Foundations of Probabilistic Answers to Queries

Dan Suciu and Nilesh Dalvi University of Washington

Databases Today are Deterministic

• An item either is in the database or is not

• A tuple either is in the query answer or is not

• This applies to all variety of data models: – Relational, E/R, NF2, hierarchical, XML, ...

What is a Probabilistic Database ?

- "An item belongs to the database" is a probabilistic event
- "A tuple is an answer to the query" is a probabilistic event
- Can be extended to all data models; we discuss only probabilistic *relational* data

Two Types of Probabilistic Data

• Database is deterministic Query answers are probabilistic

• Database is probabilistic Query answers are probabilistic

Long History

Probabilistic relational databases have been studied from the late 80's until today:

- Cavallo&Pitarelli:1987
- Barbara, Garcia-Molina, Porter: 1992
- Lakshmanan,Leone,Ross&Subrahmanian:1997
- Fuhr&Roellke:1997
- Dalvi&S:2004
- Widom:2005

So, Why Now ?

Application pull:

• The need to manage imprecisions in data

Technology push:

• Advances in query processing techniques

The tutorial is built on these two themes

Application Pull

Need to manage imprecisions in data

• Many types: non-matching data values, imprecise queries, inconsistent data, misaligned schemas, etc, etc

The quest to manage imprecisions = major driving force in the database community

• Ultimate cause for many research areas: data mining, semistructured data, schema matching, nearest neighbor

A large class of imprecisions in data can be modeled with probabilities

Technology Push

Processing probabilistic data is fundamentally more complex than other data models

• Some previous approaches sidestepped complexity

There exists a rich collection of powerful, non-trivial techniques and results, some old, some very recent, that could lead to practical management techniques for probabilistic databases.

Theme 2:

Identify the source of complexity, present snapshots of non-trivial results, set an agenda for future research.

Some Notes on the Tutorial

There is a *huge* amount of related work: probabilistic db, top-k answers, KR, probabilistic reasoning, random graphs, etc, etc.

We left out many references

All references used are available in separate document

Tutorial available at: http://www.cs.washington.edu/ homes/suciu

Requires TexPoint to view http://www.thp.uni-koeln.de/~ang/texpoint/index.html

Overview

- Part I: Applications: Managing Imprecisions
- Part II: A Probabilistic Data Semantics
- Part III: Representation Formalisms
- Part IV: Theoretical foundations
- Part V: Algorithms, Implementation Techniques Summary, Challenges, Conclusions

BREAK

Part I

Applications: Managing Imprecisions

Outline

- 1. Ranking query answers
- 2. Record linkage
- 3. Quality in data integration
- 4. Inconsistent data
- 5. Information disclosure

1. Ranking Query Answers

Database is deterministic

The query returns a ranked list of tuples

• User interested in top-k answers.

[Agrawal, Chaudhuri, Das, Gionis 2003]

The Empty Answers Problem

Query is overspecified: no answers Example: try to buy a house in

> SELECT * FROM Houses WHERE bedrooms = 4 AND style = 'craftsman' AND district = 'View Ridge' AND price < 400000

... good luck !

Today users give up and move to Baltimore

[Agrawal, Chaudhuri, Das, Gionis 2003]

Ranking: Compute a similarity score between a tuple and the

Q = SELECT *FROM R WHERE $A_1 = v_1 AND \dots AND A_m = v_m$

Query is a vector:

Tuple is a vector:

$$Q = (v_1, ..., v_m)$$

 $T = (u_1, ..., u_m)$

Rank tuples by their TF/IDF similarity to the query Q

Includes partial matches

[Motro:1988,Dalvi&S:2004]

Similarity Predicates in SQL

Beyond a single table: "Find the good deals in a neighborhood !"

```
SELECT *
FROM Houses x
WHERE x.bedrooms ~ 4 AND x.style ~ 'craftsman' AND x.price ~ 600k
AND NOT EXISTS
(SELECT *
FROM Houses y
WHERE x.district = y.district AND x.ID != y.ID
AND y.bedrooms ~ 4 AND y.style ~ 'craftsman' AND y.price ~ 600k
```

Users specify similarity predicates with ~ System combines atomic similarities using <u>probabilities</u>

Types of Similarity Predicates

- String edit distances:
 - Levenstein distance, Q-gram distances
- TF/IDF scores
- Ontology distance / semantic similarity:
 - Wordnet

[Theobald&Weikum:2002, Hung,Deng&Subrahmanian:2004]

- Phonetic similarity:
 - SOUNDEX

[Hristidis&Papakonstantinou'2002,Bhalotia et al.2002]

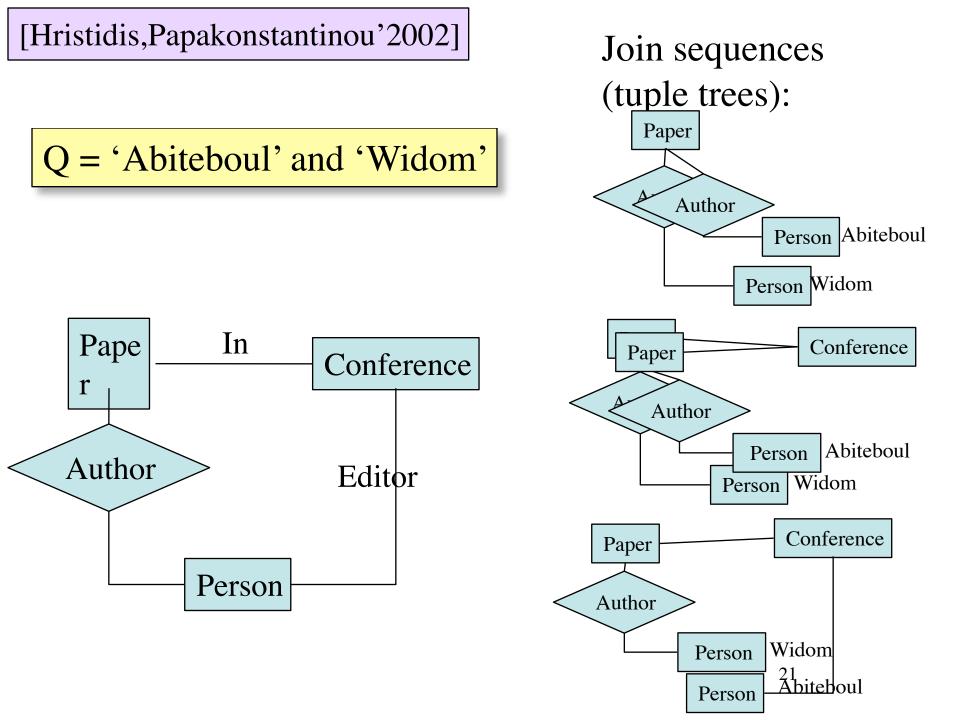
Keyword Searches in Databases

Goal:

- Users want to search via keywords
- Do not know the schema

Techniques:

- Matching objects may be scattered across physical tables due to normalization; need *on the fly* joins
- Score of a tuple = number of joins, plus "prestige" based on indegree



[Kiessling&Koster2002,Chomicki2002,Fagin&Wimmers1997]

More Ranking: User Preferences

Applications: personalized search engines, shopping agents, logical user profiles, "soft catalogs"

Two approaches:

- Qualitative \Rightarrow Pareto semantics (deterministic)
- Quantitative \Rightarrow alter the query ranking

Summary on Ranking Query Answers

Types of imprecision addressed:

Data is precise, query answers are imprecise:

- User has limited understanding of the data
- User has limited understanding of the schema
- User has personal preferences

Probabilistic approach would...

- Principled semantics for complex queries
- Integrate well with other types of imprecision

2. Record Linkage

Determine if two data records describe same object

Scenarios:

- Join/merge two relations
- Remove duplicates from a single relation
- Validate incoming tuples against a reference

[Cohen: Tutorial; Fellegi&Sunder:1969]

Fellegi-Sunter Model

A probabilistic model/framework

• Given two sets of records A, B:

Goal: partition A × B into:

- Match A =
- Uncertain
- Non-match

$$= \{a_1, a_2, a_3, a_4, a_5, a_6\}$$
$$= \{b_1, b_2, b_3, b_4, b_5\}$$

Non-Fellegi Sunter Approaches

Deterministic linkage

- Normalize records, then test equality
 - E.g. for addresses
 - Very fast when it works
- Hand-coded rules for an "acceptable match"
 - E.g. "same SSN";or "same last name AND same DOB"
 - Difficult to tune

Application: Data Cleaning, ETL

- Merge/purge for *large* databases, by sorting and [Hernandez,Stolfo:1995]
- Use of dimensional hierarchies in data warehouses and exploit co-occurrences

[Ananthakrishna, Chaudhuri, Ganti: 2002]

• Novel similarity functions that are amenable to indexing

[Chaudhuri,Ganjam,Ganti,Motwani:2002]

• Declarative language to combine cleaning tasks

[Galhardas et al.:2001]

Application: Data Integration

WHIRL

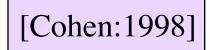
- All attributes in in all tables are of type *text*
- Datalog queries with two kinds of predicates:
 - Relational predicates
 - Similarity predicates X ~ Y
 Matches two sets on the fly, but not really a "record linkage" application. 28

WHIRL

Example 1:

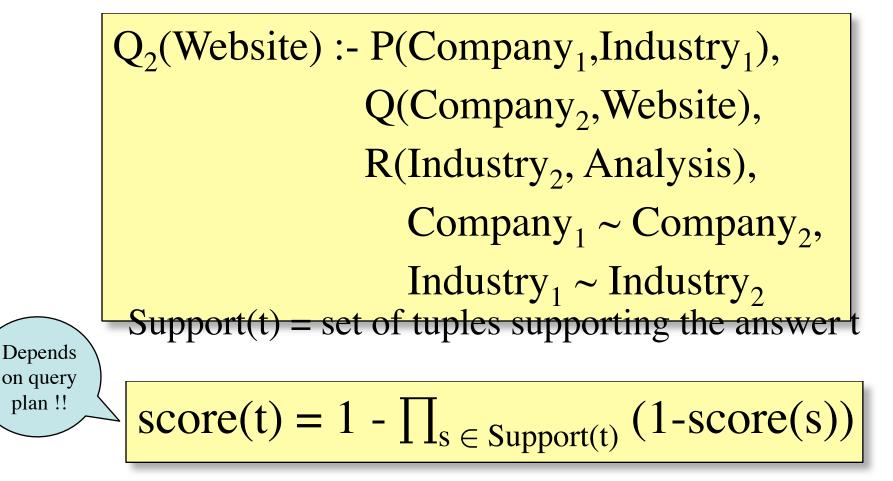
 $Q_1(*) := P(Company_1, Industry_1),$ $Q(Company_2, Website),$ $R(Industry_2, Analysis),$ $Company_1 \sim Company_2,$ $Industry_1 \sim Industry_2$

Score of an answer tuple = product of similarities



WHIRL

Example 2 (with projection):



Summary on Record Linkage

Types of imprecision addressed:

Same entity represented in different ways

• Misspellings, lack of canonical representation, etc.

A probability model would...

- Allow system to use the match probabilities: cheaper, on-the-fly
- But need to model complex probabilistic correlations: is one set a reference set ? how many duplicates are expected ?

[Florescu,Koller,Levy97;Chang,GarciaMolina00;Mendelzon,Mihaila01]

3. Quality in Data Integration

Use of probabilistic information to reason about soundness, completeness, and overlap of sources

Applications:

- Order access to information sources
- Compute confidence scores for the answers

[Mendelzon&Mihaila:2001

Global Historical Climatology Network

- Integrates climatic data from:
 - 6000 temperature stations
 - 7500 precipitation stations
 - 2000 pressure stations

Soundness of a data source: what fraction of items are correct Completeness data source:

what fractions of items it actually contains

[Mendelzon&Mihaila:2001

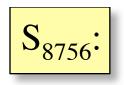
Local as

Global schema: Temperature Station

 $V_1(s, lat, lon, c) \neg$ **Station**(s, lat, lon c)

 $V_2(s, y, m, v) \neg$ **Temperature**(s, y, m, v), **Station**(s, lat, lon, "Canada"), y ≥ 1900

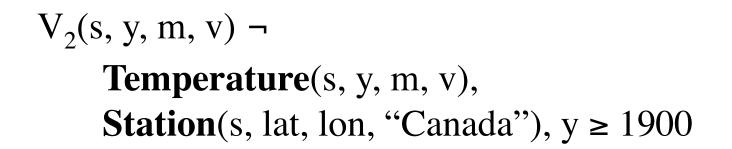
 $V_3(s, y, m, v) \neg$ **Temperature**(s, y, m, v), **Station**(s, lat, lon, "US"), y ≥ 1800

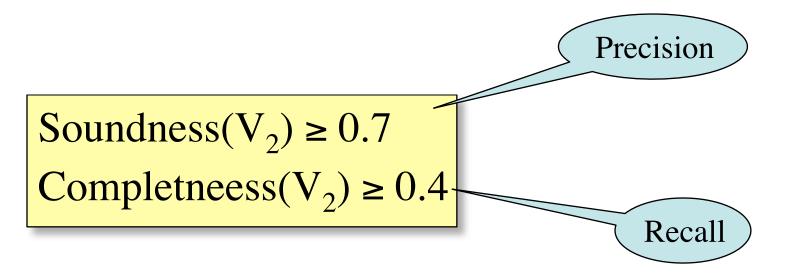


[Florescu,Koller,Levy:1997;Mendelzon&Mihaila:2001]

Next, declare soundness and

S₂:





[Florescu,Koller,Levy:1997

Goal 1: completeness \rightarrow **order source accesses**

[Mendelzon&Mihaila:2001]

Goal 2: soundness \rightarrow **query confidence**

Q(y, v) :- **Temperature**(s, y, m, v), **Station**(s, lat, lon, "US"), y ≥ 1950, y ≤ 1955, lat ≥ 48, lat ≤ 49

Answer:	Year	Value	Confidence
	1952	55º F	0.7
	1954	-22º F	0.9
	• • •	• • •	36

Summary: Quality in Data Integration

Types of imprecision addressed

Overlapping, inconsistent, incomplete data sources

- Data is probabilistic
- Query answers are probabilistic

They use already a probabilistic model

- Needed: complex probabilistic spaces. E.g. a tuple t in V_1 has 60% probability of also being in V_2
- Query processing still in infancy

[Bertosi&Chomicki:2003]

4. Inconsistent Data

Goal: *consistent* query answers from *inconsistent* databases

Applications:

- Integration of autonomous data sources
- Un-enforced integrity constraints
- Temporary inconsistencies

[Bertosi&Chomicki:2003]

Key

The Repair Semantics

Consider all "repairs"

\int	Name	Affiliation	State	Area
	Miklau	UW	WA	Data security
	Dalvi	UW	WA	Prob. Data
	Balazinska	UW	WA	Data streams
	Balazinska	MIT	MA	Data streams
	Miklau	Umass	MA	Data security

Find people in State=WA \Rightarrow Dalvi

Find people in State=MA $\Rightarrow \emptyset$

Hi precision, but low recall

Alternative Probabilistic Semantics

Name	Affiliation	State	Area	P
Miklau	UW	WA	Data security	0.5
Dalvi	UW	WA	Prob. Data	1
Balazinska	UW	WA	Data streams	0.5
Balazinska	MIT	MA	Data streams	0.5
Miklau	Umass	MA	Data security	0.5

State=WA \Rightarrow Dalvi, Balazinska(0.5), Miklau(0.5)

State=MA \Rightarrow Balazinska(0.5), Miklau(0.5)

Lower precision, but better recall 40

Summary: Inconsistent Data

Types of imprecision addressed:

- Data from different sources is contradictory
- Data is uncertain, hence, arguably, probabilistic
- Query answers are probabilistic

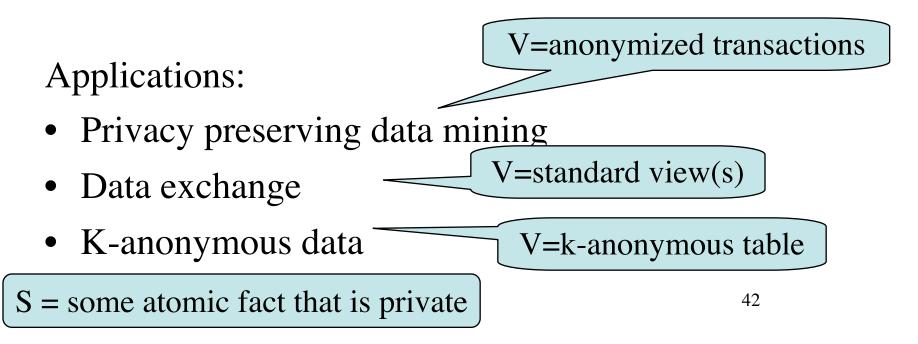
A probabilistic would...

- Give better recall !
- Needs to support disjoint tuple events

5. Information Disclosure

Goal

• Disclose some information (V) while protecting private or sensitive data S



[Evfimievski,Gehrke,Srikant:03; Miklau&S:04;Miklau,Dalvi&S:05]

= a priori probability of S

= a posteriori probability of S

[Evfimievski,Gehrke,Srikant:03; Miklau&S:04;Miklau,Dalvi&S:05]

Information Disclosure

• If $\rho_1 < \rho_2$, a ρ_1 , ρ_2 privacy breach:

 $Pr(S) \le \rho_1$ and $Pr(S \mid V) \ge \rho_2$

 $Pr(S) = Pr(S \mid V)$

• Perfect security:

• Practical security: Database size remains fixed $\lim_{\text{domain size } \mathbb{R} \ \infty} \Pr(S \mid V) = 0$

Summary: Information Disclosure

Is this a type of imprecision in data ?

- Yes: it's the adversary's uncertainty about the private data.
- The only type of imprecision that is good

Techniques

- Probabilistic methods: long history [Shannon'49]
- Definitely need conditional probabilities

Summary: Information Disclosure

Important fundamental duality:

- Query answering: want Probability $\lesssim 1$
- Information disclosure: want Probability $\gtrsim 0$

They share the same fundamental concepts and techniques

Summary: Information Disclosure

What is required from the probabilistic model

- Don't know the possible instances
- Express the adversary's knowledge:
 - Cardinalities:
 - Correlations between values:
- Compute conditional probabilities

Size(**Employee**) $\simeq 1000$

area-code ~> city

6. Other Applications

• Data lineage + accuracy: Trio

[Widom:2005]

- Sensor data [Deshpande, Guestrin, Madden: 2004]
- Personal information management

Semex [Dong&Halevy:2005, Dong,Halevy,Madhavan:2005] Heystack [Karger et al. 2003], Magnet [Sinha&Karger:2005]

• Using statistics to answer queries

[Dalvi&S;2005]

Summary on Part I: Applications

Common in these applications:

• Data in database and/or in query answer is uncertain, ranked; sometimes probabilistic

Need for common probabilistic model:

- Main benefit: uniform approach to imprecision
- Other benefits:
 - Handle complex queries (instead of single table TF/IDF)
 - Cheaper solutions (on-the-fly record linkage)
 - Better recall (constraint violations)

Part II

A Probabilistic Data Semantics

Outline

• The possible worlds model

• Query semantics

Possible Worlds Semantics

Attribute domains:

int, char(30), varchar(55), datetime

values: 2^{32} , 2^{120} , 2^{440} , 2^{64}

Relational schema:

Employee(name:varchar(55), dob:datetime, salary:int)

of tuples: $2^{440} \times 2^{64} \times 2^{23}$

Database schema:

of instances: 2

 $2^{2^{440} \, \times \, 2^{64} \, \times \, 2^{23}}$

Employee(...), Projects(...), Groups(...), WorksFor(...)

of instances: N (= BIG but finite)

The Definition

The set of all possible database instances:

INST =
$$\{I_1, I_2, I_3, ..., I_N\}$$

will use Pr or I^p interchangeably

Definition A *probabilistic database* I^p is a probability distribution on INST

$$\frac{\text{Pr}: \text{INST} \rightarrow [0,1]}{\text{s.t. } \sum_{i=1,N} \text{Pr}(I_i) = 1}$$

Definition A *possible world* is I s.t. Pr(I) > 0

$\mathbf{I}^{p} =$

Example

Customer	Address	Product				
John	Seattle	Gizmo				
John	Seattle	Camera				
Sue	Denver	Gizmo				
$Pr(I_1) = 1/3$						

Customer	Address	Product		
John	Seattle	Gizmo		
John	Seattle	Camera		
Sue	Seattle	Camera		

$$Pr(I_3) = 1/2$$

Customer	Address	Product
John	Boston	Gadget
Sue	Denver	Gizmo

 $Pr(I_2) = 1/12$

Customer	Address	Product		
John	Boston	Gadget		
Sue	Seattle	Camera		

 $Pr(I_4) = 1/12$

Possible worlds = $\{I_1, I_2, I_3, I_4\}$ 54

Tuples as Events

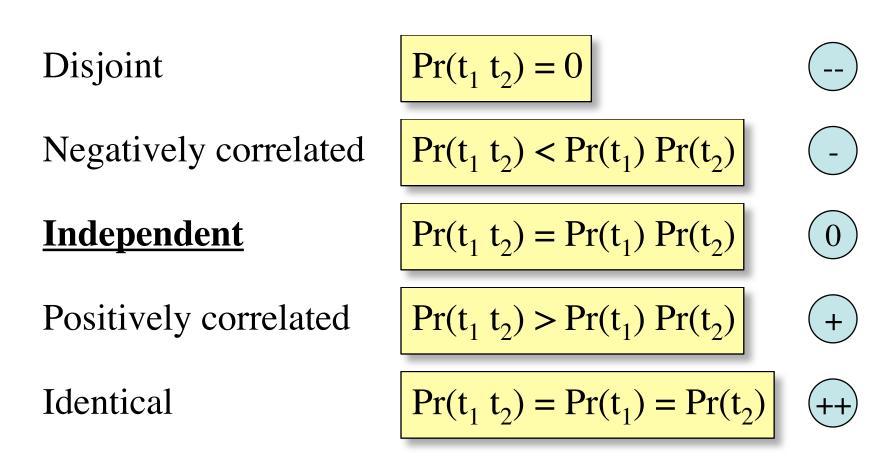
One tuple $t \Rightarrow$ event $t \in I$

$$Pr(t) = \sum_{I: t \in I} Pr(I)$$

Two tuples $t_1, t_2 \Rightarrow \text{event } t_1 \in I \land t_2 \in I$

$$\Pr(t_1 t_2) = \sum_{I: t_1 \in I \land t_2 \in I} \Pr(I)$$

Tuple Correlation



Example

 $\mathbf{I}^{p} =$

	Customer	Address	Product		Customer	Address	Product			
++	John	Seattle	Gizmo	\searrow	John	Boston	Gadget			
	John	Seattle	Camera		Sue	Denver	Gizmo			
	Sue	Denver	Gizmo		$D_{rr}(I) = 1/12$					
$Pr(I_1) = 1/3$					$\Pr(I_2) = 1/12$					
	Customer	Address	Product		Customer	Address	Product			
				1 /						
	John	Seattle	Gizmo		John	Boston	Gadget			
(+)	John John	Seattle Seattle	Gizmo Camera		John Sue	Boston Seattle	Gadget Camera			
+					Sue		Camera			

Query Semantics

Given a query Q and a probabilistic database I^p , what is the meaning of $Q(I^p)$?

Query Semantics

Semantics 1: Possible Answers A probability distributions on <u>sets of tuples</u>

$$\forall A. Pr(Q = A) = \sum_{I \in INST. Q(I) = A} Pr(I)$$

Semantics 2: Possible Tuples A probability function on *tuples*

$$\forall t. Pr(t \in Q) = \sum_{I \in INST. t \in Q(I)} Pr(I)$$

Purchase^P Example: Query Semantics

Name	City	Product	
John	Seattle	Gizmo	$D_{m}(I) = 1/2$
John	Seattle	Camera	$\Pr(I_1) = 1/3$
Sue	Denver	Gizmo	
Sue	Denver	Camera	
Nam e	City	Product	$Pr(I_2) = 1/12$
John	Boston	Gizmo	× 2/
Sue	Denver	Gizmo	
Sue Nam	Seattle	Gadget	
e	City	Product	$Pr(I_3) = 1/2$
John	Seattle	Gizmo	(-3)
John	Seattle	Camera	
Nam	Seattle City	Camera Product	
е	City	I TOULLE	
John	Boston	Camera	$\Pr(I_4) = 1/12$
â			

$Pr(I_2) =$	1/12
	1/2

$$Pr(I_4) = 1/12$$

SELECT DISTINCT x.product FROM Purchase^p x, Purchase^p y WHERE x.name = 'John' and x.product = y.product and y.name = 'Sue'

Possible answers semantics:

Answer set	Probability	
Gizmo, Camera	1/3	$Pr(I_1)$
Gizmo	1/12	$Pr(I_2)$
Camera	7/12	$P(I_3) + P(I_4)$

Possible tuples semantics:

Tuple	Probability	- -
Camera	11/12	$\Pr(\mathbf{I}_1) + \Pr(\mathbf{I}_3) + \Pr(\mathbf{I}_4)$
Gizmo	5/12	$Pr(I_1) + Pr(I_2)$

Special Case

Tuple independent probabilistic database

$$TUP = \{t_1, t_2, \dots, t_M\} = all tuples$$

$$pr: TUP \rightarrow [0,1]$$

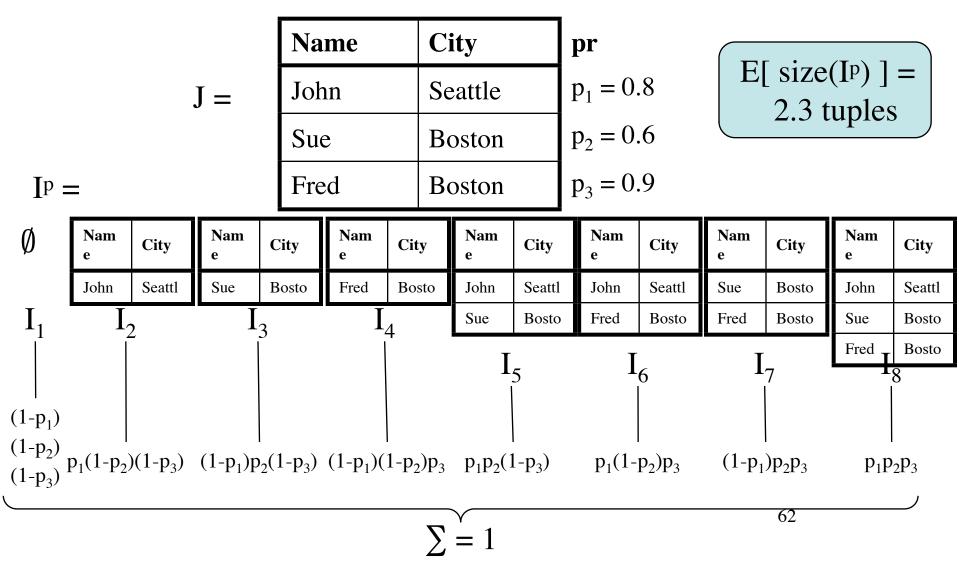
No restrictions

 $INST = \mathcal{P}(TUP)$ $N = 2^{M}$

61

$$\Pr(\mathbf{I}) = \prod_{t \in \mathbf{I}} \operatorname{pr}(t) \times \prod_{t \notin \mathbf{I}} (1 - \operatorname{pr}(t))$$

Tuple Prob. \Rightarrow Possible Worlds



Tuple Prob. \Rightarrow Query Evaluation

						Custom	ner	P	roduct	Date	pr									
	Name	City	pr			John		G	izmo		q ₁									
	John	Seattle	p ₁	\vdash									\longrightarrow	{ [John		G	adget	•••	q ₂
	Sue	Boston	p ₂									John		G	adget		q ₃			
	Fred	Boston	p ₃	$\backslash \setminus$		Sue		C	amera	• • •	q ₄									
						Sue		G	adget	•••	q ₅									
	\bigvee					Sue		G	adget	• • •	q ₆									
						Fred		G	adget		q ₇									
	ELECT DISTINCT x.city ROM Person x, Purchase y						Tuple	1	Probability											
	HERE x.Name = y.Customer						Seattle		p ₁ (1-0	$(1-q_2)(1-q_3)$))									
_	and y.Product = 'Gadget'						Boston		$1 - (1 - p_2) \times (1 - p_3)$	$\frac{1}{2}(1-(1-q_5))(1)$	-q ₆)))									

Summary of Part II

Possible Worlds Semantics

- Very powerful model: *any* tuple correlations
- Needs separate representation formalism

Summary of Part II

Query semantics

- Very powerful: *every* SQL query has semantics
- Very intuitive: from standard semantics

• Two variations, both appear in the literature

Summary of Part II

Possible answers semantics

- Precise
- Can be used to compose queries
- Difficult user interface

Possible tuples semantics

- Less precise, but simple; sufficient for most apps
- Cannot be used to compose queries
- Simple user interface

After the Break

Part III: Representation Formalisms

Part IV: Foundations

Part V: Algorithms, implementation techniques

Conclusions and Challenges

Part III

Representation Formalisms

Representation Formalisms

Problem

Need a good representation formalism

- Will be interpreted as possible worlds
- Several formalisms exists, but no winner

Main open problem in probabilistic db

Evaluation of Formalisms

- What possible worlds can it represent ?
- What probability distributions on worlds ?
- Is it closed under query application ?

Outline

A complete formalism:

• Intensional Databases

Incomplete formalisms:

• Various expressibility/complexity tradeoffs

Intensional Database

Atomic event ids

Probabilities:

e₁, e₂, e₃, ...

 $p_1, p_2, p_3, \ldots \in [0,1]$

Event expressions: \land, \lor, \neg

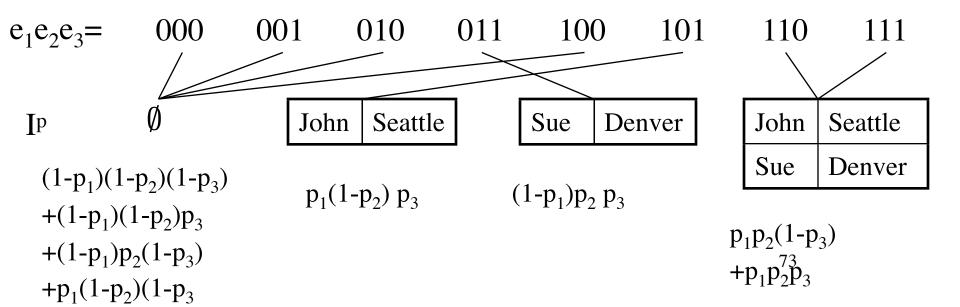
 $\mathbf{e}_3 \land (\mathbf{e}_5 \lor \neg \mathbf{e}_2)$

Intensional probabilistic database J: each tuple t has an event attribute t.E

Intensional DB \Rightarrow Possible Worlds

J =

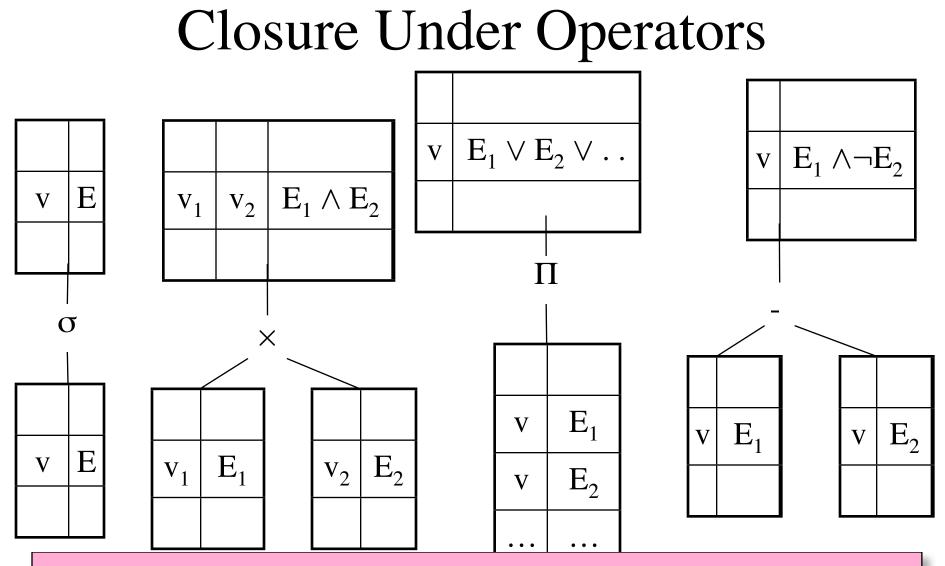
]	Name	Address	Ε
	John	Seattle	$\mathbf{e}_1 \wedge (\mathbf{e}_2 \vee \mathbf{e}_3)$
ļ	Sue	Denver	$(\mathbf{e}_1 \wedge \mathbf{e}_2) \lor (\mathbf{e}_2 \wedge \mathbf{e}_3)$



Possible Worlds \Rightarrow Intensional DB

Name	Address		$E_1 = e$	ے			$Pr(e_1) =$	n.
John	Seattle		1	1			$Pr(e_{1}) = Pr(e_{2}) =$	~ 1
John	Boston	p ₁	$E_2 = -$	$\neg e_1 \wedge e_2 \\ \neg e_1 \wedge \neg e_1$	Λe			$p_{2'}(1 p_{1})$ $p_{3}/(1-p_{1}-p_{2})$
Sue	Seattle		-	-		Λe	, J	
Name	Address		²⁴ "P	refix coo	le"	3 / (• 4	11(04)	$p_4/(1-p_1-p_2-p_3)$
John	Seattle	p ₂				Name	Address	Ε
Sue	Seattle			N				
			=I ^p	\square	J =	John	Seattle	$E_1 \lor E_2$
Name	Address	p ₃		V		John	Boston	$E_1 \lor E_4$
Sue	Seattle	F3				Sue	Seattle	$E_1 \vee E_2 \vee E_3$
Name	Address						1	
John	Boston	p ₄		Intesi	onal E)Bs ar	e compl	ete

[Fuhr&Roellke:1997]



One still needs to compute probability of event expression

Summary on Intensional Databases

Event expression for each tuple

- Possible worlds: any subset
- Probability distribution: any

Complete (in some sense) ... but impractical

Important abstraction: consider restrictions

Related to c-tables [Imilelinski&Lipski:1984]

Restricted Formalisms

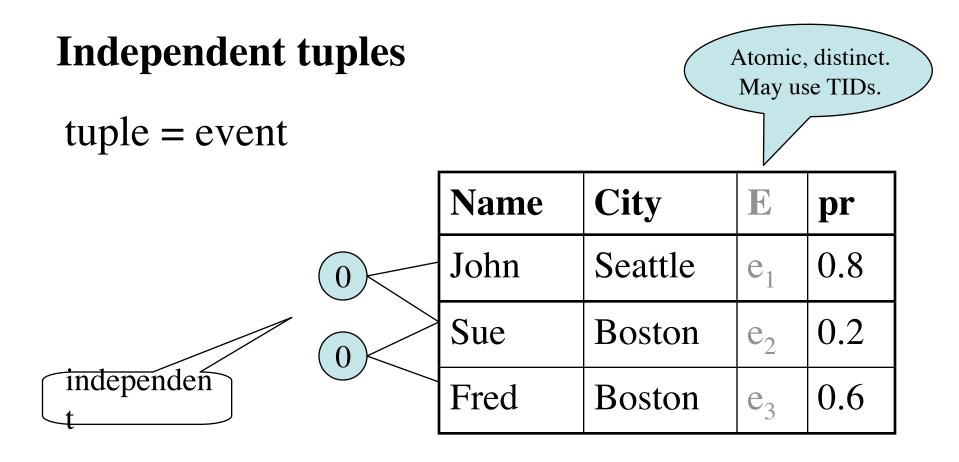
Explicit tuples

• Have a tuple template for every tuple that may appear in a possible world

Implicit tuples

• Specify tuples indirectly, e.g. by indicating how many there are

Explicit Tuples



E[size(Customer)] = 1.6 tuples

Application 1: Similarity Predicates

Name	City	Profession
John	Seattle	statistician
Sue	Boston	musician
Fred	Boston	physicist
		Step 1: evaluate ~ predicates

SELECT DISTINCT x.city FROM Person x, Purchase y WHERE x.Name = y.Cust and y.Product = 'Gadget' and **x.profession ~ 'scientist'** and **y.category ~ 'music'**

Cust	Product	Category
John	Gizmo	dishware
John	Gadget	instrument
John	Gadget	instrument
Sue	Camera	musicware
Sue	Gadget	microphone
Sue	Gadget	instrument
Fred	Gadget	microphone

Application 1: Similarity Predicates

Name	City	Profession	pr		
John	Seattle	statistician	p ₁ =0.8		
Sue	Boston	musician	p ₂ =0.2		
Fred	Boston	physicist	D=0.9		
Step 1: evaluate ~ predicates					
SELECT DISTINCT x.city FROM Person ^p x, Purchase ^p y					
aı	2	e = y.Cust act = 'Gadget	/ ~		

and y.category ~ 'music'

	Cust		Produc	et	Category	pr
8	John		Gizmo		dishware	q ₁ =0.2
	John		Gadget		instrument	q ₂ =0.6
2	John		Gadget		instrument	q ₃ =0.6
9	Sue	Camera		a	musicware	q ₄ =0.9
	Sue		Gadget		microphone	q ₅ =0.7
	Sue		Gadget		instrument	q ₆ =0.6
	Fred				microphone robability	a_=0.7
Step 2:		Seattle		$p_1(1-(1-q_2)(1-q_3))$		
valuate of que	/ /	В	oston	$1-(1-p_2(1-(1-q_5)(1-q_6))) \times (1-p_3q_7)$		

Explicit Tuples

Independent/disjoint tuples

Independent events: $e_1, e_2, ..., e_i, ...$ Split e_i into disjoint "shares" $e_i = e_{i1} \lor e_{i2} \lor e_{i3} \lor ...$

$$e_{34}, e_{37} \Rightarrow disjoint events$$
 --
 $e_{37}, e_{57} \Rightarrow independent events$ 0

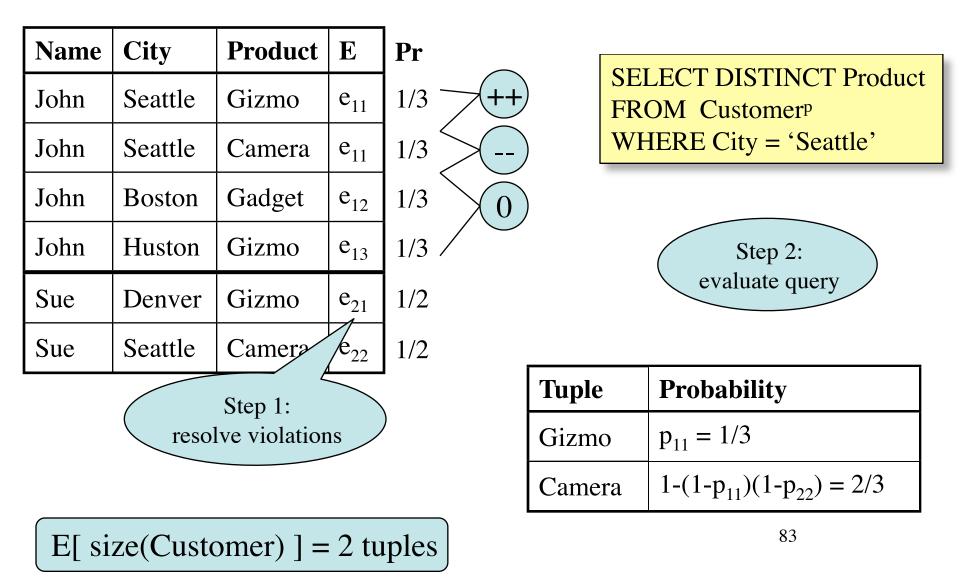
Application 2: Inconsistent Data

Name	City	Product	
John	Seattle	Gizmo	
John	Seattle	Camera	
John	Boston	Gadget	
John	Huston	Gizmo	
Sue	Denver	Gizmo	
Sue	Seattle	Camera	
	reso	Step 1: lve violations	\
NT		$(\cdot 1)$	1

SELECT DISTINCT Product FROM Customer WHERE City = 'Seattle'

Name \rightarrow City (violated)

Application 2: Inconsistent Data



[Barbara et al.92, Lakshmanan et al.97,Ross et al.05;Widom05]

Inaccurate Attribute Values

Name	Dept	Bonus	
		Great	0.4
John	Тоу	Good	0.5
		Fair	0.1
Fred	Sales	Good	1.0

Inaccurate attributes

Name	Dept	Bonus	E	Pr
John	Тоу	Great	e ₁₁	0.4
John	Тоу	Good	e ₁₂	0.5
John	Тоу	Fair	e ₁₃	0.1
Fred	Sales	Good	e ₂₁	1.0

Disjoint and/or independent events

Summary on Explicit Tuples

Independent or disjoint/independent tuples

- Possible worlds: subsets
- Probability distribution: restricted
- Closure: no

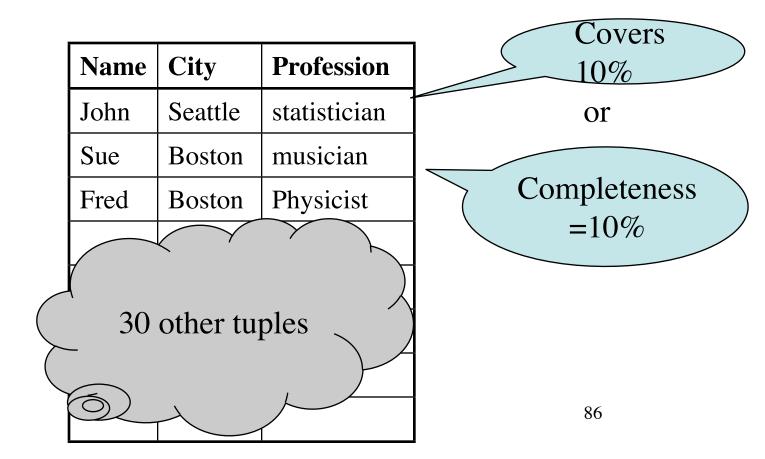
In KR:

- Bayesian networks: disjoint tuples
- Probabilistic relational models: correlated tuples
 [Friedman,Getoor,Koller,Pfeffer:1999]

[Mendelzon&Mihaila:2001,Widom:2005,Miklau&S04,Dalvi et al.05]

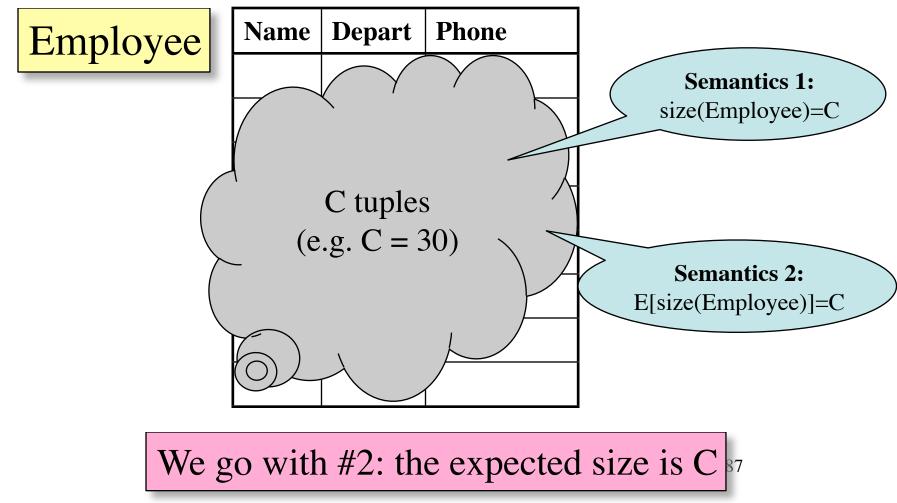
Implicit Tuples

"There are other, unknown tuples out there"



[Miklau,Dalvi&S:2005,Dalvi&S:2005]

Implicit Tuples Statistics based:



[Miklau,Dalvi&S:2005,Dalvi&S:2005]

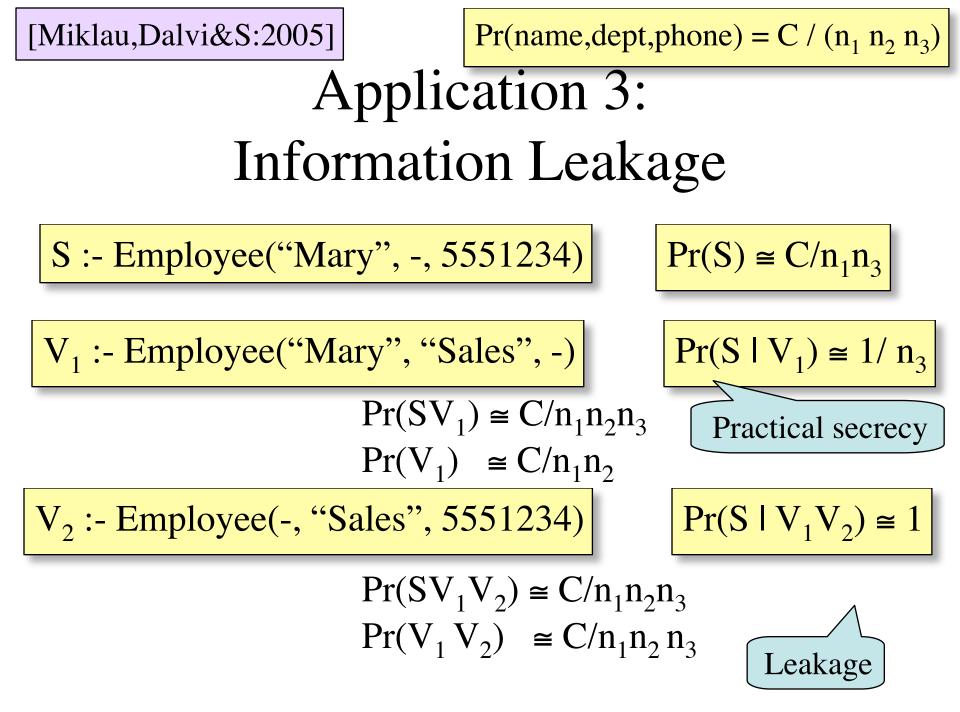
Implicit Possible Tuples

Binomial distribution

$$n_1 = |D_{name}|$$
$$n_2 = |D_{dept}|$$
$$n_3 = |D_{phone}|$$

$$\forall t. Pr(t) = C / (n_1 n_2 n_3)$$

$$\square$$
E[Size(Employee)] = C



Summary on Implicit Tuples

Given by expected cardinality

- Possible worlds: any
- Probability distribution: binomial

May be used in conjunction with other formalisms

• Entropy maximization

[Domingos&Richardson:2004,Dalvi&S:2005]

Conditional probabilities become important

Summary on Part III: Representation Formalism

- Intensional databases:
 - Complete (in some sense)
 - Impractical, but...
 - ...important practical restrictions
- Incomplete formalisms:
 - Explicit tuples
 - Implicit tuples
- We have not discussed query processing yet

Part IV

Foundations

Outline

- Probability of boolean expressions
- Query probability
- Random graphs

Probability of Boolean Expressions

$$E = X_1 X_3 \lor X_1 X_4 \lor X_2 X_5 \lor X_2 X_6$$

Randomly make each variable true with the following probabilities

$$Pr(X_1) = p_1, Pr(X_2) = p_2, \dots, Pr(X_6) = p_6$$

What is Pr(E) ???

Answer: re-group cleverly

$$\Xi = X_{1}(X_{3} \lor X_{4}) \lor X_{2}(X_{5} \lor X_{6})$$

$$Pr(E)=1 - (1-p_1(1-(1-p_3)(1-p_4)))$$

$$(1-p_2(1-(1-p_5)(1-p_6))))$$
⁹⁴

Now let's try this:

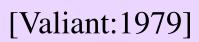
$$E = X_1 X_2 \lor X_1 X_3 \lor X_2 X_3$$

No clever grouping seems possible. Brute force:

$$Pr(E)=(1-p_1)p_2p_3 + p_1(1-p_2)p_3 + p_1p_2(1-p_3) + p_1p_2p_3$$

X ₁	X ₂	X ₃	E	Pr
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$(1-p_1)p_2p_3$
1	0	0	0	
1	0	1	1	$p_1(1-p_2)p_3$
1	1	0	1	$p_1 p_2 (1-p_3)$
1	1	1	1	$p_{1}p_{2}p_{3}$

Seems inefficient in general...



Complexity of Boolean Expression Probability

Theorem [Valiant:1979] For a boolean expression E, computing Pr(E) is #P-complete

NP = class of problems of the form "is there a witness ?" SAT #P = class of problems of the form "how many witnesses ?" #SAT

The decision problem for 2CNF is in PTIME The counting problem for 2CNF is #P-complete

Summary on Boolean Expression Probability

• #P-complete

• It's hard even in simple cases: 2DNF

• Can do Monte Carlo simulation (later)

Query Complexity

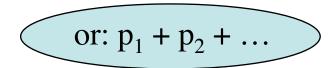
Data complexity of a query Q:

• Compute Q(I^p), for probabilistic database I^p

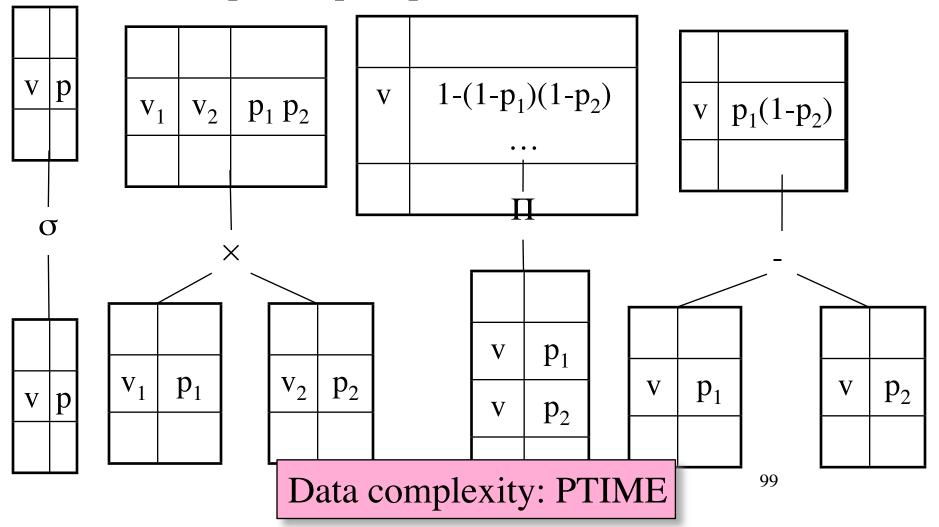
Simplest scenario only:

- Possible tuples semantics for Q
- Independent tuples for I^p

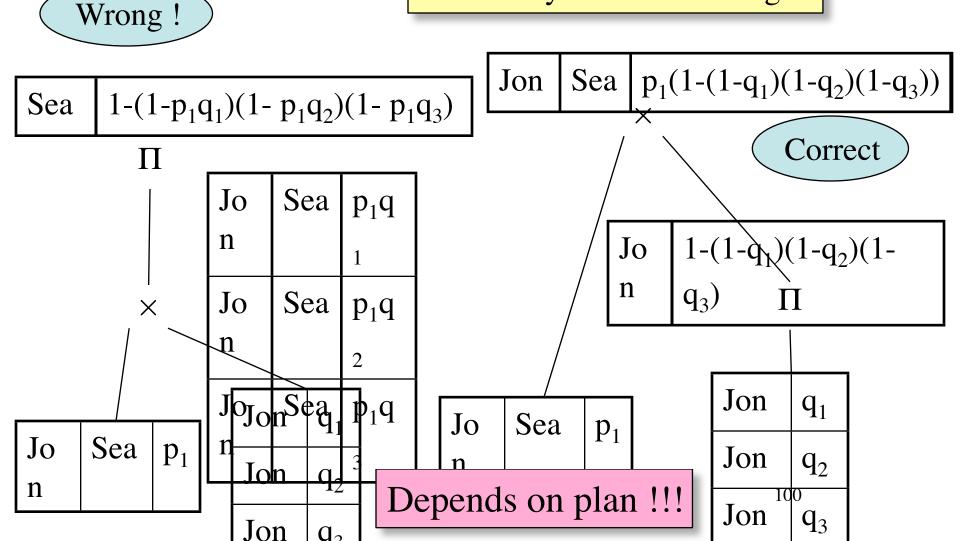
[Fuhr&Roellke:1997,Dalvi&S:2004]



Extensional Query Evaluation Relational ops compute probabilities



SELECT DISTINCT x.City FROM Person^p x, Purchase^p y WHERE x.Name = y.Cust and y.Product = 'Gadget'



Query Complexity

Sometimes ∄ correct extensional plan

Theorem The following are equivalent

- Q has PTIME data complexity
- Q admits an extensional plan (and one finds it in PTIME)
- \bullet Q does not have Q_{bad} as a subquery

Summary on Query Complexity

Extensional query evaluation:

- Very popular
 - generalized to "strategies"

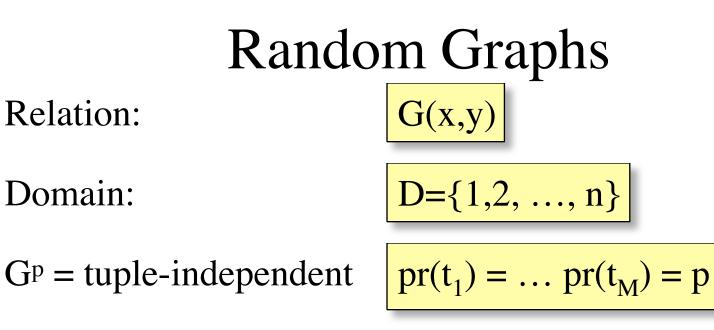
[Lakshmanan et al.1997]

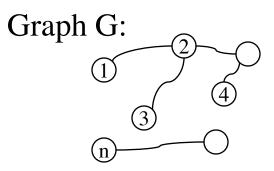
• However, result depends on query plan !

General query complexity

- *#*P complete (not surprising, given *#*SAT)
- Already #P hard for very simple query (Q_{bad}) Probabilistic database have high query complexity

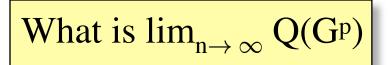
[Erdos&Reny:1959,Fagin:1976,Spencer:2001]





Boolean query Q

Random graph G^p



Fagin's 0/1 Law

Let the tuple probability be p = 1/2

Theorem [Fagin:1976,Glebskii et al.1969] For every sentence Q in First Order Logic, $\lim_{n\to\infty} Q(G^p)$ exists and is either 0 or 1

Examples

Holds almost surely: lim = 1	Does not hold a.s. lim = 0
$\forall x. \exists y. G(x, y)$	$\exists x. \forall y. G(x, y)$
$\exists x. \exists y. \exists z. G(x,y) \land G(y,z) \land G(x,z)$	
	$\forall x. \forall y. G(x,y)$ 104

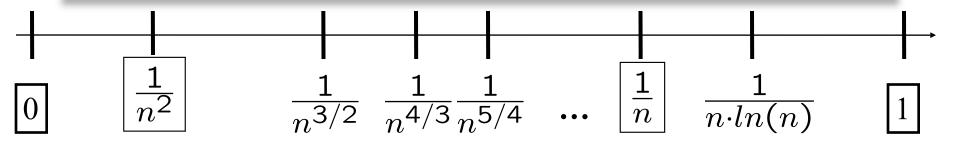
Erdos and Reny's Random Graphs

Now let p = p(n) be a function of n

Theorem [Erdos&Ren]y:1959] For any monotone Q, \exists a threshold function t(n) s.t.: if p(n) \ll t(n) then $\lim_{n\to\infty} Q(G^p)=0$ if p(n) \gg t(n) then $\lim_{n\to\infty} Q(G^p)=1$ [Erdos&Reny:1959; Spencer:2001]

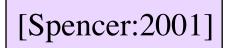
The Evoluation of Random Graphs

The tuple probability p(n) "grows" from 0 to 1. How does the random graph evolve ?



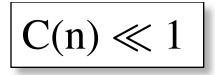
Remark: $C(n) = E[Size(G)] \simeq n^2 p(n)$

The expected size C(n) "grows" from 0 to n^2 . How does the random graph evolve ?



The Void

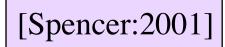
$$p(n) \ll 1/n^2$$



Contains almost surely	Does not contain almost surely
(nothing)	

The graph is empty

0/1 Law holds



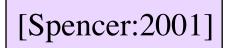
On the k'th Day

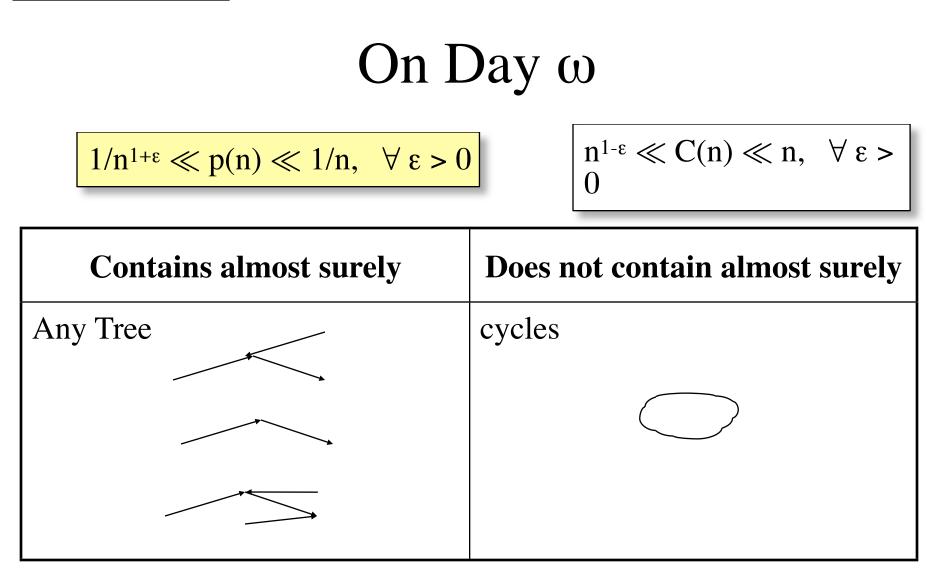
 $1/n^{1+1/(k-1)} \ll p(n) \ll 1/n^{1+1/k}$

 $n^{1-1/(k-1)} \ll C(n) \ll n^{1-1/k}$

Contains almost surely	Does not contain almost surely
trees with \leq k edges	trees > k edges
	cycles

The graph is disconnected 0/1 Law holds





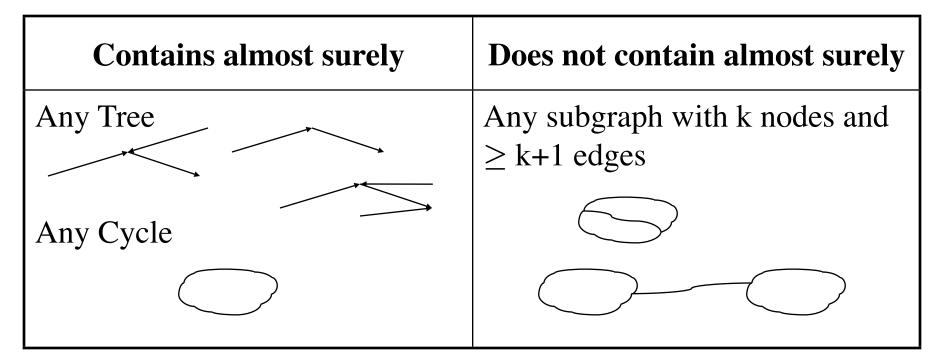
The graph is disconnected 0/1 Law holds

[Spencer:2001]

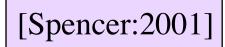
Past the Double Jump (1/n)

 $1/n \ll p(n) \ll \ln(n)/n$

 $n \ll C(n) \ll n \ln(n)$



The graph is disconnected 0/1 Law holds



Past Connectivity

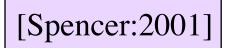
 $\ln(n)/n \ll p(n) \ll 1/n^{1-\epsilon}, \forall \epsilon$

 $n \ln(n) \ll C(n) \ll n^{1+\epsilon}, \forall \ \epsilon$

Contains almost surely	Does not contain almost surely
Every node has degree $\geq k$, for every $k \geq 0$	Any subgraph with k nodes and \geq k+1 edges
Strange logic of random graphs !!	

The graph is connected !

0/1 Law holds



Big Graphs

$$p(n) = 1/n^{\alpha}, \ \alpha \in (0,1)$$

$$C(n) = n^{2-\alpha}, \alpha \in (0,1)$$

 α is irrational \Rightarrow

0/1 Law holds

 α is rational \Rightarrow

0/1 Law does not hold

Fagin's framework: $\alpha = 0$ p(n) = O(1) 0/1 Law holds

$$\mathbf{C}(\mathbf{n}) = \mathbf{O}(\mathbf{n}^2)$$

Summary on Random Graphs

• Very rich field

- Over 700 references in [Bollobas:2001]

- Fascinating theory
 - Evening reading: the evolution of random graphs (e.g. from [Spencer:2001])

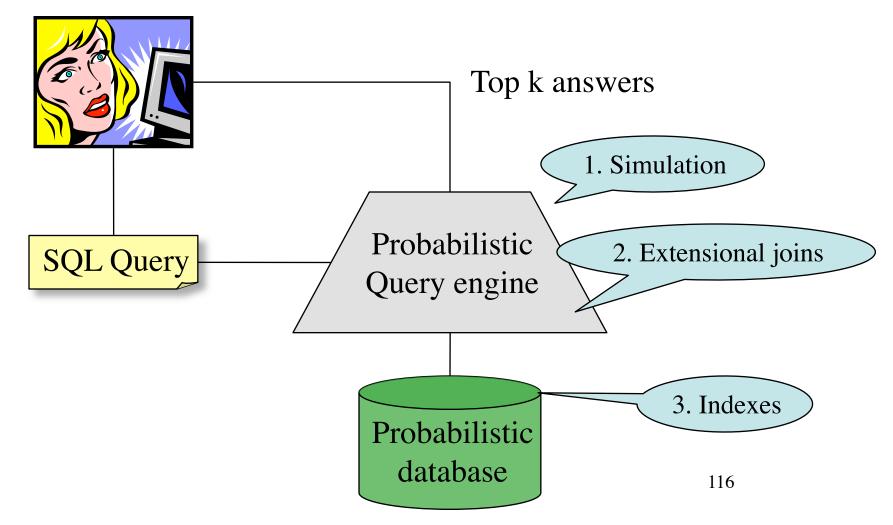
Summary on Random Graphs

- Fagin's 0/1 Law: impractical probabilistic model
- More recent 0/1 laws for $p = 1/n^{\alpha}$ [Spencer&Shelah, Lynch]
- In practice: need precise formulas for Pr(Q(I^p))
 Preliminary work [Dalvi,Miklau&S:04,Dalvi&S:05]

Part V

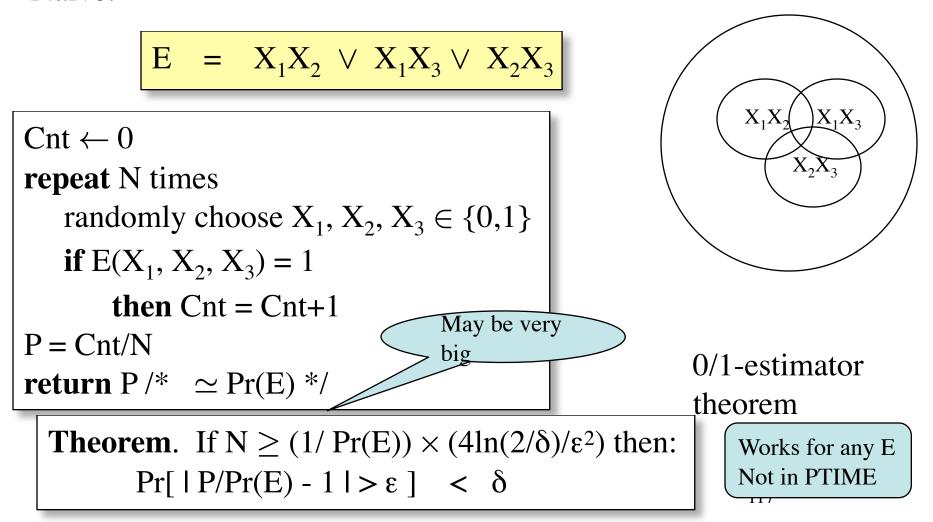
Algorithms, Implementation Techniques

Query Processing on a Probabilistic Database



[Karp,Luby&Madras:1989]

1. Monte Carlo Simulation



[Karp,Luby&Madras:1989]

Monte Carlo Simulation

$$E = C_1 \lor C_2 \lor \ldots \lor C_m$$

Cnt
$$\leftarrow 0$$
; S \leftarrow Pr(C₁) + ... + Pr(C_m);

repeat N times randomly choose $i \in \{1, 2, ..., m\}$, with prob. $Pr(C_i) / S$ randomly choose $X_1, ..., X_n \in \{0,1\}$ s.t. $C_i = 1$ **if** $C_1=0$ and $C_2=0$ and ... and $C_{i-1}=0$ then Cnt = Cnt+1 Now it's better P = Cnt/N * 1/**return** $P /* \simeq Pr(E) */$ **Theorem.** If N \geq (1/m) × (4ln(2/ δ)/ ϵ^2) then: Only for E in DNF In PTIME $\Pr[|P/Pr(E) - 1| > \varepsilon] < \delta$

Summary on Monte Carlo

Some form of simulation is needed in probabilistic databases, to cope with the #Phardness bottleneck

- Naïve MC: works well when Prob is big
- Improved MC: needed when Prob is small

[Nepal&Ramakrishna:1999,Fagin,Lotem,Naor:2001; 2003]

2. The Threshold Algorithm

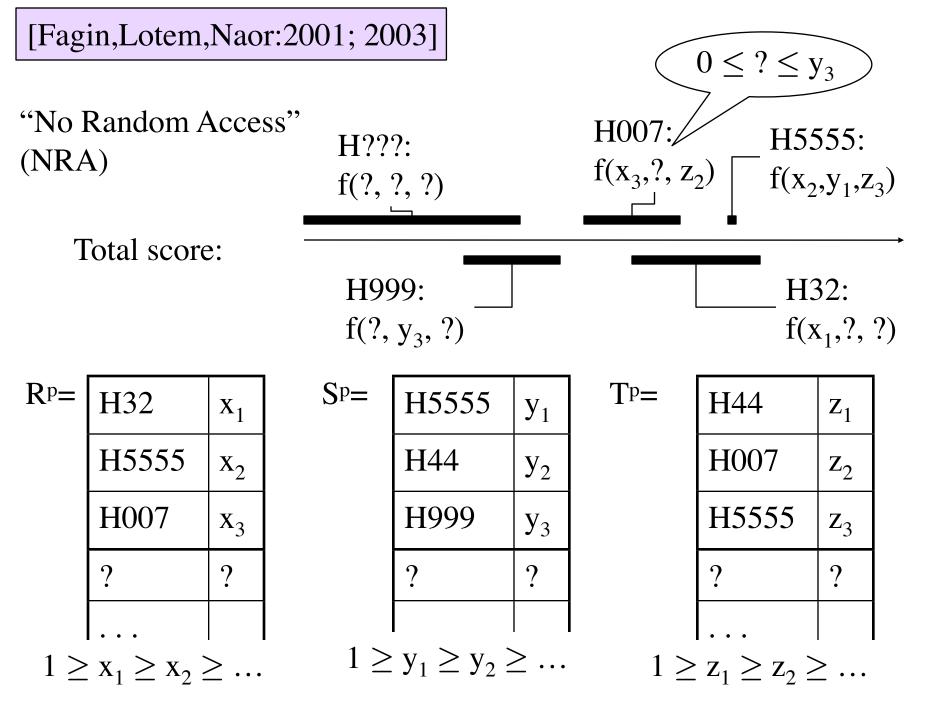
Problem

SELECT * FROM R^p, S^p, T^p WHERE R^p.A = S^p.B and S^p.C = T^p.D

Have subplans for R^p, S^p, T^p returning tuples sorted by their probabilities x, y, z

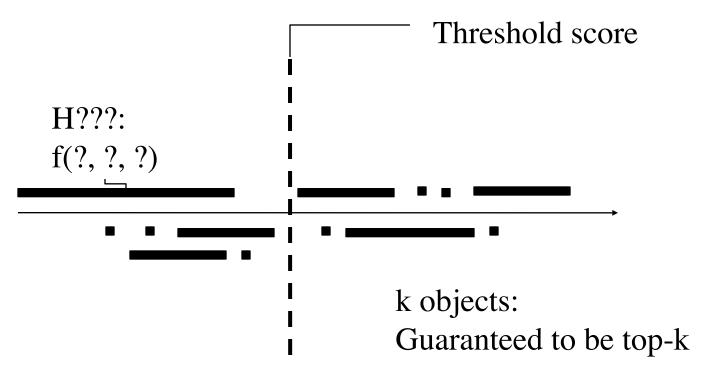
Score combination: f(x, y, z) = xyz

How do we compute the top-k matching records ?



[Fagin,Lotem,Naor:2001; 2003]

Termination condition:



The algorithm is "instance optimal" strongest form of optimality

Summary on the Threshold Algorithm

- Simple, intuitive, powerful
- There are several variations: see paper
- Extensions:
 - Use probabilistic methods to estimate the bounds more aggressively

[Theobald,Weikum&Schenkel:2004]

– Distributed environment

[Michel, Triantafillou&Weikum:2005]

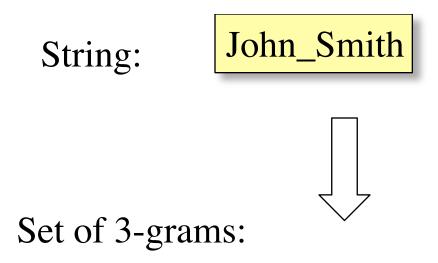
Approximate String Joins

Problem:

SELECT * FROM R, S WHERE R.A ~ S.B

Simplification for this tutorial: A ~ B means "A, B have at least k q-grams in common"

Definition of q-grams



##J #Jo Joh ohn hn_ n_S _Sm Smi mit ith th# h##

SELECT * FROM R, S WHERE R.A ~ S.B

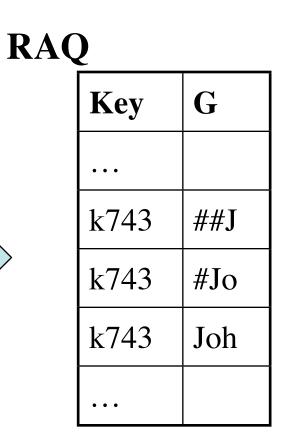
Naïve solution, using UDF (user defined function)

SELECT * FROM R, S WHERE common_grams(R.A, S.B) $\geq k$ [Gravano et al.:2001]

A q-gram index:

R

Key	Α	•••
k743	John_Smith	• • •



Solution using the Q-gram Index

SELECT * FROM R, S WHERE R.A ~ S.B

SELECT R.*, S.* FROM R, RAQ, S, SBQ WHERE R.Key = RAQ.Key and S.Key=SBQ.Key and RAQ.G = RBQ.G GROUP BY RAQ.Key, RBQ.Key HAVING count(*) $\geq k$

Summary on Part V: Algorithms

A wide range of disparate techniques

- Monte Carlo Simulations (also: MCMC)
- Optimal aggregation algorithms (TA)
- Efficient engineering techniques

Needed: unified framework for efficient query evaluation in probabilistic databases

Conclusions and Challenges Ahead

Conclusions

Imprecisions in data:

- A wide variety of types have specialized management solutions
- Probabilistic databases promise uniform framework, but require full complexity

Conclusions

Probabilistic databases

- Possible worlds semantics
 - Simple
 - Every query has well defined semantics
- Need: expressive representation formalism
- Need: efficient query processing techniques

Challenge 1: Specification Frameworks

The Goal:

• Design framework that is usable, expressive, efficient

The Challenge

• Tradeoff between expressibility and tractability

[Domingos&Richardson:04,Sarma,Benjelloun,Halevy,Widom:2005]

Challenge 1: Specification Frameworks

Features to have:

- Support probabilistic statements:
 - Simple: (Fred, Seattle, Gizmo) \in Purchase has probability 60%
 - Complex: "Fred and Sue live in the same city" has probability 80%
- Support tuple correlations
 - " t_1 and t_2 are correlated positively 30%"
- Statistics statements:
 - There are about 2000 tuples in Purchase
 - There are about 100 distinct Cities
 - Every customer buys about 4 products

Challenge 2: Query Evaluation

Complexity

- Old: = f(query-language)
- New: = f(query-language, specification-language)

Exact algorithm: **#P-complete** in simple cases

Challenge: characterize the complexity of approximation algorithms

Challenge 2: Query Evaluation

Implementations:

- Disparate techniques require unified framework
- Simulation:
 - Client side or server side ?
 - How to schedule simulation steps ?
 - How to push simulation steps in relational operators ?
 - How to compute subplans extensionally, when possible ?
- Top-k pruning:
 - How can we "push thresholds" down the query plan ?

Challenge 3: Mapping Imprecisions to Probabilities

- One needs to put a number between 0 and 1 to an uncertain piece of data
 - This is highly nontrivial !
 - But consider the alternative: ad-hoc management of imprecisions at all stages
- What is a principled approach to do this ?
- How do we evaluate such mappings ?

The End^p

Questions ?