
CSE599s: Extremal Combinatorics November 28, 2011

Lecture 17: The Borsuk-Ulam Theorem

Lecturer: Anup Rao

1 The Borsuk-Ulam Theorem

Today we discuss the Borsuk-Ulam Theorem. One of the reasons the theorem is so powerful is
that it has many different convenient guises. We define Sn = {x ∈ Rn+1 : ||x|| = 1} to be the n-
dimensional sphere, and Bn = {x ∈ Rn : ||x|| ≤ 1} to be the n-dimensional ball. The Borsuk-Ulam
theorem says:

Theorem 1. If f : Sn → Rn is continuous, then there exists x ∈ Sn such that f(x) = f(−x).

It has many corollaries, most of which are actually equivalent to the theorem.

Corollary 2. There is no continuous map f : Sn → Sn−1 satisfying f(x) = −f(−x) for all x.

Proof Suppose not, and such an f does exist. Then by Theorem 1, there is a point x such that
f(x) = f(−x) which contradicts the fact that f(x) = −f(−x), since f(x) is non-zero.

Corollary 3. There is no continuous map f : Bn → Sn−1 such that for any x ∈ Sn−1, f(x) =
−f(−x).

Proof Suppose not. Then consider the map g : Sn → Sn−1 obtained by g(x1, . . . , xn) =
f(x2, . . . , xn). This map is continuous, and g(x) = −g(−x), thus it contradicts Corollary 2.

Corollary 4. If Sn = F1 ∪ · · · ∪ Fn+1, where each Fi is a closed or open set, then there must be
some i, x such that Fi contains both x and −x.

Proof We prove the case of closed sets. Define the map f : Sn → Rn, where the i’th coordinate
f(x)i is the distance of x to the set Fi. By Theorem 1, there is a point x such that f(x) = f(−x).
If the i’th coordinate of f(x) is 0 for some i, then x,−x ∈ Fi. Otherwise x,−x ∈ Fn+1. The case
of open sets is only a little more involved, but we do not do it here.

Corollary 5 (Brouwer’s Fixed Point Theorem). If f : Bn → Bn is continuous, then there is an
x ∈ Bn such that f(x) = x.

Proof Suppose not. Then consider the map g : Bn → Sn−1 that maps x to the point on Sn−1

that is reached by walking in a straight line from f(x) to x and continuing till you reach a point of
Sn−1. g is continuous, and g is the identity on Sn−1. Thus g contradicts Corollary 3.

A couple of proofs of Theorem 1 are known, including purely combinatorial ones. We shall
not delve into a full proof. Instead, we give a direct combinatorial proof of Brouwer’s Fixed Point
theorem in the case that n = 2, to illustrate the kind of ideas that go into these things. Actually
we shall prove that there is no continuous function f : B2 → B2 for which f is the identity on S1,
which we saw is enough to prove Brouwer’s theorem.
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Claim 6. There is no continuous map f : B2 → S1 that is the identity on S1.

Proof Suppose there is such a continuous map. Consider a triangle in the plane defined by
the vertices x, y, z. Then the continuous map above can be deformed to get a continuous map
g that maps the triangle to its boundary in such a way that g is the identity on the boundary.
Now consider a triangulation of this big triangle into small triangles. Namely, we partition the
big triangle into smaller triangles, in such a way that every edge is shared by exactly two internal
triangles, or lies on the boundary of the big triangle xyz.

Next we label all the vertices of this triangulation as follows. Given any vertex a, we label a
with 1 if g(a) is mapped to a point on the segment [x, y) (namely g(a) is on the segment but is not
equal to y), we label a with 2 if g(a) ∈ [y, z) and 3 if g(a) ∈ [z, x). Given this labeling, we claim
that there must be some triangle in the triangulation whose vertices get all three labels 1, 2, 3.

Since g is continuous, we can pick a triangulation that is so fine that the value of g barely
changes within any one small triangle. Then the existence of a small triangle whose vertices are
mapped very far from each other gives a contradiction.

To see why there must be a small triangle getting all labels, consider the graph whose vertices
are the regions in the space, namely all the triangles and the exterior of the triangle. Put an edge
between two vertices of the graph if the corresponding edge of the triangulation is labelled by 1, 2.
Thus we connect two regions if and only if the edge between them is labeled by 1 and 2.

Observe that since g is the identity on the boundary, the region that is outside the big triangle
has degree exactly 1 in this graph. On the other hand, if a triangle is not labeled by 1, 2, 3, then
its degree in the graph must be even! Thus there must be some triangle that gets all three labels,
or we would have constructed a graph such that the sum of the degrees of the vertices is odd.

2 Applications

2.1 Knesser Graphs

Given a family of sets F , its Knesser graph is the graph where every vertex is a set from the family,
and there is an edge if and only the corresponding sets are disjoint. It is easy to show that every
graph is the Knesser graph of some family.

We define the graph KGn,k to be the Knesser graph of the family
([n]

k

)
(subsets of [n] of size k).

Here we shall study how to bound the Chromatic number of this graph. Recall that the chromatic
number is the minimum number of colors needed to color the vertices so that each edge gets two
distinct colors.

Claim 7. The chromatic number of KGn,k is at most n− 2k + 2.

Proof Given a set A, let x be its largest element. Color A with max{x, 2k − 1}. The number
of colors is at most n− 2k + 2. Now if two sets A, B are disjoint, they cannot be both colored by
a number x ≥ 2k − 1, or they must both contain x. On the other hand, if they are both colored
2k− 1, then they must both be contained in [2k− 1], which again implies that they intersect, since
both sets are of size k.

Here we prove that this is tight:

Theorem 8. If n ≥ 2k − 1, then the chromatic number of KGn,k is n− 2k + 2.
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Proof Let d = n− 2k + 1. For each element of i ∈ [n] , we identify a point vi ∈ Sd in such a way
that no hyperplane that passes through the origin can pass through d + 1 of the points we have
defined. Such an embedding can be found greedily, namely we can always pick each new point in
such a way that it avoids all the hyperplanes defined by the earlier points. The number of such
hyperplanes is only finite, so there are many choices for where to put the next point.

Suppose KGn,k can be colored with d colors. Now we define a collection of sets A1, . . . , Ad as
follows.

Ai =
{

x ∈ Sd : ∃T ∈
(

[n]
k

)
colored i such that for all j ∈ T , 〈x, vj〉 > 0

}
In words, x ∈ Ai if and only if there is a set of k points colored i in the hemisphere defined by

x.
Let Ad+1 = Sd −

⋃d
i=1 Ai.

By Corollary 4, there must exist i, x such that x,−x ∈ Ai. If i < d + 1, then this means that
there is a k-set in the open hemisphere centered at x colored i, and another k-set in the open
hemisphere centered at −x colored i. These two sets are disjoint, and so we have a found an edge
of the Knesser graph that is not properly colored. On the other hand, if i = d + 1, then there is no
k set in open hemispheres centered at x,−x, so there must be n − 2(k − 1) = n − 2k + 2 = d + 1
points on the equator. This gives a hyperplane that passes through the origin and contains d + 1
points, contradicting our placement of the points.

2.2 The Ham Sandwich Theorem

Another beautiful consequence of the Borsuk-Ulam theorem is the so called Ham-Sandwich Theo-
rem.

Theorem 9. Let W1, . . . ,Wd be compact subsets of Rd such that the volume of each subset is
non-zero. Then there is a hyperplane that simultaneously bisects all sets Wi.

Proof The hyperplane corresponding to a point h ∈ Sd−1 is the set {x : 〈h, x〉 = b}. Given any
such h, there is always a choice for b such that the hyperplane bisects Wd. Let us denote this choice
bh.

Now consider the map f : Sd−1 → Rd−1 such that the i’th coordinate is the volume of Wi on
the positive side of the hyperplane bisecting Wd:

f(h)i = volume({x ∈Wi : 〈h, x〉 > bh}).

This map is continuous, and so by Theorem 1, we must have that there exists h such that f(h) =
f(−h), which means that h, bh define a hyperplane that bisects all Wi.

2.3 The Necklace Theorem

Given a necklace consisting of d types of gems, two thieves would like to cut the necklace in a few
locations in such a way that each type of gem can be equally divided. Formally, assume that the
necklace is a string, and the thieves want to find a few locations where the string can be cut.

Theorem 10. The necklace can be divided with d cuts.
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Proof Imagine that the necklace corresponds to the unit interval [0, 1], and place the necklace
in Rd in such a way that the point x ∈ [0, 1] is placed at (x, x2, x3, . . . , xd). Each type of gem
corresponds to a set Wi, so we can apply Theorem 9 to conclude that there is a hyperplane that
bisects each type of gem simultaneously. Let {〈h, x〉 = b} be this hyperplane.

We claim that this hyperplane can intersect the necklace in at most d locations. Indeed, this
hyperplane corresponds to the polynomial

p(X) = −b + h1X + h2X
2 + . . . + hdX

d,

and every point of intersection is a root of p(X). Since p(X) has degree d, there can be at most d
roots.
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