Linear Bellman Combination for Control of Character Animation

Marco da Silva!

!Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract

Controllers are necessary for physically-based synthesis of charac-
ter animation. However, creating controllers requires either manual
tuning or expensive computer optimization. We introduce linear
Bellman combination as a method for reusing existing controllers.
Given a set of controllers for related tasks, this combination creates
a controller that performs a new task. It naturally weights the con-
tribution of each component controller by its relevance to the cur-
rent state and goal of the system. We demonstrate that linear Bell-
man combination outperforms naive combination often succeeding
where naive combination fails. Furthermore, this combination is
provably optimal for a new task if the component controllers are
also optimal for related tasks. We demonstrate the applicability of
linear Bellman combination to interactive character control of step-
ping motions and acrobatic maneuvers.

CR Categories: 1.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; 1.2.8 [Com-
puting Methodologies]: Problem Solving, Control Methods, and
Search—Control Theory;

Keywords: Physically Based Animation, Optimal Control

1 Introduction

Physically-based animation of active characters requires controllers
that find forces that achieve the goals of the animator. While con-
trollers exist for a variety of human activities [Yin et al. 2007; Coros
et al. 2008; Hodgins et al. 1995; Zordan and Hodgins 2002; Sok
et al. 2007] and even complex, non-human activities [McNamara
et al. 2004; Fattal and Lischinski 2004; Bergou et al. 2007], creating
a controller that achieves the animator’s goal usually involves either
intensive manual tuning or expensive computational optimization.
Given the difficulty of creating individual controllers for given
tasks, we seek to reuse controllers for new tasks by combining
them. For example, if two controllers can reach different goals,
we want to blend them to reach end states in between. Simple
linear combination of controllers is not sufficient and can lead to
unpredictable results due to the complex relationship between con-
trol forces and the resulting animation. In this paper, we present a
new method for combining controllers that naturally weights each
component controller by its relevance for the current state and goal.
Combined controllers can interpolate goals or coordinate between
multiple controllers. Coordination between controllers trained for
different parts of state space can broaden the domain that can be
handled. Coordination between controllers trained for different
goals can yield a controller with multiple acceptable outcomes.
Our approach is based on the control formulation where con-
trollers (equivalently, control policies) are measured by an objective

Frédo Durand!

Jovan Popovi¢!-2-3

2 Advanced Technology Labs, Adobe Systems Incorporated
3University of Washington

function which quantifies how well they achieve the goals of the
animator [Bertsekas 2007; Todorov 2006a; Witkin and Kass 1988].
For example, this function can emphasize reaching a particular state
at a particular time or tracking a given trajectory for the character.
In computer animation, improving a controller with respect to this
objective is difficult because there are often many control param-
eters. Also, the relationship between these parameters and the re-
sulting value of the objective function is non-linear, due to the cost
functions used to describe the task and the dynamics that govern
the motion of the character. This relationship is encapsulated by
a partial differential equation, the Hamilton-Jacobi-Bellman (HJB)
equation, whose solution defines the optimal value function [Bell-
man 1957]. The optimal value function maps a character state to
the lowest possible cost of reaching the goal. The best policy seeks
to follow the gradient of the optimal value function. Non-linearity
of the HJB equation is the reason tuning, optimizing, or combining
controllers is so difficult.

Our approach, which we call linear Bellman combination, de-
rives from the remarkable fact that the HIB equation can be made
linear for certain systems using a change of variables [Fleming
1978; Kappen 2005; Todorov 2006b]. In this paper, we observe
that the linear superposition principle allows us to combine tempo-
rally aligned optimal policies for similar tasks with different bound-
ary conditions. The resulting controller is provably optimal for the
new task under some conditions. In practice, we need to combine
controllers that might not be optimal. Still, linear Bellman combi-
nation performs accurately and robustly and we provide empirical
evidence that it outperforms alternatives. Furthermore, it is sim-
ple to use and can be applied to many control schemes as it treats
controllers as a black box, using only their outputs to compute com-
binations.

Evaluating a controller using linear Bellman combination re-
quires representations of each component controller’s policy and
value function. Often these mappings are lacking and the com-
mon approach for low-dimensional systems is to tabulate the pol-
icy and value function. In this paper, we also describe a method
capable of controlling character motions with many more degrees
of freedom. We demonstrate linear Bellman combination on value
functions which are approximated around samples from example
trajectories.

Control-inspired approaches are used in many areas of graphics,
offering many potential applications of the linear Bellman equation.
For this paper, we focus on several animation tasks. As an exam-
ple application, we demonstrate taking steps of varying length and
jumps of different heights. Controllers that bring a gymnast to an
upright position on a high bar from different initial conditions are
combined to work from a range of initial conditions. We use coor-
dination to combine controllers for walking on flat and hilly terrain.
We show that linear Bellman combination outperforms simple lin-
ear blending and other tracking approaches. The main limitation of
the presented formulation is that combined controllers must cover
the same duration of time. In the conclusion, we sketch possible
extensions to address this limitation.

Controllers Reward Function

Goal Function

I
! reward reward 7 !
| ") |
I
(o) + / (bl u X 21(a,1) X ha(x) h(z) —]
: :
I T I
: state i state Z : Uc
: reward reward h(LU) normalized | |
I
I
_ I
gg(:n)+/€ L, U2 X zo(z,t) X ha(x) - h(x) |
: S
I I
! Hy state state \

Figure 1: Overview. Linear Bellman combination creates a new controller using existing controllers optimized for related tasks of finite

duration. The tasks share a common integrated cost, fOT q(x) + %uTu dt, but have different terminal costs gi(x). The output of each

controller, u;, is scaled by a reward function, z;(x,t) = exp(—v(x, t)) and by the amount the controller’s terminal reward function,

hi(x) = gi (x), overlaps the desired terminal reward function, h(x). These weighting factors are normalized and the resulting control action

is a sum as in Equation 11.

2 Related Work

The goal of our work is to combine existing controllers to per-
form new tasks. Others have explored parameter tuning for spe-
cific control schemes to achieve new tasks such as adapting run-
ning controllers from larger characters to smaller characters [Hod-
gins and Pollard 1997], modifying jumping controllers [Pollard and
Behmaram-Mosavat 2000], or walking under various environmen-
tal constraints [Yin et al. 2008]. In contrast, we treat existing con-
trollers as a black box which we do not modify directly. These ex-
isting controllers may be hand-crafted [Wooten and Hodgins 2000]
or computer optimized [Witkin and Kass 1988]. Rather than ma-
nipulate the parameters of the controller, our method achieves new
tasks by combining the output of each component controller.

Some prior work has explored interpolation of existing con-
trollers in order to achieve new tasks [van de Panne et al. 1994].
Yin et al [2008] observed that simple linear interpolation of SIM-
BICON [Yin et al. 2007] parameters can be used to adapt the walk-
ing controller to conditions that are “in-between” the conditions
expected by example controllers. This observation was expanded
upon to build a controller capable of taking different step lengths
to avoid holes in the terrain [Coros et al. 2008]. In this work, we
show that simple linear interpolation of feedback controllers can be
suboptimal both in terms of the goal and the amount of control ef-
fort being exerted. In some cases, sub-optimality results in visual
imperfections while in others it results in failure to accomplish the
task. In practice, this can be overcome by placing optimized exam-
ples closer and closer together, but these optimized examples are
difficult to obtain.

Controllers can also be sequenced to create composite con-
trollers that achieve new tasks [Burridge et al. 1999; Faloutsos et al.
2001]. In our approach, multiple component controllers may be ac-
tive at any one time. The total control effort is a weighted sum of
the output of each component controller. In contrast to a sequenc-
ing approach, combining controllers allows us to achieve tasks that
are not executed by any of the component controllers.

Sok et al [2007] and Erez et al [2007] also interpolate example
controllers to achieve robust execution of biped locomotion maneu-
vers. These approaches rely on hand-crafted metrics to determine
the blend weights to place on each example controller. In contrast,

the metric used to weight component controllers in our approach
is automatically computed given a mathematical description of the
current goal. This allows our composite controller to look ahead to
determine the best course of action to achieve this goal.

Linear Bellman combination builds on the observation that the
non-linear HJB equation can be linearized under a change of vari-
ables [Fleming 1978]. The same general idea also appears in the
study of stochastic diffusion processes [Holland 1977]. Recently,
this linearity has been exploited to derive methods for computing
low-dimensional optimal value functions using a power method
[Todorov 2006b] and importance sampling [Kappen 2005]. In our
work, we observe that linearity of the HIB equation allows one to
apply linear superposition to combine existing controllers for new
tasks for a variety of systems. Concurrent with our work, Todorov
also explored linearity for the composition of control laws and ap-
plied it to a first-exit control problem of a discrete two-dimensional
particle [2009].

For high-dimensional characters, linear Bellman combination
uses multiple quadratic expansions of the value function in a non-
parametric representation to track multiple trajectories. A re-
lated non-parametric representation was proposed by Atkeson et al
[2002]. In our case, example trajectories need not be optimized for
the same task. In addition, rather than switch between example con-
trollers discretely using whichever example is closest to the current
state, controls are smoothly interpolated using the value function.
Some recent work [da Silva et al. 2008b; Barbi¢ and Popovié¢ 2008]
has adapted feed-forward controllers using linear quadratic regu-
lators (LQR) to track a single example trajectory. Earlier work on
this topic was pursued by Brotman and Netravali in graphics [1988]
and Atkeson in robotics [1994]. However, LQR controllers are only
valid near the example trajectory. We show that linear Bellman
combination can coordinate multiple controllers to improve con-
troller robustness.

3 Linear Bellman Combination

Linear Bellman combination produces a new controller by combin-
ing existing control policies. For example, given two policies for
stepping near and far, the combined policy can step in between. A
control policy # = m(x,t) defines the actions (forces) u € R™

needed to drive the system from the current state x € R4 and time
t to some goal in the future. Liner Bellman combination blends a
set of control policies 71, ..., T, to produce a combined policy:

w(x,t) =a1(x, w1 (x, 1)+ F+an(x,0)mn(x,).

Setting these coefficients, «;, such that the resulting controller
achieves a well defined goal can be difficult given the non-linear
dynamics of the systems typically controlled in physically based an-
imation. Linear Bellman combination enables a principled deriva-
tion of these coefficients.

Linear Bellman combination uses carefully computed time-
varying coefficients,

w;zi (x, 1)
Y wizi(x.t)

that can—under certain conditions—generate optimal control ac-
tions for a well defined task. The blending formula weights each
component policy by how appropriate it is for the current state and
goal (see Figure 1). The reward function, z; (x,), indicates how
appropriate the policy is for the current state, while the fixed (in-
time) weights, w;, determine the goal of the controller. The time-
varying reward weights are computed automatically given the con-
troller’s value function. The fixed weight parameters are also com-
puted automatically given a new desired goal function. The result-
ing control can either interpolate goal functions or coordinate the
component policies. Coordination combines controllers that share
the same goal but were created for different regions of state space.
Coordination can also create a goal function with multiple accept-
able outcomes.

The blending formula is derived from a linear form of the Bell-
man equation. In this section, we review the Bellman equation to
associate solving this partial differential equation with the compu-
tation of optimal control policies. We then state the linear form of
this partial differential equation and apply the linear superposition
principle to derive Linear Bellman combination. Finally, we dis-
cuss the conditions for which this combination yields an optimal
control policy.

aj(x,1) =

1

3.1 Bellman Equation

An optimal control policy minimizes an objective function of the
form

T
ming(xT)+/ L(x,m, t)dt, ?)
T 0

where £, is a loss function applied at every time instant, and the
desired state at the end is described by the terminal cost function,
g(x). Typical loss functions penalize muscle exertion or deviation
from some desired target. The time evolution of the character state
is constrained by the equations of motion for the system. We restrict
ourselves to controlling systems with control-affine, stochastic dy-
namics:

dx =[a(x) + B(x)u]dt 4+ C (x)dw, 3)

where @ : R? > R4 and B : R? > REX™M gre generally non-
linear, continuous functions of state, and # € R™ is the control
action. The passive dynamics of the system are described by a(x).
The Brownian noise @ € R¥ is used to model zero-mean physical
disturbances and modeling error with variance CC T .

The cost-to-go function v™ (x, t) gives the expected cost of run-
ning a given policy = starting from any state until the terminal time
under the objective defined by Equation 2

T
v (x,t) = E[g(xT) +/z L(x, 7, 1)dr]

Original Cost Space New Reward Space

exp(—v)
- - 5
-—
v
—log(=) :
w1y 202 w121 + W22
usually not a solution solution to
w191 + w292 wihy + wahs
non-linear linear

Figure 2: Cost Space-Reward Space. The HJB equation is a non-
linear partial differential equation describing the time derivative of
the cost-to-go function. Non-linearity means that linear combina-
tions of optimal value functions are not a new optimal value func-
tion. However, using a non-linear mapping from cost to rewards
space leads to a linear PDE for the time evolution of a reward func-
tion. In this space, linear combinations are solutions to an optimal
control problem.

Assuming the stochastic differential equation has a unique solu-
tion, stochastic calculus [Oksendal 2002] links the expected cost
for a random state trajectory to a solution of a second-order partial
differential equation:

D" (x,0)] = L(x,m, 1) + LT (VT (x,1))
v (x,T) = g(x),

where the differential operator L™ can be thought of as taking the
expectation of the value function an infinitesimal point of time into
the future for some policy:

LT (v(x,1)) = (a(x) + B(x)n(x,t))TVv(x,t) +

%tr[C(x)C(x)TVZU(x, 0.

The terminal cost function g(x) serves as a boundary condition for
the PDE, fixing the functional form of the value function at the final
time. Linear Bellman combination will blend existing terminal cost
functions to create controllers for new terminal costs.

The optimal value function minimizes the cost-to-go function
over the space of all allowable policies and satisfies what is known
as the Hamilton-Jacobi-Bellman (HJB) equation. For finite-horizon
control problems (problems of fixed duration), the HIB equation is

—Div(x,0)] = min{l(x, x,1) + L7 (v(x, 1))} “
v(x,T) = g(x), (&)

For most systems of interest in computer animation, this partial
differential equation is non-linear and high-dimensional, making
it very difficult to solve directly. Given the solution however, the
optimal policy is obtained by following the gradient of the optimal
value function as closely as possible.

3.2 Linear Bellman Equation

Using an exponential mapping that maps costs v into rewards z =
exp (—v), Equation 4 can be transformed into the following form:

Dilz(x.1)] = q(x.,1)z(x.1) — L(z(x.1)) (©)
z(x.T) =exp(—g(x)) = h(x) @)

reward

state

Figure 3: Projecting Terminal Cost Functions. Since we re-
strict terminal cost functions, g(x), to be quadratic, we have Gaus-
sian reward functions, h(x), after exponentiating. To compute the
fixed blend weights, w;, we must project the desired terminal re-
ward function, h(x) onto the example terminal rewards associated
with each component controller, h1(x) and hp(x).

where the dependence on z is linear [Fleming 1978; Kappen 2005;
Todorov 2006b; Todorov 2008] and the differential operator no
longer depends on control:

1
L(z(x,1) =a(x)"Vz(x,1) + 5tr[C(x)C(x)Tvzz(x,z)].
Here we have assumed a loss function of the form:
I T
6(x,u,t)=q(x,t)+§u u. ®)

The penalty on state ¢ can be any positive function. These loss
functions are commonly used in computer graphics (e.g. [Witkin
and Kass 1988; Ngo and Marks 1993; Safonova et al. 2004] to min-
imize applied force or deviation from desired poses. With this par-
ticular quadratic penalty on control, linearity of the Bellman equa-
tion only holds if B(x) = C(x), implying that noise acts in the
same subspace as control.

The core observation of this work is that linearity allows us to
apply superposition to derive a combined controller that solves a
new task (see Figure 2). Suppose we have several solutions to
Equation 6 z;(x,¢) for different boundary conditions, i.e. termi-
nal reward functions /; (x). Then, by superposition we also have
the solution to the same PDE with the terminal reward function

h(x) =Y wihi(x). ©

i=1
The solution is

z(x,t) = Zwiz,-(x,t). (10)

i=1

To get back to standard value function space, we apply the in-
verse transformation, v(x,?) = —logz(x,t). Applying this trans-
formation, we see that superposition automatically gives a solu-
tion to the HIB equation with the terminal condition, g(x) =
—log (wihi(x) + -+ + wuhp(x)). Later, we will describe how
to determine the weights w; by projecting a desired terminal cost
function onto the example terminal cost functions.

3.3 Time-Varying Coefficients

To derive the coefficients of the linear Bellman combination of
Equation 1, note that the optimal policy for control problems with
control-affine dynamics and loss functions that are quadratic in con-
trol actions is —B (x) T Vu(x,) [Bertsekas 2007]. This policy de-
scends the value function in the steepest direction allowed by the

current configuration of the system. Using this policy, we see that
Equation 10 leads to

w(x,t) = B(x)TVIOg (Z w; Zj (x,t)) .

i=1

Taking the derivative of the log and applying the chain rule leads
to:

1
z(x,t)

w(x,t) =

Y wizi(x 0w (x,0), (1n
i=1

3.4 Summary

In summary, given a set of control policies, linear Bellman combi-
nation creates a new policy that optimizes a new terminal reward
function which is a weighted combination of example terminal re-
ward functions. The combined policy weights each component pol-
icy by how inexpensive it is as indicated by its reward function z;
and by its relevance to the goal indicated by the weight w; .

The optimality of policies described by Equation 11 depends on
several factors. First, the form of the linear PDE in Equation 6
must be shared by each solution in order for superposition to hold.
Changing the dynamics of the system changes the PDE as does
changing the loss function. In addition, the component policies
must also be optimal for the combination to be optimal. In prac-
tice, it is difficult to compute optimal policies. However, our ex-
periments show that linear Bellman combination is more effective
than naive blending approaches even when the component policies
are known to be suboptimal.

The presented formulation was derived assuming continuous
system dynamics. In many simulation engines, character dynamics
can be discontinuous as a result of contact with the environment.
In experiments involving contact, we used penalty based contact
forces to make our dynamics as smooth as possible. The disadvan-
tage of this is that contact constraints cannot be enforced exactly.
Incorporating discrete jumps in character state into the linear Bell-
man formulation in order to allow for exact constraint enforcement
requires further study.

4 Coordination and Interpolation

Given a set of optimal controllers and their associated value func-
tions, linear Bellman combination is optimal for a task with the
following terminal cost function:

g(x) = —log (Z w,-hi(x)) :

i=1

This allows us to create controllers which interpolate the terminal
cost functions of the component controllers. It also allows us to
create goal functions with multiple acceptable outcomes (multiple
minima). The fixed blend weights w determine whether the com-
bined controller is interpolating terminal cost functions or coordi-
nating between multiple policies. These weights can either be set
automatically given a new terminal cost function or can be set to
one to create a terminal cost function with possibly many minima.
This section describes these weight settings and the behavior of the
resulting control policy.

4.1 Control Interpolation for New Tasks

One application of linear Bellman combination is interpolating ex-
isting controllers. For example, this can be used to combine a con-
troller for a long step with a controller for a short step to generate
steps of intermediate length. Given a desired terminal cost function
g, we can automatically find the weights w; such that g approxi-
mates g as well as possible. Working in reward space, this can be

reward
reward

w1+ Wo

—_—

0 | state 0 I state

Figure 4: Unintuitive Projection. Depending on how example
terminal cost functions are sampled, weighted combinations may
produce unintuitive new terminal cost functions. For example, if the
examples are too far apart, a weighted combination will produce
a terminal reward function with two acceptable outcomes. Here a
terminal cost function centered on zero and another centered on one
are scaled such that weighted combinations produce local minima
in the reconstructed terminal cost function.

accomplished by projecting the function 4 = exp (—g) onto the po-
tentially non-orthonormal basis functions, &; (see Figure 3). Non-
orthonormal projections are carried out by solving a linear system
Aw = b where A; ; = g;-gj and b; = g;-g. For low-dimensional
systems, the functions can be sampled at points in state space. For
higher-dimensional systems, we restrict terminal cost functions to
be quadratics (which are Gaussians after exponential transforma-
tion) and compute their inner product analytically.

The terminal cost functions of the component policies may form
a poor basis for representing the desired terminal cost function, g as
depicted in Figure 4. A good indicator is if the weights computed
from projection are negative and do not come close to summing
to one. The quadratic cost functions should share the same scale
factor which is inversely proportional to the square of the distance
between each minimum point. Otherwise, it may not be possible
to smoothly interpolate points in state space as potential targets for
the combined controller. Note that this scale factor also has an ef-
fect on the stiffness of the resulting control policy, as steeper cost
functions lead to larger control actions. This can be mitigated by
scaling control costs in the objective function.

4.2 Coordinating Multiple Controllers

Linear Bellman combination can also coordinate the operation of
multiple controllers. Coordination is useful for two types of tasks
as depicted in Figure 5. The first is a task where there is a set of ac-
ceptable outcomes. For example, in a subway car, you can balance
by holding onto the wall of the car either in front of you or behind
you. Coordination is also useful for tasks where controllers share a
single desired outcome but are optimized for different parts of state
space. As an example, consider continuing a walk after taking a
longer or shorter step. In this case, the value function for each com-
ponent controller would be the same if the component controllers
were actually optimal, but this might not be the case due to ap-
proximations that are valid in some localized neighborhood of state
space. Coordination will smoothly choose the controller with the
best chance for success.

Coordination between component controllers is achieved by
equally emphasizing the goal of each controller w; = 1. If the
assumptions for optimality are satisfied as described above, then
the resulting controller is optimal for an objective function with
a terminal cost:

g(x) = —log (Z exp (- g (x))) :
i=1

First, we consider the case where all the terminal cost functions are

multiple goals one goal

Figure 5: Coordinating Multiple Controllers. Linear Bellman
controllers can track multiple trajectories at once, smoothly choos-
ing whichever is appropriate at the given state and time. For ex-
ample, we may have multiple controllers that start a step in dif-

ferent configurations but end in the same state. Or we may have

controllers that start in the same state but end up in an acceptable
outcome.

equal, i.e. g; = g for all i. For high-dimensional systems, it is typ-
ically only possible to represent policies that cover a portion of state
space. For example, we may have feedback controllers optimized
to accomplish the swing up task from different initial conditions of
a simple gymnast character. Combination can be used to arbitrate
between each of these policies.

Next, consider the case where the g;’s are quadratics with mini-
mums at different spots in state space:

gi(x)=(x—x) Q(x — ;).

Then, the combined terminal cost g has at most # minimum points.
This means that the combined policy will try to reach the goal of
one of the policies depending on which ever is the most convenient
given the current state of the character. As a concrete example,
consider the case where a character is pushed forward or backwards
and must grab onto something to maintain balance. In this case,
the character should activate a controller that reaches forwards or
backwards based on the push. The results section describes such an
example.

5 Approximating the Value Function

Linear Bellman combination requires policies x; and their asso-
ciated value functions v;. In practice, we often start with policies
without value functions. To get a value function, we first specify
an objective function as in Equation 2. Once the objective is iden-
tified, we can represent the value function for each controller in a
manner that allows for the interpolation necessary in Equation 11.
The details of the representation depend on the dimensionality of
the system being animated.

5.1 Defining the Objective

Each component controller is assumed to be optimal with respect to
an objective function of the form of Equation 2. Specifying an ob-
jective of this form requires making several choices if the objective
function is not known. There is the scale of the control cost relative
to the other terms, the form of the state penalty ¢ and the form of
each terminal cost function g;.

The control penalty determines the stiffness of the policy. De-
creasing the control penalty results in more control effort (i.e. stiffer

feedback control) but gets the character closer to the terminal condi-
tion. Overly stiff control has an adverse effect on simulation stabil-
ity and can lead to undesirable reactions to disturbances. However,
placing a large cost on control effort will compromise the accuracy
of the controller at achieving the final goal state.

The position penalty g(x) is not used for some tasks, i.e. it is
simply set to zero. For other tasks, excluding the position cost leads
to undesirable feedback strategies that stray far from the example
motion. Since the position cost must be consistent for each con-
troller, we set g to be a quadratic penalty centered on some average
trajectory or pose. This approach is similar to many other position
penalties used in trajectory optimization approaches to character
animation [Popovi¢ and Witkin 1999; Safonova et al. 2004; Sulej-
manpasi¢ and Popovié 2005].

The terminal cost term is free to vary for each controller. We use
quadratic functions of the form

gi(x)=(x—x;) Q(x — %),

where X; is the state of the system at the end of the ith controller’s
execution. As described in the previous section, restricting termi-
nal cost functions in this way is important for determining what the
composite controller is trying to accomplish and allows us to take
inner products analytically. The scale of the terminal cost function
0 affects the accuracy of the control and determines how closely
examples must be sampled in order to allow for smooth interpola-
tion.

While we specity the objective function manually, there exist al-
gorithms for automatically determining objective functions given
example trajectories [Liu et al. 2005; Abbeel and Ng 2004]. A gen-
eralization of this process to multiple trajectories would be a nice
complement to other applications of linear Bellman combination.

5.2 Sampling the Value Function

Once an objective function is defined for each controller, the con-
struction of each v; depends on the dimensionality of the problem.
There are two cases: low-dimensional systems of dimension less
than five, and high-dimensional systems with tens of state variables.
We discuss each case in turn.

Low-Dimensional Systems. For low-dimensional systems, we
discretize the problem by constructing a regular grid over the area
of interest in state space. Then, dynamic programming [Bertsekas
2007] solves for the optimal policy and value function at each point
in this grid. At run-time, the value function is evaluated in the grid
using barycentric interpolation of the values at grid points[Sutton
and Barto 1998]. Low-dimensional optimal control has been used
in character animation [McCann and Pollard 2007; Treuille et al.
2007].

High-Dimensional Systems. For high-dimensional systems,
memory costs prevent us from building a grid in state space due
to exponential growth of storage requirements. Instead, we gener-
ate an example trajectory using an execution of the controller from
an initial condition. We then optimize this trajectory using an ad-
joint method [McNamara et al. 2004] or differential dynamic pro-
gramming (DDP) [Jacobson and Mayne 1970]. The output of the
optimization is a state and control trajectory X; and #; that define
a value function along the trajectory:

_ _ ro_ I 1
w0 =g @D+ [g + 5 T) b,

These samples may not equal the globally optimal value function in
general if the control actions are suboptimal.

Given the set of value function samples along the optimized tra-
jectory, we linearize the dynamics about that trajectory and use dif-
ferential dynamic programming (DDP) [Jacobson and Mayne 1970]

to compute a quadratic approximation for each trajectory:
5 (e 1) = i (% (T L AeTP,
Vi(x,t) =vi(x;,t)+ pi(t) Ax + 2Ax P;(t)Ax (12)

where the vector p;(t) and matrix P;(t) are computed by solv-
ing standard Ricatti equations [Jacobson and Mayne 1970], and
Ax = x — Xx;. This local approximation is valid within some
neighborhood of the optimized trajectory. This is an efficient repre-
sentation as there are large regions of the state space which do not
represent realistic states for the character. We considered other in-
terpolation schemes such as radial basis functions but the advantage
of this approach is that it avoids setting or determining interpolation
parameters.

The approximation in Equation 12 is used with the linear
quadratic regulator K ‘i [Jacobson and Mayne 1970] to compute
the combined controller as

n(x.1) =) (. @ (1) + Ki(1)Ax),

i=1

where R
w; exp (— D;(x,1))

Yy wjexp(—0;(x.1)

The exponential remapping used to compute o maps large costs to
small rewards which can lead to precision errors with the normal-
ization step. Also, other local approximations to the policy can be
used instead of a control tape. For example, the optimization that
generates the value function samples may optimize the parameters
of a feedback policy rather than a feedforward control tape. These
policies can be blended using Equation 11.

6 Results

There are two applications our control formulation supports: con-
troller interpolation and coordination. In this section, we evaluate
the performance of both applications in several different simula-
tion scenarios. We also provide empirical evidence that more naive
combination schemes can lead to undesirable animation outcomes.

aj(x,t) =

6.1 Control Interpolation for New Tasks

Linear Bellman combination can be used to interpolate control
tasks. Here we demonstrate this application using several anima-
tion tasks: diving, stepping, and jumping. We also highlight some
important factors that go into the construction of an effective com-
bined policy.

Diving. Optimizing any diving motion using trajectory optimiza-
tion can be a time-consuming task. We can use blending to produce
multiple diving examples from just two optimized solutions. In this
case, one solution does a reverse dive that under rotates ending up
short of the desired vertical position while the other dive over ro-
tates and goes past vertical. Blending the resulting feedback poli-
cies creates dives that under rotate more or less or hit vertical.

In Figure 6, we compare linear Bellman combination for inter-
polation with a naive approach that averages the output of the each
component controller using fixed weights. This approach fails to
produce a vertical dive. The simple approach can be made to work
by tuning a set of time-varying blend weights. Linear Bellman com-
bination produces blend weights automatically given the desired
terminal cost function.

An important aspect of linear Bellman combination is that it
uses less control than standard proportional derivative control. For
graphics, this is important not only for simulation stability, but also
for aesthetics. An overly stiff controller does not react to distur-
bances. As an example, we added random forces to the diver. Using
linear Bellman combination, one can see the effects of this added

Naive Blend

Target Linear Bellman

Figure 6: Naive Blend vs Linear Bellman. Shown are the final
frames of two dive simulations. The simulation on the right used
linear Bellman combination to compute time-varying weights to
combine a dive controller that under rotates and a dive controller
that over rotates. The fixed blend weights w; needed to produce
a vertical diver were automatically computed by projecting a goal
function centered on the vertical pose onto the goal functions of
each component controller. Using these fixed blend weights in a
naive weighted average fails to produce a vertical dive.

force and watch how the control compensates for it. With a stan-
dard proportional-derivative dive controller, the effects of the ap-
plied disturbances are not immediately visible, although the final
outcome is altered. With PD control, disturbances are invisible even
when the applied forces are scaled by a factor of four.

Stepping. It is important while walking to be able to avoid step-
ping on obstacles [Coros et al. 2008]. Linear Bellman combina-
tion can create a stepping controller which can take steps of various
lengths. For this application, two example steps, a short step and a
long step, are combined to interpolate the step lengths. A complete
walk can be constructed by sequencing step controllers together.

Jumping. The height of a jump is determined by the speed of the
character at the moment of takeoff. Once in the air, the character
cannot adjust its momentum to fly higher or further. As such, we
use linear Bellman combination to interpolate takeoff controllers to
jump over obstacles in the scene or to grab onto objects at different
heights. Linear Bellman combination interpolates desired takeoff
conditions more accurately than a naive approach. To test this, we
created a tracking controller that lands a jump for a given initial
condition. We then used this initial condition as the target for the
linear Bellman combination. The resulting jump lands successfully.
A weighted average controller using the same weights fails to land
as it falls outside of the region of competence for the tracking con-
troller.

Objective Function. In each of these cases, we found it impor-
tant to include a term in the integrated cost of the objective which
penalized deviations from some form of average trajectory. In other
words, each example minimizes an objective of the form

(x(T) = %;(T)) T Q1 (x(T) — %:(T))
T
+/ x()—x@)TQ(x@)—%@1)) + %u(t)TRu(t)dt.
0

If the integrated cost term is not included in the objective, the re-
sulting controller will make significant departures from the example
trajectories to try and meet the terminal goal. It may also employ

ideal

Linear]
Bellman Linear
Blend
B end
configuration tracker |

tracker 2 B start

configuration

tracker 2
test tracker |

Figure 7: Tracking Multiple Swing Up Trajectories. Here we
compare the final position of the simple gymnast under four poli-
cies. Tracker 1 and 2 are LOR policies used to track optimized tra-
Jectories for the swing up task starting from the indicated locations.
Simulations starting from the test location using these trackers fail
to come near the upright position. A simple linear blend fairs bet-
ter but is not as close as a controller created using linear Bellman
combination. The results of all these trackers can be improved by
placing examples closer to the test configuration.

feedback strategies that result in undesirable motions.

6.2 Coordinating Multiple Controllers

Some recent work has used linear quadratic regulators (LQR) to
track a single example trajectory [da Silva et al. 2008b; Barbi¢ and
Popovi¢ 2008]. However, these tracking controllers are often valid
only near the example trajectory. If a perturbation takes the charac-
ter outside of this neighborhood, the tracking controller will fail to
recover. Our solution to this problem is to combine many tracking
controllers that cover different parts of the state space.

Simple Gymnast Example. We first demonstrate this idea using
a high bar gymnastics task. In this case, the gymnast has two links
and can only exert torques at the hip (this model is known as the ac-
robot model in robotics). Its state space consists of two joint angles
and two joint velocities. The goal is to build a controller that brings
the gymnast to a hand-stand position on the high bar while mini-
mizing exerted torque. We build such a controller by combining
multiple tracking controllers using Equation 11 with fixed weight
one to create a combined policy w. The tracking controllers track
example trajectories which solve the swing up task for different ini-
tial conditions. These solutions are synthesized using an adjoint
method solving an objective of the form

T
g+ [Ju0 w0

resulting in two feedforward trajectories #1 and u, which solve the
swing up task from two different initial conditions.

Figure 7 compares several approaches to solving the swing up
task for an initial condition which does not have an associated pre-
computed policy, x(0) = (—105,—15,0,0) where the angles are
in degrees. The first attempt uses only a single tracking controller
which tracks a solution initialized at x (0) = (—90,0,0,0). The

cost [Linear Bellman

0.500

M Single Tracker

0.375

0.250

0.125

!Ll.UJ}H

06 07 08 09

Linear Bellman Single
Combination Tracker

angular velocity

Figure 8: Diving Coordination. Shown are the final poses of a
diver starting from eight different initial angular velocities. The
poses on the left were controlled using linear Bellman combination
of three dive controllers. The poses on the right were simulated
using a single tracking controller. The single tracking controller
does not reach a vertical configuration for some initial conditions
and has an inferior objective score in each case.

second attempt also uses a single tracking controller but this one is
initialized at x (0) = (—110, —20, 0, 0). The third approach simply
sums the results of the two tracking controllers. None of these ap-
proaches come as close to the ideal handstand as a controller created
using linear Bellman combination of the two tracking policies. The
hand-stand position is an unstable equilibrium point of the charac-
ter. It is important to come as close as possible so that a stabilizing
controller can easily maintain that position.

Diving. We use a diving example to illustrate that combining mul-
tiple controllers can outperform using a single tracking controller.
We construct a controller using linear Bellman combination of three
components which enter the water vertically for three different ini-
tial angular velocities: 0.85, 1, and 1.15, radians per second. A
tracking controller is constructed from the dive that starts with an
initial angular velocity of 1 radian per second. We sampled a num-
ber of different initial angular velocities for the diver. The com-
bined controller does a better job recovering to a vertical pose on
entry than a single tracking controller, see Figure 8.

Push Recovery. The idea of coordination can also be used to
build simple push recovery controllers. We created a controller
which chooses to reach forwards or backwards to prevent a fall
based on an initial push. In Figure 9, we plot the blend weight of
a coordinating controller indicating which controller has the most
influence at each point in time. In the simulation depicted, the arm
is tugged back and forth causing changes in the blend weight.

Stepping. Coordination was also used to combine two SIMBI-
CON [Yin et al. 2007] walkers. One walker was tuned to walk on
flat ground, while the other was tuned to walk on an incline. When
placed on an incline of ten degrees, the flat ground walker does not
fall, but fails to advance up the hill. We constructed a combined
controller that walks on flat and hilly terrain. As the combined
walker encounters a hill, the blend weights shift to weight the hill
component more heavily.

6.3 Implementation Details

Simulation. The examples involving linked rigid bodies were
simulated using our own minimal coordinates simulation engine.
For the examples involving contacts, we used a penalty-based
method with parameters as described in Yin et al’s SIMBICON sim-
ulation [2007].

1 \
back
alpha
forward
time
y

>
>

Figure 9: Balance Coordination. Shown is the time varying blend
parameter of a coordinating controller created using linear Bell-
man combination of a controller which catches itself falling for-
wards and another falling backwards. In this simulation, the arm
of the character was tugged forwards and backwards causing the
combined controller to vacillate before settling on the backwards
strategy.

Physical Models. The two-link gymnast is a point-mass model
with unit masses and unit length limbs. The diver is a seven link,
planar character with physical parameters as described by Sok et al
[2007]. A version of the diver with both sets of extremities was used
for the broad jump examples that land. The step example uses the
same 2D model as SIMBICON [2007]. The vertical leap examples
use the the same 3D model as described in Limit Cycle Control
[Laszlo et al. 1996].

Optimization. Linked rigid body examples were optimized us-
ing one of two methods. One method was a conjugate gradient
descent algorithm where the derivative of the objective function
with respect to the control parameters is calculated using the adjoint
method. The other method was differential dynamic programming.
We found that differential dynamic programming consistently con-
verged in fewer iterations but sometimes settled in a different local
minimum than the adjoint method. The optimizations often needed
a decent initial guess to converge to good solutions. The diving and
jumping examples were initialized using PD controllers similar to
those described by Wooten et al [2000]

It is important to note that, as opposed to low-dimensional sys-
tems, high-dimensional systems require local optimization methods
that avoid the curse of dimensionality by finding the solution for a
single initial condition. However, it is not guaranteed that the re-
sulting policy is optimal. This violates the assumptions required for
optimality as described in §3, so in practice, all high dimensional
examples are using sub-optimal policies.

7 Conclusion

This paper introduces linear Bellman combination as a method for
joining control policies to derive new control strategies. Combina-
tion can interpolate two policies to obtain a strategy that accom-
plishes a different goal. Or, it can coordinate two policies to obtain
a strategy that combines different functionalities. For example, co-
ordination can combine policies designed for two different precon-
ditions (or outcomes) to derive a composite strategy valid for either
precondition (or outcome).

The combined strategies are modular because they only blend
the control forces of constituent policies. The individual building
blocks could therefore be arbitrary control schemes. Furthermore,
the combination amortizes the cost and the difficulty of generating
individual control policies. Policies can be painstakingly crafted
once and then repurposed many more times in various combina-

tions. With some assumptions, the combination can even combine
optimal policies to compute another optimal policy for a different
terminal cost.

When many related optimal control problems must be solved,
there is an advantage to using linear Bellman combination over
direct non-linear optimization. Even on simple problems, direct
optimization can be too costly to compute controllers in real-time
applications. Linear Bellman combination computes a new con-
troller essentially instantly. However, linear Bellman combination
is not intended as a replacement for direct non-linear optimization
in offline applications. An alternative for real-time applications is
model predictive control. Model predictive control may be prefer-
able to combination when feasible as in autonomous control of air-
craft [Milam 2003] or character models over short time horizons
[Tassa et al. 2008; da Silva et al. 2008a].

There are two main limitations of linear Bellman combination.
The first limitation is that value function approximations are re-
quired to blend. Currently, we use example trajectories from
the controller and a manually specified objective function to con-
struct an approximate value function. An interesting area of future
work would be to automatically infer value-function approxima-
tions given observations of previously successful trajectories. This
would allow us to learn control strategies from observations of hu-
man performances recorded by motion capture.

The second major limitation of linear Bellman combination is
that the component controllers must share the same duration. We
would like to devise a strategy for indexing component controllers
using non-time based indices in order to blend policies of different
duration. One could use any monotonic feature of the motion to
reindex time such as the angle between the ankle and hip in a walk.
In addition, it should be possible to extend combination to first-exit
policies where the policy terminates when a certain state region is
first reached.

Optimization and control are essential in many domains of com-
puter graphics. The linearity of the Bellman equation should be
explored in those domains as well.

Acknowledgments

This project was inspired by Emo Todorov’s work on linearly solv-
able Markov decision processes. Russ Tedrake provided some early
feedback on how combination might be used in practice. Emo
provided a MATLAB implementation of his z-iteration algorithm
which allowed us to test combination on simple examples. Michiel
van de Panne provided a detailed and helpful early review of our pa-
per. This work was supported by grands from the Singapore-MIT
Gambit Game Lab, the National Science Foundation (2007043041,
CCF-0810888), Adobe Systems, Pixar Animation Studios, and
software donations from Autodesk and Adobe systems.

References

ABBEEL, P., AND NG, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In International Conference on
Machine learning (ICML), ACM, vol. 69, 1:1-1:8.

ATKESON, C. G., AND MORIMOTO, J. 2002. Nonparametric rep-
resentation of policies and value functions: A trajectory-based
approach. In Advances in Neural Information Processing Sys-
tems (NIPS), vol. 15, 1611-1618.

ATKESON, C. G. 1994. Using local trajectory optimizers to speed
up global optimization in dynamic programming. In Advances in
Neural Information Processing Systems (NIPS), vol. 6, 663-670.

BARBIC, J., AND PoPoVIC, J. 2008. Real-time control of physi-
cally based simulations using gentle forces. ACM Transactions
on Graphics 27, 5, 163:1-163:10.

BELLMAN, R. E. 1957. Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. Tracks: toward directable thin shells. ACM Transac-
tions on Graphics 26, 3, 50:1-50:10.

BERTSEKAS, D. P. 2007. Dynamic Programming and Optimal
Control, 3 ed., vol. 1. Athena Scientific, Nashua, NH.

BROTMAN, L. S., AND NETRAVALI, A. N. 1988. Motion interpo-
lation by optimal control. In Computer Graphics (Proceedings
of SIGGRAPH 88), 309-315.

BURRIDGE, R. R., Ri1zzi, A. A., AND KODITSCHEK, D. E.
1999. Sequential composition of dynamically desterous robot
behaviours. [International Journal of Robotics Research 18, 6,
534-555.

COROS, S., BEAUDOIN, P., YIN, K., AND VAN DE PANNE, M.
2008. Synthesis of constrained walking skills. ACM Transac-
tions on Graphics 27,5, 113:1-113:9.

DA SILVA, M., ABE, Y., AND PoPoOVIC, J. 2008. Simulation of
human motion data using short-horizon model-predictive con-
trol. Computer Graphics Forum 27,2, 371-380.

DA SILVA, M., ABE, Y., AND PoPoVIC, J. 2008. Interactive
simulation of stylized human locomotion. ACM Transactions on
Graphics 27, 3, 82:1-82:10.

EREZ, T., AND SMART, W. 2007. Bipedal walking on rough terrain
using manifold control. International Conference on Intelligent
Robots and Systems (IROS), 1539-1544.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proceedings of ACM SIGGRAPH 2001, Annual Con-
ference Series, 251-260.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke
animation. ACM Transactions on Graphics 23, 3, 441-448.

FLEMING, W. H. 1978. EXxit probabilities and optimal stochastic
control. Applied Mathematics and Optimization 4, 329-346.

HODGINS, J. K., AND POLLARD, N. S. 1997. Adapting simulated
behaviors for new characters. In Proceedings of SSIGGRAPH 97,
Annual Conference Series, 153-162.

HoDGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND
O’BRIEN, J. F. 1995. Animating human athletics. In Proceed-
ings of ACM SIGGRAPH 95, Annual Conference Series, 71-78.

HOLLAND, C. 1977. A new energy characterization of the small-
est eigenvalue fo the schrodinger equation. Communications on
Pure and Applied Mathematics 30, 755-765.

JACOBSON, D., AND MAYNE, D. 1970. Differential Dynamic
Programming, 1st ed. Elsevier, New York.

KAPPEN, H. J. 2005. Linear theory for control of nonlinear
stochastic systems. Physical Review Letters 95, 20, 200-204.

LAszLO, J. F., VAN DE PANNE, M., AND FIUME, E. L. 1996.
Limit cycle control and its application to the animation of bal-
ancing and walking. In Proceedings of SIGGRAPH 96, Annual
Conference Series, 155-162.

Liu, C. K., HERTZMANN, A., AND PoPOVIC, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics 24, 3, 1071-1081.

MCCANN, J., AND POLLARD, N. 2007. Responsive characters
from motion fragments. ACM Transactions on Graphics 26, 3,
6:1-6:7.

MCNAMARA, A., TREUILLE, A., POPOVIé, Z., AND STAM, J.
2004. Fluid control using the adjoint method. ACM Transactions
on Graphics 23, 3, 449-456.

MiLAM, M. B. 2003. Real-Time Optimal Trajectory Generation
for Constrained Dynamical Systems. PhD thesis, Caltech.

NGO, J. T., AND MARKS, J. 1993. Spacetime constraints revisited.
In Proceedings of ACM SIGGRAPH 2000, Annual Conference
Series, 343-350.

OKSENDAL, B. K. 2002. Stochastic Differential Equations: An
Introduction with Applications. Springer, New York, NY.

POLLARD, N. S., AND BEHMARAM-MOSAVAT, F. 2000. Force-
based motion editing for locomotion tasks. In In Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA), 663-669.

POPOVIC, Z., AND WITKIN, A. P. 1999. Physically based mo-
tion transformation. In Computer Graphics (Proceedings of SIG-
GRAPH 99), ACM SIGGRAPH, Annual Conference Series, 11—
20.

SAFONOVA, A., HODGINS, J., AND POLLARD, N. 2004. Syn-
thesizing physically realistic human motion in low-dimensional,
behavior-specific spaces. ACM Transactions on Graphics 23, 3,
514-521.

Sok, K. W., KiM, M., AND LEE, J. 2007. Simulating biped be-
haviors from human motion data. ACM Transactions on Graph-
ics 26, 3, 107:1-107:9.

SULEIMANPASIC, A., AND PoPOVIC, J. 2005. Adaptation of
performed ballistic motion. ACM Transactions on Graphics 24,
1, 165-179.

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA.

TASSA, Y., EREZ, T., AND SMART, W. 2008. Receding hori-
zon differential dynamic programming. In Advances in Neural
Information Processing Systems (NIPS), vol. 20, 1465-1472.

TobpoRrov, E. 2006. Bayesian Brain: Probabilistic Approaches to
Neural Coding. MIT Press, Cambridge, MA, ch. 12, 269-298.

ToDOROV, E. 2006. Linearly-solvable markov decision problems.
Advances in Neural Information Processing Systems (NIPS) 19,
1369-1376.

Toporov, E. 2008. Efficient computation of optimal actions.
http://www.cogsci.ucsd.edu/~todorov/papers/framework.pdf.
Unpublished manuscript, March.

TopoRrov, E. 2009. Compositionality of optimal control laws.
http://www.cogsci.ucsd.edu/~todorov/papers/primitives.pdf.
Unpublished manuscript, January 15.

TREUILLE, A., LEE, Y., AND POPOVIC, Z. 2007. Near-optimal
character animation with continuous control. ACM Transactions
on Graphics 26, 3, 7:1-7:7.

VAN DE PANNE, M., KIM, R., AND FIUME, E. 1994. Synthesizing
parameterized motions. In Eurographics Workshop on Simula-
tion and Animation.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In
Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22,
159-168.

WOOTEN, W. L., AND HODGINS, J. K. 2000. Simulating leaping,
tumbling, landing and balancing humans. International Confer-
ence on Robotics and Automation (ICRA), 656—662.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: Simple biped locomotion control. ACM Transactions on
Graphics 26, 3, 105:1-105:10.

YIN, K., COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M.
2008. Continuation methods for adapting simulated skills. ACM
Transactions on Graphics 27, 3, 81:1-81:7.

ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-
driven simulations that hit and react. In Symposium on Computer
Animation (SCA), 89-96.

