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Abstract
Implementing systems in proof assistants like Coq and proving
their correctness in full formal detail has consistently demonstrated
promise for making extremely strong guarantees about critical soft-
ware, ranging from compilers and operating systems to databases
and web browsers. Unfortunately, these verifications demand such
heroic manual proof effort, even for a single system, that the ap-
proach has not been widely adopted.

We demonstrate a technique to eliminate the manual proof bur-
den for verifying many properties within an entire class of appli-
cations, in our case reactive systems, while only expending effort
comparable to the manual verification of a single system. A cru-
cial insight of our approach is simultaneously designing both (1)
a domain-specific language (DSL) for expressing reactive systems
and their correctness properties and (2) proof automation which
exploits the constrained language of both programs and properties
to enable fully automatic, pushbutton verification. We apply this
insight in a deeply embedded Coq DSL, dubbed REFLEX, and il-
lustrate REFLEX’s expressiveness by implementing and automati-
cally verifying realistic systems including a modern web browser,
an SSH server, and a web server. Using REFLEX radically reduced
the proof burden: in previous, similar versions of our benchmarks
written in Coq by experts, proofs accounted for over 80% of the
code base; our versions require no manual proofs.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Mechanical verification; D.2.4 [Software Engineer-
ing]: Correctness proofs, formal methods

General Terms Languages, Verification

Keywords interactive proof assistants, proof automation, domain-
specific languages, reactive systems, dependent types

1. Introduction
Software systems like the OS and web browser are responsible for
manipulating private, sensitive data in domains ranging from bank-
ing and medical record management to email and social network-
ing. Bugs in these systems lead not only to reliability failures, but
also security failures, allowing attackers to gain access to secret
information or tamper with trusted outputs. Unfortunately, testing
alone has proven insufficient for preventing such dangerous errors.
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Over the past decade, one approach has consistently demon-
strated the potential to establish extremely strong guarantees for
safety- and security-critical software: implement the system in a
proof assistant like Coq and interactively prove its correctness fully
formally. This approach has been successfully applied in a variety
of systems, including compilers [12], operating systems [7], web
servers [14], database systems [13], and web browsers [6]. These
systems provide extremely strong guarantees because the program-
mer is forced to correctly handle every corner case in full formal
detail. While severe, this discipline enables its practitioners to de-
velop software which is substantially more reliable and secure than
traditionally developed code. In fact, Yang et al. [22] demonstrate
experimentally that the fully formally verified CompCert C com-
piler [12] is significantly more robust and reliable than its non-
verified competitors like GCC and LLVM.

While attractive, the strong guarantees of fully formal verifica-
tion often only come at an exorbitant price: heroic manual proof
effort carried out by highly trained experts. For example, the initial
CompCert development comprised 4,400 lines of compiler code
and 28,000 lines devoted to verification. In terms of effort, the ratio
of programming to proving is typically far worse than line counts
imply. Implementing the kernel for the seL4 verified OS took only 2
person months, while verifying those roughly 9,000 lines of C code
required over 20 person years. In addition to their substantial size,
these proofs demand deep expertise in the specialized logic and
tactic language of the proof assistant. Such tactics are notoriously
difficult to debug and maintain, which also makes modifying veri-
fied software extremely expensive. In the end, all this effort results
in the verification of a single program. Unfortunately, these costs
have been prohibitive for all but the most critical applications.

In this paper, we demonstrate an approach to eliminate the man-
ual proof burden (and need for Coq expertise) in verifying many
properties within an entire class of applications, while only expend-
ing effort comparable to the manual verification of a single system.
We focus on the domain of reactive systems: programs which lis-
ten for input requests, perform computations necessary to service
requests, reply with output responses, and then return to listening
for additional requests. To support automatic, fully formal verifi-
cation of important properties for reactive systems, we simultane-
ously design two mutually dependent entities: (1) a domain-specific
language (DSL) for implementing reactive systems and specifying
their properties and (2) proof automation tactics which exploit the
structure of programs and properties in the DSL to eliminate all
manual proof obligations. We dub this design methodology Lan-
guage and Automation Co-design (LAC).

Unlike general purpose verification frameworks, like Ynot [3,
17] and Bedrock [2], where the unbounded expressiveness of pro-
grams and properties make complete automation of formal Coq
proofs intractable, LAC restricts both the structure of programs and
properties to gain much better traction on proof automation. By au-
tomatically constructing foundational Coq proofs for applications
written in the DSL, we aim to make fully formal verification ac-



cessible even for programmers with no previous experience using
proof assistants, and to significantly reduce the costs of fully for-
mal verification for those with previous experience. Furthermore,
modifying such applications does not create any additional proof
burden since the verification is carried out fully automatically.

We applied LAC to design REFLEX, a DSL for expressing
reactive systems as event-processing loops, and specifying prop-
erties these programs should satisfy. Properties can characterize
which observable run-time behaviors the system may exhibit and
specify which classes of system components should not inter-
fere. We implemented REFLEX as a deeply embedded DSL in
Coq and built upon the Ynot, trace-based verification approach
of Malecha et al. [14].

As a case study, we applied REFLEX to build and automatically
prove properties about privilege separated systems [18], an impor-
tant type of reactive system. In such systems, sensitive resources
are protected by running most of an application’s code in sepa-
rate, strictly sandboxed processes and routing interactions through
a small kernel which ensures that all communications and resource
accesses are allowed by the security policy. We used REFLEX to
implement and formally verify the kernel of three realistic, privi-
lege separated systems: (1) a modern web browser capable of run-
ning popular websites like Facebook, GMail, and Amazon which
mediates resource access and interaction between browser tabs in
the style of Chrome [19], (2) an SSH daemon which provides re-
mote, secure terminal access for unmodified SSH clients in the style
of [18] and (3) a web server providing file access subject to user au-
thentication and an access control policy.

To summarize, this paper makes the following contributions:

• We describe REFLEX, a DSL deeply embedded in Coq, which
completely eliminates the manual Coq proof burden for ver-
ifying many important properties of realistic reactive systems
(Sections 2, 3, and 4). REFLEX programs express both reactive
systems and their properties, and REFLEX provides tactics to
automatically construct fully formal Coq proofs that guarantee
a given REFLEX program satisfies its user-provided correctness
properties (Section 5).
• We demonstrate the expressiveness, utility, and practicality of

REFLEX by implementing and verifying several security prop-
erties for three large privilege separated systems: a modern web
browser, an SSH server, and a web server (Section 6).
• We describe a set of general design principles that arose from

applying Language and Automation Co-design (LAC) to de-
velop REFLEX. LAC’s key insight lies in the simultaneous de-
sign of both (1) the language of programs and properties and
(2) proof automation tactics to guarantee programs satisfy their
user-provided properties. We discuss how LAC enabled us to
eliminate the formal proof burden in REFLEX, along with addi-
tional lessons learned (Section 7).

2. Overview
Figure 1 illustrates the REFLEX system which consists of (1) an in-
terpreter to run REFLEX programs, (2) a function BehAbs which,
given a program P , computes a behavioral abstraction characteriz-
ing the sequences of observable actions, or traces, P may produce,
and (3) tactics which automatically search for a proof that any trace
satisfying BehAbs(P ) also satisfies user-provided safety and secu-
rity properties. We also proved once and for all, manually in Coq,
that the traces produced by running the interpreter on program P
satisfy BehAbs(P ). Thus, for a given correctness property C, if
REFLEX tactics are able to construct a proof that BehAbs(P ) sat-
isfies C, then we have an end-to-end guarantee that all runs of P
through the interpreter satisfy C.
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Figure 1: REFLEX Overview. REFLEX programs implement reactive sys-
tems and specify their properties. REFLEX provides (1) an interpreter to
run programs, (2) a function BehAbs which, given a program, computes its
behavioral abstraction and (3) Coq proof search tactics which attempt to for-
mally guarantee the user-specified properties hold over a given program’s
behavioral abstraction. We proved once and for all that (A), any trace in-
duced by running the interpreter on a program is included in that program’s
behavioral abstraction. When the user provides a program P , REFLEX gen-
erates an executable to run P using the interpreter.
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Figure 2: Simplified SSH Architecture. REFLEX enabled us to implement
and formally verify an SSH server whose kernel orchestrates interactions
between three component types, each restricted to just the capabilities they
require: the Password component checks against the system password file
to determine if user login attempts are successful, the Terminal component
creates pseudo terminals upon request and passes back the resulting file
descriptor, and the Connection component manages incoming requests
from the network. Among other properties, REFLEX is able to formally
prove that the kernel never grants a Connection component access to a
terminal for user U unless the Connection first authenticates as U .

Example: SSH Server. We illustrate REFLEX through a run-
ning example: the kernel of a privilege separated SSH server. Fig-
ure 2 shows the architecture of our SSH server, which closely fol-
lows the privilege separation approach of Provos et al. [18]. In par-
ticular, the server is separated into several communicating compo-
nents, each running in its own sandboxed process, with a kernel that
mediates communication between the components. From a secu-
rity viewpoint, this approach provides the advantage that sensitive
resources can be protected from complex and vulnerability-prone
components, while the kernel remains simple and reliable. For ex-
ample, consider the Connection component which manages com-
munication with the outside network. A complete compromise of
this process from a buffer overflow in the packet processing library
does not immediately cause the server to grant access to unauthen-
ticated users (as would be the case in a regular SSH server), since
the kernel and Password modules, which are separated from the
Connect module, control user authentication.

REFLEX Code. Figure 3 shows a simplified version of the SSH
kernel we developed and verified using REFLEX. The kernel (writ-
ten using REFLEX) is a reactive system that orchestrates commu-
nication between all components (written in C and Python) in the
SSH server. The components and the kernel communicate using
messages over channels implemented as Unix domain sockets. The
kernel continuously services request messages from components.

REFLEX programs comprise five sections: The Components
section declares the types of components the kernel communicates
with, along with the executable on disk for each component type.



The kernel creates a new component of type τ by spawning a
new process running τ ’s executable and setting up a channel to
the new component instance. The Messages section declares the
different message types exchanged between components and the
kernel. The Init section contains code to declare global variables
and initialize the system. In this case, the authorized variable is a
pair of a user name and boolean, which indicates the authentication
state of the kernel: if authorized == (user, true), then the
kernel believes that the given user has authenticated properly. The
three other declarations in the Init section declare and initialize a
component of each type for the kernel to communicate with.

The kernel functionality is expressed in the Handlers section,
which is a list of request/response rules to continuously apply. For
our SSH example, the first rule states that, if the kernel receives a
message from a Connection component, and this message is of
the form ReqAuth(user, pass), indicating that user wants to
authenticate using password pass, then the kernel responds by for-
warding the message to P, which is initialized in the Init as the
Password component. If the Password component determines the
password is valid, it responds with an Auth(user) message back
to the kernel. The second rule in the Handlers section specifies
that when an Auth(user) is received from the Password compo-
nent, the kernel should set its authentication state to indicate that
the given user has authenticated. The third rule specifies how the
kernel responds when the Connection component requests a ter-
minal for a given user: if the authentication state indicates that
user has authenticated, then the request for a terminal is forwarded
to the Terminal component. The Terminal component will then
create the terminal for the given user, and respond back to the ker-
nel with a Term(user, fd) response (where fd is a file descriptor
to the terminal PTY). Finally, the fourth rule states that when the
kernel receives a Term(user, fd) message from the Terminal
component, it forwards the information to the client (through the
Connection component), but only if the user has authenticated. In
any cases where the user did not specify a message handler, the
kernel simply sends no response and returns to its event processing
loop, waiting for the next input message.

Note that each handler specifies how to respond when a type
of component sends a message, not a particular component. In our
SSH example, there is exactly one component of each type, but
in other programs, the kernel may spawn and service an arbitrary
number of components of any particular type. For example, our
web browser, discussed in Section 6, may spawn many Tab s.

Properties. The last part of Figure 3 shows an example prop-
erty that should hold on all traces of the kernel. A trace records all
observable interactions between the kernel and the outside world.
Receiving a message from a component and spawning a compo-
nent are examples of such interactions; we call each such interac-
tion an action. The property AuthBeforeTerm states that in any
execution, before the kernel requests a terminal for any user u from
the Terminal component, u must have been authenticated by the
Password component. This property is expressed using predicates
over actions called action patterns, a primitive of the policy lan-
guage for REFLEX called Enables, and universally quantified vari-
ables. For any two action patterns A and B, A Enables B on a trace if
any action matching B in the trace is preceded at some point in the
trace by an action matching A. The universally quantified variable
u in AuthBeforeTerm ensures that for any string u, a request for
a terminal for u is preceded by a successful authentication of u, as
opposed to a successful authentication of a different user. Section 4
further describes our property language.

Once the programmer has implemented and specified this SSH
kernel in REFLEX, our system automatically generates an end-
to-end proof in Coq that any run of the kernel will satisfy the
user-provided security property. The programmer only needs to

write the code in Figure 3, and does not need any proof assistant
expertise. This level of fully automatic, pushbutton automation is
our main contribution, which we achieve through the co-design
of the REFLEX DSL along with proof-automation techniques. The
remainder of this paper further details the REFLEX system and how
we achieve both expressiveness and proof automation.

Components : Messages :
Connection "client.py" ReqAuth(string, string)
Password "user-auth.c" Auth(string)
Terminal "pty-alloc.c" ReqTerm(string)

Term(string, fdesc)

Init : Handlers :
authorized = ("", false) Connection=>ReqAuth(user, pass):
C <= spawn(Connection) send(P, ReqAuth(user, pass))
P <= spawn(Password) Password=>Auth(user):
T <= spawn(Terminal) authorized = (user, true)

Connection=>ReqTerm(user):
if (user, true) == authorized

Properties : send(T, ReqTerm(user))
AuthBeforeTerm: forall u, Terminal=>Term(user, t):

[Recv(Password, Auth(u))] if (user, true) == authorized
Enables send(C, Term(user, t))
[Send(Terminal, ReqTerm(u))]

Figure 3: Simplified SSH Kernel in REFLEX DSL. The user specifies
the types of components that constitute the system, the messages those
components can exchange with the kernel, and how the kernel should
respond when a component of a given type sends a particular type of
message. Finally, the user specifies properties that should hold on every
execution of the system, in this case requiring a user to authenticate before
being granted access to a login terminal.

3. The REFLEX DSL for Reactive Systems
In this section, we describe the REFLEX interpreter and the BehAbs
function, which, given a program P , computes a behavioral ab-
straction characterizing the traces P can produce. We emphasize
design decisions following LAC that allow us to prove once and
for all, manually in Coq, that the traces produced by running the
interpreter on program P satisfy BehAbs(P ). We illustrate these
REFLEX features at a high level, but the full, commented REFLEX
implementation is available online.

3.1 The REFLEX Language
As we saw in the previous section, REFLEX programs implement
reactive systems primarily as a sequence of handlers which are reg-
istered to run when the kernel receives an appropriate message from
a component. The programmer implements these handlers using
mostly standard imperative programming features (assignment to
global variables, sequencing, branching).

REFLEX handlers can also include commands to send a mes-
sage to a component, spawn a new component, invoke a custom
OCaml function returning a string, and look up an existing com-
ponent based on its type and what we call its configuration. A
component configuration is a read-only record whose fields are set
when the component is spawned. Configurations help distinguish
between components of a given type and play a crucial role in ex-
pressing safety and security properties. For example, in our web
browser kernel implemented in REFLEX, a tab’s domain is stored
in its configuration. Making configurations read-only aided proof
automation. Looping constructs are notably absent from handler
code; this plays a crucial role in both the definition of BehAbs and
proof automation.

We use a python frontend to translate the concrete REFLEX syn-
tax to the abstract syntax tree of the program. In addition to provid-
ing user convenience, this also allows us to insulate the programmer
from complex dependent types used in the REFLEX implementa-



Definition wf_state (s: state) : hprop :=
fds_open s.comps * traced s.tr * ...

Definition step :
(handle: comp -> msg -> cmd) -> (s: state) -> (s’: state)

PRE : wf_state s * BehAbs s
POST : wf_state s’ * BehAbs s’ :=

c <- select s.comps s.tr <@> ...;
m <- recv_msg c (Select(c) :: s.tr) <@> ...;
let tr := Recv(c, m) :: Select(c) :: s.tr in
s’ <- run_cmd (s.comps, tr, s.env) (handle c m) <@> ...;
Return s’

Definition run_cmd :
(c: cmd) -> (s: state) -> (s’: state)

PRE : wf_state s
POST : wf_state s’ :=

match c with
| Assign x e =>

Return (s.comps, s.tr, s.env[x := eval e s])
| Spawn t cfg =>

f <- spawn t cfg s.tr <@> ...;
let c := (t, cfg, f) in
Return (c::s.comps, Spawn(c)::s.tr, s.env)

| ...
end

(* Write a string to open channel c *)
send : (c: chan) -> (s: str) -> {tr: Trace } -> unit
PRE : { traced tr /\ open c }
POST : { traced (SendS c s :: tr) /\ open c }

Figure 4: REFLEX Interpreter.

tion. This is crucial since we make heavy use of dependent types in
Coq to ensure that REFLEX programmers never “go wrong” by at-
tempting to access undefined variables or execute an effectful prim-
itive without satisfying its preconditions.

3.2 REFLEX Interpreter

REFLEX programs implement reactive systems, which are funda-
mentally impure and non-terminating. To support these features in
Coq’s otherwise pure, strongly normalizing core calculus, we wrote
our interpreter using the Ynot [17] library for encoding monadic
stateful computations in Coq. The REFLEX interpreter interacts
with the outside world using Ynot to invoke effectful operations;
each operation is guarded by low-level pre-conditions to ensure
their proper use, e.g. sends may only be performed on open file de-
scriptors. For example, at the bottom of Figure 4, we see the Ynot
axiomatization of the send primitive which takes as input a chan-
nel c and string s to write to c. Additionally send takes the current
trace as an input.

As mentioned in the previous section, traces record the sequence
of observable actions a program performs, i.e. the sequence of
calls to Ynot primitives. The trace is represented as a list record-
ing which primitives were called, with what arguments, and what
results they produced. The list is stored in reverse chronological
order, so that the most recent calls to primitives are at the head of
the list. Traces are threaded through the interpreter, but they are
ghost variables only used for verification – they are not actually
generated in the executable code. The axiomatization of send also
includes pre- and post-conditions to support the Ynot trace-based
verification approach. In addition to requiring that c be an open
channel, send requires that its trace argument satisfy the traced
predicate which follows a linear typing discipline to ensure there
is at most one, unforgeable “current trace” [14]. The send post-
conditions show how the current trace is updated to record this call
and also that the channel c is still open.

The top part of Figure 4 shows an overview of the REFLEX
interpreter. The central step function operates over program states

which include the current list of components, the trace of actions
performed so far, and an environment mapping variables to values.
The step function repeatedly selects a component that is ready,
reads a message from the component, determines which command
should be run based on the handler rules, and then interprets the
appropriate command using run cmd.

Figure 4 shows two illustrative cases for run cmd: (1) assign-
ment, which is standard, and (2) spawn which updates the state by
adding the newly spawned component to the list of components
and adds a Spawn action to the head of the trace. Several additional
cases are not shown, including sequencing, conditionals, message
sends, and component look-up. All of these are standard, except
for component look-up, which works as follows: lookup takes an
expression e, which is a predicate over a component’s configura-
tion, and two commands c1 and c2 and searches the set of current
components for a component of the appropriate type for which e
evaluates to true. If such a component can be found, it is bound in
the environment, and c1 is run, otherwise c2 is run.

We illustrate how execution proceeds: suppose the interpreter is
running the SSH kernel from Figure 3 and, after initialization, has
produced some state s with trace s.tr. Further, suppose the kernel
selects the next ready component, gets the Connection component
(C), and reads a ReqAuth(u,p) message from it. The kernel will
then call the run cmd function in order to execute the command
from the appropriate handler, in this case, send(P, ReqAuth(u,
p)). This will have two results: (A) the appropriate system calls
will be made to send the message ReqAuth(u, p) to the password
component (P) and (B) step will return a new state identical to s,
except that the new trace will be updated to:
Send P ReqAuth(u,p) :: Recv C ReqAuth(u,p)

:: Select C :: s.tr

Note again that the trace is stored in reverse chronological
order, so that the most recent calls to primitives are recorded at the
head of the list. Finally, to correctly track all the traces a program
can produce: (1) each REFLEX primitive in Ynot takes the current
trace as an extra argument, and returns an updated trace which
reflects the call to that primitive (2) each primitive also has pre and
post conditions which state how the resulting trace is related to the
incoming trace.

3.3 Behavioral Abstractions
To separate low level requirements from higher level, user-specified
properties, verification in REFLEX is broken into two phases. First,
we carried out program independent verification manually once
and for all in Coq. This proof shows that for any program P ,
running P with the REFLEX interpreter always satisfies the low-
level, Ynot pre-conditions required to execute primitives, that the
trace of the state returned by step captures exactly the observable
behaviors from running P , and that this trace will be included in
BehAbs(P ). Second, program dependent verification is performed
automatically by REFLEX tactics (described in Section 5), and
proves that a given program P ’s user-specified properties hold on
all possible execution traces included in BehAbs(P ). Following
LAC guided our design of REFLEX to exhibit this clean separation
(discussed in Section 7).

We define the function to compute behavioral abstractions,
BehAbs, inductively: BehAbs holds on the state after the init code
is run, and inductively on any state resulting from an exchange with
a component, captured by the Exchange relation. The Exchange

relation s
c,m
; s′ holds when starting at state s, the interpreter

receives message m from component c, and responds by symbol-
ically evaluating the appropriate handler to produce state s′. This
ability to symbolically evaluate handlers using a pure, total Coq
function is crucial in defining the critical BehAbs definition, made
possible by our LAC-inspired decision to omit looping constructs
from handlers.



4. REFLEX Properties
The previous section showed how we implement reactive systems
in REFLEX and formalize their behavior in terms of their traces of
observable actions. REFLEX also enables programmers to specify
correctness properties for these systems by indicating when sensi-
tive actions are required, permitted, or forbidden and how compo-
nents may interact. These properties can be used to capture com-
mon safety and security policies that arise in practice, e.g., in our
SSH server example from Section 2, where system access is only
granted once a user has correctly authenticated.

In this section we detail REFLEX property primitives which pro-
grammers can compose to encode high level, intuitive safety and
security policies. In the next section we show how REFLEX’s proof
automation exploits the structure of REFLEX programs and prop-
erties to eliminate the manual proof burden. Then in Section 6, we
demonstrate how REFLEX property primitives can be used to cap-
ture important correctness properties for several realistic systems
including an SSH server and modern web browser.

REFLEX properties come in two flavors: (1) trace properties
which specify which traces a correct program may produce, and
(2) non-interference properties which specify that one set of com-
ponents may not affect another.

4.1 Trace Properties
Programmers specify which traces a REFLEX program is allowed
to produce via trace patterns, which only match traces satisfying
constraints on order of actions. For example, the sample SSH kernel
in Section 2, uses the Enables trace pattern to require that a user
correctly authenticates before accessing the underlying system.

REFLEX provides five primitive trace patterns: ImmBefore,
ImmAfter, Enables, Ensures, and Disables. These are inspired
by temporal logic, but kept simple following our LAC design de-
cision. Each of these primitives are in turn parameterized by ac-
tion patterns that range over trace elements. Action patterns are
simply actions whose fields can contain literals, variables, or wild-
cards. Thus, the action pattern Send(C(), M(3, ,s)) matches
any Send action whose recipient is a component of type C with
an empty configuration, and whose message is of type M with a
payload containing first a 3, then any value, and finally a value
matching the variable s. All variables are universally quantified at
the outermost level. Below, we detail each primitive REFLEX trace
pattern.

Immediately Before. This primitive specifies traces that must
contain adjacent patterns: ImmBefore A B holds if for each action
b that matches B, the action that happened immediately before b
matches A (note that, since traces are recorded in reverse chrono-
logical order, the action that happened immediately before b ac-
tually occurs right after b in the list representing the trace). We
formally define ImmBefore as follows:

Definition immbefore A B tr := forall b pre suf,
AMatch B b -> tr = suf ++ b :: pre ->
exists a pre’, AMatch A a /\ pre = a :: pre’.

Enables. The Enables primitive is a relaxation of ImmBefore:
Enables A B holds if for each action b matching B, there is an
action matching A that occurs temporally before b. Enables is
defined as follows:

Definition enables A B tr : forall b pre suf,
AMatch B b -> tr = suf ++ b :: pre ->
exists b pre’ suf’,

AMatch A a /\ pre = suf’ ++ a :: pre’.

Disables. We also provide Disables, an analog of Enables:
Disables A B holds if for each action matching B, there is no
previous action matching A.

Components : Messages :
Engine "engine.c" Crash()
Doors "doors.c" Accelerating()
Radio "radio.c" DoorsM(string)

Volume(string)
Init :

E <= spawn(Engine) Handlers :
D <= spawn(Doors) Engine=>Crash():
R <= spawn(Radio) send(D, DoorsM("unlock"))

Engine=>Accelerating():
Properties : send(R, Volume("crank it up"))

NoInterfere Doors=>DoorsM(s):
[Engine] [E] if s == "open":

send(R, Volume("mute"))

Figure 5: Simplified REFLEX Kernel for Car Controller. In this hypothetical
automobile controller, the user wants to ensure that low-criticality Doors
and Radio components do not interfere with the high-criticality Engine
component. Intuitively, component C` interferes with component Ch, if
Ch can receive any messages from the kernel which depend on the kernel’s
interaction with C`. In this example, interaction between components cor-
responds to both safety critical messages, e.g. ensuring that after a crash the
doors unlock, and convenience messages, e.g. advising the radio to increase
volume while the vehicle is accelerating.

Definition disables A B tr : forall b pre suf,
AMatch A a -> tr = suf ++ a :: pre ->
AMatch B b -> ~ In b suf.

Immediately After and Ensures. Two additional primitives
arise as the temporal duals of ImmBefore and Enables, respectively
ImmAfter and Ensures (Disables is self-dual, and thus does not
give rise to another primitive). ImmAfter specifies that a pattern
must appear immediately after any occurrence of another. Ensures
specifies that the occurrence of an action matching one pattern
ensures the presence of an action matching the second pattern later.

Definition immafter A B tr := immbefore B A (rev tr).
Definition ensures A B tr := enables B A (rev tr).

4.2 Non-interference
Many systems comprise modules of mixed criticality. Ensuring se-
curity or robustness in these systems often involves guaranteeing
that high-criticality components are isolated from low-criticality
components. For example, consider the REFLEX program shown
in Figure 5 for controlling and coordinating different components
of an automobile. In this example, the user wants to ensure that
messages from less critical components, Doors and Radio, do not
interfere with the critical Engine component. As another example,
in a web browser we want to ensure that a tab for domain A does
not affect the kernel’s behavior towards tabs for domain B. To sup-
port such non-interference policies, REFLEX provides a primitive
expressing that, for a given partition of components into low and
high, low components cannot interfere with high components.

Traditionally, for non-reactive, deterministic programs, a user
specifies non-interference by partitioning program inputs and out-
puts into low and high sets. Non-interference holds with respect to
this partitioning iff for any two executions with the same high in-
puts, the program terminates with the same high outputs, that is, the
high outputs are deterministic with respect to the high inputs, and
therefore isolated from any influence from low inputs. However, a
reactive system continually receives inputs from, and sends outputs
to, components; by design it does not terminate.

To address this issue, we adapt ideas on Reactive Non-Inter-
ference from [1]. As in the traditional setting, we specify non-
interference by partitioning components into high and low sets. We
would now like to define non-interference to hold iff, for any two
executions where the kernel receives the same, possibly infinite,
sequence of inputs from high components, it sends the same, pos-
sibly infinite, sequence of outputs to the high components. Unfor-



tunately, simply adapting ideas from [1] is not sufficient for RE-
FLEX programs, which pose yet another challenge, one that, to our
knowledge, has not been previously explored in the context of re-
active systems. In particular, REFLEX programs are not only reac-
tive, but also non-deterministic, something that was not considered
in [1]. Non-determinism in REFLEX programs arises from calls to
Ynot primitives, which are implemented as OCaml functions that
interact with the outside world. These primitives can be used to
perform program specific tasks such as retrieving the contents of
a webpage. From the perspective of a REFLEX program, primitives
produce results non-deterministically. Thus, even in a system where
one would intuitively expect non-interference to hold with respect
to some partitioning, there may be two executions with precisely
the same high inputs but different high outputs, simply because the
high outputs depend on some values non-deterministically gener-
ated by Ynot primitives.

A common definition of non-interference in the presence of
non-determinism is called possibilistic non-interference [15]. Pos-
sibilistic non-interference holds iff, for any reachable state, the ker-
nel’s behavior from the perspective of the high components would
be possible, even if the kernel received no messages from low
components. Unfortunately, it is well known that possibilistic non-
interference is not preserved under refinement [23]; that is, possi-
bilistic non-interference can hold on a specification of a system but
not hold on the implementation of that system. In REFLEX, it is not
possible to precisely characterize the behaviors allowed by the im-
plementation because this would require precisely specifying the
behavior of every outside system with which the kernel interacts
(e.g. the OS, web servers, etc.). Thus, possibilistic non-interference
would not provide any guarantees about the implementations of
REFLEX programs.

Instead of using possibilistic non-interference, our approach to
non-determinism consists of tweaking the conditions under which
two executions must produce the same sequence of high outputs.
Intuitively, we would like to say that non-interference holds iff, for
any two executions where the kernel receives the same sequence
of inputs from high components and the non-deterministic outside
world behaves the same way during high handlers, the kernel sends
the same sequence of outputs to high components. We do so by
factoring out non-deterministic values as additional ghost inputs
to the kernel. In particular, we modify the definition of an input
to the kernel to include both a message from a component and the
non-deterministic context under which the handler for that message
runs. A non-deterministic context is a tree containing the values
that could be produced by the outside world (i.e. resulting from
invoking a Ynot primitive) in the course of running the handler.
The tree, which is now an additional input to the kernel for a given
execution of a handler, follows the structure of the handler’s code.
Each leaf in the tree corresponds to an atomic command in the
code whose execution would result in the introduction of some
non-deterministic value from the outside world. For example, in
the following hypothetical handler, the non-deterministic context
contains three leaves corresponding to the three strings that could
be produced by the invocations of Ynot primitives:

C=>M():
s1 <- wget(...)
if ...
then s2 <- wget(...)
else s3 <- wget(...)

Seq

v1 Cond

v2 v3

The hypothetical context tree to the right of the handler contains
the three strings v1, v2, and v3. If the handler were executed under
this context, then v1 would be assigned to s1, and either v2 would
be assigned to s2 or v3 would be assigned to s3, depending on
which branch was taken.

Unlike messages from components, these context trees are not
actually produced at runtime. Instead they are only used to specify
which pairs of executions of a non-interfering REFLEX program
must produce the same high outputs.

With this new definition of input, we can now capture our
intuitive notion of non-interference for reactive systems with non-
determinism. Non-interference holds iff for any two executions
where the kernel receives the same inputs from high components
(where each input includes both a message from a high component
and the non-deterministic context for the corresponding handler),
then the kernel sends the same outputs to high components. Thus,
our definition of non-interference guarantees that any interference
occur indirectly by influencing the non-deterministic context of
high handlers. In other words, interference can only occur if low
handlers influence non-deterministic values originating outside of
the REFLEX kernel. This amounts to interference through channels
that occur outside of the kernel (for example, through outside web
servers), which REFLEX has no way of preventing. Note that unlike
possibilistic non-interference, our definition of non-interference is
preserved under refinement.

There is another, final, subtlety in expressing non-interference
for programs written in REFLEX. Previous work on non-interference
has assumed the set of components (in the case of reactive systems)
or variables is fixed. While REFLEX programs have a fixed, finite
set of component types, the set of actual components may change
during execution. Partitioning components by type alone is too
coarse, as a user would be unable to specify many important prop-
erties, e.g. that tabs for different domains do not interfere. Instead,
we allow the user to provide a function θc that takes a component’s
type and configuration and returns the label low or high. Thus, the
user provides a partitioning of all possible sets of components that
can arise rather than for some fixed set.

To formally define non-interference, we use two auxiliary pro-
jection functions πi and πo which take as input a user provided
labeling function θc and state s. The function πi(θc, s) returns the
list of pairs of recv actions and corresponding non-deterministic
context trees for messages received from high components in s (ac-
cording to the labeling θc). The function πo(θc, s) returns the list of
send and spawn actions in the trace of s for messages sent to, and
spawns of, high components (according to the labeling θc). With
these projections, we can now formally define non-interference:

Definition 1 (Non-interference). Non-interference holds with re-
spect to a component labeling function θc iff:

∀ s1 s2,BehAbs s1 ⇒ BehAbs s2 ⇒
πi(θc, s1) = πi(θc, s2)⇒ πo(θc, s1) = πo(θc, s2)

The above definition states that, for any two reachable states s1
and s2, if s1 and s2 contain the same high inputs (including both re-
ceived messages and nondeterministic contexts), then they contain
the same messages sent to high components. This essentially shows
that any interference from low components must occur through in-
fluence of nondeterministic values originating outside the REFLEX
kernel.

This section has described the various properties provided by
REFLEX for specifying desirable properties REFLEX programs
should satisfy. The next section discusses how we automatically
prove these properties fully formally in Coq.

5. Proof Automation in REFLEX

Currently, the tremendous cost of manually constructed formal
proofs prohibits broad adoption of highly reliable, proof assistant
based, verification techniques. Our goal for REFLEX is to elimi-
nate this prohibitive manual proof burden. To automate the proof
that a user’s code satisfies their policies, REFLEX follows our Lan-
guage and Automation Co-design (LAC) technique: by focusing on



a particular domain and carefully designing the languages for pro-
gramming and specification hand in hand with proof automation,
REFLEX is able to automatically verify common safety and secu-
rity properties for reactive systems. Below we discuss how LAC
enabled us to construct powerful tactics that achieve this goal.

5.1 Automatically Proving Trace Properties

The tactics we implemented for showing that REFLEX programs
satisfy their trace properties follow a general pattern: perform in-
duction over BehAbs for the given program, and (1) for the base
case, check that the program state after running init satisfies the
policy, (2) for the inductive case, show that, assuming the policy
has held on any execution up to this point, for any message sent
by any component, the property will continue to hold after run-
ning the appropriate handler. This last step breaks into a number
of subcases, each corresponding to a particular message type and
component type. Each of these cases is typically solved in one of
two ways:

1. Symbolically evaluate the handler on the abstract state being
considered and evaluate the policy on the resulting abstract
state. This is sufficient to solve the goal when the handler main-
tains the validity of the property regardless of which handlers
were run in the past.

2. Otherwise, prove that the relevant branch conditions cannot be
satisfied without also satisfying the obligations required by the
given property (e.g. for AuthBeforeTerm, the trace must con-
tain a valid authentication). In this way the tactics are able to
discover non-trivial program invariants and adapt to common
idioms in user code, for instance that a variable’s value guards
a potentially dangerous send of a sensitive resource to a com-
ponent.

We illustrate this process by diving into a detailed example,
stepping through Coq proof goals to show how our tactics handle
the Enables property for the SSH kernel from Section 2. In this
case, our tactics must establish the authentication policy which
requires that the kernel passes a logged-in terminal for user u
to a connection only after that connection has provided a valid
password for u.

We will only describe the inductive cases, as the base case is
strictly easier for the automation. To prove the goal, our tactics con-
sider each possible path through the handler, which is straightfor-
ward because handlers were designed to be loop free, and shows
for each path that the property will be satisfied. The subgoal in all
of these cases follows the following pattern:

E := forall u, [Recv(Password, Auth(u))]
Enables [Send(Terminal, ReqTerm(u))]

s : state (* start at state s *)
HR : BehAbs s (* which is reachable *)
IH : rprop_sats E s.tr (* and satisfies prop *)
c : component (* receive m from c *)
m : message
...
s’ : state := (* run handler, get state s’ *)

{ authorized := ... (* state updated by handler *)
; ... (* T’ contains the last actions performed *)
; tr := T’ ++ Recv c m :: Select s.comps c :: s.tr }

=======================================================
rprop_sats E s’.tr

The hypotheses (above the line) characterize a valid exchange:
in some reachable state s, the kernel receives message m from
component c, and runs the user-specified handler to end up in state
s′. Additionally the hypotheses provide proofs that s is a reachable
state and it satisfies our property E. Now the tactic’s obligation is

to prove from these hypotheses that our property E still holds on
the new s′.

For example, in the first handler of the SSH server (when the
Connection component sends a ReqAuth message), our proof obli-
gation looks like this pattern, where s′ is the state obtained by run-
ning this particular handler. In particular, it generates the following
subtrace:

T’ := Send s.P ReqAuth(m.user, m.pass) :: nil

Our tactics easily solve this goal: since the extended trace sends
no messages to Terminal and s.tr satisfies the property, our goal is
immediately satisfied. The case for when a Connection component
sends a ReqTerm message is more complex. If the branch condition
(user, true) == authorized evaluates to false, then the han-
dler takes no actions, and again the property is trivially established.
However, if the branch is taken, the subgoal context becomes:

H : (m.user, true) == s.authorized
T’ := Send s.T ReqTerm(m.user) :: nil

Note how this case additionally includes the fact that the branch
condition evaluated to true. Adding these branch conditions to the
context is crucial to verification, as we will see shortly.

In this case, the handler does send a message to Terminal,
and so our property does not immediately hold. In particular, we
must show that somewhere in the history of s.tr , the kernel re-
ceived a message from the Password component authenticating
user m.user. Since such an action does not occur earlier in the
same handler, our tactics must perform a second induction over
BehAbs. In each resulting subgoal, our tactics show that the corre-
sponding handler either (A) contains a message received from the
Password component authenticating user m.user, (B) does not af-
fect the value of the authorized state variable, or (C) invalidates
the branch condition (user, true) == authorized, resulting
in a contradiction. Adding branch conditions to the context is es-
sential here, as it prunes unfeasible paths.

5.2 Automatically Proving Non-interference
Unfortunately, the general definition of non-interference given in
the previous section does not lend itself immediately to proof au-
tomation, because the associated tactic would essentially need to
track information flow through REFLEX program variables, tanta-
mount to implementing a static taint tracking engine. Instead, in
addition to a labeling θc of components as high or low, we also
require a simple labeling function θv of global variables in the RE-
FLEX program as high or low. This is actually an advantage of LAC:
when proof automation is difficult, it is often possible to ask sim-
ple, specialized questions of the user in order to guide the search
for inductive invariants. Given such a variable labeling, we define
h-vals(θv, s) to be the values of all variables in s that are labeled
high by θv .

We now strengthen Definition 1 to ease automatically proving
non-interference. First, define NIinv (θc, θv, s, s

′) as:
πo(θc, s) = πo(θc, s

′) ∧ h-vals(θv , s) = h-vals(θv , s′))

Definition 2 (Non-interference (strengthened)). Non-interference
holds with respect to labellers for components θc and global vari-
ables θv iff

∀ s1 s2,BehAbs s1 ⇒ BehAbs s2 ⇒
πi(θc, s1) = πi(θc, s2)⇒ NIinv (θc, θv , s1, s2)

This strengthened definition allows us to prove formally in
Coq that two simple conditions are sufficient for establishing non-
interference. In order to state these sufficient conditions, we need
a variant of the Exchange relation from Section 3 with one addi-
tional parameter, the non-deterministic context. We now say that
the Exchange relation s

c,m,t
; s′ holds when starting at state



s, the interpreter receives message m from component c and re-
sponds by symbolically evaluating the appropriate handler with
non-deterministic context t to produce state s′. We have proven,
in Coq, that BehAbs defined using this variant of Exchange also
produces sound behavioral abstractions for any REFLEX program.

Using this variant of Exchange, we can give the two sufficient
conditions for establishing non-interference:

Theorem 1. Non-interference holds with respect to labellers for
components θc and global variables θv if the following two condi-
tions hold:

NIlo : ∀ c m t s s′, [θc(c) = low ∧ s c,m,t
; s′]⇒ [NIinv (θc, θv , s, s

′)]

NIhi : ∀ c m t s1 s′1 s2 s
′
2,

[θc(c) = high ∧ s1
c,m,t
; s′1 ∧ s2

c,m,t
; s′2]⇒

[NIinv (θc, θv , s1, s2)]⇒ [NIinv (θc, θv , s
′
1, s

′
2)]

Intuitively, NIlo requires that all low handlers in a program
never send messages to, or spawn, high components and never up-
date any state variables labeled as high. Let Agree(s1, s2) hold iff
states s1 and s2 agree on all high inputs, high outputs, and high
variable values. Then, NIhi requires that, if Agree holds on any
two states and the same handler is run on both, then Agree will
also hold on the resulting states. We implemented a tactic which
attempts to automatically verify that the above two conditions hold
on user-provided programs for given components and variable la-
beling functions by symbolically evaluating each handler.

While the reasoning for proving non-interference in the hypo-
thetical car kernel is relatively simple, the non-interference tactic
must perform more sophisticated reasoning when branches appear
in handlers. In particular, the tactic uses facts implied by the la-
beling of variables and of the component list to try to show that
in a handler run on two arbitrary states satisfying Agree, branches
will take the same path. This is possible because of the interde-
pendent design of branch commands, a strengthened definition of
non-interference, and automation for non-interference.

5.3 Incompleteness of REFLEX Automation
While our tactics provide effective automation for many important
properties in large, realistic examples (shown in Section 6), they are
not complete. Thus, they may fail to find proofs for some properties
expressible in REFLEX which in fact hold on a given REFLEX
program.

As described earlier, our tactics attempt to use branch conditions
to infer global inductive invariants. This often works in practice
when programmers follow common programming idioms, but the
heuristic is incomplete in general. For non-interference, this flaw is
partially alleviated by the variable labeling function, provided by
the programmer or by an automated, static taint-tracking engine.

Additionally, implementing robust, general tactics in Ltac, the
tactic language of Coq presents a significant engineering challenge:
tactics are inherently brittle and difficult to debug, e.g. simple
errors in Ltac pattern matching expressions are often easy to fix,
but nearly impossible to detect early. Low-level logical errors,
e.g. losing facts when inverting equalities with dependent types in
the context, instantiating component lookup branch facts with the
wrong term, etc., can also cause REFLEX automation to fail even
when the conceptual proof search should succeed.

6. Evaluation
REFLEX aims to greatly reduce the cost of building reactive sys-
tems with strong, machine-checkable, correctness guarantees to the
point that such systems can be built even by programmers unfa-
miliar with formal verification and proof assistants. We evaluate
REFLEX by first showing that it is expressive enough to imple-

Component Language LOC
SSH Kernel Code / Properties REFLEX 64 / 22
Sandboxed SSH Components C, Python 89,567
Browser Kernel Code / Properties REFLEX 81 / 37
Sandboxed Browser Components C++, Python 970,240
Web Server Kernel Code / Properties REFLEX 56 / 29
Sandboxed Web Server Components Python 386

Table 1: REFLEX benchmarks and their sizes (lines of code). Each bench-
mark is fully functional and consists of a verified REFLEX kernel with safety
properties and surrounding sandboxed components built on existing infras-
tructures like WebKit for the browser and OpenSSH for the SSH server. The
surrounding, sandboxed, components are unverified and written in C, C++,
or Python.

ment realistic applications and capture important safety and secu-
rity properties. We next demonstrate that REFLEX’s automation is
sufficiently powerful to completely automate proofs for these key
properties. We illustrate how REFLEX helped us catch bugs, dis-
cuss REFLEX’s performance in terms of time to verify properties
and usability of systems implemented in REFLEX, and finally re-
port on the effort required to develop REFLEX.

6.1 REFLEX Expressiveness

To demonstrate REFLEX’s expressiveness, we discuss three large,
fully functional applications developed with REFLEX: a web
browser, an SSH server, and a web server. To further evaluate
the expressiveness of our policies and proof automation, we ad-
ditionally implemented a substantially more detailed version of the
hypothetical automobile controller sketched in the previous section
and specified its key safety properties. Each benchmark consists
of both: (1) a kernel performing security-critical operations and
its safety properties, written in REFLEX, and (2) the implementa-
tion of surrounding components, built on existing infrastructures
like WebKit for the browser, or OpenSSH for the SSH server, and
sandboxed so that they can only communicate via the kernel. Ta-
ble 1 shows their respective sizes. We next describe each of these
benchmarks in further detail.

Web Browser. We used REFLEX to build a web browser kernel
similar to Jang et al.’s Quark [6] browser kernel, which mediates
access between different components of the browser. In particular,
we reused Quark’s publicly available browser components, but built
a new browser kernel in REFLEX, providing the same functionality
as Quark’s kernel. Unlike the Quark authors, who took several
months to manually verify their kernel, we automatically verify our
browser kernel’s security properties in minutes.

As in Quark, our browser runs each tab in a separate process,
and the kernel mediates tab communication and access to system
resources (e.g. mouse, screen, and network). Furthermore, cookies
are cached by separate cookie processes, one per domain, and the
kernel mediates interactions between tabs and cookie processes.
The original Quark kernel comprised 859 lines of Coq code; our
kernel comprises only 81 lines of REFLEX code while providing
the same functionality: we were able to browse popular, complex
websites including Google Maps, GMail, Amazon, and Facebook.

Implementing a replacement browser kernel in REFLEX re-
quired some deviations from Quark’s design. For example, Quark
broadcasts cookie updates to all tabs of the relevant domain. Our
kernel instead establishes private communication channels between
tabs and the cookie process for their domain, which are then used
for updates. Using REFLEX, we proved that this alternate archi-
tecture does not compromise our security guarantees. Our domain
non-interference policy implies both cookie confidentiality and in-
tegrity, as well as a slightly relaxed version of Quark’s tab non-
interference: we allow tabs of the same domain to interfere, which



morally provides the same level of security while improving com-
patibility with modern websites. While Quark’s manual proof of
non-interference required a nearly 1,000 line custom Ltac script,
our proof is carried out fully automatically.

SSH Server. As illustrated in previous sections, we also used
REFLEX to build the kernel of an SSH server that mediates ac-
cess between (A) an untrusted SSH Client module that processes
raw network data from standard, unmodified, remote SSH clients
and (B) root-privileged system resources. The kernel oversees au-
thentication, and afterward provides file descriptors enabling direct
communication with the PTY process to the SSH slave, thus elimi-
nating any post-authentication overhead. We verified two SSH ker-
nel properties: (1) the untrusted clients must first authenticate as
a valid user to create a PTY process running as that user, and (2)
untrusted SSH clients can attempt authentication at most 3 times.
We encoded this second policy using four different properties (see
Figure 6), demonstrating that despite the restricted design of our
property language, it can be used to express sophisticated security
policies. Moreover, future updates to REFLEX will include syntax
for expressing common patterns such as at most n of some action.
This syntax will immediately desugar to our existing primitives, so
the power of our proof automation will remain.

Web Server. Our web server implements a simple file server
with authentication. It comprises four components: one listens on
the network, one performs access control checks, one accesses the
filesystem, and one handles successfully-connected clients. The lis-
tener waits and notifies the kernel of connection attempts, which
in turn consults the access controller to check permissions. Upon
successful authentication, the kernel spawns a client component to
handle this connection, otherwise the connection is dropped. Each
client component handles its own connected client, and forwards
file requests to the kernel, which checks them by consulting the ac-
cess control component. On success, the kernel delivers the request
to the disk component and forwards back the result.

Automobile. Koscher et al. [8] dramatically demonstrated the
practical security vulnerabilities of modern automobiles. In partic-
ular, untrusted components of a car, such as the telematics unit, are
able to inappropriately influence safety critical components, such
as the engine and brakes. By inserting a verified kernel to act as a
mediator between these components, we could ensure that, e.g., a
radio controlled by an attacker cannot engage the brakes. Toward
building such secure automobile controllers, we used REFLEX to
implement a simple hypothetical kernel for controlling and coor-
dinating the components of a car. The kernel mediates potential
communication between components such as the engine, airbags,
and door locks. For example, when the engine sends a message to
the kernel indicating a crash, the kernel sends a message to deploy
the airbags and unlock the doors, and sets a state variable prevent-
ing any component from locking the doors in the future. The kernel
contains 60 lines of REFLEX code and properties. While REFLEX
lacks several features be necessary for a realistic automobile kernel
(e.g. real time constraints), our hypothetical kernel demonstrates
both the robustness of our proof automation and the potential util-
ity of LAC in another important domain.

6.2 Automation Effectiveness

We evaluate the effectiveness of REFLEX’s proof automation by
proving 41 important properties of our benchmarks, in Coq, fully
automatically. This is the major benefit of REFLEX: by exploiting
the constrained structure of both programs and their properties, we
allow the user to reap significant benefits of formally verifying
a system without requiring knowledge of advanced verification
techniques such as dependent types and interactive proof assistants.

Figure 6 describes the properties for each benchmark and time
taken to automatically discover a proof on a 3.4 GHz Intel Core

i7 running Linux. These properties span every policy primitive and
express important security and safety properties of real, running
systems. Many of these properties are non-trivial; being global
in nature, they require reasoning across interactions of multiple
handlers within a kernel.

6.3 REFLEX Utility
We illustrate the utility of REFLEX anecdotally: While developing
our proof automation, we kept the web server benchmark com-
pletely separate and untested while guiding and debugging our de-
velopment with smaller, earlier versions of other benchmarks. Once
REFLEX automation was stable, we tested its robustness on the un-
tried web server, where it failed to prove three properties. One of
these failures revealed a low-level tactic bug that was easily fixed.
However, the other two policies turned out to be false, and were
successfully proven automatically once we corrected their state-
ment. In another instance, during substantial modification of the
web browser to use a different communication protocol, we inad-
vertently introduced subtle bugs which we did not discover until
our proof automation failed to prove the affected properties.

6.4 REFLEX Performance
As shown in Figure 6 our slowest verification took just under nine
minutes, and over 80% of our properties are proven automatically
in under two minutes. In all cases, the verification time is many
orders of magnitude less than the time required to construct tra-
ditional, manual Coq proofs, even excluding the extensive train-
ing required to master Coq. While early implementations of our
proof search tactics suffered from severe performance issues, we
were able to obtain tremendous speedups (80x on average and over
1000x for some benchmarks) and radically reduce memory usage
(5x on average and over 35x for some benchmarks) by imple-
menting several optimizations, including domain-specific reduction
strategies and skipping symbolic evaluation of handlers for which a
simple syntactic check suffices (both benefits of LAC), and saving
subproofs at key cut points to reduce the size of proof terms. Future
work can explore incremental verification in order to further reduce
the time required for re-verification.

Notice that we implemented three different versions of the web
browser kernel and two different versions of the SSH kernel. De-
veloping these variants required little additional effort after the first
version of the kernel was built. One major advantage of REFLEX is
that the modification of a kernel written in REFLEX incurs no addi-
tional proof burden: we only need to re-run the proof automation.

The generated executables run at interactive speeds: we used
the web browser to access feature-rich, popular websites such as
GMail, and ran the SSH and web servers without noticeable delay.

6.5 Development Effort
The REFLEX system consists of 7,635 lines of Coq code, includ-
ing 2,827 lines for the REFLEX syntax and semantics, 2,786 lines
of manual proofs, and 254 lines for the non-interference infrastruc-
ture. There are a total of 193 lines of REFLEX primitives imple-
mented in OCaml. These include primitives that are exposed to the
DSL user, namely send and spawn, but also primitives that are used
internally like recv and select. Finally, there are 1,768 lines of
tactic code to implement the formal Coq proof automation as de-
scribed in Section 5.

The entire REFLEX implementation was written once and for all
by us, the REFLEX developers. Following LAC, we designed our
system so that programmers can build and verify reactive systems
using REFLEX, while ignoring all details about its implementation
and Coq. This design amortizes our substantial development costs:
balancing the expressiveness and tractability of property primitives
and building robust proof automation required many months of
iteration. Moreover, this manual development effort is comparable



Policy description T (s)

ca
r

Components do not interfere with the engine 13
Airbags do deploy when there has been a crash 6
Airbags are deployed immediately after crash 4
Cruise control turns off immediately after braking 5
Doors unlock when there is a crash 6
Doors unlock immediately after airbags deployed 6
Doors can not lock after a crash 21
Airbags only deploy if there has been a crash 6

br
ow

se
r

Tab processes have unique IDs 70
Cookie processes are unique per domain 75
Cookies stay in their domain (tab, cookie process) 37
Tabs are correctly connected to their cookie process 38
Different domains do not interfere 229
Tabs can only open sockets to allowed domains 94

br
ow

se
r 2

Tab processes have unique IDs 80
Cookie processes are unique per domain 130
Cookies stay in their domain (tab) 64
Cookies stay in their domain (cookie process) 70
Tabs are correctly connected to their cookie process 88
Different domains do not interfere 338
Tabs can only open sockets to allowed domains 106

br
ow

se
r 3

Tab processes have unique IDs 295
Cookie processes are unique per domain 193
Cookies stay in their domain (tab) 83
Cookies stay in their domain (cookie process) 91
Tabs are correctly connected to their cookie process 151
Different domains do not interfere 532
Tabs can only open sockets to allowed domains 78

ss
h

Each login attempt enables the next one 54
The first attempt to login disables itself 58
The second attempt to login disables itself 297
The third attempt to login disables all attempts 53
Succesful login enables pseudo-terminal creation 55

ss
h 2 Succesful login enables pseudo-terminal creation 113

Login attempts approved by counter component 37

w
eb

se
rv

er

A client is only spawned on successful login 26
Clients are never duplicated 70
Files can only be requested after login 87
Files are only requested after authorization 23
Kernel only sends a file where the disk indicates 34
Authorized requests are forwarded to disk 22

Figure 6: Benchmark Properties. The time column comprises both the
proof search and the proof term type-checking. The quark variants explore
implementation trade-offs for handling cookies using cookie processes, and
stress the robustness and performance of the automation. The ssh2 variant
uses a separate component to count authentication attempts. All properties
are proved fully automatically using our tactics.

to the development effort required in [6], yet it allowed us to
implement not only a fully formally verified browser similar to
Quark, but also a realistic, verified SSH server and web server.

7. Discussion and Lessons Learned

We have seen how REFLEX design decisions enabled automati-
cally verifying realistic reactive systems. Here we describe general
lessons learned from our experience.

Language and Automation Co-design. Our experience build-
ing REFLEX suggests a general methodology for applying LAC,
consisting of the following principles:

Constrain the implementation language to enable automated
construction of behavioral abstractions. In our case, this took the
form of BehAbs, a function to compute an inductively defined
predicate characterizing the reachable states for a given REFLEX
program. Abstractions like BehAbs enable a separation of concerns
between handling gritty implementation details and automating
higher level proof search. For REFLEX, we designed handlers to

always terminate so that we could formally prove, once and for all,
that behavioral abstractions computed by BehAbs are sound.

Give a uniform and structured semantics to both the language
of programs and properties. This simplifies both inference of in-
ductive invariants during proof search and user specifications that
help guide this inference for richer properties like non-interference.
In REFLEX, this principle manifests in several decisions including:
(A) Using only a single event handling loop so that tactics need
only consider highly structured traces. (B) Constraining handlers to
be loop-free, enabling REFLEX tactics to easily symbolically eval-
uate all execution paths of a handler. (C) Designing trace properties
so that branch conditions are often sufficient to strengthen policies
into inductive invariants. (D) Using only a single event handling
loop so that specifications for our strengthened non-interference
definition only require a simple high and low global variable la-
beling; with this labeling, properties can typically be strengthened
to inductive invariants automatically.

Adapt language design to account for proof automation chal-
lenges. In REFLEX, the most interesting instance of this principle
arose from the lookup primitive: We originally provided a more
general broadcast primitive which sent a message to all com-
ponents satisfying a predicate. However, broadcast complicated
reasoning because a single broadcast command could generate
an unbounded number of send actions; handling this unbounded
behavior proved extraordinarily difficult. We instead use lookup, a
simpler command which allowed us to maintain the invariant that
each command generates a statically bound number of actions.

DSL Embedding vs Compiler. Initially, we implemented RE-
FLEX using a compiler written in OCaml. This compiler would
parse REFLEX code and properties, and generate not only the cor-
responding Coq code, but also tactics/proofs in Coq to establish
the given properties on the generated code. While this approach al-
lowed us to quickly build a prototype, maintenance soon became
intractable. Each compiler bug we encountered required debugging
the generated Coq code, including the generated tactics. Coq’s tac-
tic language, Ltac, is notoriously difficult to debug even when hand-
crafted by experts; debugging machine-generated Ltac became an
insurmountable challenge. To manage the complexity, we rewrote
the system using a deeply embedded DSL in Coq. Although this re-
quired a large upfront cost, it provided several long-term benefits.
First, it consolidated tactics into a single, more debuggable library.
Second, Coq’s dependent types caught many errors statically, er-
rors which previously would have been found only after debugging
machine-generated Coq code. Finally, the embedding also aided
proof automation: since REFLEX programs are now well-typed by
construction, there are many tedious corner cases concerning unde-
fined behavior that simply no longer arise.

8. Related Work
Proof Automation and Reducing Proof Burden. A long line of
work addresses proof automation and reducing proof burden, both
in the context of proof assistants and automated theorem provers.
The main difference between previous work and our approach in
this space lies in the co-design of the DSL and the automation tech-
niques, which allows us to completely eliminate the per-program
manual proof burden for many properties in a class of applications.

In proof assistants, tactics allow programmers to encode au-
tomation strategies. The Ynot [3, 17] and Bedrock [2] projects pro-
vide frameworks for proving arbitrary properties of general purpose
imperative programs, and make extensive use of tactic libraries fur-
nishing automation to handle common proof obligations that arise
from programs written in the framework, e.g. the powerful sep tac-
tic to dispatch separation logic obligations. However, the tactics in
these systems do not entirely eliminate the proof burden. In prac-
tice, the user must still manually construct formal Coq proofs for



any novel properties of their program and register those lemmas
as hints at appropriate program locations, e.g. proving and telling
sep to use a commutativity lemma concerning data structure oper-
ations. Thus, writing our benchmarks directly in Ynot or Bedrock
would still require large amounts of per-program manual proof ef-
fort (requiring deep Coq expertise), despite their powerful tactics.

The recent work of Gonthier et al. [4] presents a clever and
general way of using Coq’s canonical structures to automate certain
parts of Coq proofs in a way that is more robust than tactics. While
this approach can be used to automate certain parts of proofs, it still
requires deep programmer expertise in Coq.

Other approaches have used DSLs to gain leverage for proof
automation in the context of compiler correctness, for example
Cobalt [10], Rhodium [11], PEC [9], and XCert [20]. Besides
targeting a different domain and different properties, REFLEX also
distinguishes itself in two additional ways. First, REFLEX provides
a mechanism for specifying not just a program, but also properties
of that program, whereas in compiler correctness, the property
being verified is fixed. Second, REFLEX achieves a guarantee that
is far stronger than previous systems: all the proofs have been done
in Coq, from the ground up, for each program written in REFLEX,
while still providing pushbutton automation.

More generally, there has been a substantial amount of work
in automatically verifying properties of programs using techniques
such as abstract interpretation and tools such as SMT solvers.
However, this work often assumes, without a fully formal proof,
that (1) queries to some automated solver (e.g. an SMT solver)
are sufficient to prove the intended properties and (2) the particular
solver (e.g. Z3) is correct. REFLEX avoids such gaps through end-
to-end fully formal verification in Coq.

Formal Verification in Proof Assistants. In addition to work
on reducing the proof burden, REFLEX is also related to a long
line of work on using interactive proof assistants for formal ver-
ification. Most importantly, our Coq implementation of REFLEX
makes heavy use of the Ynot library [17], which in turn builds on
Hoare Type Theory [16]. Furthermore, the trace-based approach we
use in our generated Coq code builds on the approach of Malecha
et al. [14], which uses Ynot to implement and prove properties
about servers. The Quark web browser [6] also uses Ynot to ver-
ify several trace-based properties, including tab non-interference.
However, the Quark verification effort, as with all previous verifica-
tion efforts in Coq, does not achieve nearly the level of pushbutton
automation provided by REFLEX.

Privilege Separation. Our work also builds on the idea of priv-
ilege separation introduced by Provos et al. in their privilege sepa-
rated OpenSSH [18]. In particular, the architecture we use for our
web browser, SSH, and web server benchmarks follow the princi-
ples outlined by Provos et al. Privilege separation is also the con-
ceptual linchpin behind the kernel-based architectures used in web
browsers like Chrome [19], Gazelle [21], and OP [5]. However,
none of this previous research on privilege separation used proof
assistants like Coq to formally verify properties of these systems.

9. Conclusion
We described REFLEX, a deeply embedded Coq DSL, which elim-
inates the manual proof burden for verifying many properties for
programs in the class of reactive systems. Building REFLEX only
required effort comparable to the manual verification of a single
realistic reactive system. Unlike general verification frameworks,
where full formal proof automation is intractable due to the unre-
stricted nature of programs and properties, we achieved a high level
of automation by following the general principle of Language and
Automation Co-design and simultaneously designing both (1) RE-
FLEX’s languages for programs and properties and (2) REFLEX’s
proof automation tactics which exploit the constrained structure of

programs and properties to automatically guarantee programs sat-
isfy their user-provided properties. We evaluated REFLEX by ver-
ifying several important security properties for three critical sys-
tems: a modern web browser, an SSH server, and a web server.
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