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1 Introduction

In the previous lecture we looked at the application of entropy to derive inequalities that involved counting.
In this lecture we step back and introduce the concepts of relative entropy and mutual information that
measure two kinds of relationship between two distributions over random variables.

2 Relative Entropy

The relative entropy, also known as the Kullback-Leibler divergence, between two probability distributions on
a random variable is a measure of the distance between them. Formally, given two probability distributions
p(x) and q(x) over a discrete random variable X, the relative entropy given by D(p||q) is defined as follows:

D(p||q) =
∑
x∈X

p(x) log
p(x)
q(x)

In the definition above 0 log 0
0 = 0 log 0

q = 0 and p log 1
0 =∞.

As an example, consider a random variable X with the law q(x). We assume nothing about q(x). Now
consider a set E ⊆ X and define p(x) to be the law of X|X∈E . The divergence between p and q:

D(p||q) =
∑
x∈X

Pr[X = x|X∈E ] log
Pr[X = x|X∈E ]
Pr[X = x]

=
∑
x∈E

Pr[X = x|X∈E ] log
Pr[X = x|X∈E ]
Pr[X = x]

(Using 0 log 0 = 0)

=
∑
x∈E

Pr[X = x|X∈E ] log
Pr[X = x|X∈E ]

Pr[X = x|X∈E ]Pr[X ∈ E]
(Using the chain rule)

=
∑
x∈E

Pr[X = x|X∈E ] log
1

Pr[X ∈ E]

= log
1

Pr[X ∈ E]

In the extreme case with E = X , the two laws p and q are identical with a divergence of 0.
We will henceforth refer to relative entropy or Kullback-Leibler divergence as divergence

2.1 Properties of Divergence

1. Divergence is not symmetric. That is, D(p||q) = D(q||p) is not necessarily true. For example, unlike
D(p||q), D(q||p) =∞ in the example mentioned in the previous section, if ∃x ∈ X \ E : q(x) > 0.
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2. Divergence is always non-negative. This is because of the following:

D(p||q) =
∑
x∈X

p(x) log
p(x)
q(x)

= −
∑
x∈X

p(x) log
q(x)
p(x)

= −E
[
log

q

p

]
≥ − log

(
E
[
q

p

])
= − log

(∑
x∈X

p(x)
q(x)
p(x)

)
= 0

The inequality is introduced due to the application of Jensen’s inequality and the concavity of log.

3. Divergence is a convex function on the domain of probability distributions. Formally,

Lemma 1 (Convexity of divergence). Let p1, q1 and p2, q2 be probability distributions over a random
variable X and ∀λ ∈ (0, 1) define

p = λp1 + (1− λ)p2

q = λq1 + (1− λ)q2

Then, D(p||q) ≤ λD(p1||q1) + (1− λ)D(p2||q2).

To prove the lemma, we shall use the log-sum inequality [1], which can be proved by reducing to
Jensen’s inequality:

Proposition 2 (Log-sum Inequality). If a1, . . . , an, b1, . . . , bn are non-negative numbers, then

n∑
i=1

ai log(1/bi) ≤

(
n∑

i=1

ai

)
log
(∑n

i=1 ai∑n
i=1 bi

)

Proof [of Lemma 1] Let a1(x) = λp1(x), a2(x) = (1−λ)p2(x) and b1(x) = λq1(x), b2(x) = (1−λ)q2(x).
Then,

D(p||q) =
∑

x

(λp1(x) + (1− λ)p2(x)) log
λp1(x) + (1− λ)p2(x)
λq1(x) + (1− λ)q2(x)

=
∑

x

(a1(x) + a2(x)) log
a1(x) + a2(x)
b1(x) + b2(x)

≤
∑

x

(
a1(x) log

a1(x)
b1(x)

+ a2(x) log
a2(x)
b2(x)

)
(Using the log-sum inequality)

=
∑

x

(
λp1(x) log

λp1(x)
λq1(x)

+ (1− λ)p2(x) log
(1− λ)p2(x)
(1− λ)q2(x)

)
= λD(p1||q1) + (1− λ)D(p2||q2)
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2.2 Relationship of Divergence with Entropy

Intuitively, the entropy of a random variable X with a probability distribution p(x) is related to how much
p(x) diverges from the uniform distribution on the support of X. The more p(x) diverges the lesser its
entropy and vice versa. Formally,

H(X) =
∑
x∈X

p(x) log
1

p(x)

= log |X | −
∑
x∈X

p(x) log
p(x)

1
|X |

= log |X | −D(p||uniform)

2.3 Conditional Divergence

Given the joint probability distributions p(x, y) and q(x, y)of two discrete random variables X and Y , the
conditional divergence between two conditional probability distributions p(y|x) and q(y|x) is obtained by
computing the divergence between p and q for all possible values of x ∈ X and then averaging over these
values of x. Formally,

D(p(y|x)||q(y|x)) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)
q(y|x)

Given the above definition we can prove the following chain rule about divergence of joint probability
distribution functions.

Lemma 3 (Chain Rule).

D (p(x, y)||q(x, y)) = D (p(x)||q(x)) +D (p(y|x)||q(y|x))

Proof

D (p(x, y)||q(x, y)) =
∑

x

∑
y

p(x, y) log
p(x, y)
q(x, y)

=
∑

x

∑
y

p(x)p(y|x) log
p(x)p(y|x)
q(x)q(y|x)

=
∑

x

∑
y

p(x)p(y|x) log
p(x)
q(x)

+
∑

x

∑
y

p(x)p(y|x) log
p(y|x)
q(y|x)

=
∑

x

p(x) log
p(x)
q(x)

∑
y

p(y|x) +
∑

x

p(x)
∑

y

p(y|x) log
p(y|x)
q(y|x)

= D (p(x)||q(x)) +D (p(y|x)||q(y|x))

3-3



3 Mutual Information

Mutual information is a measure of how correlated two random variables X and Y are such that the more
independent the variables are the lesser is their mutual information. Formally,

I(X ∧ Y ) = D(p(x, y)||p(x)p(y))

=
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

=
∑
x,y

p(x, y) log
p(x, y)
−

∑
x,y

p(x, y) log p(x)−
∑
x,y

p(x, y) log p(y)

= −H(X,Y ) +H(X) +H(Y )
= H(X)−H(X|Y )
= H(Y )−H(Y |X)

Here I(X ∧Y ) is the mutual information between X and Y , p(x, y) is the joint probability distribution, p(x)
and p(y) are the marginal distributions of X and Y .

As before we define the conditional mutual information when conditioned upon a third random variable
Z to be

I(X ∧ Y |Z) = Ez[I(X ∧ Y |Z = z)]
= H(X|Z)−H(Y |X,Z)

This leads us to the following chain rule.

Lemma 4 (Chain Rule). I(X,Z ∧ Y ) = I(X ∧ Y ) + I(Z ∧ Y |X)

Proof

I(X,Z ∧ Y ) = H(X,Z)−H(X,Z|Y )
= H(X) +H(Z|X)−H(X|Y )−H(Z|X,Y )
= (H(X)−H(X|Y )) + (H(Z|X)−H(Z|X,Y ))
= I(X ∧ Y ) + I(Z ∧ Y |X)

3.1 An Example

We now look at the effect of conditioning on Mutual information. We consider the following two examples.
Example 1. Let X,Y, Z be uniform bits with zero parity. Now,

I(X ∧ Y |Z) = H(X|Z)−H(X|Y, Z) = 1− 0 = 1

H(X|Z) = 1 since given Z, X could be either of {0, 1} while given Y,Z, X is already determined. Meanwhile,

I(X ∧ Y ) = H(X)−H(X|Y ) = 1− 1 = 0

Example 2. Let A,B,C be uniform random bits. Define X = A,B and Y = A,C and Z = A. Now,

I(X ∧ Y |Z) = H(X|Z)−H(X|Y,Z) = 1− 1 = 0

while,
I(X ∧ Y ) = H(X)−H(X|Y ) = 2− 1 = 1

Thus, unlike entropy, conditioning may decrease or increase the mutual information.
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3.2 Properties of Mutual Information

Lemma 5. If X,Y are independent and Z has an arbitrary probability distribution then,

I(X,Y ∧ Z) ≥ I(X ∧ Z) + I(Y ∧ Z)

Proof

I({X,Y } ∧ Z) = I(X ∧ Z) + I(Y ∧ Z|X) (Using the chain rule)
= I(X ∧ Z) +H(Y |X)−H(Y |X,Z)
= I(X ∧ Z) +H(Y )−H(Y |X,Z) (X and Y are independent)
≥ I(X ∧ Z) +H(Y )−H(Y |Z) (Conditioning can not increase entropy)
= I(X ∧ Z) + I(Y ∧ Z)

Lemma 6. Let (X,Y ) ∼ p(x, y) be the joint probability distribution of X and Y . By the chain rule,
p(x, y) = p(x)p(y|x) = p(y)p(x|y). For clarity we represent p(x) (resp. p(y)) by α and p(y|x) (resp. p(x|y))
by π. The following holds:

Concavity in p(x): For i ∈ {1, 2}, let Ii(X,Y ) be the mutual information for (X,Y ) ∼ αiπ, respectively.
For λ1, λ2 ∈ [0, 1] such that λ1+λ2 = 1, let I(X∧Y ) be the mutual information for (X,Y ) ∼

∑
i λiαiπ.

Then,
I(X ∧ Y ) ≥ λ1I1(X ∧ Y ) + λ2I2(X ∧ Y )

Convexity in p(y|x): For i ∈ {1, 2}, let Ii(X,Y ) be the mutual information for (X,Y ) ∼ απi, respectively.
For λ1, λ2 ∈ [0, 1] such that λ1+λ2 = 1, let I(X∧Y ) be the mutual information for (X,Y ) ∼

∑
i λiαπi.

Then,
I(X ∧ Y ) ≤ λ1I1(X ∧ Y ) + λ2I2(X ∧ Y )

Proof We first prove the convexity of p(y|x|): we will apply Lemma 1 and use the definition of mutual
information in terms of divergence. Thus,

I(X ∧ Y ) = D

(
λ1απ1 + λ2απ2 ||

(∑
y

λ1απ1 + λ2απ2

)(∑
x

λ1απ1 + λ2απ2

))

= D

(
λ1απ1 + λ2απ2 ||

(
λ1α

∑
y

π1 + λ2α
∑

y

π2

)(∑
x

λ1απ1 + λ2απ2

))

= D

(
λ1απ1 + λ2απ2 ||α

∑
x

λ1απ1 + αλ2απ2

)

= D

(
λ1απ1 + λ2απ2 ||λ1

∑
y

απ1

∑
x

απ1 + λ2

∑
y

απ1απ2

)

≤ λ1D

(
απ1 ||

(∑
y

απ1

)(∑
x

απ1

))
+ λ2D

(
απ2 ||

(∑
y

απ2

)(∑
x

απ2

))
= λ1I1(X ∧ Y ) + λ2I2(X ∧ Y )

Here we used the fact that
∑

y πi = 1 and used Lemma 1 to introduce the inequality.
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We now prove the concavity of p(x). We first simplify the LHS and the RHS.

I(X ∧ Y ) =
∑
x,y

(λ1α1π + λ2α2π) log
λ1α1π + λ2α2π(∑

y λ1α1π + λ2α2π
)

(
∑

x λ1α1π + λ2α2π)

=
∑
x,y

(λ1α1π + λ2α2π) log
π

(
∑

x λ1α1π + λ2α2π)

=
∑
x,y

(λ1α1π + λ2α2π) log π −
∑
x,y

 ∑
i∈{0,1}

λiαiπ

 log

∑
x

∑
i∈{0,1}

λiαiπ


λ1I1(X ∧ Y ) + λ2I2(X ∧ Y ) =

∑
x,y

∑
i∈{0,1}

λiαiπ log
αiπ(∑

y αiπ
)

(
∑

x αiπ)

=
∑
x,y

(λ1α1π + λ2α2π) log π −
∑
x,y

∑
i∈{0,1}

λiαiπ log

(∑
x

αiπ

)

Thus, to prove that LHS ≥ RHS we need to prove that, ∑
i∈{0,1}

λiαiπ

 log

∑
x

∑
i∈{0,1}

λiαiπ

 ≤ ∑
i∈{0,1}

λiαiπ log

(∑
x

αiπ

)

that follows directly from the application of the log-sum inequality [1]
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