ASEA and Cincinatti Milacron
guiding systems, for example, both support conditional
branching. These systems also support a simple form of
procedures. The procedures can be used to carry out common
operations performed at different times in the taught sequence,
such as common machining operations applied to palletized
parts. The programmer can exploit these facilities to produce
more compact programs. These control structure capabilities
are limited, however, primarily because guiding systems do
not support explicit computation.

To illustrate the capabilities of extended guiding systems,

830 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

L-
INPUT PALLET

PICKUP OPERATION
(D E T A I L)

TARGET CONTACT

TARGET GRASP

Fig. 4. Palletizing task.

we present a simple task programmed in the ASEA robot’s
guiding system.’ The task is illustrated in Fig. 4 ; it consists
of picking a series of parts of different heights from a pallet,
moving them to a drilling machine, and placing them on a
different pallet. The resulting program has the following
structure:

I.No.
10
20
30
40
50
60
100
110
130
140
160
170
200
210
220
23 0
240

Instruction
OUTPUT ON 17
PATTERN
TEST JUMP 17
JUMP 170
OUTPUT OFF 17

MOD

MOD

MOD

OUTPUT ON 17
MOD

MOD

. . .

. . .

. . .
. . .

. . .

Remarks
Flag ON indicates do pickup
Beginning of procedure
Skip next instruction if flag is on

Next time do put down
Pickup operation (see below)
End of common code for pickup
Positioning for fust pickup
Execute procedure
Positioning for second pickup
Execute procedure
Machining and put down operation
Next time do pickup
End of common code for put down
Position for first put down
Execute procedure
Position for second put down

Note that the MOD operation is used with two meanings: 1) to
indicate the end of a common section of the PATTERN, and
2) to indicate where the common section is to be executed.
The sequence of instructions exected would be: 10, 20, 30,
50, 60 , * * * , 100, . * * , 130, 30, 40, 170;.*, 200;**230,
30, 50, * .

The key to the pickup operation is that we can use a search
to locate the top surface of the part, so we need not know the
heights exactly. The fingers are initially closed and the robot
starts out in position P1, which is above the highest part and
vertically above P2, which is at the height of the shortest

ASEA manual [31.
’This program is based on two program fragments included in the

part (see Fig. 4). Note that the parts are not in the work-
space during the programming sequence.

The pickup sequence could be programmed as follows:
1) Move vertically down towards P2 until contact is felt

2) Open the fiigers (steps 5, 6). We have neglected t o raise

3) Move down the distance between P2 and P3 relative to

4) Close the fingers (steps 10, 1 1).

(steps 1-4).

the arm before opening the fingers for simplicity.

the actual location where contact was detected (steps 7-9).

Here is the sequence:

1.

2.
3.

4.

5 .

6.

7.
8.
9.

10.

11.

Programmer action
Position vertically to P2.

Select speed to P2.
Key code for search and
vertical operation

PTPF

Set grip opening and
select waiting time.

GRIPPERS

Position to P3.

PTPL
Select time for motion.

Set grip opening and
select waiting time.

GRIPPERS

Remarks
Manual motion to the end position of

search.

This code indicates that the motion
that follows is a search in vertical
direction.

program.
Insert positioning command to P2 in

Specify finger opening

Insert command to actuate grippers
(open).

Grasping position (relative to P2).

Coordinated joint motion, relative to
the position after the search.

Specify finger closing

Insert command to actuate grippers
(close).

The putdown sequence would be programmed in a similar
fashion.

2) Off-Line Guiding: Traditional guiding requires that the
workspace for the task, all the tooling, and any parts be avail-
able during program development. If the task involves a single
large or expensive part, such as an airplane, ship or auto-
mobile, it may be impractical to wait until a completed part
is available before starting the programming; this could delay
the complete manufacturing process. Alternatively, the task
environment may be in space or underwater. In these cases,
a mockup of the task may be built, but a more attractive
alternative is available when a CAD model of the task exists.
In this case, the task model together with a robot model can
be used to define the program by off-line guiding. In this
method, the system simulates the motions of the robot in re-
sponse to a program or to guiding input from a teach-pendant.
Off-line guiding offers the additional advantages of safety and
versatility. In particular, it is possible to experiment with
different arrangements of the robot relative to the task so as
to find one that, for example, minimizes task execution time
[381.

B. Robot-Level Programming
In Section I11 we discussed a number of important functional

issues in the design of robot programming systems. The design
of robot-level languages, by virtue of its heritage in the design
of computer languages, has inherited many of the controversies
of that notoriously controversial field. A few of these con-
troversial issues are important in robot programming:

1) Compiler versus interpreter. Language systems that
compile high-level languages into a lower level language can

LOZANO-PEREZ: ROBOT PROGRAMMING

achieve great efficiency of execution as well as early detection
of some classes of programming errors. Interpreters, on the
other hand, provide enhanced interactive environments, in-
cluding debugging, and are more readily extensible. These
human factors issues have tended to dominate; most robot
language systems are interpreter based. Performance limita-
tions of interpreters have sometimes interfered with achieving
some useful capabilities, such as functionally defined motions.

2) New versus old. Is it better to design a new language or
extend an old one? A new one can be tailored to the need of
the new domain. An old one is likely to be more complete,
to have an established user group, and to have supporting
software packages. In practice, few designers can avoid the
temptation of starting de novo; therefore, most robot lan-
guages are “new” languages. There are, in addition, difficulties
in acquiring sources for existing language systems. One
advantage of interpreters in this regard is that they are smaller
than compilers and, therefore, easier to build.

In the remainder of the section, we examine some represen-
tative robot-level programming systems, in roughly chrono-
logical order. The languages have been chosen t o span a wide
range of approaches to robot-level programming. We use
examples to illustrate the “style” of the languages; a detailed
review of all these languages is beyond the scope of this paper.
We close the section with a brief mention of some of the
many other robot-level programming systems that have been
developed in the past ten years.

1) MHI 1960-1961: The f i t robot-level programming
language, MHI, was developed for one of the earliest computer-
controlled robots, the MH-1 at MIT [181. As opposed to its
contemporary the Unimate, which was not controlled by a
general-purpose computer and used no external sensors,
MH-I was equipped with several binary touch sensors through-
out its hand, an array of pressure sensors between the fingers,
and photodiodes on the bottom of the fingers. The availability
of sensors fundamentaly affected the mode of programming
developed for the MH-1.

MHI (Mechanical Hand Interpreter) ran on an interpreter
implemented on the TX-0 computer. The programming style
in MHI was framed primarily around guarded moves, i.e.,
moving until a sensory condition was detected. The language
primitives were:

1 j “move”: indicates a direction and a speed;
2 j “until”: test a sensor for some specified condition;
3) “ifgoto”: branch to a program label if some condition is

4) “ifcontinue”: branch to continue action if some condition
detected;

holds.

A sample program, taken from [181, foliows:

a, move x for 120 ; Move along x with speed 120
until s l 10 re1 lo1 ; until sense organ 1

; indicates a decrease of 10, relative
; to the value at start of this step
; (condition 1)

until s l 206 lo1 abs stp ; or until sense organ 1 indicates
; 206 or less absolute, then stop.
; (condition 2)

ifgoto f l , b : if condition 1 alone is fulfilled

ifgoto t f2
; go to sequence b
; if at least condition 2 is fulfded
; go to sequence c

ifcontinue t, a ; in all other cases continue sequence a

831

MHI did not support arithmetic or any other control structure
beyond sensor monitoring. The language, still, is surprisingly
“modern” and powerful. It was to be many years before a
more general language was implemented.

2) WAVE 1970-1 975: The WAVE [741 system, developed
at Stanford, was the earliest system designed as a general-
purpose robot programming language. WAVE was a “new”
language, whose syntax was modeled after the assembly
language of the PDP-10. WAVE ran off-line as an assembler
on a PDP-10 and produced a trajectory file which was exe-
cuted on-line by a dedicated PDP-6. The philosophy in WAVE
was that motions could be pre-planned and that only small
deviations from these motions would happen during execution.
This decision was motivated by the computation-intensive
algorithms employed by WAVE for trajectory planning and
dynamic compensation. Better algorithms and faster com-
puters have removed this rationale from the design of robot
systems today.

In spite of WAVE’S low-level syntax, the system provided an
extensive repertoire of high-level functions. WAVE pioneered
several important mechanisms in robot programming systems;
among these were

1 j the description of positions by the Cartesian coordinates

2) the coordination of joint motions to achieve continuity

3) The specification of compliance in Cartesian coordinates.

The following program in WAVE, from [74], serves t o pick up
a pin and insert it into a hole:

of the end-effector (x , y , z, and three Euler angles);

in velocities and accelerations.

TRANS PIN . . .
TRANS HOLE.. .
ASSIGN TRIES 2
MOVE PIN

PICKUP:
CLOSE 1
SKIPE 2

JUMP OK
OPEN 5

SOJG TRIES, PICKUP

WAIT NO PIN
JUMP PICKUP

CHANGE Z, -1, NIL, 0,O

OK:
MOVE HOLE
STOP FV, NIL

SKIPE 23
JUMP NOHOLE
FREE 2, X, Y

SPIN 2, X, Y
STOP FV, NIL

CHANGE, 2, - 1, NIL, 0, 0

CHANGE 2, -2, NIL, 0, 0

NOHOLE:
WAIT NO HOLE

Location of pin
Location of hole
Number of pickup attempts

; Move to PIN. MOVE first moves in +Z,
then to a point above PIN, then -Z.

; Pickup pin
; Skip next instruction if Error 2 occurs
; (Error 2: fingers closed beyond arg
; to CLOSE)
; Error did not occur, goto OK
; Error did occur, open the fingers
; Move down one inch
; Decrement TRIES, if not negative
;jump to PICKUP
; Print “NO PIN” and wait for operator
; Try again when operator types

PROCEED

; Move above hole
;Stop on 50 02.
; Try to go down one inch
; Error 23, failed to stop
; Error did not occur (pin hit surface)
; Proceed with insertion by complying
; with forces along x and y
; Also comply with torques about x and y
;Stop on 50 oz.
; Make the insertion

; Failed
Note the use of compliance and guarded moves to achieve
robustness in the presence of uncertainty and for error recovery.

832 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

WAVE’S syntax was difficult, but the language supported a
significant set of robot functions, many of which still are not
available in commercial robot systems.

3) MINI 1972-1 976: MINI [go], developed at MIT, was
not a “new” language, rather it was an extension to an existing
LISP system by means of a few functions. The functions
served as an interface to a real-time process running on a
separate machine. LISP has little syntax; it is a large collection
of procedures with common calling conventions, with no
distinction between user and system code. The robot control
functions of MINI simply expanded the repertoire of functions
available to the LISP programmer. Users could expand the
basic syntax and semantics of the basic robot interface at
will, subject to the limitations of the control system. The
principal limitation of MINI was the fact that the robot joints
were controlled independently. The robot used with MINI
was Cartesian, which minimized the drawbacks of uncoordi-
nated point-to-point motions.

The principal attraction of “The Little Robot System” [441,
(901 in which MINI ran was the availability of a highquality
6-degree-of-freedom force-sensing wrist [44] , [661 which
enabled sensitive force control of the robot. Previous force-
control systems either set the gains in the servos to control
compliance [43] , o r used the error signals in the servos of
the electric joint motors to estimate the forces at the hand
[7 3] . In either case, the resulting force sensitivity was on the
order of pounds; MIM’s sensitivity was more than an order
of magnitude better (approximately 1 oz).

The basic functions in MINI set position or force goals for
each of the degrees of freedom (SETM), reading the position
and force sensors (GETM), and waiting for some condition t o
occur (WAIT). We will illustrate the use of MINI using a set
of simple procedures developed by Inoue [44]. The central
piece of a peg-in-hole program would be rendered as follows
in MINI:
(DEFUN MOVE-ABOVE (P OFFSET)

(X = (X-LOCATION P))
(Y = (Y-LOCATION P))
(Z = (PLUS (Z-LOCATION P) OFFSET))
(WAIT ’ (AND (? X) (?Y) (?Z))))

; set x, y, z gods and wait till they are reached

(DEFUN INSERT (HOLE)
(MOVE-ABOVE HOLE 0.25)

(SETQ ZTARGET (DIFFERENCE (GETM ZPOS) 1.0))
; define a target 1 inch below current position

; move down until a contact force is met or until
; the position target is met.

(WAIT ’ (OR (?FZ) (SEQ (GETM ZPOS) ZTARGETI))
(COND ((SEQ (GETM ZPOS) ZTARGET)

; if the position goal was met, i.e. no surface encountered
; comply with lateral forces
(FX = 0) (FY = 0)
; and push down until enough resistance is met.

(WAIT ’ (FZ)))
(T; if a surface was encountered
(ERROR INSERT))))

(FZ = LANDING-FORCE)

(FZ = INSERTION-FORCE)

MINI did not have any of the geometric and control opera-
tions of WAVE built in, but most of these could easily be
implemented as LISP procedures. The primary functional
difference between the two systems lay in the more sophisti-
cated trajectory planning facilities of WAVE. The compen-
sating advantage of MINI was that it did not require any pre-
planning; the programs could use arbitrary LISP computations
to decide on motions in response to sensory input.

4/ AL 1974-Present: AL (241, [67] is an ambitious

attempt to develop a high-level language that provides all the
capabilities required for robot programming as well as the
programmizlg features of modem high-level languages, such as
ALGOL and Pascal. AL was designed to support robot-level
and task-level specification. The robot level has been completed
and will be discussed here; the task level development will be
discussed in Section IV-C.

AL, like WAVE and MINI, runs on two machines. One ma-
chine is responsible for compiling the AL input into a lower
level language that is interpreted by a real-time control machine.
An interpreter for the AL language has been completed, as
well [5] . AL was designed to provide four major kinds of
capabilities:

1) The manipulation capabilities provided by the WAVE
system: Cartesian specification of motions, trajectory planning,
and compliance.

2) The capabilities of a real-time language: concurrent exe-
cution of processes, synchronization, and on-conditions.

3) The data and control structures of an ALGOL-like
language, including data types for geometric calculations,
e.g., vectors, rotations, and coordinate frames.

4) Support for world modeling, especially the AFFIXMENT
mechanism for modeling attachments between frames including
temporary ones such as formed by grasping.

An AL program for the peg-in-hole task is:

BEGIN “insert peg into hole”
FRAME peg-bottom, peg-grasp, hole-bottom, hole-top;
{The coordinates frames represent actual positions of object features,

peg-bottom + FRAME(nilrot, VECTOR(20, 30,O)*inches);
hole-bottom + FRAME(nilrot, VECTOR(25, 35, O)*inches);
{Grasping position relative to peg-bottom }
peg-grasp t FRAME(ROT(xhat, 180*degrees) ,3*zhat*inches);
tries t 2;
grasped + FALSE;
{ The top of the hole is defined to have a fued relation to the bottom }
AFFIX hole-top to hole-bottom RIGIDLY

not hand positions }

AT TRANS(nilrot, 3*zhat*inches);

OPEN bhand TO peg-diameter + l*inches;
{Initiate the motion to the peg, note the destination frame }
MOVE bamn TO peg-bottom * peg-grasp;
WHILE NOT grasped AND i < tnes DO

BEGIN “Attempt grasp”
CLOSE bhand TO 0 * inches;
IF bhand < peg_diameter/2

THEN BEGIN “No object in grasp”
OPEN bhand TO peg-diameter + 1 * inches;
MOVE barm TO @ - 1 * inches; { @ indicates current location }
END

i + i + 1;
END

ELSE grasped +- TRUE;

IF NOT grasped THEN ABORT (“Failed to grasp the peg”);

{Establish a fixed relation between arm and peg. }
AFFIX peg-bottom TO barm RIGIDLY;
{Note that we move the peg-bottom, not barm }
MOVE peg-bottom TO hole-top;

{Test if a hole is below us }
MOVE barm TO €9- 1 * inches

ON FORCE(zhat) > 10 * ounces DO ABORT(“No Hole’’);

{Exert downward force, while complying to side forces }
MOVE peg-bottom to hole-bottom DIRECTLY

WITH FORCE-FRAME = station IN WORLD
WITH FORCE(zhat) = - 10 * ounces
WITH FORCE (fiat) = 0 * ounces
WITH FORCE (yhat) = 0 * ounces
SLOWLY;

END “insert peg in hole”

LOZANO-P~REZ: ROBOT PROGRAMMING 833

AL is probably the most complete robot programming system
yet developed; it was the first robot language to be a sophisti-
cated computer language as well as a robot control language.
AL has been a significant influence on most later robot lan-
guages.

5) VAL 1975-Present: VAL [89], [9 8] is the robot lan-
guage used in the industrial robots of Unimation Inc., especially
the PUMA series. If was designed to provide a subset of the
capabilities of WAVE on a stand-alone mini-computer. VAL
is an interpreter; improved trajectory calculation methods
have enabled it t o forego any off-line trajectory calculation
phase. This has improved the ease of interaction with the
language. The basic capabilities of the VAL language are as
follows:

point-to-point, joint-interpolated, and Cartesian motions
(including approach and deproach motions);
specification and manipulation of Cartesian coordinate
frames, including the specification of locations relative
to arbitrary frames;
integer variables and arithmetic, conditional branching,
and procedures;
setting and testing binary signal lines and the ability to
monitor these lines and execute a procedure when an
event is detected.

VAL’s support of sensing is limited to binary signal lines.
These lines can be used for synchronization and also for
limited sensory interaction as shown earlier. VAL‘s support
of on-line frame computation is limited to composition of
constant coordinate frames and fixed translation offsets on
existing frames. It does support relative motion; this, together
with the ability to halt a motion in response to a signal, pro-
vides the mechanisms needed for guarded moves. The basic
VAL also has been extended to interact with an industrial
vision system [3 0] by acquiring the coordinate frame of a
part in the field of view.

As a computer language, VAL is rudimentary; it most
resembles the computer language Basic. VAL only supports
integer variables, not floating-point numbers or character
strings. VAL does not support arithmetic on position data.
VAL does not support any kind of data aggregate such as
arrays or lists and, although it supports procedures, they may
not take any arguments.

A sample VAL program for the peg-in-hole task is shown
below. VAL does not support compliant motion, so this
operation assumes either that the clearance between the peg
and hole is greater than the robot’s accuracy or that a passive
compliance device is mounted on the robot’s endeffector
[1021. This limits the comparisons that can be made to other,
more general, languages. In the example, we assume that a
separate processor is monitoring a force sensor and communi-
cating with VAL via signal lines. In particular, signal line 3 goes
high if the 2 component of force exceeds a preset threshold.

SETI

REMARK

10 GRASP
REMARK
GOT0

REMARK

20 OPEN1
DRAW

TRIES = 2

If the hand closes to less than 100 mm, go to statement

100,20
Otherwise continue at statement 30.
30

Open the fingers, displace down along world Z axis

5 00
0, 0, -200

labelled 20.

and try again.

SETI TRIES = TRIES - 1
IF TRIES GE 0 THEN 10
TYPE NOPIN
STOP
REMARK Move 300mm above HOLE following a straight line.

30 APPROS HOLE, 300
REMARK Monitor simal line 3 and call procedure ENDIT to

STOP theprogram
REMARK if the signal is activated during the next motion.
REACT1 3, ENDIT
APPROS HOLE, 200
REMARK Did not feel force, so continue to HOLE.
MOVES HOLE

VAL has been designed primarily for operations involving
predefined robot positions, hence its limited support of com-
putation, data structures, and sensing. A new version of the
system, VAL-2, is under development which incorporates
more support for computation and communication with
external processes.
6) AML 1977-Present: AML [961 is the robot language

used in IBM’s robot products. AML, like AL, is an attempt at
developing a complete “new” programming language for
robotics that is also a full-fledged interpreted computer lan-
guage. The design philosophy of AML is somewhat different
from that of AL, however. Where AL focuses on providing
a rich set of built-in high-level primitives for robot operations,
AML has focused on providing a systems environmertt where
different user robot programming interfaces may be built.
For example, extended guiding [921 and visioninterfaces [501
can be programmed within the AML language itself. This
approach is similar to that followed in MINI.

AML supports operations on data aggregates, which can be
used to implement operations on vectors, rotations, and
coordinate frames, although these data types are part of recent
releases of the language. AML also supports joint-space tra-
jectory planning subject to position and velocity constraints,
absolute and relative motions, and sensor monitoring that can
interrupt motions. Recent AML releases support Cartesian
motion and frame affixment, but not general compliant
motion,8 or multiple processes. An AML program for peg-in-
hole might be:

PICKUP: SUBR (PART-DATA, TRIES);
MOVE(GRIPPER, DIAMETER(PART-DATA)+O.2);
MOVE(< 1,2, 3>, XYZ-POSITION(PART-DATA)+<O, 0, l>);
TRY-PICKUP(PART-DATA, TRIES);
END;

TRY-PICKUP: SUBR(PART-DATA, TRIES);
IF TRIES LT 1 THEN RETURN(’N0 PART’);

IF GRASP(DIAMETER(PART-DATA)) = ’NO PART’

END;

DMOVE(3, -1.0);

THEN TRY-PICKUP(PART-DATA, TRIES - 1);

GRASP: SUBR(DIAMETER, F);
FMONS: NEW APPLY($MONITOR, PINCH-FORCE(F));
MOVE(GRIPPER, 0, FMONS);
RETURN (IF QPOSITION(GRIPPER) LE DIAMETER/Z

THEN ’NO PART’
ELSE ’PART’);

END;

INSERT: SUBR(PART-DATA, HOLE);
FMONS: NEW APPLY ($MONITOR,

TIP-FORCE(LAND1NG-FORCE));

in AML. by using its sensor 1 / 0 operations. For highspeed motions,
*Compliant motions at low-speed could be written as user programs

the real-time control process would have to be extended.

834 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

MOVE(< 1, 2, 3>, HOLE+<O, 0, .25>);

IF QMONITOR(FM0NS) = 1

MOVE(3, HOLE(3) + PART-LENGTH(PART-DATA));
END;

DMOVE(3, -1.0, FMONS);

THEN RETURN(’N0 HOLE’);

PART-IN-HOLE: SUBR(PART-DATA, HOLE);
PICKUP (PARTDATA, 2.);
INSERT (PART-DATA, HOLE);
END;

This example has shown the implementation of low-level
routines such as GRASP, that are available as primitives in
AL and VAL. In general, such routines would be incorporated
into a programming library available to users and would be
indistinguishable from built-in routines. The important point
is that such programs can be written in the language,

The AML language design has adopted many decisions from
the designs of the LISP and APL programming languages.
AML, like LISP, does not make distinctions between system
and user programs. Also AML provides a versatile uniform
data aggregate, similar to LISP’s lists, whose storage is managed
by the system. AML, like APL and LISP, provides uniform
facilities for manipulating aggregates and for mapping opera-
tions over the aggregates.

The languages, WAVE, MINI, AL, VAL, and AML are well
within the mold of traditional procedural languages, both in
syntax and the semantics of all except a few of their opera-
tions. The next three languages we consider have departed
from the main line of computer programming languages in
more significant ways.

7) TEACH 19 75-1 978: The TEACH language [81 1 , [821
was developed as part of the PACS system at Bendix Corpora-
tion. The PACS system addressed two important issues that
have received little attention in other robot programming
systems: the issue of parallel execution of multiple tasks with
multiple devices, including a variety of sensors; and the issue
of defining robot-independent programs. In addressing these
issues TEACH introduced several key innovations; among these
are the following:

1) Programs are composed of partially ordered sequences of
statements that can be executed sequentially or in parallel.

2) The system supports very flexible mapping between the
logical devices, e.g., robots and fixtures, specified in the pro-
gram and the physical devices that carry them out.

3) All motions are specified relative to local coordinate
frames, so as to enable simple relocation of the motion sequence.

These features are especially important in the context of
systems with multiple robots and sensors, which are likely to
be common in future applications. Few attempts have been
made to deal with the organization and coordination problems
of complex tasks with multiple devices, not all of them robots.
Ruoff [821 reports that even the facilities of TEACH proved
inadequate in coping with very complex applications and
argues for the use of model-based programming tools.

8) PAL 1978-Present: PAL [93] is very different in con-
ception from the languages we have considered thus far. PAL
programs consist primarily of a sequence of homogeneous
coordinate equations involving the locations of objects and of
the robot’s endeffector. Some of the transforms in these
equations, e.g., those specifying the relative location of a fea-
ture to an object’s frame, are defined explicitely in the pro-
gram. Other coordinate frames are defined implicitly by the
equations; leading the robot through an execution of the task
establishes relations among these frames. Solving for the
implicitly defined frames completes the program.

PAL programs manipulate basic coordinate frames that
define the position of key robot features: z represents the
base of the robot relative to the world, T6 represents the end
of the sixth (last) robot link relative to Z , and E represents
the position of the end-effector tool relative to ~ 6 . Motions
of the tool with respect to the robot base are accomplished
by specifying the value of z + T6 + E, where +indicates
composition of transforms. So, the example, z + ~6 + E =
CAM + BKT + GRASP specifies that the end-effector should
be placed at the grasp position on the bracket whose position
is known relative to a camera, as discussed in Section 111-B.

The MOV <exp> command in PAL indicates that the
“generalized” robot tool frame, ARM + TOL, is to be moved
to <exp>. For simple motions of the end-effector relative
to the robot base, ARM is Z + T6 and TOL is E. We can rewrite
ARM to indicate that the motion happens relative to another
object, e.g., the example above can be rewritten to be

-BKT-CAM+Z+T6+E=GRASP.

In this case ARM can be set to the transform expression

- BKT - CAM + Z + T6.

MOV GRASP will then indicate that the end-effector is to be
placed on the grasp frame of the bracket, as determined by
the camera. Similarly, placing the pin in the bracket’s hole
can be viewed as redefining the tool frame of the robot to be
at the hole. This can be expressed as

- FIXTURE + Z + T6 + E - GRASP + HOLE = PIN.

By Setting ARM to - FIXTURE + Z + T6 and TOL t o E - GRASP +
HOLE, MOV PIN will have the desired effect. Of course, the
purpose of setting ARM and TOL is to simplify the expression
of related motions in the same coordinate frame.

PAL is still under development; the system described in [931
deals only with position data obtained from the user rather than
the robot. Much of the development of PAL has been devoted
to the natural use of guiding to define the coordinate frames.
Extensions to this systems to deal with sensory information
are suggested in [751. The basic idea is that sensory informa-
tion serves to define the actual value of some coordinate frame
in the coordinate equations.

9) MCL 1979-Present: MCL [58] is an extension of the
APT language for Numerically Controlled machining to
encompass robot control, including the following capabilities:

1) data types, e.g., strings, booleans, reals, and frames;
2) control structures for conditional execution, iterative

3) real-time input and output;
4) vision interface, including the ability to define a shape to

execution, and multiprocessing;

be located in the visual field.

Extending APT provides some ease of interfacing with existing
machining facilities including interfaces to existing geometric
databases. By retaining APT compatibility, MCL can also
hope to draw on the existing body of skilled APT part pro-
grammers. On the other hand, the APT syntax, which was
designed nearly 30 years ago, is not likely to gain wide accep-
tance outside of the NC-machining community.

10) Additional Systems: Many other robot language sys-
tems are reported in the literature, among these are the
following:

1) ML [1041 is a low-level robot language developed at IBM,
with operations comparable to those of a computer assembly
language. The motion commands specified joint motions for

LOZANO-P~REZ: ROBOT PROGRAMMING 835

an (almost) Cartesian robot. The language provided support
for guarded moves by means of SENSOR commands that
enabled sensor monitors; when a monitor was activated by a
sensor value outside of the specified range, all active motions
were terminated. ML supported two parallel robot tasks and
provided for simple synchronization between the tasks.

2) EMILY [191 was an off-line assembler for the ML
language. It raised the syntax of ML to a level comparable
to Fortran.

3) MAPLE [161 was an interpreted AL-like language, also
developed at IBM. The actual manipulation operations were
carried out by using the capabilities of the ML system described
earlier. MAPLE never recieved significant use.

4) SIGLA [85] , developed at Olivetti for the SIGMA
robots, supports a basic set of joint motion instructions,
testing of binary signals, and conditional tests. It is compar-
able to the ML language in syntactic level. SIGLA supports
pseudoparallel execution of multiple tasks and some simple
force control.

5) MAL [281, developed at Milan Polytechnic, Italy, is a
Basic-like language for controlling multiple Cartesian robots.
The language supports multiple tasks and task synchronization
by means of semaphores.

6) LAMA-S [201, developed at IRIA, France, is a VAL-like
language with support for on-line computations, for arrays,
and for pseudoparallel execution of tasks.

7) LM [48], developed a t IMAG, Grenoble, France, is a
language that provides most of the manipulation facilities
of AL in a minicomputer implementation. LM also supports
affixment, but not multiprocessing. LM is being used as the
programming language for a recently announced industrial
robot produced by Scemi, Inc.

8) RAIL [251, developed at AUTOMATIX Inc, contains a
large subset of PASCAL, including computations on a variety
of data types, as well as high-level program control mechanisms.
RAIL supports interfaces to binary vision and robot welding
systems. The language has a flexible way of defining and
accessing input or output lines, either as single or multiple
bit numbers. RAIL statements are translated into an inter-
mediate representation which can be executed efficiently
while enabling interactive debugging. RAIL is syntactically
more sophisticated than VAL; it is comparable to AML and
LM. RAIL does not support multiprocessing or affixment.

9) HELP, developed at General Electric for their robot
products, including the Allegro robot [261. The language is
Pascal-like and supports concurrent processes to control the
two arms in the Allegro system. It is comparable in level to
RAIL and AML.

This is not a complete list, new languages are being developed
every year, but it is representative of the state of the art.

C. Task-Level Programming

Robot-level languages describe tasks by carefully specifying
the robot actions needed to carry them out. The goal of task-
level programming systems [721, on the other hand, is to enable
task specification to be in terms of operations on the objects
in the task. The peg-in-hole task, for example, would be
described as: INSERT PEG IN HOLE, instead of the sequence
of robot motions needed to accomplish the insertion.

A task planner transforms the task-level specifications into
robot-level specifications. To do this transformation, the
task planner must have a description of the objects being
manipulated, the task environment, the robot carrying out
the task, the initial state of the environment, and the desired

(AUBUC)- D

Fig. 5. Models obtained by set operations on primitive volumes.

final state. The output of the task planner is a robot-level
program to achieve the desired final state when executed in
the specified initial state. If the synthesized program is to
reliably achieve its goal, the planner must take advantage of
any capabilities for compliant motion, guarded motion, and
error checking. Hence the task planner must synthesize a
sensor-based robot-level program.

Task-level programming is still a subject of research; many
unsolved problems remain. The approach, however, is a
natural outgrowth of ongoing research and development in
CAD/CAM and in artificial intelligence.

Task planning can be divided into three phases: modeling,
task specification, and robot-program synthesis. These phases
are not computationally independent, but they provide a
convenient conceptual division of the problem.

I) World Modezing: The world model for a task must
contain the following information:

1) geometric descriptions of all objects and robots in the

2) physical description of all objects, e.g., mass and inertia;
3) kinematic descriptions of all linkages;
4) descriptions of robot characteristics, e.g., joint limits,

task environment;

acceleration bounds, and sensor capabilities.

Models of task states also must include the positions of all
objects and linkages in the world model. Moreover, the model
must specify the uncertainty associated with each of the
positions. The role that each of these items plays in the syn-
thesis of robot programs will be discussed in the remainder of
the section. But first, we will explore the nature of each of
the descriptions and how they may be obtained.

The geometric description of objects is the principal compo-
nent of the world model. The major sources of geometric
models are CAD systems, although computer vision may
eventually become a major source of models [81. There are
three major types of commercial CAD systems, differing on
their representations of solid objects:

1) line-objects are represented by the lines and curves

2) surface-objects are represented as a set of surfaces;
3) solid-objects are represented as combinations of primitive

needed to draw them;

solids.

Line systems and some surface systems do not represent all
the geometric information needed for task planning. A list
of edge descriptions, for example, is not sufficient to describe
a unique polyhedron, e.g., [591. In general, a solid modeling
system is required to obtain a complete description. In solid
modelers, models are constructed by performing set operations
on a few types of primitive volumes. The objects depicted in
Fig. 5, for example, can be described as the union of two

836 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

solid cylinders A and B, a solid cube C, and a hollow cylinder
D. The descriptions of the primitive and compound objects
vary greatly among existing systems. For surveys of geometric
modeling systems see [41, [101, [go].

The legal motions of an object are constrained by the
presence of other objects in the environment and the form of
the constraints depend in detail on the shapes of the objects.
This is the fundamental reason why a task planner needs
geometric descriptions of objects. There are additional con-
straints on motion imposed by the kinematic structure of the
robot itself. If the robot is turning a crank or opening a valve,
then the kinematics of the crank and the valve impose additional
restrictions on the robot’s motion. The kinematic models
provide the task planner with the information required t o plan
robot motions that are consistent with external constraints.
Examples of kinematic models and their use in planning robot
motions can be found in [60].

The bulk of the information in a world model remains
unchanged throughout the execution of a task. The kinematic
descriptions of linkages are an exception, however. As a result
of the robot’s operation, new linkages may be created and old
linkages destroyed. For example, inserting a pin into a hole
creates a new linkage with one rotational and one translational
degree of freedom. Similarly, the effect of inserting the pin
might be to restrict the motion of one plate relative to another,
thus removing one degree of freedom from a previously existing
linkage. The task planner must be appraised of these changes,
either by having the user specify linkage changes with each
new task state, or by having the planner deduce the new link-
ages from the task state description.

In planning robot operations, many of the physical charac-
teristics of objects play important roles. The mass and inertia
of parts, for example, will determine how fast they can be
moved or how much force can be applied to them before they
fall over. Also, the coefficient of friction between a peg and
a hole affects the jamming conditions during insertion (see,
e.g., [71 I , [1021). Hence, the world model must include a
description of these characteristics.

The feasible operations of a robot are not sufficiently char-
acterized by its geometrical, kinematical, and physical descrip-
tions. We have repeatedly stressed the importance of a robot’s
sensing capabilities: touch, force, and vision. For task planning
purposes, vision allows obtaining the position of an object to
some specified accuracy, at execution time. Force sensing
allows performing guarded and compliant motions. Touch
information could serve in both capacities, but its use remains
largely unexplored [36]. In addition to sensing, there are
many individual characteristics of robots that must be described
in the world model: velocity and acceleration bounds, position-
ing accuracy of each of the joints, and workspace bounds, for
example.

Much of the complexity in a world model arises from model-
ing the robot, which is done once. Geometric, kinematic, and
physical models of other objects must be provided for each
new task, however. The underlying assumption in task-level
languages is that this information would have been developed
as part of the design of these objects. If this assumption does
not hold, the modeling effort required for a task-level specifi-
cation, using current modeling methods, might dwarf the effort
needed to generate a robot-level program to carry out the task.

2) Task Specification: Tasks can be specified to the task
planner as a sequence of models of the world state at several

Boorin

B e a r ,

pacer

U

Nul
Washer

Fig. 6. Task description as a sequence of model states.

steps during execution of the task. An assembly of several
parts, for example, might be specified by a sequence of models
as each part is added to the assembly. Fig. 6 illustrates one
possible sequence of models for a simple task. All of the
models in the task specification share the descriptions of
the robot’s environment and of the objects being manipulated;
the steps in the sequence differ only in the positions of the
objects. Hence, a task specification is, at first approximation,
a model of the robot’s world together with a sequence of
changes in the positions of the model components.

A model state is given by the positions of all the objects in
the environment. Hence, tasks may be defined, in principle,
by sequences of states of the world model. The sequence of
model states needed to fully specify a task depends on the
capabilities of the task planner. The ultimate task planner
might need only a description of the initial and final states of
the task. This has been the goal of much of the research on
automatic problem solving within artificial intelligence (see,
e.g., [70]) . These problem solving systems typically do not
specify the detailed robot motions necessary to achieve an
operation.’ These systems typically produce a plan where
the primitive commands are of the form: PICKUPfA) and
MOVETOIp) without specifying the robot path or any sensory
operations. In contrast to these systems, task planners need
significant information about intermediate states, but they can
be expected to produce a much more detailed robot program.

The positions needed to specify a model state are essentially
similar to those needed to specify positions to robot-level
systems. The option of using the robot to specify positions
is not open, however. The other techniques described in
Section 111-B are still applicable. The use of symbolic spatial
relationships is particularly attractive for high-level task
specifications.

We have indicated that model states are simply sets of
positions and task specifications are sequences of models.
Therefore, given a method such as symbolic spatial relation-
ships for specifying positions, we should be able to specify
tasks. This approach has several important limitations, how-
ever. We noted earlier that a set of positions may overspecify
a state. A typical example [2 3] of this difficulty arises with
symmetric objects, for example a round peg in a round hole.
The specific orientation of the peg around its axis given in a
model is irrelevant to the task. This problem can be solved
by treating the symbolic spatial relationships themselves as
specifying the state, since these relationships can express
families of positions. Another, more fundamental, limitation
is that geometric and kinematic models of an operation’s

mechanisms to carry out the plan in the real world.
’The most prominent exception is STRIPS [69] , which included

LOZANO-P~REZ: ROBOT PROGRAMMING 831

final state are not always a complete specification of the
desired operation. One example of this is the need to specify
how hard to tighten a bolt during an assembly. In general,
a complete description of a task may need t o include param-
eters of the operations used to reach one task state from
another.

The alternative to task specification by a sequence of model
states is specification by a sequence of operations. Thus instead
of building a model of an object in its desired position, we can
describe the operation by which it can be achieved. The
description should still be object-oriented, not robot-oriented;
for example, the target torque for tightening a bolt should be
specified relative to the bolt and not the robot joints. Opera-
tions will also include a goal statement involving spatial
relationships between objects. The spatial relationships given
in the goal not only specify positions, they also indicate the
physical relationships between objects that should be achieved
by the operation. Specifying that two surfaces are Against each
other, for example, should produce a compliant motion that
moves until the contact is actually detected, not a motion to
the position where contact is supposed to occur. For these
reasons, existing proposals for task-level programming lan-
guages have adopted an operation-centered approach to task
specification [5 1] , [5 2] , [55].

The task specified as a sequence of model states in Fig. 6
can be specified by the following symbolic operations, assuming
that the model includes names for objects and object features:

PLACE BEARING1 SO (SHAFT FITS BEARING1.HOLE) AND
(BEARING1.BOTTOM AGAINST SHAFT'.LIP)

PLACE SPACER SO (SHAFT FITS SPACER.HOLE) AND
(SPACER.BOTTOM AGAINST BEARING1.TOP)

PLACE BEARING SO (SHAFT FITS BEARING2.HOLE) AND
(BEARING2.BOTTOM AGAINST SPACER.TOP)

PLACE WASHER SO (SHAFT FITS WASHER.HOLE) AND
(WASHER.BOTTOM AGAINST BEARING2.TOP)

SCREW-IN NUT ON SHAFT TO (TORQUE = to)

The first step in the task planning process is transforming
the symbolic spatial relationships among object features in
the SO clauses above to equations on the position parameters
of objects in the model. These equations must then be simpli-
fied as far as possible to determine the legal ranges of positions
of all objects [11, [78] , [94] . The symbolic form of the
relationships is used during program synthesis also.

We have mentioned that the actual positions of objects at
task execution time will differ from those in the model; among
the principal sources of error are part variation, robot position
errors, and modeling errors. Robot programs must tolerate
some degree of uncertainty if they are to be useful, but pro-
grams that guarantee success under worst case error assump-
tions are difficult to write and slow to execute. Hence, the
task planner must use expectations on the uncertainty to
choose motion and sensing strategies that are efficient and
robust [44]. If the uncertainty is too large to guarantee
success, then additional sensory capabilities or fixtures may
be used to limit the uncertainty [1.11, [941. For this reason,
estimated uncertainties are a key part of task specification.

It is not desirable to specify uncertainties numerically for
each position of each state. For rigid objects, a more attractive
alternative is to specify the initial uncertainty of each object
and use the task planner to update the uncertainty as opera-

VI

I I I I I
Fig. 7. Two equivalent obstacle avoidance problems.

tions are performed. For linkages, information on uncertainty
at each of the joints can be used to estimate the position un-
certainty of each of the links and of grasped objects 1121,
[941.

3) Robo t Program Synthesis: The synthesis of a robot
program from a task specification is the crucial phase of task
planning. The major steps involved in this phase are grasp
planning, motion planning, and plan checking. The output
of the synthesis phase is a program composed of grasp com-
mands, several kinds of motion specifications, sensor com-
mands, and error tests. This program is in a robot-level lan-
guage for a particular robot and is suitable for repeated
execution without replanning.

Grasping is a key operation in robot programs since it affects
all subsequent motions. The grasp planner must choose where
to grasp objects so that no collisions will result when grasping
or moving them [491, [521, [531, [631, [1051. Inaddition,
the grasp planner must choose grasp positions so that the
grasped objects are stable in the gripper [81, [341, 1731. In
particular, the grasp must be able to withstand the forces
generated during motion and contact with other objects.
Furthermore, the grasp operation should be planned so that
it reduces, or at least does not increase, any uncertainty in
the position of the object to be grasped [6 1 1 .

Once the object is grasped, the task planner must synthesize
motions that will achieve the desired goal of the operation
reliably. We have seen that robot programs involve three
basic kinds of motions: free, guarded, and compliant. Motions
during an assembly operation, for example, may have up to
four submotions: a guarded departure from the current
position, a free motion towards the destination position of
the task step, a guarded approach to contact at the destination,
and a compliant motion to achieve the goal position.

During free motion, the principal goal is to reach the desti-
nation without collision; therefore, planning free motions is
a problem in obstacle avoidance. Many obstacle-avoidance
algorithms exist but none of them are both general and efficient.
The type of algorithm that has received the most attention are
those that build an explicit description of the constraints on
motion and search for connected regions satisfying those
cmstraints; see, e.g., [131, I151, [461, [531, 1561, [861,
[87] , [97] . A simple example of this kind of technique is
illustrated in Fig. 7. A moving polygon A = UiAi, with dis-
tinguished point U A , must translate among obstacle polygons
Bi. This problem is equivalent to the problem in which UA
translates among transformed objects C~,J . Each Ci,i represents
the forbidden positions of UA arising because of potential
collisions between Ai and Bi. Any curve that does not overlap
any of the Cki is a safe path for A among the Bi. Extensions
of this approach can be used to plan the paths of Cartesian
robots 1531, [56l.

Compliant motions are designed to maintain contact among
objects even in the presence of uncertainty in the location of

PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

4:
U

Fig. 8. Ambiguous results of a guarded motion under uncertainty.

the objects; see [62] for a review. The basic idea is that the
robot can only control its position along the tangent to a
surface” without violating the constraints imposed by the
surface. In the direction normal to the surface, the robot can
only control forces if it is to guarantee contact with the sur-
face. The planning of compliant motions, therefore, requires
models that enable one to deduce the directions which require
force control and those that require position control. This
planning is most complicated when the robot interacts with
other mechanisms [601.

Compliant motions assume that the robot is already in con-
tact with an object; guarded motions are used to achieve the
initial contact with an object [1041. A guarded motion in
the presence of uncertainty, however, does not allow the
program to determine completely the relative position of the
objects, several outcomes may be possible as a result of the
motion (see Fig. 8). A strategy, composed of compliant
motions, guarded motions, and sensing must be synthesized
to reliably achieve the specified goal. In particular, for the
example in Fig. 8, the strategy must guarantee that the desired
final state is achieved no matter which of the possible states
actually is reached [141 , [47] , [52] , [56] , [94] .

Most of the difficulty in doing motion synthesis stems from
the need t o operate under uncertainty in the positions of the
objects and of the robot. These individual uncertainties can be
modeled and their combined effect on positions computed.
The requirements for successful completion of task steps can
be used t o choose the strategy for execution, e.g., an insertion
with large clearance may be achieved by a positioning motion,
while one with little clearance might require a guarded motion
to find the surface followed by a compliant motion [141,
[741. In general, the uncertainty in the position of objects
may be too large to guarantee that some motion plan will
succeed. In these cases, noncontact sensing such as vision may
be used at run-time to reduce the uncertainty. The task
planner must decide when such information is likely to be
useful, given that the sensory information also will be subject
to error. This phase of task planning has been dubbed plan
checking; it is treated in detail in [141.

Task planning, as described above, assumes that the actual
state of the world will differ from the world model, but only
within known bounds. This will not always be the case
however; objects may be outside the bounds of estimated
uncertainty, objects may be of the wrong type, or objects

may be absent altogether. In these cases and many others,
the synthesized programs will not have the expected result;
the synthesized program should detect the failure and either
correct it or discontinue the operation. Error detection will
avoid possible damage to the robot and other parts of the
environment. Hence, an important part of robot program
synthesis should be the inclusion of sensory tests for error
detection. Error detection and correction in robot programs
is a very difficult problem, but one for which very little
research is available [141, [291, [521.

4) Task-Level Systems: A number of task-level language
systems have been proposed, but no complete system has been
implemented. We saw above that many fundamental problems
remain unsolved in this area; languages have served primarily
as a focus of research, rather than as usable systems.

The Stanford Hand-Eye system [221 was the first of the task-
level system proposals. A subset of this proposal was imple-
mented, namely Move-Instance [731, a program that chose
stable grasping positions on polyhedra and planned a motion to
approach and move the object. The planning did not involve
obstacle avoidance (except for the table surface) or the plan-
ning of sensory operations.

The initial definition of AL [24] called for the ability to
specify models in AL and to allow specification of operations
in terms of these models. This has been the subject of some
research [51, [941, but the results have not been incorporated
into the existing AL system. Some additional work within the
context of Stanford’s Acronym system [12] has dealt with
planning grasp positions [751, but AL has been viewed as the
target language rather than the user language.

Taylor [941 discusses an approach to the synthesis of sensor-
based AL programs from task-level specifications. Taylor’s
method relies on representing prototypical motion strategies
for particular tasks as parameterized robot programs, known
as procedure skeletons. A skeleton has all the motions, error
tests, and computations needed to carry out a task, but many
of the parameters needed to specify motions and tests remain
to be specified. The applicability of a particular skeleton t o a
task depends on the presence of certain features in the model
and the values of parameters such as clearances and uncer-
tainties. Choices among alternative strategies for a single
operation are made by first computing the values of a set of
parameters specific to the task, such as the magnitude of un-
certainty region for the peg in peg-in-hole insertion, and then
using these parameters to choose the “best,” e.g., fastest,
strategy. Having chosen a strategy, the planner computes the
additional parameters needed to specify the strategy motions,
such as grasp positions and approach positions. A program is
produced by inserting these parameters into the procedure
skeleton that implements the chosen strategy.

The approach to strategy synthesis based on procedure
skeletons assumes that task geometry for common subtasks
is predictable and can be divided into a manageable number
of classes each requiring a different skeleton. This assumption
is needed because the sequence of motions in the skeleton wiU
only be consistent with a particular class of geometries. The
assumption does not seem to be true in general. As an example,
consider the tasks shown in Fig. 9. A program for task A
could perhaps be used to accomplish tasks B and C, but it

LOZANO-PEREZ: ROBOT PROGRAMMING a39

€7
U T T

be slow when compared to mechanical means of reducing
uncertainty.

Both of these problems are receiving significant attention
today. When they are effectively overcome, the need for good
robot programming tools will be acute.

(a) 0) (C) The main goal of this paper has been to assess the state of the
Fig. 9 . Similar peg-in-hole tasks which require different strategies. art in robot programming compared with the requirements of

sophisticated robot tasks. Our conclusion is that all of the

trasts to an approach which derives the strategy directly from
consideration of the task description [561. In advanced sys-
tems, both types of approaches are likely to play a role.

The LAMA system was designed at MIT [521 , [551 as a
task-level language, but only partially implemented. LAMA
formulated the relationship of task specification, obstacle
avoidance, grasping, skeleton-based strategy synthesis, and
error detection within one system. More recent work at
MIT has explored issues in task planning in more detail outside
of the context of any particular system [13 1, [141, [531,
[571, [601, [611.

AUTOPASS, a t IBM [5 1] , defined the syntax and semantics
of a task-level language and an approach to its implementation.
A subset of the most general operation, the PLACE statement,
was implemented. The major part of the implementation effort
focused on a method for planning collision-free paths for
Cartesian robots among polyhedral obstacles [561, [1001 .

RAPT [77] is an implemented system for transforming
symbolic specifications of geometric goals, together with a
program which specifies the directions of the motions but not
their length, into a sequence of end-effector positions. RAPT’S
emphasis has been primarily on task specification; it does
not deal with obstacle avoidance, automatic grasping, or
sensory operations.

Some robot-level language systems have proposed extensions
to allow some task-level specifications. LM-GEO [471 is an
implemented extension to LM [48] which incorporates sym-
bolic specifications of destinations. The specification of
ROBEX [9 9] includes the ability to automatically plan
collision-free motions and to generate programs that use
sensory information available during execution. A full-blown
ROBEX, including these capabilities, has not been imple-
mented.

The deficiencies of existing methods for geometric reasoning
and sensory planning have prevented implementation of a
complete task-level robot programming system. There has,
however, been significant progress towards solving the basic
problems in task planning; see [541 for a review.

V. DISCUSSION AND CONCLUSIONS
Existing robot programming systems have focused primarily

on the specification of sequences of robot configurations.
This is only a small aspect of robot programming, however.
The central problem of robot programming is that of speci-
fying robot operations so that they can operate reliably in
the presence of uncertainty and error. This has long been
recognized in research labs, but until very recently has found
little acceptance in industrial situations. Some key reasons
for this difference in viewpoint are:

1) the lack of reliable and affordable sensors, especially
those already integrated into the control and programming
systems of a robot;

2) existing techniques for sensory processing have tended t o

existing robot systems fall short of meeting the requirements
we can identify today.

The crucial problem in the development of robot program-
ming languages is our lack of understanding of the basic
issues in robot programming. The question of what basic
set of operations a robot system should support remains
unanswered. Initially, the only operation available was joint
motion. More recently, Cartesian motion, sensing, and,
especially, compliance have been recognized as important
capabilities for robot systems. In future systems, a whole
range of additional operations and capabilities are to be
expected:

1) Increasing integration o f sensing and motion: More
efficient and complete implementations of compliant motions
are a key priority.

2) Complete object models as a source o f da ta fo r sensor
interfaces and trajectory planning: Existing partial models
of objects are inadequate for most sensing tasks; they are
also limited as a source of path constraints. Surface and volume
models, together with appropriate computational tools, should
also open the way for more natural and concise robot programs.

3) Versatile trajectow specifications: Current systems over-
specify trajectories and ignore dynamic constraints on motion.
Furthermore, they severely restrict the vocabulary of path
shapes available to users. A mechanism such as functionally
defined motion can make it easy to increase the repertoire of
trajectories available to the user.

4) Coordination of multiple parallel tasks: Current robot
systems have almost completely ignored this problem, but
increasing use of robots with more thansix degrees of freedom,
grippers with twelve or more degrees of freedom, multiple
special-purpose robots with two or three degrees of freedom,
and multiple sensors will make the need for coordination
mechanisms severe.

5) The IIO, control, and synchronization capabilities o f
general-purpose computer programming Ianguages: A key
problem in the development of robot languages has been the
reluctance, on the part of users and researchers alike, to
accept that a robot programming language must be a sophisti-
cated computer language. The evidence seems to point to the
conclusion that a robot language should be a superset of an
established computer programming language, not a subset.

The developments should be matched with continuing efforts
at raising the level of robot programming towards the task
level. By automating many of the routine programming func-
tions, we can simplify the programming process and thereby
expand the range of applications available to robot systems.

One problem that has plagued robot programming research
has been the significant “barriers to entry” to experimen-tal
research in robot programming. Because robot control sys-
tems on available robots are designed to be stand alone, every
research group has to reimplement a robot control system
from the ground up. This is a difficult and expensive operation.
It is t o be hoped that commercial robots of the future will be

840 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 7, JULY 1983

designed with a view towards interfacing to other computers,
rather than as stand-alone systems. This should greatly stimu-
late development of the sophisticated robot programming
systems that we will surely need in the future.

ACKNOWLEDGMENT

Many of the ideas discussed in this paper have evolved over
the years through discussions with many people, too numerous
to mention. The author has benefited, especially, from
extensive discussions with M. Mason and R. Taylor. He thanks
both of them for their time and their help. The initial moti-
vation for this paper and many of the ideas expressed herein
arose as a result of the “Workshop on Robot Programming
Languages” held at MIT in January 1982, sponsored by ONR.
The author is indebted to all the participants of the workshop.
The following people read drafts and provided valuable com-
ments: M. Brady, R. Brooks, S. Buckley, E. Crimson, J.

, Hollerbach, B. Horn, M. Mason, and R. Paul. The author also
i wishes to thank the two referees for their suggestions.
~

REFERENCES
[11 A. P. Ambler and R. J. Popplestone, “Inferring the positions of

bodies from specified spatial relationships,” Artificial Zntell.,
VOL 6, no. 2, pp. 157-174, 1975.

[21 A. P. Ambler, R. J. Popplestone, and K. G. Kempf, “An experi-
ment in the Offline Programming of Robots,” in Roc. 12th
Znt. Symp. on Industrial Robots (Paris, France, June 1982),

[3] ASEA ‘‘Industrial robot system,” ASEA AB, Sweden, Rep.

[4] A. Baer, C. Eastman, and M. Henrion, “Geometric modem:
A survey,” Computer Aided Des., voL 11, no. 5, pp. 253-272,
Sept. 1979.

[5] T. 0. Binford, ‘The AL language for intelligent robots,” in
Proc. ZRLA Sem. on Languages and Methods o f Programming
Industrial Robots (Rocquencourt, France, June 1979), pp. 73-
87.

[6] R. Bolles and R. P. Paul, ‘The use of sensory feedback in a
programmable assembly system,” Artificial Intelligence Labo-
ratory, Stanford University, Rep. AIM 220, Oct 1973.

[7] S. Bonner and K. G. Shin, “A comparative study of robot
languages,”ZEEE Computer, pp. 82-96, Dec. 1982.

[8] J. M. Brady, “Parts description and acquisition using vision,”
Proc. SPZE, May 1982.

[9] -, “Trajectory planning,” in Robot Motion: Planning and
Control, M. Brady et al., Eds Cambridge, MA: MIT Press,
1983.

[101 I. Braid, “New directions in geometric modelug” presented at
the CAM-I Workshop on Geometric Modeling, Arlington, TX,
1978.

[111 P. Brinch Hansen, “The programming language concurrent
Pascal,” ZEEE Trans. Software Eng., vol. SE-1, no. 2, pp. 199-

pp. 491-502.

YB 110-301 E.

207, June 1975.
1121 R. A. Brooks. “Symbolic reasonim among 3-D modelsand 2-D
L - 1

images,” Artij?ciaiInteIl., voL 17, ip . 2851348, 1981.
[131 -, “Solving the find-path problem by representing free space

as generalized cones,” Artificial Intelligence Lab., MIT, AI
Memo 674, May 1982a.

[14] -, “Symbolic error analysis and robot planning,” Znt. J.
Robotics R e s , voL 1, no. 4, 1983.

[15] R. A. Brooks and T. Lozano-Pbrez, “A subdivision algorithm
in configuration space for findpath with rotation,” ZEEE naris.
Syst., Man, Cybem, voL SMC-13, pp. 190-197, Mar./Apr.
1983.

[16] J. A. Darringez and M. W. Blasgen, “MAPLE: A high level lan-
guage for research in mechanical assembly,” IBM T. J. Watson
Res. Center, Tech. Rep. RC 5606, Sept. 1975.

[171 E. W. Dijkstra, ‘To-operating sequential processes,” in Program-
ming Languages, F. Genuys, Ed. New York Academic Press,

[181 H. A. Ernst, “A computer-controlled mechanical hand,” Sc.D.
thesis, Massachusetts Institute of Technology, Cambridge, 1961.

[19] R. C. Evans, D. G. Gamett, and D. D. Grossman, “Software

1968, pp. 43-112.

Watson Res Center, Tech. Rep. RC 6210, May 1976.
system for a computer controlled manipulator,” IBM T. J.

[20] D. Falek and M. Parent, “An evolutive language for an intelli-
gent robof”Zndust. Robot, pp. 168-171, Sept. 1980.

[211 I. D. Faux and M. J. Pratt Computational Geometry for Design
and Manufacture. Chichester, England: Ellis Horwood Press,
1979.

[22] J. Feldman et al., “The Stanford Hand-Eye Project,” in Proc.
FirstZJCAZ (London, England, Sept. 1971), pp. 350-358.

[23] R. A. Finkel, “Constructing and debugging manipulator pro-
grams,” Artificial Intelligence Lab., Stanford Univ., Rep.
AM 284, Aug. 1976.

[24] R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman, “AL,
A programming system for automation,” Artificial Intelligence
Lab., Stanford Univ., Rep. AIM-177, Nov. 1974.

[25] J. W. Franklin and G. J. Vanderbrug, “Programming vision and
robotics systems with RAIL,” SME Robots VI, pp. 392-406,
Mar. 1982.

[261 General Electric “GE Allegro documentation,” General Electric
Corp., 1982.

[27] C. C. Geschke, “A system for programming and controllug
sensor-based manipulators,” Coordinated Sci. Lab., Univ. of
Illinois, Urbana, Rep. R-837, Dec. 1978.

[28] G. Gini, M. Gini, R. Gini and D. Giuse, “Introducing software
systems in industrial robots,” in Proc. 9th Znt. Symp. on Zndus-
trial Robots (Washington DC, Mar. 1979), pp. 309-321.

[29] G. Gin4 M. Gini, and M. Somalvico, “Determining and nonde-
terministic programming in robot systems,” obernen’cs and
Systems, voL 12, pp. 345-362, 1981.

[30] G. J. Gleason and G. J. Agin, “A modular vision system for
sensor-controlled manipulation and inspection,” in Proc. 9th
Znt Symp. on Zndusrrial Robots (Washington, DC, Mar. 1979),

(311 T. Goto, K. Takeyasu, and T. Inoyama “Control algorithm for
precision insert operation robots,” ZEEE Trans. Systems, Man,
Cybern., voL SMC-10, no. 1, pp. 19-25, Jan. 1980.

[32] D. D. Grossman, “Programming a computer controlled manip
ulator by guiding through the motions,” IBM T. J. Watson
Res Cen., Res. Rep. RC6393, 1977 (Declassified 1981).

[33] D. D. Grossman and R. H. Taylor, “Interactive generation of
object models with a manipulator,” ZEEE Trans. Systems,
Man, Cybern., voL SMC-8, no. 9, pp. 667-679, Sept. 1978.

[34] H. Manafusa and B. Asada, “Mechanics of gripping form by
artiiicial fmgers,” Trans. SOC. Znstrum. Contr. Eng., vol. 12,
no. 5, pp. 536-542, 1976.

[35] -, “A robotic hand with elastic fingers and its application to
assembly process,” presented at the IFAC Symp. on Informa-
tion and Control Problems in Manufacturing Technology,
Tokyo, Japan, 1977.

[36] L. D. Harmon, “Automated tactile sensing,” Robotics Res.,
voL 1, no. 2, pp. 3-32, Sumer 1982.

[37] T. Hasegawa, “A new approach to teaching object desicriptions
for a manipulation environment,” in Proc. 12th Znt. Symp. on
Industrial Robots (Paris, France, June 1982), pp. 87-97.

[38] W. B. Heginbotham, M. Dooner, and K. Case, “Robot applica-
tion simulation,”Zndus. Robot, pp. 76-80, June 1979.

[39] C.A.R. Hoare, ‘Towards a theory of parallel programming,”
in Operating Systems Technqiuer New York: Academic Press,

[40] -, “Communicating sequential processes,” Commun. ACM,
voL 12, no. 8, pp. 666-677, Aug. 1978.

[41] H. R. Holt, “Robot decision making,” Cincinnati Milacorn
Inc., Rep. MS77-751, 1977.

[42] J. D. Ichbiah, Ed. Reference Manual for the A& Programming
Language, US Department of Defense, Advanced Research
Projects Agency, 1980.

[43] H. Inoue, “Computer controlled bilateral manipulator,” Bull.
JSME, voL 14, no. 69, pp. 199-207,1971.

[44] -, “Force feedback in precise. assembly tasks,” Artificial
Intelligence Lab., MIT, Rep. AIM-308, Aug 1974.

[45] T. Ishida, “Force control in coordination of two arms,” Pre-
sented at the Fifth Int Cod. on Artificial Intelligence, Cam-

pp. 57-70.

1972, pp. 61-71.

bridge, MA, Aug. 1977.
-

1461 H. B. Kuntze and W. Schill. “Methods for collision avoidance in
L .

computer controlled industrial robots,” in Roc. 12th Znt. Symp.
on ZnmCstrial Robots (Paris, France, June 1982), pp. 519-530.

[47] J. C. Latombe, “Equipe intelligence artifkielle et robotique:
Etat d’avancement des recherches,” Laboratoire IMAG,
Grenoble, France, Rep. RR 291, Feb. 1982.

LOZANO-PEREZ: ROBOT PROGRAMMING 84 1

[48] J. C. Latombe and E. Mazer, “LM: A high-level language for
controlling assembly robots,” presented at the Eleventh Int.
Symp. on Industrial Robots, Tokyo, Japan, Oct. 1981.

[49] C. Laugier, “A program for automatic grasping of objects with
a robot arm,” presented at the Eleventh Int. Symp. onhdustrial
Robots, Tokyo, Japan, Oct 1981.

[50] M. A. Lavin and L. I. Lieberman, “AML/V: An industrial ma-
chine vision pronramming system,” Int. J. Robotics Res., - .

voL 1, no. 3, 1982.
1511 L. I. Lieberman and M. A. Weslev. “AUTOPASS: An automatic
L A

programming system for computer controlled mechanical
assembly,”IBMJ. Res. Devel.,voL 21, no. 4, pp. 321-333, 1977.

[52] T. Lozano-P6rez, “The design ofa mechanicalassembly system,”
Artiticial Intelligence Lab., MIT, AI Tech. Rep. TR 397,1976.

[53] -, “Automatic planning of manipulator transfer movements,”
IEEE Trans. Systems, Man, Cybern., vol. SMC-11, no. 10,
pp. 681-698, Oct. 1981.

[54] -, “Task planning,” in Robot Motion: Planning and Control,
M. Brady et al. Eds Cambridge. MA: MIT Press, 1983.

[55] T. Lozano-Ptrez and P. H. Winston, “LAMA: A language for
automatic mechanical assembly,” in Proc. 5th Int, Joint Coni
on Artificial Intelligence (Massachusetts Institute of Technology,
Cambridge, MA, Aug. 1977), pp. 710-716.

[56] T. Lozano-P&rez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Commun.
ACM, vol. 22. no. 10, pp. 560-570, Oct. 1979.

[57] T. Lozano-Pdrez, M. T. Mason, and R. H. Taylor, “Automatic
synthesis of fme-motion strategies for robots,” Artificial In-
telligence Lab., MIT, July 1983.

[58] McDonnell Douglas, Inc “Robotic System for Aerospace Batch
Manufacturing,” McDonnell Douglas, Inc, Feb. 1980.

[59] G. Markowsky and M. A. Wesley, “Fleshing out wire frames,”
IBMJ. Res. Devel., vol. 24, no. 5, Sept. 1980.

[60] M. T. Mason, “Compliance and force control for computer
controlled manipulators,” IEEE Trans. Systems, Man Cybern.,
voL SMC-11, no. 6, pp. 418-432, June 1981.

[61] -, “Manipulator grasping and pushing operations,” Ph.D.
dissertation, Dep. Elec. Eng. Comput Sci., MIT, 1982.

[62] -, “Compliance,” in Robot Motion: Planning and Control,
M. Brady et al., Eds. Cambridge, MA: MIT Press, 1983.

[63] D. Mathur, “The grasp planner,” Dep. Artificial Intelligence,
Univ. of Edinburgh, DAI Working Paper 1, 1974.

[64] E. Mazer, “LM-Geo: Geometric programming of assembly
robots,” Laboratoire IMAG, Grenoble, France, 1982.

[65] J. M. Meyer, “An emulation system for programmable sensory
robots,”ZBMJ. Res. Devel,, voL 25, no. 6, Nov. 1981.

[66] M. Minsky, “Manipulator design vignettes,” MIT Artificial
Intelligence Lab., Rep. 267, Oct. 1972.

[67] S . Mujtaba and R. Goldman, “AL user’s manual,” Stanford
Artificial Intelligence Lab., Rep. AIM 323, Jan. 1979.

[68] E. Nakano, S. Ozaki, T. Ishida, and I. Kato “Cooperational
control of the anthropomorphous manipulator ‘MELAR”,”
in Proc. 4th Znt. Symp. on Industrial Robots (Tokyo, Japan,

[69] N. Nilsson, “A mobile automation: an application of artificial
intelligence techniques,” in Proc. Znt. Joint ConL on Artificial
Intelligence, pp. 509-520, 1969.

[70] -, Principles of Artificial Intelligence. CA: Tioga Pub.,
1980.

[71] M. S . Ohwovoriole and B. Roth, “A thoery of parts mating for

Poland, 1981.
assembly automation,” presented at Ro.Man.Sy.-81, Warsaw,

[72] W. T. Park, “Minicomputer software organization for control
of industrial robots,” presented at the Joint Automatic Control
C o d , San Francisco, CA, 1977.

[73] R. P. Paul, “Modeling, trajectory calculation, and servoing of a

Rep. AIM 177, Nov. 1972.
controlled arm,” Stanford Univ., ATtificial Intelligene Lab.,

[741 -, “WAVE: A model-based language for manipulator control,”
Zndust. Robot, Mar. 1977.

[75] -, Robot Manipulators: Mathematics, Programming, and
Control. Cambridge, MA: MIT Press, 1981.

[76] R. P. Paul and B. Shimano, “Compliance and control,” inProc.
1976 Joint Automatic Control Conf:, pp. 694-699,1976.

[77] R. J. Popplestone, A. P. Ambler, and I. Bellos, “RAPT, A lan-
guage for describing assemblies,” Indust. Robot, voL 5 , no. 3,

[78] - , “An interpreter for a language for describing assemblies,”

.,

1974), pp. 251-260.

pp. 131-137,1978.

Artificial Znteni, voL 14, no. 1, pp. 79-107, 1980.

[79] M. H. Raiert and J. J. Craig, “Hybrid position/force control
of manipulators,” ASME J. Dynamic Syst., Meas., Con tr.,
voL 102, pp. 126-133, June 1981.

[80] A.A.G. Requicha, “Representation of rigid solids: Theory,

464, Dec. 1980.
methods, and systems,” Comput. Sun?, vol. 12, no. 4 pp. 437-

[81] C. F. Ruoff, “TEACH-A concurrent robot control language,”
inProc. ZEEECOMPSAC(Chicago, IL, Nov. 1979), pp. 442-445.

[82] -, “An advanced multitasking robot system,”Zn&st. Robot,
June 1980.

[83] J. K. Salisbury, “Active stiffness control of a manipulator in
Cartesian coordinates,” presented at the IEEE Conf. on Decision
and Control, Albuquerque, N M , Nov. 1980.

[84] J. K. Salisbury and J. J. Craig, “Articulated hands: Force con-
trol and kinematicissues,”RoboticsRes., vol. 1, no. 1, pp. 4-17,
1982.

[85] M. Salmon, “SIGLA: The Olivetti SIGMA robot programming
language,” presented at the Eight Int. Symp. on Industrial
Robots, Stuttgart, West Germany, June 1978.

[861 J. T. Schwartz and M. Shark, “On the piano movers problem I:
The case of a two-dimensional rigid polygonal body moving
amidst polygonal barriers,” Dep. Comput. Sci., Courant Inst.
Math. Sci., NYU, Rep. 39, Oct. 1981.

[871 - , “On the piano movers problem 11: General properties for
computing topological properties of real algebraic manifolds,”
Dep. Comput. ScL, Courant Inst. Math. Sci., NYU, Rep. 41,
Feb. 1982.

I881 B. Shimano, “The kinematic design and force control of com-
puter controlled manipulators,” Artificial Intelligence Lab.,
Stanford Univ., Memo 313, Mar. 1978.

[89] -, “VAL: An industrial robot programming and control
system,” in Proc. ZRIA Sem. on Languages and Methods of Pro-
gramrninn Zndusmal Robots (Rocquencourt, France. June
1979), pi . 47-59.

- -

1901 D. Silver. “The littler robot svstem.” MIT Artificial Intellieence . >
Lab., Rep. AIM 273, Jan. 1973. ‘

[91] B. I. Soroka, “Debugging robot programs with a simulator,”
presented at the SME CADCAM-8, Dearborn, MI, Nov. 1980.

[92] P. D. SummersandD. D. Grossman, “XPROBE: Anexperimental
system for programming robots by example,” IBM T. J. Watson
Res. Center, Rep., 1982.

[93] K. Takase, R. P. Paul, and E. J. Berg, “A structured approach to
robot programming and teaching,” presented at the IEEE
COMPSAC, Chicago, IL, Nov. 1979.

[94] R. H. Taylor, “The synthesis of manipulator control programs
from task-level specifications,” Ph.D. dissertation, Artificial
Intelligence Lab., Stanford Univ., Rep. AIM-282, July 1976.

[95] -, “Planning and execution of straight-line manipulator
trajectories,” ZBM J. Res. Develop., vol. 23. pp. 424-436,
1979.

[96] R. H. Taylor, P. D. Summers, and J. M. Meyer, “AML: A manu-
facturing language,”Robotics Res., vol. 1, no. 3, Fall 1982.

[97] S . M. Udupa, “Collision,detection and avoidance in computer
controller manipulators, presented at the Fifth Int. Joint
Conf. on Artificial Intelligence, MIT, 1977.

[98] Unimation Inc. “User’s guide to VAL: A robot programming
and control system,” Unimation Inc., Danbury, CT, version 12,
June 1980.

[99] M. Weck and D. Zuhlke, “Fundamentals for the development of
a high-level programming language for numerically controlled
industrial robots,” presented at the AUTOFACT West, Dearborn,
MI, 1981.

[1001 M. A. Wesley et al., “A geometric modeling system for automated

Y

mechanical assembly,”jBMJ. Res. Devel., vol. 24, no. 1 pp. 64-
74, Jan. 1980.

[l o l l D. E. Whitney, “Force feedback control of manipulator fine
motions,”J. Dynamic Syst., Meas., Contr., pp. 91-97, June 1977.

[lo21 -, “Quasi-static assembly of compliantly supported rigid
parts,” J. Dynamic Syst., Meas., Con-tr., vol. 164, no. 1, pp.
65-77, MU. 1982.

[lo31 W. M. Wichman, “Use of optical feedback in the computer
control of an a m , ” Artificial Intelligence Lab., Stanford Univ.,
Rep. AIM 55, Aug. 1967.

[lo41 P. M. Will and D. D. Grossman, “An experimental system for
computer controlled mechanical assembly,” ZEEE Trans.
Comput., vol. C-24, no. 9, pp. 879-888, 1975.

[lo51 M. Wingham, “Planning how to grasp objects in a cluttered
environment,” M.Ph. thesis, Edinburgh Univ., Edinburgh,
Scotland, 1977.

