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Abstract. We give an explicit construction of a function that is almost
a 2-source extractor for linear entropy, it is a condenser where the output
has almost full entropy. Given 2 sources with entropy δn, the output of
the condenser is a distribution on m-bit strings that is ǫ-close to having
min-entropy m− poly(log(1/ǫ), 1/δ), where here m is linear in n.

1 Introduction

This paper is about constructing efficiently computable 2-source extractors.
These are efficiently computable functions of the type Ext : {0, 1}n × {0, 1}n →
{0, 1}m with the property that for any 2 independent distributions X,Y , each
with entropy1 k, the output Ext(X,Y ) is close to uniform. Another way to view
this object is as a coloring of the edges of the N ×N complete bipartite graph
with M colors that guarantees that in every K×K complete bipartite subgraph,
every set of colors is hit with roughly the right frequency.

This problem was first suggested in the work of Chor and Goldreich [CG88]
(see also [SV86]), who gave a simple argument that shows that the inner product
function over GF (2) is a good 2 source extractor as long as k/n > 1/2+Ω(1). It
is easy to generalize this to get many random bits (simply take the inner product
over a large enough field). Since then, most work was diverted to the special case
of seeded extractors (introduced in [NZ96]), where it is assumed that the second
source is much shorter than the first source and is uniformly distributed (a 2-
source extractor can be used in this situation just by padding the second source).
Here almost optimal results are now known [LRVW03,GUV07].

There was no progress in reducing the entropy requirements for the gen-
eral case of 2 source extractors until the work of Bourgain [Bou05], almost 20
years after [CG88]. Bourgain used recent results from arithmetic combinatorics
[BKT04] to show that if the inputs are viewed as elements of a carefully chosen
finite field, and ψ is any non-trivial additive character, the function ψ(xy+x2y2)
is an extractor even for entropy 0.499n2. Bourgain’s result, while seemingly a
minor improvement over the previous result, had at least one application that
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1 The definition of entropy we use is min-entropy, rather than Shannon entropy.
2 Note that the inner product function mentioned above can also be viewed as ψ(xy),

where x, y are interpreted as elements of GF (2n) and ψ is a suitably chosen additive
character.



would not have been possible using just the ideas of Chor and Goldreich: it led
to new constructions of Ramsey graphs with much better parameters than were
previously known [BRSW06].

The problem of constructing 2 source extractors for arbitrary linear min-
entropy remains open. In this paper we describe some partial progress towards
this goal, obtaining an object that seems tantalizingly close to being a 2 source
extractor.

1.1 Our Results and Techniques

We prove the following theorem:

Theorem 1. For every δ > 0 and every ǫ, there exists a polynomial time com-
putable function Ext : {0, 1}n ×{0, 1}n → {0, 1}m such that if X,Y are indepen-
dent sources with min-entropy rate δ, Ext(X,Y ) is ǫ close to having min-entropy
m− poly(1/δ, log(1/ǫ)), with m = Ω(δn).

The output of this algorithm is close to having such a high min-entropy that
we hope that it may still be sufficient for applications where 2-source extractors
are required. For instance, if we are willing to make cryptographic assumptions
that rely only on secret keys with such high entropy, this extractor may be used
in lieu of a 2-source extractor for generating secret keys.

Our result follows by composing several previous explicit constructions. Specif-
ically, we rely on two types of explicit functions from previous work:

2 independent sources → SR-source A first observation (already made in
[BKS+05]) is that it is possible to use arithmetic combinatoric results to
get an explicit function SExt : {0, 1}n × {0, 1}n → {0, 1}t, that converts
two independent sources into a somewhere random source. A distribution
on strings is somewhere random if at least one of the strings is distributed
uniformly. The above construction combined with some ideas from [Rao06]
gives an algorithm that can carry out such a conversion, outputting a some-
where random source with only a constant number of strings, each of length
linear in n.

2 independent sources + independent SR-source → uniform source It
is also easy to use previous work [Raz05,DR05,BKS+05] to get an explicit
function Ext : {0, 1}n×{0, 1}n×{0, 1}t → {0, 1}m that can extract random-
ness from two independent sources with linear entropy and an additional
independent small somewhere random source.

Our final construction is Ext
′(X,Y, SExt(X,Y )), i.e. we use the somewhere

random source generated by the original source to extract random bits from
X,Y . At first it may seem like this has very little chance of working, since the
somewhere random source is not independent of the original sources (in fact
it is determined by them). Still, we show that if our goal is just to show that
the output has high entropy, something can be salvaged from this approach,
giving us our main result. Ideas that superficially seem similar to this one have



been used in previous work [GRS04,Sha06]. It is hard to describe the many
ideas in those papers succinctly, so in the discussion here we shall be slightly
inaccurate in order to convey the gist of the differences between the techniques
of those works and the present paper. In the earlier works, the authors first
construct a function DExt : {0, 1}n → {0, 1}t that extracts a few random bits
from some class of sources. They then use the extracted random bits to extract
many more random bits from the original source. Thus the final algorithm looks
like Ext

′(X,DExt(X)) for some carefully chosen function Ext
′.

The major difference between the previous works and ours is in the analysis.
The previous works carefully controlled the correlations between the extracted
bits (DExt(X)) and the original source X . In particular, they carefully chose
a random variable in the probability space they were considering and fixed it.
Conditioned on this fixing, they were able to argue that the extracted bits (or
some subset of the extracted bits) became independent of the original source (or
some part of the original source). In this way, after fixing this magic random
variable, they were able to obtain two random variables that could be treated as
being independent (without paying a too heavy price in terms of lost entropy).
In order to make this approach work, they had to carefully exploit the properties
of the class of distributions they were building extractors for and the properties
of the functions they were constructing.

The ideas in this paper are less delicate and less intricate. In particular, they
do not apply just to the case of independent sources. They can be generalized3

to be used in any situation where we know how to construct an explicit function
SExt that can convert a distribution from class C1 into one from class C2 with
small support size, and an explicit function that can extract random bits (or even
high entropy bits) from two independent distributions, one from class C1 and the
other from C2. In our particular application, C1 is the class of two independent
sources and C2 is the class of somewhere random sources. In this situation, we
simply show how to use the union bound to get a result of the type of Theorem 1.

It is easy to see that if a distribution is far from having high min-entropy,
then there must be a small set of the support that has an unusually high
probability under it. Fix any subset of the support. In order to show that
Ext

′(X,Y, SExt(X,Y )) does not hit this set with such a high probability, we
consider the set of bad outputs of SExt. Say z is bad if Ext

′(X,Y, z) hits the set
with high probability. Then the properties of Ext

′ guarantee that any somewhere
random source has only a small probability of giving such a bad z. On the other
hand, since the total number of z’s is so small (the output is only a constant
number of bits), we can argue that with high probability Ext

′(X,Y, z) does not
land in the set for every good z. Thus, by the union bound, we can argue that
any small enough set is avoided with significant probability.

Since the above argument requires us to use the union bound on as many
events as there are elements in the support of SExt, it is crucial that the error

3 Shaltiel [Sha06] also generalized the ideas of [GRS04] to several classes of sources,
but there each class he considered required a different construction and a different
analysis, though there was a very significant overlap in the various cases.



of the extractor Ext
′ be significantly small in terms of the number of elements

in the support of SExt. Luckily, explicit constructions that we rely on already
provide such strong guarantees.

2 Preliminaries

We will be concerned with the treatment of various kinds of distributions that
are nice in that they contain a lot of usable randomness. Here we discuss some
ways to measure this niceness:

Definition 1. The min-entropy of a distribution R is defined to be: H∞(R) =
− log(maxx∈R(R(x)). The min-entropy rate of a distribution R on {0, 1}n is
H∞(R)/n.

Definition 2. An (n, k)-source denotes some random variable X over {0, 1}n

with H∞(X) ≥ k.

Definition 3. Let D and F be two distributions on a set S. Their statistical
distance is

|D − F |
def
= max

T⊆S
(|D(T ) − F (T )|) =

1

2

∑

s∈S

|D(s) − F (s)|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F .

This measure of distance is nice because it is robust in the sense that if
two distributions are close in this distance, then applying any functions to them
cannot make them go further apart.

Proposition 1. Let D and F be any two distributions over a set S s.t. |D−F | ≤
ǫ. Let g be any function on S. Then |g(D) − g(F )| ≤ ǫ.

A block source is a source broken up into a sequence of blocks, with the
property that each block has min-entropy even conditioned on previous blocks.

Definition 4 (Block sources). A distribution X = X1, X2, · · · , XC is called
a (k1, k2, . . . , kC)-block source if for all i = 1, . . . ,C, we have that for all x1 ∈
X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . , X

i−1 = xi−1) ≥ ki, i.e., each block
has high min-entropy even conditioned on the previous blocks. If k1 = k2 = · · · =
kC = k, we say that X is a k-block source.

We have the following standard lemma:

Lemma 1. Suppose X is a source with min-entropy k and f : {0, 1}n → {0, 1}t

is a function such that f(X) is ǫ close to having min-entropy k′. Then for every
ℓ, (f(X), X) is ǫ+ 2−ℓ close to being a k′, k − t− ℓ block source.

We shall need the concept of a somewhere random distribution.

Definition 5. A source X is (t× r) somewhere-random if it is distribution on
t × r boolean matrices s.t. X is distributed uniformly randomly over one of the
rows. Every other row may depend on the random row in arbitrary ways. We say
that X has somewhere min-entropy k if at least one of the rows has min-entropy
k.



3 Previous work needed

Our work relies on several previous constructions. The first object we shall need
is the additive number theory based condensers independently constructed by
Barak et al. [BKS+05] and Raz [Raz05]:

Lemma 2 ([Raz05,BKS+05]). For every δ > 0, there exists a polynomial
time computable function Cond : {0, 1}n → ({0, 1}n/poly(1/δ))poly(1/δ), where the
output is interpreted as a poly(1/δ) × n/poly(1/δ) boolean matrix, such that if

X is a source with min-entropy rate δ, Cond(X) is 2−Ω(δ2n) close to a convex
combination of distributions, each of which has some row with min-entropy rate
0.9.

When this lemma is combined with the merger from Raz’s work [Raz05]
and the improved analysis of Dvir and Raz (Lemma 3.2 in [DR05]), we get the
following lemma:

Lemma 3 ([DR05,Raz05,BKS+05]). For every δ > 0 and ǫ > 2−n/10, there
exists a polynomial-time computable function

Cond : {0, 1}n → ({0, 1}n/poly(1/δ))2
poly(1/δ)/ǫ, where the output is treated as a

2poly(1/δ)/ǫ × n/poly(1/δ) boolean matrix, such that if X has min-entropy rate

δ, Cond(X) is 2−Ω(δ2n) close to a convex combination of distributions, each of
which has at most an ǫ fraction of rows with min-entropy rate less than 0.9.

We need the following two source extractor of Chor and Goldreich:

Theorem 2 ([CG88]). For every constant δ > 1/2 there exists a strong two
source extractor Had : {0, 1}n × {0, 1}n → {0, 1}Ω(n) with error 2−Ω(n) for two
independent sources with min-entropy δn.

We can use X,Y to generate a somewhere random source Z. The following
theorem was proved in [BKS+05]:

Theorem 3. For every δ, there exists c(δ) = poly(1/δ) and a polynomial time
computable function SExt : {0, 1}n × {0, 1}n → {0, 1}cn/poly(1/δ), where the out-
put is treated as a c×n/poly(1/δ) boolean matrix, such that if X,Y are indepen-
dent sources with min-entropy rate δ, SExt is 2−Ω(n/poly(1/δ)) close to a convex
combination of somewhere random sources.

Proof. Define the (i, j)′th row SExt(X,Y )i,j = Had(Cond(X)i,Cond(Y )j), where
Cond is as in Lemma 2 and Had is as in Theorem 2. The theorem follows directly.

Finally, we need the following two source extractor for block sources, that
follows from the work of [BKS+05,Rao06]:

Theorem 4 ([BKS+05,Rao06]). For every δ > 0, there exists a constant
γ > 0 and a polynomial time computable function Ext : ({0, 1}n)4 → {0, 1}m

such that if X1, X2 is a δn, δn block source and Y1, Y2 is an independent δn, δn
block source,

Pr
x1,x2

[|Ext(x1, x2, Y1, Y2) − Um| > 2−γn] < 2−γn



and
Pr

y1,y2

[|Ext(X1, X2, y1, y2) − Um| > 2−γn] < 2−γn

where here m = Ω(n) and Um denotes the uniform distribution on m bit
strings.

4 The Condenser

First we show that if we were given a small independent somewhere random
source, we can use it to extract random bits from two linear min-entropy inde-
pendent sources. The idea is that the somewhere random source can be used to
turn both of the other sources into block sources, using Lemma 3.

Theorem 5. For every 1 > δ, ǫ2 > 0 and c > 0, there exists a t(c, δ, ǫ2) =
poly(c, 1/δ, log(1/ǫ2)), a constant γ(δ) and a polynomial time computable func-
tion Ext : {0, 1}n × {0, 1}n × {0, 1}c×t → {0, 1}δn−o(1) such that if X,Y are
independent min-entropy rate δ sources and Z is an independent c × t some-
where random source,

Pr
z

[Pr
y

[Ext(X, y, z) is 2−γn close to uniform] > 1 − 2−γn] > 1 − ǫ2

Pr
z

[Pr
x

[Ext(x, Y, z) is 2−γn close to uniform] > 1 − 2−γn] > 1 − ǫ2

Proof. Let δ′ < δ be a small enough constant so that length of the rows output
by Cond in Lemma 3 for error ǫ2 and min-entropy rate δ′ is at most δ2n/c. Let
2t be the number of rows output by Cond for this setting of parameters (so that
t = poly(1/δ, c, log(1/ǫ2)).

Now we treat each row of Z as the name of a row of Cond(X). Let XZ denote
the string Cond(X)Z1 , . . . ,Cond(X)Zc . Similarly let YZ denote
Cond(Y )Z1 , . . . ,Cond(Y )Zt . Then note that XZ and YZ are of length δ2n. Fur-
ther, by the properties of Cond, with high probability over the choice of z, Xz

and Yz are 2−Ω(n) close to having min-entropy rate 0.9/c. Since XZ is so short,
Lemma 1 implies that (Xz, X) and (Yz , Y ) are 2−Ω(n) close to independent block
sources with entropy 0.9δ2n/c, (δ − δ2)n ≥ δ2n. So we can apply the extractor
from Theorem 4 to get the result of the lemma.

Now although we don’t have access to a somewhere random source Z as
above, Theorem 3 tells us that we can generate such a source in polynomial time
using the function SExt. So let us define the function

Ext
′(X,Y )

def
= Ext(X,Y, SExt(X,Y )). It is not at all clear that this function is an

extractor, since now X,Y are not independent of the somewhere random source
being used (in fact they determine it!). Still, we show that the output of this
function must be close to having very high min-entropy.

Before we show this, we need two simple lemmas:

Lemma 4. Let A be a distribution that is ǫ-far from having min-entropy k.
Then, there must be a set H of size at most 2k such that Pr[A ∈ H ] ≥ ǫ.



Proof. Set H = {h : Pr[A = h] ≥ 2−k}. This set clearly has at most 2k element.
The lemma is immediate from the definition of statistical distance.

Lemma 5. Let A1, . . . , Al be random variables taking values in {0, 1}n, Z be a
random variable taking values in [l] and G ⊂ [l] be a set such that:

– For every z ∈ G, |Az − Un| < τ .
– Pr[Z ∈ G] > 1 − ǫ.

Then for every integer d, AZ is ǫ+ l(τ +2−d) close to having min-entropy n−d.

Proof. Suppose not. Then, by Lemma 4, there must be some set of heavy ele-
ments H ⊂ {0, 1}n of size at most 2n−d such that Pr[AZ ∈ H ] ≥ ǫ+ l(τ + 2−d).
Now note that AZ ∈ H implies that either Z /∈ G or one of the good Ai’s must
have hit H . Thus, by the union bound,

Pr[AZ ∈ H ] < Pr[Z /∈ G] + Pr[∃z ∈ G with Az ∈ H ]

≤ ǫ+ |G|(τ + 2−d)

< ǫ+ l(τ + 2−d)

We can now prove the main theorem of this paper.

Proof (Theorem 1). Let Az denote the random variable Ext(X,Y, z). Let γ =
Ωδ(1) be as in Theorem 5, with ǫ2 = ǫ. Define

G = {z : Pr
y

[Ext(X, y, z) is 2−γn close to uniform] > 1 − 2−γn}

Then we see that Pr[Z ∈ G] > 1 − ǫ2, if Z is somewhere random and inde-
pendent. Instead we set Z = SExt(X,Y ) (truncating each row to be of length
t = poly(c, 1/δ, log(1/ǫ)) as required by Theorem 5).

Thus we have that Pr[Z ∈ G] > 1 − ǫ2 − 2−Ωδ(n), since SExt(X,Y ) is
2−Ωδ(n) close to a convex combination of somewhere random sources. Further,
for every z ∈ G, |Az − Un| < 2−Ωδ(n). The total number of z’s is at most
2ct = 2poly(1/δ,log(1/ǫ2)). Thus, by Lemma 5, setting d = 100ct/ log(1/ǫ), we have
that Ext

′(X,Y ) is 2ǫ2 close to having min-entropy m− poly(1/δ, log(1/ǫ)).
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