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Abstract

We present a randomized O(logn/loglogn)-approximation algorithm for the asymmetric travel-
ing salesman problem (ATSP). This provides the first asymptotic improvement over the long-standing
O(logn) approximation bound stemming from the work of Frieze et al. [17].

The key ingredient of our approach is a new connection between the approximability of the ATSP
and the notion of so-called thin trees. To exploit this connection, we employ maximum entropy rounding
— a novel method of randomized rounding of LP relaxations of optimization problems. We believe that
this method might be of independent interest.

1 Introduction

Traveling salesman problem is one of the most celebrated and intensively studied problems in combinato-
rial optimization [30, 2, 13]. It has found applications in logistics, planning, manufacturing and testing
microchips [31], as well as DNA sequencing [36]. The roots of this problem go back as far as the first half
of the 19th century, to the works of Hamilton [13] on chess knight movement. However, its most popular
formulation is in the context of traveling through a collection of cities: given a list of cities and their pairwise
distances, the task is to find a shortest possible tour that visits each city exactly once.

The asymmetric (or general) traveling salesman problem (ATSP) concerns a situation when the distances
between the cities are asymmetric. Formally, we are given a set V of n points and an (asymmetric) cost
function ¢ : V x V' — RT. The goal is to find a minimum cost tour that visits every vertex exactly once. As
is standard in the literature, throughout the paper, we make an assumption that the costs form a metric,
i.e. they satisfy the triangle inequality c;; + c;i < ¢y for all vertices 4, j, and k. One should observe that if
we are allowed to visit each vertex more than once, then by substituting the cost of each arc with the cost
of the shortest path from its tail to its head we automatically ensure that all the triangle inequalities hold.

In the very important special case of symmetric costs, i.e., when for every uw,v € V we have c¢(u,v) =
c(v,u), there is a celebrated factor 3/2 approximation algorithm due to Christofides [11]. This algorithm
first computes a minimum cost spanning tree 1" on V; then finds the minimum cost Eulerian augmentation
of that tree; and finally shortcuts the corresponding Eulerian walk into a tour.

In this paper, we are concerned with the general, asymmetric version and give an O(logn/loglogn)-
approximation algorithm for it. This finally breaks the thirty-year-old ©(logn) barrier stemming from the
work of Frieze et al. [17] and subsequent improvements to 0.999n, 0.842n, and 0.666n [4, 22, 16]. Our approach
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bears some similarities to Christofides’ algorithm. We first construct a spanning tree' with certain special
properties. (Although these special properties are much harder to satisfy than the ones needed in Christofides’
algorithm.) Then, we find a minimum cost Eulerian augmentation of this tree, and finally, shortcut the
resulting Eulerian walk. (Recall that for undirected graphs, being Eulerian means being connected and
having even degrees, while for directed graphs it means being (strongly) connected and having the in-degree
of every vertex equal to its out-degree.)

The key element of our algorithm is the initial step of choosing the spanning tree. To make this choice,
we first obtain an optimum solution z* to the Held-Karp relaxation of the asymmetric TSP [24]. Then, our
goal is to find a spanning tree that, on one hand, has relatively small cost compared to the cost OPTyk of the
solution *, and, on the other hand, has the crucial property of being “thin” with respect to *. Roughly
speaking, a spanning tree T is “thin” with respect to &* if, for each cut () # U C V, the number of arcs of
T with exactly one endpoint in U is within a small multiplicative factor (“thinness”) of the corresponding
value of * on all the arcs that have exactly one endpoint in U. (See Section 4 for a precise definition.) The
central fact motivating our interest in such a tree is that we show that if a spanning tree is “thin” then the
cost of its Eulerian augmentation is within a factor of its “thinness” of the cost OPThyk of * (and thus,
within the same factor of the optimum).

In the light of the above, the technical core of our paper comprises a way of finding such a thin tree
with thinness of O(logn/loglogn) and cost being within a constant of OPTwk. We achieve this by, first,
symmetrizing (and scaling by (1 — 1/n)) our solution z* to the Held-Karp relaxation, to obtain a vector
z* and, then, sampling a tree from a certain, carefully chosen, distribution over the spanning trees of the
corresponding symmetrized graph. This distribution can be seen as a one that is maximizing entropy among
all the distributions that (approximately) preserve the edge marginals imposed by z*. The crucial property of
such entropy-maximizing distribution is that the events corresponding to edges being present in the sampled
tree are negatively correlated. This means that the well-known Chernoff upper-bound for the independent
setting still holds (see Panconesi and Srinivasan [35]) and thus, by using this tail bound together with the
union-bounding technique of Karger [27], we are able to establish the desired O(logn/loglogn)-thinness of
the sampled tree (with high probability). We believe that this general, maximum entropy—based approach
to rounding is also of independent interest. In particular, after the initial publication of this work, it was
used to obtain an improved approximation algorithm for the graphic variant of the symmetric TSP [34].

The high level description of our algorithm can be found in Algorithm 1. Also, the proof of our main
theorem (Theorem 6.3) gives a more formal overview of the algorithm. In the rest of the introduction we
provide an overview of our technical contributions. In Subsection 1.1 we motivate the definition of thin
spanning trees and in Subsection 1.2 we describe our maximum entropy-based approach for finding a thin
spanning tree.

1.1 Thin Spanning Trees

Suppose we are given an oriented tree T spanning over the set V and we want to turn it into a Asymmetric
TSP tour (in the next section we describe our ideas for choosing f) The minimum cost Eulerian augmenta-
tion of T is a minimum cost set of arcs that can be added to T such that the resulting graph is Eulerian, i.e.,
the in-degree of every vertex equals its out-degree. This problem can be formulated as a minimum cost flow
problem and its solution can be computed efficiently. The cost of the resulting ATSP tour is the sum of the
cost of T' and the cost of the Eulerian augmentation. So, to upper-bound the approximation factor of our
algorithm, we have to analytically upper-bound the cost of the Eulerian augmentation. We show that if T is
thin with respect to an optimal solution of Held-Karp relaxation, then the cost of the Eulerian augmentation
is not significantly larger than the optimum.

By the integrality of the flow polytope, the cost of any fractional Eulerian augmentation for T upper-
bounds the cost of the minimum Eulerian augmentation. We say a capacity vector u(.) on the arcs of the
graph is feasible if there is a fractional Eulerian augmentation for T where the flow of each arc a is at most
u(a). It follows by generalizations of the Max-flow min-cut theorem (see Theorem 4.3) that u(.) is feasible

1By a spanning tree of a directed graph we understand a tree that is spanning once the directions of arcs are disregarded.



if for any cut () # U C V, the number of arcs of T with their heads in U is at most u(6~(U)), sum of the
capacity of arcs with their tails in U. Consequently, if u(.) is feasible, then the cost of the minimum Eulerian
augmentation of T is at most Yoaula)c(a).

Now, we are ready to motivate the thin spanning tree definition. Let x* be an optimal solution of
Held-Karp relaxation of Asymmetric TSP. We say T is a-thin with respect to &* if for any cut 0 AU C V
the number of arcs of T' with exactly one endpoint in U is within a multiplicative factor of the sum of the
factional values z* of arcs with exactly one endpoint in U (we note that this is slightly different from our
formal definition 4.1). It is easy to see that if T is a-thin with respect to &* then the vector u(a) := aa?
satisfies the feasibility condition that we described in the last paragraph. Putting things together, this upper-
bounds the cost of the minimum Eulerian augmentation of T' by Yoau(a)e(a) = a-c(x*) (see Theorem 4.2
for the details). We say T is (v, s) thin with respect to z*, if it is a-thin and ¢(T') < s - ¢(x*). Therefore, if
T is (e, )-thin, then the approximation factor of our algorithm is « + s.

The importance of thin tree definition is that it disregards the orientation of the arcs. This helps us to
eliminate the inherent asymmetry of the Asymmetric TSP. Consequently, when we are designing an algorithm
to select T' we can simply drop the direction of the arcs (see next section for more details). We conjecture
that («, s)-thin trees exist for small values of «, s and can be found efficiently.

Conjecture 1.1 There exists constant values of a, s > 0 such that for any feasible solution of the Held-Karp
relazation, an («, s)-thin tree exist and can be found efficiently.

The above conjecture implies a constant factor approximation algorithm for Asymmetric TSP (see also [33,
Corollary 5.1] for a slightly more general variant that does not depend on the cost of the arcs). In addition,
even an existential proof implies that the integrality gap of the Held-Karp relaxation for ATSP is a constant.
Conversely, one can approach a lower-bound on the integrality gap of the Held-Karp relaxation by studying
families of feasible solutions that do not admit thin trees. Also, Goddyn [19] showed a direct relationship
between thin trees and the Jaeger’s conjecture [25] on the existence of nowhere-zero flows (Jaeger’s conjecture
is very recently proved by Thomassen [40]). After several years, the above conjecture is only proved for planar
and bounded genus graphs [33] (see also [15, 23]).

1.2 Rounding By Sampling From Maximum Entropy Distribution

As our sampling procedure is at the heart of our approach, we provide here some intuition on it. We
encourage the reader to review this part after reading Section 5.

At a high level, one can view our sampling procedure as a randomized rounding approach. Namely, as
we will show in Section 3 (see Lemma 3.1), if 2* is the symmetrized and slightly scaled down version of
our solution z* to the Held-Karp relaxation, then z* is a point in the (relative interior of) spanning tree
polytope of the support of *. In other words, z* can be seen as a “fractional spanning tree”.

In the light of this observation, our goal of getting a sufficiently thin and low-cost spanning tree can be
phrased as a task of rounding this fractional spanning tree represented by z* to an integral spanning tree (i.e.
a corner point of the spanning tree polytope) while roughly preserving some of its quantitative properties,
namely, the number of edges in every cut in this spanning tree (i.e. ensuring it is “sufficiently thin”) and
also its cost.

Now, one well-known and widely used technique for rounding a fractional vector € = (z1,22, - ,Zn)
with 0 < z; < 1, for each ¢, is the independent randomized rounding of Raghavan and Thompson [37]. In
this rounding technique, each x; is set to 1 with probability x;, and to 0 with the remaining probability,
independently for each ¢. This method has two very convenient properties:

(1) The resulting distribution preserves margins , i.e., the expected value of rounding of each variable x; (its
marginal) is close to its (fractional) value. Hence, every quantity that is linear in ;s (such as the total
cost of the tree, or, the number of edges crossing the cut that we are interested in) remains the same in
expectation.



(2) All the variables are rounded independently, which allows us to use strong concentration bounds such
as Chernoff bounds.

The problem with this approach is, however, that the independent randomized rounding ignores any
underlying combinatorial structures of the solution and thus might inadvertently destroy it. For example,
in our case, it is not hard to see that independent rounding of variables associated with each edge of our
underlying graph will not only most likely fail to deliver a tree, but — even more critically — the resulting
graph will be almost surely disconnected.?

Therefore, our rounding procedure needs to be more careful. In particular, to ensure connectivity, we
will restrict ourselves only to sampling from distributions over spanning trees.

Note that the fact that z* is in the spanning tree polytope implies that it can be expressed as a convex
combination of spanning trees. Namely, we have that

2t =T+ T + -+ - + Ty,

for some ¢; > 0, > ,¢; = 1, and each T; being an 0-1 vector describing some spanning tree. In fact, one
can see that there can be many ways to express z* in such a manner and each one of the resulting convex
combinations defines a distribution over spanning trees that preserves the edge marginals imposed by z*.

So, each of these choices automatically ensures that the first of the above-mentioned properties of the
independent randomized rounding still holds, i.e., that the resulting distribution is margin preserving. This
implies, in particular, that the expected cost of the sampled tree as well as the ezpected numbers of its edges
in each of the cuts are exactly as intended.

Unfortunately, the second property, i.e., independence, is much harder — and, in fact, impossible — to
satisfy, as the underlying structure of spanning trees imposes inevitable dependencies between the edge
variables. This is very problematic, as without the ability to resort to some strong concentration phenomena
we cannot hope that all the (exponentially many) quantities that we are interested in preserving are indeed
simultaneously close to their desired expected value.

Fortunately, there is a way to get around this difficulty. Namely, the crucial observation is that if we
consider all the events corresponding to edges being a part of the sampled tree, then we do not really need
these events to be fully independent. It actually suffices that they are only negatively correlated. As was
observed first by Panconesi and Srinivasan [35], negative correlation is already enough for the concentration
described by the upper tail of the Chernoff bound to emerge. As we then show, this slightly weaker con-
centration combined with union-bounding technique of Karger [27] will be sufficient to obtain the desired
O(logn/loglogn) bound on the worst case deviation from the marginals and thus, to get the corresponding
approximation bound. (See Sections 5.4 and 6 for details.)

Now, in the light of the above discussion, it remains to devise a way of obtaining (and efficiently sampling
from) a margin-preserving distribution over spanning trees that has such a negative correlation property.
Our idea is to employ maximum entropy rounding. That is, we look at the one among all the margin-
preserving distributions over spanning trees that maximizes entropy. Intuitively, this distribution maximizes
the “randomness” while preserving the structural properties of the fractional solution z*. So, one can expect
to see small correlation, or even negative correlation between the edges.

To complete the proof first we need to devise an algorithm to find and sample from the margin preserving
maximum entropy distribution, second we need to prove the negative correlation property. We note that
finding the maximum entropy distribution and sampling from it may seem intractable at first, because this
distribution is supported over all (possibly exponentially many) spanning trees of our graph. The key to
answer both of these questions is the close connection between maximum entropy distributions and exponen-
tial distributions. Exponential distributions can be viewed as a generalization of uniform distributions. In
general, any set of weights 7. assigned to edges of a graph defines an exponential distribution over spanning

trees where the probability of each tree T is proportional to exp (Z ceT %)_ It was known before our work

20ne can show that oversampling the edges by a factor of Q(logn) would ensure connectivity, but then the expected cost of
the sampled graph would increase by the same — prohibitively large — factor.



that maximum entropy distributions are exponential distributions and any exponential distribution is a max-
imum entropy distribution for its own marginals (see e.g., [6, Section 5.2.4]). This has several implications.
First, the maximum entropy distribution can be described concisely just by writing down -, for all edges,
second sampling from maximum entropy distribution reduces to the problem of sampling uniform spanning
trees which has been studied for many years [21, 29, 12], third the maximum entropy distribution satisfies
negative correlation because any product distribution over spanning tree satisfies negative correlation [32,
Chapter 4].

It remains to find the maximum entropy distribution over spanning trees that preserve the margins of z*.
This problem can be cast as a simple convex programming optimization problem with exponentially many
variables corresponding to the probability of each spanning tree of our graph. We then give two polynomial
time algorithms that find product distributions that approximately (with a very good precision) preserve the
margins of z*. The first one is a simple combinatorial algorithm based on the idea of multiplicative weight
updates. The second one uses the ellipsoid method to find a near optimal to the dual of the maximum
entropy convex program (See Sections 7 and ).

Algorithm 1 An O(logn/loglogn)-approximation algorithm for the ATSP.

Input: A set V consisting of n points and a cost function ¢ : V x V — R satisfying the triangle inequality.
Output: O(lolgﬁ) Zn)—approximation to the asymmetric traveling salesman problem instance described by V'
and c.

1. Solve the Held-Karp LP relaxation of the ATSP instance to get an optimum extreme point solution
x*. Define z* as in (5), making it a symmetrized and scaled down version of &*. Vector z* can be
viewed as a point in the spanning tree polytope of the undirected graph on the support of * that
one obtains after disregarding the directions of arcs. (See Section 3.)

2. Let FE be the support graph of z* when the direction of the arcs are disregarded. Find weights {¥}ccp
such that the exponential distribution on spanning trees, p(T')  exp (Z ceT ’y}) (approximately)

preserves the marginals imposed by z*, i.e., for any edge e € F,

> BT < (1462,

TeT:Toe

for a small enough value of e. (In this paper, we show that ¢ = 0.2 suffices for our purpose. See
Sections 7 and 8 for a description of how to compute such a distribution.)

3. Sample 2[logn] spanning trees T1, ..., Tfiogn] from p(.). For each of these trees, orient all its edges
o as to minimize its cost with respect to our (asymmetric) cost function c. Let T* be the tree whose
resulting cost is minimal among all the sampled trees.

4. Find a minimum cost integral circulation that contains the oriented tree T*. Shortcut this circulation
to a tour and output it. (See Section 4.)

The rest of the paper is organized as follows. In Section 2 we define some notations, and in Section 3
we recall the Held-Karp linear programming relaxation for ATSP. Our main proof starts afterwards. In
Section 4 we formally define thin trees and we reduce our main problem to the problem of finding a thin
tree. In Section 5 we formally define the maximum entropy sampling method and the maximum entropy
convex program that preserves the marginals of z*. We also prove that the optimizers of this program are
the exponential distributions of spanning trees. In Section 6 we prove our main theorem. Finally, in the last
two sections provide two different algorithms for finding an exponential distribution that (approximately)
preserve the marginals of z*; namely in Section 7 we provide a combinatorial algorithm and in Section 8 we
use the ellipsoid method to solve the dual of the maximum entropy convex program.



2 Notation

Throughout this paper, we use a = (u,v) to denote the arc (directed edge) from w to v and e = {u,v} to
denote an undirected edge. We will use A (resp. E) to denote the set of arcs (resp. edges) of a directed
(resp. undirected) graph we are working with. (This graph will be always clear from the context.)

Now, given a function f : A — R on the arcs of a graph, we define the cost of f to be

co(f) =Y cla)f(a),

and, for a subset S C A of arcs, we denote by

£5) =Y fla)

a€S

the sum of the values of f on this subset. We use an analogous notation for a function defined on the edge
set E of an undirected graph or a vector whose entries are corresponding to the elements of A or E.
For a given subset of vertices U C V', we also define

§TU) = {a=(u,v)€A:ueclUw¢gU},
S (U) = oH(V\U)
AU) = {a=(wv)eA:uelUwelU},

to be the set of arcs that are, respectively, leaving, entering, and contained in U. Also, with a slightly abuse
of the notation, we define 6 (v) := §+({v}) and 6~ (v) := = ({v}), for each single vertex v. Similarly, for
an undirected graph, §(U) denotes the set of edges with exactly one endpoint in U, and E(U) denotes the
edges entirely within U.

Finally, in all that follows, log denotes the natural logarithm.

3 The Held-Karp Relaxation

Our point of start is the Held-Karp relaxation [24] of the asymmetric traveling salesman problem. In this
relaxation, given an instance of ATSP with cost function ¢ : V x V — R*, we consider the following linear
program defined on the complete bidirected graph over the vertex set V:

stz (6T (U)) > 1 YU CV and U # 0, (2)
z(6T(v)=2z(6"(v) =1 Yo eV, (3)
x, >0 Ya.

It is well-known that an optimal solution * to the above relaxation can be computed in polynomial-time
(either by employing the ellipsoid algorithm or by reformulating it as an LP with polynomially-bounded
size). Furthermore, we can assume that z* is an extreme point of the corresponding polytope.

Clearly, the cost OPTpk := ¢(z*) of this optimal solution z* is a lower bound on the cost OPT of the
optimal solution to the input instance of ATSP.

Now, observe that (3) implies that any feasible solution  to the Held-Karp relaxation satisfies

z(57(U)) = z(67(V)), (4)

for any U C V. In other words, for any subset U C V of vertices, the (fractional) number of arcs leaving U
in x is equal to the (fractional) number of arcs entering it.



Our particular interest will be in a symmetrized and slightly scaled down version of z*. Namely, let us

define o1
zi{u,v} = T(xt*ui + m:u) (5)

Let us also denote by A the support of z*, i.e., A = {(u,v) : z¥, > 0}, and by F the support of z*.
For every edge e = {u,v} of E, we define its cost as min{c(a) : a € {(u,v), (v,u)} N A}, which corresponds
to choosing the cheaper of possible orientations of that edge. With the risk of overloading the notation, we
denote this new cost of this edge e by c(e). This implies, in particular, that c(z*) < ¢(x*).

The main purpose of the scaling factor in (5) is to make z* belong to the spanning tree polytope P of the
graph (V, E), i.e. to ensure that z* can be viewed as a convex combination of incidence vectors of spanning
trees. In fact, as we prove below, this makes z* belong to the relative interior of P.

Lemma 3.1 The vector z* defined by (5) belongs to relint(P), the relative interior of the spanning tree
polytope P.

Proof: From Edmonds’ characterization of the base polytope of a matroid [14], it follows that the spanning
tree polytope P is defined by the following inequalities (see [38, Corollary 50.7¢]):

P={zcR¥: 2(E)=|V| -1, (6)
2(E(U)) <|U| -1 YU C V and U # 0, (7)
2e >0 Ve € E.} (8)

The relative interior of P corresponds to those z € P satisfying all inequalities (7) and (8) strictly.
Clearly, z* satisfies (6) since:
YweV, (0T (w)=1 = z*(A)=n=|V]|
= z'(E)=n—-1=|V|-1

Consider any non-empty set U C V. We have

> 2 (6t (v) = [U|==2"(AU)) + " (6T ()
velU
> 2 (AU)) + 1.

Since z* satisfies (2) and (3), we have

2 (BU) = e (AU)) < 2*(AW)) < U] - 1,

showing that z* satisfies (7) strictly. Since F is the support of z*, (8) is also satisfied strictly by z*. This
shows that z* is in the relative interior of P. O

Finally, we note that as £* is an extremal solution, it is known that its support A has at most 3n —4 arcs
(see Theorem 15 in [20]). In addition, as * can be expressed as the unique solution of an invertible system
with only 0—1 coefficients, we have that every entry z} is rational with integral numerator and denominator
bounded by 2°("1°8™) n particular, z*. = minecp zr > 2—O(nlogn)

min

4 Thin Trees and the Asymmetric Traveling Salesman Problem

The key element of our approach is a connection between the approximability of the asymmetric traveling
salesman problem and the notion of thin trees. To describe this connection, let us first formally define thin
trees.



Definition 4.1 Given a point z in a spanning tree polytope and an o > 1, we say that a tree T is a-thin
with respect to z iff, for each subset U C V of vertices,

TN <a-2(6(0)).
Also, we say that T is («, s)-thin with respect to z iff it is a-thin and moreover
C(T) <s- OPTHK,

i.e., the cost of T (after directing each of its edges according to the orientation that yields smaller cost) is at
most s times the Held-Karp lowerbound OPTyk on the value of the optimal solution.

Now, let us consider * to be an optimal solution to the Held-Karp relaxation, as described in Section 3,
and z* to be the symmetrized and scaled down version of * defined in (5). By Lemma 3.1, we know that
z* belongs to the (relative interior of) the corresponding spanning tree polytope. The crucial observation
that we make is that the ability to find an («, s)-thin tree with respect to z*, for some « and s, translates
directly into an ability to obtain an (2« 4 s)-approximation to the asymmetric traveling salesman problem.

Theorem 4.2 Let x* be an optimal solution to the Held-Karp relaxation and z* be the corresponding
point in the spanning tree polytope defined in (5). If T* is an («,s)-thin spanning tree with respect to
z* for some a and s, then we can find in polynomial-time a Hamiltonian cycle whose cost is at most

2o+ s)c(x*) = (2 + s)OPThk < (2a+ s)OPT.

Our proof of the above theorem relies on certain classical result on flow circulations. To state this result,
let us recall that a circulation is any function f : A — R such that f(6+(v)) = f(6~(v)) for each vertex
v € V. The following theorem (see, e.g., [38, Theorem 11.2] for a proof) gives a necessary and sufficient
condition for the existence of a circulation subject to the lower and upper capacities on arcs.

Theorem 4.3 (Hoffman’s circulation theorem) Given lower and upper capacities l,u : A — R, there
exists a circulation [ satisfying l(a) < f(a) < u(a) for all a € A iff

1. l(a) < wula) for alla € A and
2. for all subsets U C'V, we have [(§~(U)) < u(6T(U)).
Furthermore, if | and u are integer-valued, f can be chosen to be integer-valued too.

We proceed now to the proof of Theorem 4.2.
Proof: [Theorem 4.2] Let us first orient each edge {u, v} of T* according to arg min{c(a) : a € {(u,v), (v,u)}N
A}, and denote the resulting directed tree by T*. Observe that by definition of our undirected cost function,
we have ¢(T*) = ¢(T™).

Let us now consider a minimum cost augmentation of T* into an Eulerian directed graph. Finding such
an augmentation can be formulated as a minimum cost circulation problem with integral lower capacities
and infinite upper capacities. One just needs to set

1 aeTr
l(a) = .
(@) {O ag¢T*

and consider the minimum cost circulation problem
min{c(f) : f is a circulation and f(a) > l(a) Va € A}.

It is well-known (see, e.g., [38, Corollary 12.2a]) that an optimum solutions f* to the above problem is
polynomial-time computable and can be assumed to be integral (as [ is such). This integral circulation f*



can be viewed as a directed (multi)graph H that contains T* and is Eulerian, i.e., every vertex an in-degree
equal to its out-degree in H.

Hence, as H is also weakly connected (due to containing T* as its subgraph), we can take an Eulerian
walk of H and shortcut it to obtain a Hamiltonian cycle of cost at most ¢(f*). (We are using here the fact
that the costs satisfy the triangle inequality.)

To complete the proof, it remains to bound the cost of f*. That is, our goal is to show that ¢(f*) <
(2ac+ s)e(x™). To this end, let us define

u(a) = 1+ 2ax} aeT*
| 204 a¢ T

We claim that there exists a circulation g satisfying I(a) < g(a) < u(a) for every a € A. Note that this claim
would imply that
o(f*) < elg) < efu) = o(T) + 20c(@”) < (20 + s)e(@"),
and thus establish the desired bound on the cost of f*.
In the light of this, it only remains to establish that outstanding claim. To this end, observe that the
a-thinness of T implies that, for any subset U C V of vertices, the number of arcs of T* in 0= (U) is at
most az*(6(U)), irrespectively of the orientation of T* into T*. As a consequence,

1(67(U)) <az*(0(U)) < 2az (6 (U)),

where we used (4) and (5).
On the other hand, we have that

u(H(U)) 2 20z (67 (U)) = 202" (5 (U)) 2 (3™ (V)),

where we used the fact that x* itself is a circulation (see (4)).
Therefore, we can conclude that

1(6™(U)) < u(d™(U)),

for any U C V and thus, by Theorem 4.3, the circulation g indeed exists. This concludes the proof of the
theorem. ]

5 Maximum Entropy Sampling and Concentration Bounds

In the light of the connection established in the previous section (see Theorem 4.2), our goal is to develop a
way of producing a tree that is sufficiently thin with respect to the point z* (see (5)). We will achieve that
by devising an efficient procedure for sampling from an appropriate probability distribution over spanning
trees.

To this end, recall that by Lemma 3.1 we know that z* belongs to the relative interior of the spanning
tree polytope P that corresponds to the optimal solution * to our LP relaxation from Section 3. This
means that not only z* can be expressed as a convex combination of spanning trees on the support F of x*,
but also that each coefficient in this convex combination has to be positive. In fact, there can be many ways
to express z* in this manner and each one of the resulting convex combinations will satisfy this property.

Furthermore, observe that each such convex combination naturally defines a distribution over spanning
trees that preserves the marginal probabilities imposed by z*, i.e., it is the case that Prple € T] = 2%, for
every edge e € F. It is, therefore, tempting to use such a distribution for our thin tree sampling procedure.
(After all, one can interpret the thinness condition — cf. Definition 4.1 — as a statement about approximate
preservation of the respective cost- and cut-based marginals.)

However, as we already mentioned, there are many possible ways of representing z* as a probability
distribution. Which one should we choose? As it turns out, a good choice is to take the distribution that
maximizes the entropy among all such marginal-preserving distributions. We formalize this notion as well
as derive some of its crucial properties below.



5.1 Maximum Entropy Distribution

Let T be the collection of all the spanning trees of G = (V,E) and let z be an arbitrary point in the
corresponding spanning tree polytope P of G. The maximum entropy distribution p*(-) with respect to the
marginal probabilities imposed by z is the optimum solution of the following convex program.

inf " p(T)logp(T) 9)

TeT

s.t. Zp(T) =z Ve€eE,
T>3e
p(T) >0 VT eT.

It is not hard to see that this convex program is feasible since z belongs to the spanning tree polytope P.
As the objective function is bounded and the feasible region is compact (closed and bounded), the infimum
is attained and there exists an optimum solution p*(-). Furthermore, since the objective function is strictly
convex, this maximum entropy distribution p*(-) is unique. Let OPTgn denote the optimum value of this
convex program CP (9).

The value p*(T') determines the probability of sampling any tree T' in the maximum entropy rounding
scheme. Note that it is implicit in the constraints of this convex program that, for any feasible solution p(-),
we have > . p(T) = 1 since

n—1=> z=> Y pT)=(m-1)> p(T
T

eckE ecET>e

We now want to show that, if we assume that the vector z is in the relative interior of the spanning tree
polytope of (V, E) then p*(T') > 0 for every T € T and p*(T') admits a simple exponential formula. (Observe
that our vector z* indeed satisfies this assumption.)

For this purpose, we write the Lagrange dual to the convex program CP (9) (see, e.g., [3] for the relevant
background). For every e € F, we associate a Lagrange multiplier J. to the constraint corresponding to the
marginal z., and define the Lagrange function as

L(p,8) = > _ p(T)logp(T) = Y _ 4. (ZP(T)—ze)

TeT ecE Toe

We can then rewrite it as

0) = dezet+ Y (p( )log p(T) = p(T) Y be )

ecE TeT ecT

The Lagrange dual to CP (9) is now
sup inf L(p,9). (10)

s p=0

The inner infimum in this dual is easy to solve. Namely, as the contributions of each p(T) are separable,
we have that, for every T' € T, p(T) must minimize the convex function

p(T)log p(T) — p(T)o(T),

where, as usual, §(T) = >___ d.. Taking partial derivatives with respect to p(T'), we derive that

ecT
0=1+logp(T)— (1),

or
p(T) = D1, (11)

10



Thus,
inf _ _ 5(T)-1
;}go L(p,0) = g 0cZe g e

e€E TeT

Using the change of variables v, = J, — ﬁ for e € E, the Lagrange dual (10) can therefore be rewritten as

sup |1+ Z ZeVe — Z M, (12)

v e€E TeT

Now, our assumption that the vector z is in the relative interior of the spanning tree polytope translates
to satisfying the Slater condition and, together with convexity, implies that the sup in (12) is attained by
some vector v*, and the Lagrange dual value equals the optimum value OPTg,: of our convex program.
Furthermore, we have that the (unique) primal optimum solution p* and any dual optimum solution ~*
must satisfy

L(p,v*) = L(p",7") = L(p*, ), (13)

for any p > 0 and any -y, where we have implicitly redefined L due to our change of variables from ¢ to ~.
Therefore, p* is the unique minimizer of L(p,v*) and from (11), we have that

p*(T) = e (D), (14)
In summary, the following theorem holds.

Theorem 5.1 Given a vector z in the relative interior of the spanning tree polytope P of G = (V, E), there
exist v*, for all e € E, such that if we sample a spanning tree T of G according to p*(T) := €' (T) then
Prle € T] = z, for everye € E.

It is worth noting that the requirement that z is in the relative interior of the spanning tree polytope
(as opposed to being just in this polytope) is crucial. (This has been already observed before, see Exercise
4.19 in [32]). To see that, consider G being a triangle and z being the vector (%, %, ). In this case, one can
verify that z is in the polytope (but not in its relative interior) and there are no 7}’s that would satisfy the
statement of the theorem. (However, one can get arbitrarily close to z. for all e € E.)

In Sections 7 and 8 we show how to efficiently find s that approximately satisfy the conditions of
Theorem 5.1. The method proposed in Section 7 is combinatorial, as opposed to the Ellipsoid-based method
of Section 8. However, as we will see, the running time of the former grows polynomially by the inverse of
the desired error, while for the latter the running time grows polylogarithmically.

More formally, we prove the following theorem whose result we use in the rest of the paper. For our
application to the asymmetric traveling salesman problem, we set Zmin to be 2791987 and ¢ to be %

Theorem 5.2 Given z in the spanning tree polytope of G = (V, E) and some € > 0, values . for alle € E
can be found, so that if we define the exponential family distribution

p(T) == %exp(z e)

ecT
for all T € T where
pP.= Z exp(z Fe)
TeT ecT

then, for every edge e € E,

Zei= Y B(T) < (149)z,

TeT:T>e

i.e. the marginals are approzimately preserved. Furthermore, the running time is polynomial in n = |V,
—10g zmin and 1/e. (For the same theorem with running time polynomial in n = |V|, —10g zmin and log(1/e),
see Section 8.)
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5.2 Maximum Entropy Distribution and A-Random Trees

Interestingly, the distributions over trees considered in Theorem 5.2 turn out to be closely related to the
notion of A-random (spanning) trees. Given A, > 0 for e € E, a A -random tree T of G is a tree T chosen from
the set of all spanning trees of G with probability proportional to [] ., Ae. The notion of A-random trees
has been extensively studied (see e.g. Ch.4 of [32]) — note that in case of all \.’s being equal, a A -random tree
is just a uniform spanning tree of G. Many of the results for uniform spanning trees carry over to A-random
spanning trees in a graph G; since, for rational A.’s, a A -random spanning tree in G corresponds to a uniform
spanning tree in a multigraph obtained from G by letting the multiplicity of edge e be proportional to A..

Furthermore, observe that a tree T sampled from an exponential family distribution p(-) as given in
Theorem 5.2 is A-random for A\, := €7 for all e € E. As a result, we can use the tools developed for
A-random trees to obtain an efficient sampling procedure, see Section 5.3, and to derive sharp concentration
bounds for the distribution p(-), see Section 6.

5.3 Sampling a A\-Random Tree

There is a host of results (see [21, 29, 12, 1, 7, 41, 28] and references therein) on obtaining polynomial-time
algorithms for generating a uniform spanning tree, i.e. a A-random tree for the case of all A.s being equal.
Almost all of them can be easily modified to allow arbitrary \. However, not all of them still guarantee
a polynomial running time in that case. Therefore, we resort to an iterative approach similar to [29] that
remains polynomial-time for general A.s.

The basic idea of this approach is to order the edges eq, ..., e, of G arbitrarily and process them one by
one, deciding probabilistically whether to add a given edge to the final tree or to discard it. More precisely,
when we process the j-th edge e;, we decide to add it to the final spanning tree T with probability p;
being the probability that e; is in a A-random tree conditioned on the decisions that were made for edges
e1,...,ej—1 in earlier iterations. Clearly, this procedure generates a A-random tree, and its running time is
polynomial as long as the computation of the probabilities p; can be done in polynomial time.

To compute these probabilities efficiently we note that, by definition, p; = z.,. Now, if we choose to
include e in the tree then:

ZT/ael,eg HeET’ )‘5
ZT’Bel HeGT’ )\e

2rr5es e Leerne, Ae
ZT’sel HeET’\el )‘6 .

As one can see, the probability that es € T conditioned on the event that e; € T is equal to the probability
that es is in a A-random tree of a graph obtained from G by contracting the edge e;. Similarly, if we choose
to discard e, the probability ps is equal to the probability that es is in a A-random tree of a graph obtained
from G by removing e;. In general, p; is equal to the probability that e; is included in a A-random tree
of a graph obtained from G by contracting all edges that we have already decided to add to the tree, and
deleting all edges that we have already decided to discard.

Therefore, to obtain each p; we just need to be able to compute efficiently for a given (multi)graph G’ and
values of A.’s, the probability pe/ [\, f] that some edge f is in a A-random tree of G’. It is well-known how
to perform such computation. For this purpose, one can evaluate ) ;. [[.cp Ae for both G" and G'/{f}
(in which edge f is contracted) using Kirchhoff’s matrix tree theorem (see [5]). The matrix tree theorem
states that ;.7 [[.cr Ae for any graph G is equal to the absolute value of any cofactor of the weighted
Laplacian L where

p2=Prlea €Tle; €T] =

—Ae e=(i,j) € F
Lij; = Zeeé({i}) Ae 1=
0 otherwise.

An alternative approach to computing pg/[X, f] is to use the fact (see e.g. Ch. 4 of [32]) that pg/[X, f] is
equal to Ay times the effective resistance of f in G’ treated as an electrical circuit with conductances of
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edges given by A. The effective resistance can be expressed by an explicit linear-algebraic formula whose
computation boils down to inverting a certain matrix that can be easily derived from the Laplacian of G’
(see, e.g., Section 2.4 of [18] for details).

5.4 Negative Correlation and Concentration Bounds

We now derive a concentration bound that will be instrumental in establishing the thinness of our sampled
tree.

Theorem 5.3 For each edge e, let X, be an indicator random variable associated with the event [e € T,
where T is a sampled X -random tree. Also, for any subset C of the edges of G, define X (C) = 3 .o Xe.
Then we have

e

5\ EIX(O)
(1+9)t+0 )

PLX(C) > (1 +8)HX(O)]] < (

Usually, when we want to obtain such concentration bounds, we prove that the variables {X.} g are inde-
pendent and use the Chernoff bound. Unfortunately, in our case, the variables {X.} g are not independent.
However, it is well-known that since our distribution is in product form, they are negatively correlated, i.e. for
any subset F C E, Pr[VeepXe = 1] < [[.cp Pr[Xe = 1], see, e.g., Chapter 4 of [32].%

Lemma 5.4 The random variables {X.} g are negatively correlated.

Once we have established negative correlation between the X.’s, Theorem 5.3 follows directly from the
result of Panconesi and Srinivasan [35] that the upper tail part of the Chernoff bound requires only negative
correlation (or even a weaker notion, see [35]) and not the full independence of the random variables.

Finally, it is worth point out that, since the initial publication of this work, another way of producing
negatively correlated marginal-preserving probability distributions on trees (or, more generally, on matroid
bases) has been proposed [10]. This approach can also be used in the framework developed in this paper.

6 Establishing Thinness of the Sampled Tree

In this section, we focus on the exponential family distribution p(-) that we obtain by applying the algorithm
of Theorem 5.2 to z*. We show that the tree sampled from the distribution p(-) is almost surely “thin”.
We first prove that if we focus on a particular cut then the corresponding marginal is a-approximately

preserved with overwhelming probability, where « has the desired value of O(lolgolgO g —).

Lemma 6.1 If T is a spanning tree sampled from distribution p(-) for e = 0.2 in a graph G with n > 5
vertices then, for any set U C V,

Pr[|T N 8(U)| > Bz*(5(U))] < n~25% (W),
where = 4logn/loglogn.

Proof: Note that by definition, for all edges e € E, Z. < (14 €)z}, where ¢ = 0.2 is the desired accuracy of
approximation of z* by Z as in Theorem 5.2. Hence,

BT N 5(U)]) = 2(6(U)) < (1+2)2*(5(U)).

3Lyons and Peres prove this fact only in the case of T being a uniform spanning tree i.e. when all Acs are equal, but Section
4.1 of [32] contains a justification why this proof implies this property also in the case of arbitrary Acs. As mentioned before, for
rational Acs, the main idea is to replace each edge e with C'A¢ edges (for an appropriate choice of C, e.g. the lowest command
denominator of all Acs) and consider a uniform spanning tree in the corresponding multigraph. The irrational case follows from
a straightforward limit argument where C' — oo.
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Applying Theorem 5.3 with

_ Lz7(8(0)) B
LHo=855w) 2 1+e

we derive that Pr[|T N 6(U)| > Bz*(6(U))] can be bounded from above by

Pr{|T'nd( )I > (L+OE[T N 6(U)]]

Z(8(0))
<
< ()
o N\ (1+2 )
<
- 1446
B e \P7 W)
- \1+46
2" (8(U))
< 2557 6)
Note that in the last inequality, we have used that
og | (€4F2Y°| 4 LB oe(1 4 £) — log(4)
& B8 ~ loglogn & &
— loglogn + log log log n]
log log 1
< —dlogn (1 - logloglogn
loglogn
1
< -4 (1 — ) logn < —2.5logn,
e
since e(1 4+ ¢) < 4 and % < 1foralln>5 (even for n > 3). O

Now, we are ready to combine the above concentration result with union-bounding technique of Karger
[27] to establish the desired thinness of our sampled tree.

Theorem 6.2 Letn > 5 and ¢ = 0.2. Let T1,...,Ti210gn] be [2logn] independent samples from a distri-
bution p(-) as given in Theorem 5.2. Let T* be the tree among these samples that minimizes the cost c(T}).
Then, with high probability, T* is (4logn/loglogn,2)-thin with respect to z*

Here, high probability means probability at least 1 — % However, one can make this probability be

1 — 1/n*, for any k, by increasing the value of 3 by a factor of k.

Proof: We start by showing that for any 1 < j < [2logn]|, T; is S-thin with high probability for 5 =
4logn/loglogn. From Lemma 6.1 we know that the probability of some particular cut §(U) violating the
B-thinness of T} is at most n=252"00W)) " Now, we use a result of Karger [27] that shows that there are
at most n?' cuts of size at most [ times the minimum cut value for any half-integer > 1. Since, by the
definitions of the Held-Karp relaxation and of z*, we know that z*(§(U)) > 2(1 — 1/n), it means there is at
most n! cuts §(U) with z*(§(U)) < I(1—1/n) for any integer [ > 2. Therefore, by applying the union bound
(and n > 5), we derive that the probability that there exists some cut 6(U) with |T; N 6(U)| > Bz*(6(U)) is

at most
o0

Z nin72.5(i71)(171/n)7

=3
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where each term is an upper bound on the probability that there exists a violating cut of size within
[(i—1)(1—1/n),i(1 —1/n)]. For n > 5, this simplifies to:

oo (oo} 1
Zninfzfy(ifl)(lfl/n) < Zn7i+2 _ -,

n_
1=3 =3

Thus, the probability that there exists a cut for which the S-thinness property is violated by T is at most
1

n—1°

Now, the expected cost of Tj is

n—1

Z .ZE:; S (1 + E)OPTHK.

n
acA

Ele(T)] <Yz <(1+¢)
ecl
So, by Markov inequality we have that for any j, the probability that ¢(Tj) > 20PTuk is at most (1+¢)/2.
Thus, with probability at most (14£)21°¢™ < L for & = 0.2, we have ¢(T*) > 20PT k.
Now, taking a union bound for the events of the violation of S-thinness in some cut and the event of the
cost being more than 20P Tk, we conclude that the probability that T* is not (3, 2)-thin is at most 1 — %
This completes the proof of the theorem. O

After proving the above thinness result, we can put it together with the developments of Section 4 to
establish the main result of the paper.

Theorem 6.3 Algorithm 1 finds a (2+ 8logn/loglogn)-approzimate solution to the Asymmetric Traveling
Salesman Problem with high probability and in time that is polynomial in the size of the input.

Proof: The algorithm starts by finding an optimal extreme-point solution * to the Held-Karp LP relaxation
of ATSP of value OPThk. Next, using the algorithm of Theorem 5.2 on z* (which is defined by (5)) with
e = 0.2, we obtain 4.’s that define the exponential family distribution p(T") := e2ecer Ve Since z* was
an extreme point, we know that 2. > e~ Omlogn). thys, the algorithm of Theorem 5.2 indeed runs in
polynomial time.

Next, we use the polynomial time sampling procedure described in Subsection 5.3 to sample 2[logn]
trees T; from the distribution p(-), and take T to be the one among them that minimizes the cost ¢(T}).
By Theorem 6.2, we know that T™* is (41ogn/loglogn, 2)-thin with high probability.

Now, we use Theorem 4.2 to obtain, in polynomial time, a (2 + 8logn/loglogn)-approximation of our
ATSP instance. |

The proof also shows that the integrality gap of the Held-Karp relaxation for the Asymmetric TSP is
bounded above by 2 4+ 8logn/loglogn. The best known lower bound on the integrality gap is only 2, as
shown in [9]. Closing this gap is a challenging open question, and this possibly could be answered using
thinner spanning trees.

Corollary 6.4 If there always exists a (Cy,Cy)-thin spanning tree where Cy and Coy are constants, the
integrality gap of the ATSP Held-Karp linear programming relaxation is constant.

7 Solving the Maximum Entropy Convex Program: A Combina-
torial Approach

In this section, we provide a combinatorial algorithm to efficiently find 7.’s that approximately preserve the
marginal probabilities given by z and therefore, prove Theorem 5.2. As an alternative, in Section 8 we show
that the maximum entropy convex program can also be solved via ellipsoid method. The advantage of the
latter approach is that the resulting running-time dependence on € is only polylogarithmic instead of being
polynomial as in the case of the combinatorial approach described below.
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Given a vector +, for each edge e, define g.(7) := %, where y(T') = > 7 ¢ For notational
T

convenience, we have dropped the fact that T' € T in these summations; this shouldn’t lead to any confusion.
Restated, g.(y) is the probability that edge e will be included in a spanning tree 7' that is chosen with
probability proportional to exp(y(T)).

We compute 7 using the following simple algorithm. Start with all 7. equal, and as long as the marginal
ge(7y) for some edge e is more than (1 + ¢)z., we decrease appropriately 7. in order to decrease g.(7) to
(14 ¢/2)z.. More formally, here is a description of the algorithm.

1. Set v = 0.
2. While there exists an edge e with g.(y) > (1 4 €)z:
e Compute ¢ such that if we define 7' as 7, = 7. — d, and v} = vy for all f € E\ {e}, then

ge(v') = (1 +¢/2)z.
e Set v« ~'.

3. Output 7 := 7.

Clearly, if the above procedure terminates then the resulting 4 satisfies the requirement of Theorem 5.2.
Therefore, what we need to show is that this algorithm terminates in time polynomial in n, —log 2y, and
1/e, and that each iteration can be implemented in polynomial time.

We start by bounding the number of iterations - we will show that it is O(L|E|?[|V|log(|V|) —log(2min)])-
In the next lemma, we derive an equation for ¢, and prove that for f # e the probabilities ¢ (-) do not decrease
as a result of decreasing ..

Lemma 7.1 If for some 6 > 0 and an edge e, we define v' by v, = . — 0 and ’y} =5 for all f # e, then

1. for all f € E\{e}, ¢s(7v") > a5 (7),
2. q.(y') satisfies W —1=e <ﬁ - 1).

In particular, in the main loop of the algorithm, since g.(y) > (1+¢)z. and we want ¢.(7') = (1+¢/2)z,
we get § = log ?{(_Wq)e((lv_);zf—;/?%)zzz > log (1(_1:;;)2) > £ for ¢ < 1 (for larger values of &, we can simply decrease ¢
to 1).

Proof: Let us consider some f € E'\ {e}. We have

a7 (7") Y retifer eXP((V'(T))

ZTeT exp(y/(T'))
ZT:&ET,fET e’ () + ZT:&QT,fET e’ ()
s e+ D TieqT er' (™)
e™? ZT:eeT,feT e’ 4 ZT;eng,feT e
e’ ZTBE e¥(T) + ZT:6¢T e
e %a+b
eSc+d

with a, b, ¢, d appropriately defined. The same expression holds for ¢¢(vy) with the e 9 factors removed. But,
for general a,b,c,d > 0, if % < eridb then Zotb > ZT‘*‘Z for x < 1. Since

xce+d —
a_ Y TeT e, feT e’ < () = a+b
¢ Srereer @ =Y Vet
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by negative correlation (since a/c represents the conditional probability that f is present given that e is
present), we get that q¢(y") > gs(7y) for 6 > 0.
Now, we proceed to deriving the equation for §. By definition of g.(), we have

1 1= ZT:egT 67(T)
qe(7) ZTae (™)
Hence,
1 1 = ZT:egT e’ ()
qe (7/) ZTB@ 67/(T)

S redr (1)
ed
6_5 ZTBG e’Y(T)

- (qezv) - 1) '

Before bounding the number of iterations, we collect some basic results regarding spanning trees which
we need for the proof of the number of iterations.

O

Lemma 7.2 Let G = (V, E) be a graph with weights v, for e € E. Let Q C E be such that for all f € Q,
e € E\Q, we have vy > v+ A for some A > 0. Let r be the size of a mazimum spanning forest of Q. Then

1. For any T € T, we have [TNQ| < 7.
Define T :={T €T :|TNQ|=r} and T« :={T €T :|TNQ|<r}.

2. Any spanning tree T € T_ can be generated by taking the union of any spanning forest F' (of cardinality
r) of the graph (V,Q) and a spanning tree (of cardinality n — r — 1) of the graph G/Q in which the
edges of @ have been contracted.

3. Let Tinax be a mazimum spanning tree of G with respect to the weights y(+), i.e. Tymax = arg maxrer y(T).
Then, for any T € T-, we have Y(T) < v(Tmax) — A.

Proof: These properties easily follow from the matroidal properties of spanning trees. To prove 3., consider
any T' € 7. Since |TNQ| < r, there exists an edge f € (Thmax N Q) \ T such that (TN Q) U{f} is a forest of
G. Therefore, the unique circuit in T'U {f} contains an edge e ¢ Q. Thus 7" =T U {f} \ {e} is a spanning
tree. Our assumption on () implies that

V(Timax) = Y(T") = Y(T) = ve + 75 > (D) + A,
which yields the desired inequality. |
We proceed to bounding the number of iterations.
Lemma 7.3 The algorithm ezecutes at most O(L|E[*[|V|log(|V|) —1og(¢zmin)]) iterations of the main loop.

Proof: Let n = |V| and m = |E|. Assume for the sake of contradiction that the algorithm executes more
than

T o= ng[n logn — log(&2min)]

iterations. Let v be the vector of ~.’s computed at such an iteration. For brevity, let us define g, := g.(7)
for all edges e.
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We prove first that there exists some e* € E such that v~ < —£~-. Indeed, there are m edges, and by
Lemma 7.1 we know that in each iteration we decrease 7. of one of these edges by ¢ which is at least /4
(refer to the discussion after the statement of Lemma 7.1). Thus, we know that, after more than 7 iterations,
there exists e* for which ~,.« is as desired.

Note that we never decrease 7, for edges e with g.(-) smaller than (1 + ¢€)z., and Lemma 7.1 shows that
reducing vy of edge f # e can only increase ¢.(-). Therefore, we know that all the edges with v, being
negative must satisty ¢. > (1 +¢/2)z.. In other words, all edges e such that ¢. < (14 &/2)z, satisfy 7. = 0.
Finally, by a simple averaging argument, we know that > ge =n—1<(1+¢/2)(n—1) = (14+¢/2) ", z..
Hence, there exists at least one edge f* with ¢y- < (1 +¢/2)zs« and thus having v« = 0.

We proceed now to exhibiting a set ) such that:

(I): 0 #Q C E, and
(II): forallee E\Q and f € Q, 7e + 152 < s

We construct @ as follows. We set threshold values I'; = —£7% for i > 0, and define Q; = {e € E |y. > I';}.
Let @ = @Q; where j is the first index such that Q; = Qj_H Clearly, by construction of @, property (1) is
satisfied. Also, @ is non-empty since f* € Q9 C Q; = Q. Finally, by the pigeonhole principle, since we have
m different edges, we know that j < m. Thus, for each e € @ we have v, > I'y, = —£-. This means that
e* ¢ @ and thus @Q has property (I).

Observe that @ satisfies the hypothesis of Lemma 7.2 with A =

1rz. Thus, for any 7' € T, we have

ET

Y(Tmax) > (1) + am2’

(15)

where Tmax and r are as defined in Lemma 7.2.
Let G be the graph G/Q obtained by contractlng all the edges in Q. So, G consists only of edges not
in @ (some of them can be self loops) Let 7 be the set of all spanning trees of G and for any given edge

eé¢Q,let g, = Lret.toe R0 be the probability that edge e is included in a random spanning tree 7'
ZTG‘T exp('y(T)

of G , where each tree T is chosen with probability proportional to V(™). Since spanning trees of G have
n —r — 1 edges, we have
Y Ge=n-r—1 (16)

e€E\Q

On the other hand, since z satisfies z(F) =n — 1 and 2(Q) < r (by definition of r, see Lemma 7.2, part
1.), we have that z(F\ Q) > n—r—1. Therefore, (16) implies that there must exist é ¢ @ such that §; < z.

Our final step is to show that for any e ¢ @, gc < ge + 25%=. Note that once we establish this, we know
that ge < e + =25 < (1+ 5)ze, and thus it must be the case that ~ve = 0. But this contradicts the fact that
é ¢ Q, as by constructlon all e with v, = 0 must be in Q. Thus, we obtain a contradiction that concludes
the proof of the Lemma.

It remains to prove that for any e ¢ @, ge < ge + 5. We have that

o — Zrereer®®
‘ Yrer ™
_ ZTGT::EET 67(T) + ZTET<:€ET eFY(T)
ZTGT (™)
T
< ZTGTZ:GGT e’Y(T) ZT€T< :e€T e’Y( )
- Yorer '@ S orer @

¥ (T) e'y(T)

ZTGT::eGTe
—+ >

IA

— T (17)
ZTGTZ e TeT<:eeT ¢ (Tinax)
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the first inequality following from replacing 7 with 7= in the first denominator, and the second inequality
following from considering only one term (i.e. Tiax) in the second denominator. Using (15) and the fact
that the number of spanning trees is at most n” 2, the second term is bounded by:

V(1) 9
< n—2 _—et/4m
Z Ty S e (18)
TET< e€T
< lnne—57/4m2
€Zmin

by definition of 7. To handle the first term of (17), we can use part 2. of Lemma 7.2 and factorize:
Z (1) — Z (D (Z e“/(T’)> :
TeT- Fei T'eF
where F is the set of all spanning forests of (V, Q). Similarly, we can write
Z () — Z (M) (Z e“/(T/)> _
TeT=,T>e TeT e T'eF

As a result, we have that the first term of (17) reduces to:

(ZTef,TBe e‘Y(T)) (ZT’E]—' SV(T )) _ ZTE%,TB@ e’Y(T)

(Crer @) (Srver ™) Yere®

Together with (17) and (18), this gives

I
2

e

which completes the proof. O

To complete the analysis of the algorithm, we need to argue that each iteration can be implemented
in polynomial time. First, for any given vector 7, we can compute efficiently the sums ), exp(y(7')) and
> 1r5e exXp(7(T')) for any edge e - this will enable us to compute all g.(7)’s. This can be done using Kirchhoff’s
matrix tree theorem (see [5]), as discussed in Section 5.3 (with A\, = €7*). Observe that we can bound all
entries of the weighted Laplacian matrix in terms of the input size since the proof of Lemma 7.3 actually
shows that —ﬁ < v, <0 for all e € E and any iteration of the algorithm. Therefore, we can compute
these cofactors efficiently, in time polynomial in n, —log zmin and 1/¢. Finally, 6 can be computed efficiently
from Lemma 7.1.

8 Solving the Maximum Entropy Convex Program: Ellipsoid Al-
gorithm

In this section we design an algorithm to find a A-random spanning tree distribution that preserves the
marginal probability of all the edges within multiplicative error of 1 + € using the Ellipsoid method as an
alternative to the combinatorial approach provided in Section 7. The advantage of the Ellipsoid-based method
is that it runs in time polynomial in n, —log zmin, and log(1/e) (as opposed to 1/e for the combinatorial
approach discussed in the previous section) where z,;, = minecg z. is the smallest non-zero value assigned
to the edges. Note that, as we discussed earlier, if z = (1 — 1/n)x for & being an extreme point solution
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of Eq. (1) then zp, > 27™1°8(") For the sake of completeness, we briefly overview a property of convex
programs that will be useful for us.

The maximum entropy convex programs that we study here has an exponential size. To efficiently find a
feasible or an extreme point solution we need to provide a separating hyperplane oracle and use the ellipsoid
algorithm. Let P C R™ be an arbitrary bounded polytope. Let R > 0 such that for a point y, € R,

P C{y:|ly —yol <R}

Also, let r > 0 such that for a point ¢y € P, {x € P: ||z — zo|| < r} C P. A separating hyperplane oracle
is a deterministic algorithm that for any given point y € R™ either decides y € P, or finds a vector a € R"
such that for all z € P,

(a,y) < (a,z).

The following theorem follows from Khachiyan’s ellipsoid algorithm.

Theorem 8.1 If the separating hyperplane oracle runs in time polynomial with respect to n and log(R/r),
then the ellipsoid algorithm finds a feasible solution of P in time polynomial with respect to n and log(R/r).

Note that the running time is independent of the number of constraints, or the number of faces of P. The
following is the main theorem of this section.

Theorem 8.2 Given z in the relative interior of the spanning tree polytope of G = (V, E). For any e /2 <
€ < 1/4, values 7. for all e € E can be found, so that if we let A\ = exp(¥.) for all e € E, then the
corresponding A\-random spanning tree distribution, fi, satisfies

Z PriT)| < (1+¢€)z., VYe€kE,
TeT:T>e a

i.e., the marginals are approximately preserved. Furthermore, the running time is polynomial in n = |V|,
—log zmin and log(1/e).

Very recently, Singh and Vishnoi [39] generalized and improved the above theorem; they show that for any
family of discrete objects, M, and any given marginal probability vector in the interior of the convex hull
of M, one can efficiently compute the approximate weight of the ground elements in the maximum entropy
distribution if and only if there is an efficient algorithm that approximates the weighted sum of all the objects
for any given weights, i.e., an efficient algorithm that approximates ), v, exp(y(M)) for any vector +. For
example, since there is an efficient algorithm that approximates the weighted sum of all perfect matchings
of a bipartite graph with respect to given weights ~, [26], one can approximately compute the maximum
entropy distribution of the perfect matchings of any bipartite graph with respect to any given marginals in
the relative interior of the perfect matching polytope (see [39] for more details).

In the rest of this section we prove the above theorem. We will use the Ellipsoid method, i.e. Theorem 8.1.
Thus, we just need to provide a separating hyperplane oracle, a bound polynomial in n on the radius of a
ball that contains our polytope, and a bound inversely polynomial in n on the radius of a ball in the interior
of our polytope.

First, we show that the optimum value of the following convex program is the same as the optimum value
of the original dual program (12).

sup D zeves
€

s.t. Z T <z, VYeeFE
T>e

This is because on one hand for any vector v that is a feasible solution of above program,

D SERTED SR NS SRR 3D I E SN PELAREE I L P S EPA

ecE TeT e€EFR ecE T>e ecF ecE e€ER

20



where the last equation holds since z is a fractional spanning tree. So the optimum of CP (19) is at most
the optimum of CP (12). On the other hand, since z is in the interior of spanning tree polytope, there is a
unique optimum v* to CP (12) that satisfies Eq. (13),soforalle € E, Y, exp(v*(T)) = > 5. p*(T) = z,
and v* is a feasible solution of CP (19). Furthermore,

T4 > 2yl = > exp(y (1) =14 > 270 = > (1) =D _ ¥z

ecE TeT ecE TeT ecE

Therefore, the optimum of CP (12) is at most the optimum of CP (19). Hence, they are equal, and the
optimum of CP (19) is OPTgpt.

Next, we use the ellipsoid method, Theorem 8.1, to find a near optimal solution of CP (19). The main
difficulty is that the coordinates of the optimizers of CP (19) are not necessarily bounded by a function of
n. First, we simply turn the optimization problem into a feasibility problem by doing a binary search on
the value of the optimum. Suppose we guess the optimum is at least ¢t. Now, instead of proving that every
feasible solution of CP (19) that satisfies >, 2.7, > ¢ falls in a ball of radius that is a polynomial function
of n, we restrict the set of feasible solutions of CP (19) to the vectors whose coordinates are bounded by
a polynomial function of n. Furthermore, to ensure that the new polytope has a non-empty interior, we
relax the RHS of the constraint ) ;.. exp(y(T)) < z.. More precisely, for any a > 0, M > 0 and t € R, let
F(a,t, M) be the following feasibility convex program

Z ZeVe 2 1,
€

Z M < (1+a)ze Ve € E, (20)
T>e
—M<~r <M Vee F.

The following lemma relates the above convex program to CP (19).
Lemma 8.3 For any t < OPTgy, .7-'(6’”2/2,1?,114 —n210g Zmin) is non-empty.

Proof: We say that a vector v : F — R has a gap at an edge f € F if for any e € F, either 7. < 7y or
Ye > ¢ + gap where gap := n? — 10g Zmin. Observe that for any v : E — R, the number of gaps of v is at
most |E| < (3).

In the following claim we show that if v has a gap at an edge e then we can construct another vector 4
with fewer number of gaps while losing a small amount in the objective function. The proof is very similar
in nature to the proof of Lemma 7.3, but for the sake of completeness, we provide it here.

Claim 8.4 Lety: E — R that has at least one gap. Let Tiax be a mazimum spanning tree of G with respect
to weights v, i.e., Tmax = argmazpy(T). There exists 5 : E — R with at least one fewer gap such that for

any e € E,
Z M < Z V(T 4 p=2p=7(Tmax)—gap, (21)
T>e T>e

Z ZeVe 2 Z ZeVe- (22)

Proof: Suppose that v has a gap at an edge e* € E. Let F :={e € E : 7, > 7~ }. Let k = rank(F) be the
size of the maximum spanning forest of F'. Recall that by definition any spanning tree of G has at most k
edges from F', so z(F) < k. We reduce the 7, for all e € F' and increase it for the the rest of the edges. In
particular,

and

Ye— A+ XA ifeeF,

y _{'Ve :—1 ifeil’
Fe =
1
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where A = mingcp v, — 7.+ — gap. Note that by the assumption of the claim A > 0. By above definition, 4
does not have a gap at e*, and for any edge e # e*, ¥ has a gap at e if 7 has a gap at e.
First, observe that,

gzeﬁ/e :gze')’e+7f_A1;Ze_Z(F)A> ;Ze'ye"‘kA_kA:;Ze'ye

where we used z(F') < k. This proves (22).

It remains to prove (21). If a spanning tree T has exactly k edges from F, then ¥(T) = ~(T), and
exp(Y(T)) = exp(y(T)). By Lemma 7.2 any maximum weight spanning tree of (V,E,~v) or (V, E,¥) has
exactly k edges of F. Since 4(T) = ~(T) for any tree where |T N F| = k, the maximum spanning trees
of (V,E,~) are the same as the maximum spanning trees of (V, E,7). So, Thax is also a maximum weight
spanning tree of (V, E, 7).

Now, suppose a spanning tree 7" has less than k edges in F'. Since |T' N F| < k, there exists an edge
f € (TmaxNF)\T such that (TTNF)U{f} is a forest of G. Therefore, the unique circuit in TU{f} contains
an edge e ¢ F. Thus T/ =T U{f} \ {e} is a spanning tree. By the definition of 7,

(Tmax) > (T") = A(T) = Fe + 75 > (T) + gap, (23)
which yields the desired inequality. Therefore, for any tree T,

VT < (T 4 oV(Timax)—gap — oV (T) | ev(me)fgap7

where the last equality follows by the fact that |Tinax N F| = k. Now, (21) follows by the fact that any graph
at most n"~2 spanning trees [3]. O
Let v* be an optimum solution of CP (19). If 4* does not have any gap we let ¥ = v*. Otherwise, we
repeatedly apply the above claim and remove all of the gaps and find a vector 4 such that >~ _ ze%e > >, ze72,
and for any edge e € E,

Z e:Y(T) < Ze'y*(T) + |E|nn—26'y*(Tmax)—gap < 2o+ nne—nzzmin < (1 + n—nz/Q)Ze. (24)
T>e T>3e

where the first inequality follows by the fact that v* has at most |E| gaps, the second inequality follows by
the feasibility of v* in CP (19) and that eV (Tmax) < max, z, < 1.
Since 4 does not have any gap
meaX:Ye - Inein:)’e < |E| - gap.

So, it is sufficient to lower-bound max, 9. and upper-bound min, J.. Let f = argmax_7.. Since the number
of the spanning trees of G is at most n"~2, [8],

OPTent > log(1/|T1) > —log(n”_Q) > —nlogn.

Therefore, we have
—nlogn < OPTgy = z@:zevz < ze:ze% <n- mgx%.
On the other hand, by (24), €¥(™) < 2 for any tree T, so min, 4, < 1. Therefore,
maxy. < mind. +|E|-gap < 1+|E] gap < n' —n”log zumin,
ming. > max, - |E|-gap = —log(n) — || -gap > —n* + n? log zuin.

This completes the proof of Lemma 8.3. (]

In Algorithm Algorithm 2 we provide a separating hyperplane oracle for CP (20). Note that all the
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Algorithm 2 Separating hyperplane oracle for CP (20)
12|

Input: vy e R
if v violates any of the linear constraints then
return the violated inequality as a separating hyperplane.
else
Compute ge(y) = > 75, e’ ™) for every e.
if go(7) < (14 @)z, for all edges e then
report v € F(a,t, M).
else
Let é be an edge for which the constraint is violated. Compute the gradient of gs(7).
return the hyperplane {(7/ —7).Vqs(y) > 0,7 € RIFI} as a violated constraint.
end if
end if

steps of the algorithm can be done in polynomial time. The only one which may need some explanation is
computing ge(7y) for some edge e and its gradient.

a !
Ge(y) = € 3TN ang ge(v) — et 3 M),

Ve

T3e T>e,e’

Both of the above expressions can be computed efficiently by the Kirchhoft’s matrix tree theorem (see [5]).
Now, we are ready to prove Theorem 8.2.

Proof: [Theorem 8.2] Let o = ¢/6. By Lemma 8.3, F (o, OPTgq, M) where M = n* — n?log zuin is

non-empty. Let v* be a point in F(a, OPTgne, M) and let B = {7y : ||y — 7*|lcc < B}, where 5 = ¢/4n. For

any v € B,

D 2e¥e > Y ze(7; — B) > OPTene — nf = OPTene — €/4.
Also, for any edge e € E,

Z M < Z e (Dnb < P14 a)z. < (1+¢€/2)z.
T>e T>e

where the last inequality follows by the assumption € < 1/4.

So B C F(e/2,0PTgnt —€/4, M + ). Therefore, F(e/2,OPTgq —€/4, M + 1) is non-empty and contains
a ball of radius S = €/4n and is contained in a ball of radius |E| - n which is a polynomial function
of n, —10g zmin and 1/e. Using binary search on t and the ellipsoid method, we can find a point v in
F(e/2,0PTgq — €/4, M + 1) in time polynomial in n, —log zmin, and log1/e.

Since 7 is a feasible solution of the CP (12), 14+ 3", zeve — > 7 €77 < OPTgqe. On the other hand, since
v € F(e/2,0PTgn —€/4, M + 1),

Z ZeVe > OPTgne — €/4.

€

> e >1—¢/a
T

These two imply that

€ -
The last step is to normalize 7.’s. Define F(e) = v(e) — %. By definition, Y, 7™ = 1. So, for
any edge e € E,

S ein) _ s (At+e/9z  _ (1+e/2)
e T 1 —OPTene +> 2%~ 1—¢/4

< (14 €)ze.
T>e
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where the first inequality follows by the fact that the optimum of (19) is OPTgy and +y is a feasible point of

that program. O
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