
QueryMarket Demonstration:
Pricing for Online Data Markets

Paraschos Koutris, Prasang Upadhyaya,
Magdalena Balazinska, Bill Howe, and Dan Suciu

University of Washington, Seattle, USA

{pkoutris,prasang,magda,billhowe,suciu}@cs.washington.edu

ABSTRACT
Increasingly data is being bought and sold online. To fa-
cilitate such transactions, online data marketplaces have
emerged to provide a service for sellers to price views on
their data, and buyers to buy such views. These market-
places neither support the sale of ad-hoc queries (that are
not one of the specified views), nor do they support queries
that join datasets. We present QueryMarket, a prototype
data marketplace that automatically extrapolates prices to
ad-hoc queries, including those with joins, from the man-
ually priced views. We call this capability “query-based
pricing” and describe how it is superior to existing pric-
ing methods, and how it provides more flexible pricing for
the sellers. We then show how QueryMarket implements
query-based pricing and how it generates explanations for
the prices it computes.

1. INTRODUCTION
Data is becoming a traded commodity. Commercial inter-

ests increasingly purchase data online to facilitate market
research, to inform business decisions, or generate mash-
ups [3]. For example, Xignite [13] sells financial data,
Gnip [1] sells data from social media, and AggData [2] col-
lects and sells multiple kinds of online data. The rising de-
mand for valuable online datasets has led to the emergence
of various online data marketplace services such as Win-
dows Azure Marketplace [3] and Infochimps [7] that provide
a common platform for data owners to sell their data. The
demand for such services can be gauged from the fact that
Windows Azure Marketplace offers over 130 data sources
from 48 publishers in 17 categories while Infochimps offers
over 12,000 datasets from multiple vendors.

To use services such as the Windows Azure Marketplace
or Infochimps, data sellers need to define prices for their
datasets. Right now, these platforms offer limited options
for pricing data: the sellers have to specify in advance which
(parameterized) views they want to sell and at what price.
For example, www.wordfrequency.info (explained in detail

in Section 2) sells a basic word-list for $195, the word-list
augmented with frequencies for $265, and the word-list aug-
mented with co-located words for $265. This is a serious
limitation: the seller needs to carefully design the views to
sell so as to cater to as many buyers as she can, without
knowing the exact queries from the buyers. Similarly, the
buyer needs to carefully evaluate the various views that are
available for sale to determine which views suffice to answer
her query and are also the cheapest way to answer that
query. Finally, is not possible today to directly buy queries
that join datasets from different sellers.

In prior work [8], we studied the theoretical foundations
of assigning a price to an arbitrary query by extrapolating
the prices that sellers set on views consisting of selection
queries on a single attribute of a relation (note that all the
tuples that satisfy the selection predicate are returned and
not just the column being selected). We called this capa-
bility “query-based pricing.” In this demonstration, we ap-
ply those results and consider the practical constraints in-
volved in building a commercial marketplace. We present a
prototype data marketplace powered by query-based pricing
called QueryMarket. QueryMarket is a cloud-based service
for data publishers to sell data and ad-hoc views over that
data. QueryMarket allows sellers to assign prices to views
defined by selection predicates of the form σa=α and allows
buyers to purchase any query in a non-trivial subset of full
conjunctive queries without self-joins [8] called the “Gener-
alized Chain Queries” (Section 5), a set that includes all
path join queries, star join queries, and their combination.

Our approach to query-based pricing works as follows:
Given a query, the algorithm selects the least expensive set
of answer views that can be used to answer the query. The
sum of the price of these views is the price of the query.
This pricing function has two properties: it is arbitrage-free
(there is no less expensive way to answer the query), and it is
maximal (no unintended discounts are introduced). The key
technical contributions of this prior work include (1) an algo-
rithm with polynomial time data complexity for computing
the price of any generalized chain query, by reducing the
problem to network flow, (2) a complete characterization of
the class of Conjunctive Queries without self-joins that can
be priced with PTIME data complexity (this class is slightly
larger than generalize chain queries), and (3) a proof that
pricing all other queries is NP-complete, thus establishing a
dichotomy on the complexity of the pricing problem when
all views are selection queries. For the queries that are not
in PTIME, we reduce the problem to an Integer Linear Pro-
gram and compute the prices.

Designing a data marketplace service with the ability to
optimally price ad-hoc queries presents three new challenges
beyond the theoretical problems that we addressed in prior
work: (a) First, since users may ask for prices of queries
before actually buying them, the price computation needs
to be in near real-time. (b) Second, because setting prices
in a way that ensures good properties (i.e., no arbitrage)
can be difficult for sellers, a marketplace service should help
those sellers identify and fix pricing problems. (c) Finally,
since the answer set of views used to price a query can be
large, there should be a way to explain to the buyers how
the price was actually computed.

In the face of these challenges, this demonstration makes
the following contributions:

• We demonstrate the benefits of our query-pricing ap-
proach through use-cases on real data. In particular,
we enable the audience to interactively compare the
pricing and expressiveness of our system with other
pricing systems where only pre-defined views may be
bought, such as buying the whole dataset for a fixed
price and buying per transaction (where a transaction
is defined as a fixed number of tuples in the answer).
We show that our system can answer more complex
and informative queries over the dataset, and can also
compute the minimum arbitrage-free price for a given
query automatically and in near real-time (Section 2).

• We develop a new method to help sellers fix incon-
sistent prices and we demonstrate this approach in-
teractively using the real use-cases. We show that
QueryMarket not only provides increased flexibility in
pricing the input data but also guarantees that the in-
put prices themselves do not violate the arbitrage-free
property. (Section 3).

• We develop a new approach for illustrating how Query-
Market prices queries and use this approach to bet-
ter explain the internals of our system to the audi-
ence. More precisely, we demonstrate how QueryMar-
ket computes arbitrage-free answers to ad-hoc queries
and provides an intuition to buyers as to why the query
has the price it computed. Specifically, it lets buy-
ers ask what all views are required to prove the exis-
tence or justify the absence of a certain tuple in the
query’s answer (Section 4) and compares them agains
the views purchased by a naive pricing solution.

• We present a simple prototype implementation of the
theoretical framework developed in our recent work
(Section 5).

2. BENEFITS OF QUERY-BASED PRICING
The first contribution of this demonstration is to show

the QueryMarket prototype in action on real data and to
illustrate the benefits of our query-based pricing approach.
We describe this part of the demonstration in this section.

Demonstrated Scenario. Microsoft Azure Marketplace
has a large online database of English words with their
translation into a variety of other languages [9], available
in chunks of $20 for 2 million characters (but the first
2 million characters are free to translate). The Website
www.wordfrequency.info [12] holds a database of 60000 En-
glish words along with their parts of speech and frequencies

in different genres of documents in a large corpus (e.g., med-
ical documents, movies, financial news articles, etc.). This
dataset is available for $265. www.wordfrequency.info also
sells the most frequently co-located word (a word found im-
mediately before or after a given word) for 60000 English
words in the document corpus, also for $265.

We consider a potential buyer, Alice, who is preparing for
an interview as an English-to-Greek translator for the World
Health Organization. She wants to buy the English-to-
Greek translation of all the nouns in the 100 most-commonly
used English words in the medical literature. With the
prices that are set so far, she must buy the whole word
frequency dataset and additionally pay for the translation
of the words she is interested in for a total of $265. But that
is too much money for her so she chooses to buy nothing.
The sellers just missed the opportunity to make a sell.

Now, consider a commercial marketplace service where
the seller can sell individual tuples, such as the Windows
Azure Marketplace1. Alice could get her query answered for
a lesser price, but she has to know enough about the two
datasets to design and execute a cost-effective plan. For
example, she could buy the 100 most frequent words, select
those that are nouns, and buy their Greek translations. Not
only are these plans cumbersome to generate manually, have
to be orchestrated outside the marketplace, and possibly
require the use of a language apart from SQL (to automate),
but they can also become complex as buyers are given more
choices to query the dataset. For example, the seller may
also sell just the nouns in different genres and depending on
the relative value of the prices of top 100 words’ list versus
the prices of the noun list, it might be cheaper to only buy
the noun dataset for the medical genre, select the nouns with
a rank in the top 100, and then buy their translations.

Technical Contribution. One can generalize the individual
tuple pricing, mentioned in the above example, by allowing
the seller to set a price for selection queries on various at-
tributes of the relations for sell. For example, the seller can
allow Alice to buy just the word with rank n where n could
be any rank from 1 to 60000, or all words in the genre g
where g could be any of the available genres, etc. Given
these choices, our system, QueryMarket, provides built-in
support for finding the cheapest price to answer a large sub-
set of full conjunctive query without self-joins. To show our
approach’s effectiveness, we compare its price to those com-
puted by Infochimps and Microsoft Azure Marketplace.

Demonstration. We now describe the datasets and the
queries used in the demo. The three paid datasets are:

• English word frequent dataset: We denote this dataset
with the relation F with schema (English-word, type,
genre, rank).

• Translation dataset: We denote it with the relation T
with schema (English-word, Greek-word).

• Co-location dataset: We denote this dataset with the
relation C with schema (English-word, English-word,
rank).

1Windows Azure Marketplace restricts the seller to price all
tuples the same, while the seller might want to have variable
pricing. For example, www.wordfrequency.info might want
to sell the top 100 words at a higher price than the next 100
words, and so on.

We consider three queries that Alice might ask.

Q1 “The 100 English words that appear most frequently in
documents related to medicine.” This translates to the
following DataLog query:

Q1(e, t, g, r) :- F (e, t, g, r), g = ’med’, r ≤ 100

Q2 “The Greek translations of the nouns that occur in
the list of the 100 English words that appear most
frequently in documents related to medicine.” This
translates to the following DataLog query:

Q2(e, h, t, g, r) :- T (e, h), Q1(e, t, g, r), t = ’n’

Q3 “The Greek translations of the three most frequent
words collocated with the nouns that occur in the list
of the 100 English words that appear most frequently
in documents related to medicine.”

Q3(c, h, f, e, t, g, r) :- T (c, h), C(e, c, f), f ≥ 3,

Q1(e, t, g, r), t = ’n’

In the demonstration, we use parameterized versions of
the above queries to enable members of the audience to
experiment with different query variants by interactively
choosing different genres, cut-off ranks, and word types.

In our demonstration, we compare QueryMarket’s prices
for the three queries, Q1, Q2, and Q3, with the prices ob-
tained from a sequence of pre-defined query plans that can
be used with existing data market places: (a) Naive: buy
all datasets, (b) Rank: buy the rank column completely, and
then only ask for the join-able tuples from the other rela-
tions, (c) Type: buy the noun column completely, and only
then ask for the join-able tuples from the other relations,
and (d) Genre: buy the genre column completely and then
only ask for the join-able tuples from the other table.

In the demonstration, the audience will pick any of the
above three queries and will select values from a drop-down
menu for the different parameters (with default values al-
ready filled in). Additionally, to compare QueryMarket with
these pre-defined query plans, the audience will also select
from a series of three pre-defined prices where either the
ranks, the types, or the genres are the least expensive to
buy compared to the other two columns. We then present
the price computed by QueryMarket and the other query
plans for all the different pricing points.

Overall, in this part of the demonstration, we thus show
that our system enables a user to automatically obtain the
cheapest price by simply asking her query directly. Sec-
ond, we show that the prices computed by QueryMarket
are better than all the other pricing plans we considered.
Finally, we show that QueryMarket computes the prices
quickly enough to be interactive.

3. SETTING PRICES
In the second part of our demonstration, we explain to

the audience how QueryMarket helps users verify the cor-
rectness and fix their prices.

Technical Contribution. We consider the prices set by the
seller to be inconsistent when there is an arbitrage amongst
the prices, that is, a priced selection view on a column is
priced so high that it is cheaper to buy all the selection views
on some other column and thus get the high-priced column.

Not only does QueryMarket check for the consistency of the
prices, it also provides suggestions about updates that would
make the prices consistent.

We use a lemma [8, Lemma 3.1] to check that prices a
seller sets are consistent. The lemma uses the notion of
fully-covered columns in a relation that are columns where
the selections on all values in the column’s domain have
been priced. The prices are consistent if and only if there
is at least one fully-covered column in each relation, and no
price assigned to a single selection query, from a relation R,
exceeds the sum of the priced columns of any fully-covered
column, also from relation the R. This requirement can be
easily expressed as a set of SQL queries and it returns the
set of prices that lead to inconsistency for free.

Demonstration. As part of the demonstration, we enable
the audience to act as the seller and assign prices to selection
queries on relation attributes using one of the following two
methods:

• Choose from a set of pre-defined functions such as uni-
form prices (i.e., a selection query that asks for all
words in genre “medicine” costs the same as a query
that asks for all words in genre “technology”, or “law”,
or other) or prices proportional to the value of the se-
lection attribute (e.g., a query that selects all words
with rank value 1 is more expensive than a query which
selects all words with rank value 2, etc.).

• Manually set the price of a selection query for a given
attribute value (e.g., change the price of the selection
query for all words with rank 1 to be 10X higher than
before).

We then demonstrate the detection of inconsistent pric-
ing. Either the audience member will cause an inconsistency
or we will make a pre-defined consistent pricing on the Fre-
quency dataset inconsistent, by updating the price of a rank
to a very high value.

In this part of the demonstration, we will thus illustrate
some of the challenges that can arise when manually setting
data prices and we will show how QueryMarket helps users
avoid such problems.

4. EXPLAINING PRICES
In the last part of our demonstration, we explain to the

audience how QueryMarket computes the prices of queries
posed by the buyers and how it enables buyers to understand
the computed prices.

Technical Contribution. Given a query to price, Query-
Market uses our dichotomy theorem [8], to check, without
executing the query, if the query’s price can be computed in
PTIME. If the query’s price can be efficiently computed, it
computes the price and returns the price to the buyer.

QueryMarket also explains why a query should have the
computed price. Unlike existing data marketplaces, Query-
Market provides more flexible pricing and, thus, requires an
interface to explain query prices to the buyers.2 Through
this module, the buyer can ask details about a query’s price,
which is the sum of the selection views bought to answer the
query. Such details can be one of the following:

2Note that existing marketplaces have very simple billing
mechanisms since they offer a very limited query interface.

!"#$%&'$()*+,-&'$() ./((0'&1+"')

!"##"$%
&'(')"()%

*$+,+-.%
$"#'/0-)%

*$+,"!"(%

*$+,"10234("%

*$+,"563#'+-%

7-#+-"%8-("$9',"%
90$%:4;"$)%

7-#+-"%8-("$9',"%
90$%)"##"$)%

Figure 1: High level architecture of QueryMarket.
The direction of the arrows represent direction of
data transfer.

• For a tuple in the query’s output, the user can request
the views that were purchased to generate the tuple.

• For a tuple absent from the query’s output, the user
can request the views that justify the tuple’s absence.

• To give an intuition for why a view was purchased or
not purchased we compare against the views purchased
by the naive pricing scheme that consists of buying
each relation individually at the cheapest price.

Demonstration. Given a query to price, such as Q2, we
check if it is admissible, and if it is, we compute its price.
Since the flow graph to price the data can be larger than
the size of the database, it is not possible to show it visually
for the use-case we have outlined previously. Instead, we
provide hard-coded examples of the flow graph of the three
queries on a very small dataset.

We provide an online interface for the buyers to under-
stand the price of their queries. For example, to answer Q2,
the buyer can ask QueryMarket which view justifies the tu-
ple with rank 1 (by typing out the tuple). Similarly, the user
may ask which purchased view proves that a certain tuple
(by typing out the tuple) was not in the answers of Q2. We
also let the users compare the views purchased by the naive
pricing strategy to the view purchased by QueryMarket. We
let users to focus on different parts of this set of views (sort
by relations, sort by attribute value, sort by prices, etc.).

5. PROTOTYPE DETAILS
Figure 1 illustrates the architecture of the QueryMarket

cloud service. QueryMarket provides an web interface for
sellers to upload datasets and set prices to selection queries
over columns of these datasets. It also enables buyers to
query the uploaded datasets and pay for the result. The
price paid is automatically derived by QueryMarket based
on the price points specified by the sellers.

QueryMarket is implemented as a middle-ware layer on
top of a traditional relational database management system.
The key components of the system include:

• PriceSet : Enables sellers to set price-points. Detects
when price-points conflict and lead to arbitrage op-
portunities. Provides recommendations to users for
adjusting their price-points.

• PriceCompute: Given the price-points specified by the
sellers, it computes the price of the queries submitted
by the buyer. If a price of a query cannot efficiently be
computed, it returns an error message to the buyer.

• PriceExplain: Explains how PriceCompute derived a
given price for a query.

QueryMarket can use any standard relational database
as a back-end and uses MySQL in our implementation. It
stores each dataset as a relation. Further, it also stores
all the pricing information as relations. This allows us to
adapt standard libraries and tools [6, 10, 11] to visualize
and update prices.

QueryMarket uses various heuristics to quickly compute
the prices of many simple types of queries and for common
types of pricing functions such as pricing all answers tuples
the same (as seen in Microsoft Azure Marketplace). Given
arbitrary prices for selections on the various columns of the
datasets, QueryMarket can price the class of queries called
“Generalized Chain Queries”. These queries were formally
defined in prior work [8], we only give an intuition. Gen-
eralized Chain Queries are full conjunctive queries whose
relations can be ordered in a sequence such that for any
partition into a prefix and a suffix, the two sets of relations
share at most one variable; these queries include all path
joins, star joins, and combination.

To price the Generalized Chain Queries, QueryMarket
generates a flow graph and solves the maximum flow prob-
lem, as described in our recent work [8], using the maximum
flow solver present in the Boost C++ library [4]. In case
the query is not a Generalized Chain Query, we reduce the
problem to an Integer Linear Program and solve it using the
GLPK solver[5].

6. CONCLUSION
We demonstrate QueryMarket, a prototype data market-

place that provides an online service to buy and sell struc-
tured data using the notion of “query-based pricing”. We
show how buyers can ask for ad-hoc queries and get them for
the cheapest possible price, how QueryMarket helps sellers
specify consistent prices to their datasets, and how Query-
Market explains to buyers how their queries were priced. We
demonstrate the expressiveness, ease-of-use, and effective-
ness of QueryMarket on use-cases presented on real-world
datasets, and compare QueryMarket with existing commer-
cial data marketplaces.
Acknowledgments. This work is supported in part by the
NSF and Microsoft through NSF grant CCF-1047815 and
also grant IIS-0915054.

7. REFERENCES
[1] http://gnip.com.

[2] http://www.aggdata.com/.

[3] https://datamarket.azure.com/.
[4] http://www.boost.org.

[5] http://www.gnu.org/software/glpk/.

[6] http://code.google.com/apis/chart/interactive/docs/
reference.html.

[7] http://www.infochimps.com/.
[8] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and

D. Suciu. Query-based data pricing. In Proceedings of the
31st symposium on Principles of Database Systems, PODS
’12, pages 167–178, New York, NY, USA, 2012. ACM.

[9] https://datamarket.azure.com/dataset/
1899a118-d202-492c-aa16-ba21c33c06cb%.

[10] http://www.pgadmin.org/.
[11] http://www.tableausoftware.com/.
[12] http://www.wordfrequency.info.

[13] http://www.xignite.com/.

