A Technique for Dynamic Updating of Java Softwar e*

Alessandro Orso, Anup Rao, and Mary Jean Harrold
College of Computing
Georgia Institute of Technology
{orso,prime,harrolj@cc.gatech.edu

Abstract worse for systems such as air-traffic controllers and life-

During maintenance, systems are updated to correct SUPPOrt software, for which the interruption of the service

faults, improve functionality, and adapt the software to |s_in general nqt an optiqn. Furthermore, the n_umberof ap-
changes in its execution environment. The typical software pllcatlo_n domaln_s In Wh'Ch systems mUSt. deliver contmu.-
update process consists of stopping the system to be up(-)us reliable service during updatfe 'S growing, a_nd dynamlc
dated, performing the update of the code, and restarting softv_vare updating is thus becoming an increasingly impor-
the system. For systems such as banking and telecommunfant ISSue. . i

cation software, however, the cost of downtime can be pro- Dynamic software upd_atmlg the t.ask O_f “pda“”g parts
hibitive. The situation is even worse for systems such asOfa program without hlavmg to terminate its e>.<ecut|on. Dy-
air-traffic controllers and life-support software, for vi ~ nNamic software updating can be performed in several dif-
a shut-down is in general not an option. In those cases,ferent ways, dependmg_or_l the_ specific context considered.
the use of some form of on-the-fly program modification is !N Particular, we can distinguish between hardware- and
required. In this paper, we present a new technique for dy- SOftware-based dynamic updating techniquétardware-
namic updating of Java software. Our technique is based based dynamic updgtmg techmqusarg based on hardyvare
on the use of proxy classes and requires no support fromredundancy, are falrl_y expensive, and target specific con-
the runtime system. The technique allows for updating a '€XtS (€.9., space mission softwarejoftware-based dy-
running Java program by substituting, adding, and deleting N@mic updating techniquesn the other hand, require no
classes. We also preseDtsc (Dynamic Updating through hardware suppo_rt,.and. are thus more generally. applicable.
Swapping of Classes), a tool that we developed and that im-We can further distinguish software-bas_ed techmques:bgse
plements our technique. Finally, we describe an empirical ©" the degree of support that they require from the runtime
study that we performed to validate the technique on a real SYStem- In the particular case of Java, techniques that rely
Java subject. The results of the study show that our tech-O" the runtime system require a customized version of the
nique can be effectively applied to Java software with only Java Virtual Machine (JVM [12]) to be applicable.

little overhead in both execution time and program size. In this paper, we present a new software-based technique
for dynamic updating of Java software that is completely
1 Introduction defined at the program level. Therefore, our technique re-

quires no support from the runtime system and can be gener-

In the software maintenance phase, programs are up|ly applied to any Java application. Our technique opsrate
dated to correct faults, improve functionality, and adapt t by first statically modifying the application to enable its d
software to changes in its execution environment. The typ- namic updating (through class renaming and code rewrit-
ical software-update process consists of stopping the sysing) and then performing hot-swapping of classes (i.e., ab-
tem to be updated, performing the update of the code, andstract data types and their instances) at runtime, when a
restarting the system. Many applications, however, mustnew version of one or more class(es) is available. Un-
run continuously and have maximum downtime require- der some assumptions, our technique permits generic up-
ments on the order of a few minutes per year [16]. For gates of Java applications and has the following character-
example, banking and telecommunication software systemsstics/properties:
have a prohibitive downtime cost. The situation is even gemantics preservatioifhe swapping-enabled applica-

*This work was supported in part by a grant from Boeing Aerospa tion has the same behavior as the Ol‘lglnal appl|Cat|0n. ,AISO
Corporation to Georgia Tech, by National Science Foundatiwards
CCR-9988294, CCR-0096321, and EIA-0196145 to Georgia, Tauth by 1we refer to such modified application swapping-enabled applica-
the State of Georgia to Georgia Tech under the Yamacraw dfissi tion hereatfter.

after an update, the updated application has the same behawavior of the corresponding original applications, (2)-per
ior as if it were built from scratch using the updated set of formed different dynamic updates of the application, and
classes (rather than being dynamically updated). (3) measured the cost of the technique in terms of perfor-
Atomicity of updatesUpdates involving more than one mances. The results of the studies show thasDcan be
class are performed atomically, so avoiding problems re- effectively applied to Java software with only little ovedd
lated to inconsistent versions of different parts of the-pro in both execution time and program size.
gram being present in the code at the same time. In addi- The main contributions of this work are:
tion, the update is performed so that (1) all instances of an o))
updated class are atomically migrated from the old to the 1+ definition of a new technique for dynamic update of
new version of the class, (2) no instances of the old classes Java software,
are executing after the update is completed, and (3) all in- 2. implementation of the technique in a tool, and
stances of the older version are eventually destroyed (i.e. 3. empirical validation of the technique on a real Java
garbage collected). subject.
Minimal or no human intervention requiredGiven a . .
Java application, our technique generat(;s the correspond2 Dynamic Software Updating
ing swapping-enabled application in a fully automated way. In this section, we describe our technique for dynamic
Given a set of updated classes, our technique also generapdating of Java code. First, we illustrate the problem and
ates the updating code and performs the update of the approvide an intuition of our proposed solution. Then, we
plication in a fully automated way. The only case in which describe the assumptions that must be satisfied for the tech-
human intervention is needed is when the migration of the nique to be applicable. Finally, we provide technical dstai
state from an old to a new version of the class requires theabout the technigue.
developer’s knowledge of the code Therefore, in most 21 Overview

cases, the use of the technique is completely transparent to) o)
both the user and the developer. Dynamic software updatinig the task of updating parts

Support for changes at different levelalthough opti- of a program without having to terminate its execution. As
mized to operate at the class level, our technique lets us Ioerstated in the_ Introduction, our goal isto define a software-
form updates at different levels of granularity: from chesg based technique for dynamic updating of Java software that

involving a single statement to structural modifications of "€duires no support from the runtime system and can be
the whole application. generally applied to any Java application running on any

implementation of the Java Virtual Machine (JVM) that is

our technique is designed to work on any program running ComMPpliant with the Sun's JVM specification [12] (i.e., we
on any implementation of the JVM that complies to the define a technique that works without any support from the

standard [12]. run-time system).

Many solutions to the problem of dynamic software up- Civen two versions” and P’ ,Of a generic Java program,
dating have been proposed [2, 3, 5, 6, 9, 8, 10, 13, 16, 18]the differences betwedn and P’ can be expressed in terms

and several international organizations (including the Ob ©f three, possibly empty, sets: the seip D of added classes

ject Management Group and the Java Community Processfi-€- classes ir?" and not inP), the setDEL of deleted
are developing proposals for specifying models and APIs to €2sses (i.e., classes fhand not in?’), and the sed/ OD
support dynamic application updates. Nevertheless, to theOfI'”r‘C)d'f'_‘:‘d classes (i.e., classes that are botFiand in
best of our knowledge, our technique is currently the only £+ but differ in the two programs). Therefore, to be able to
technique that works for generic Java applications and doedlynamically update a program, we must be able to (1) add
not require a customized JVM to be applied. classes to the program, (2) remove classes from the pro-
To validate our approach, we implemented our technique 9"@M. and (3) substitute classes in the program. (Note that
in a tool called usc (Dynamic Updating through Swap- the above description refers to the update of the code only
ping of Classes). In this paper, we describe our implemen-and does not accqunt fpr the state of the efqacutlng program.
tation of Dusc and an empirical study that we performed 1he€ Problem of migrating the state 6fto /' is addressed

using such implementation. In the study, we performed dy- N Section 2.3.) , _
namic updates of a real Java subject and (1) compared the Consider, for example, the two versions of a simple ap-

behavior of the swapping-enabled applications with the be-Plication shown in Figure 1. On the left-hand side of the
figure, we show the initial application, which is composed

2Consider, as an example, a situation in which a new vexsionclass of classed, B, C, andD; classA uses clas§,3 which uses
¢ is provided and:’ contains a new attribute that is defined as having
the value ofc.z + c.y. In such a case, there is no way for the program to 3The specific kind of use of the class—e.g., method invocatioran
infer the wayz should be initialized, unless’s developer provides such instance ofB—is irrelevant in this context. We consider that a class
information. usesa classC2 if C1 may contain a reference 2.

No runtime-system support requireds stated above,

Initial Application Updat ed Application

class A class A
v B nodified to B v
class B Cnodified to C class B’
D del eted

E added

class C class D

: [classc | | classE |
Figure 1. Example of application update.

classesC andD in turn. On the right-hand side of the fig- typeC’. Therefore, we need a way of addressing these is-
ure, we show the updated application, which is composedsues and enabling the substitution of one or more (possibly
of classesA, B, C , andE. In the figure, we also show all) classes in the application. More precisely, we need a
that, to get from the initial to the updated applicationssla technique that takes the bytecode of a Java application and
B has been modified (replaced) with cld®s, classC has a list of the classes that must be changeatalgét classes
been modified (replaced) with cla€s, classD has been hereafter) as input, and produces an equivalent program in
deleted, and clagshas been added. Therefore, in this case, which the specified classes can be dynamically substituted
setADD contains clas#, setD E'L contains clas®, and (i.e., aswapping-enabledersion of the application).
setM OD contains classeB andC. Our technique addresses the above problems by using
Adding classes to a running program is straightforward wrapper classes . Wrapper classor a classC' is a class
and requires only some engineering effort; the only requi- that has the same name and provides the same interface as
site is to be able to add class files in any location that is classC and acts as a proxy for such class. Given a program
accessible through the class p4tBach newly-added class P, we generate a new prograf,. in which we create a
will then be loaded the first time the program uses it (e.g., wrapper class for each target cl&ssn P. We also modify
when the program instantiates the class or accesses one df so that none of its clients can obtain a direct references
the class’s static members). In the case of the example, afto any instance o’ and all calls toC' in P result in call
ter we add clasg, the class will be automatically loaded to the wrapper foilC' in Py,,.. Because the wrapper is a
the first time that an instance of claB’s uses it. proxy, every time a method in the wrapper is called, the
Removing classes from the application is also fairly Wrapper forwards the corresponding call to an appropriate
straightforward; in the Java run-time system, the garbageinstance of clas€'. This level of indirection lets us replace
collector automatically removes from the program memory classC with a different class at runtime. To perform the
objects that are no longer referenced in the application. Insubstitution ofC' with C’, we (1) create a new instance of
the example, after we substitute cl@sith classB’ , exist- C' for each instance daf', (2) transfer the state from the old
ing objects of the old typ® are no longer referenced (see 10 the new instance, and (3) update the wrappers so that they
below) and are thus garbage collected. Consequently, obfefer to the newly created instances after the update. The
jects of clasD are no longer referenced (objects of class application can then continue its execution (transpaygntl
C can be referenced only by objects of cl&sand are Using the updated class(es).
garbage collected as well. (The above description assumes Note that we provided a high-level and intuitive view
that we remove only classes that are no longer used by anyf the way our technique operates, in which most details
of the classes in the application, which is an obvious re- are omitted. For the technique to work in the presence of
quirement.) From a practical standpoint, the deleted elass Java object-oriented features, such as inheritance, otym
could also be physically removed (e.g., to save space). Phism, and dynamic binding, we must address and solve
Substituting classes in the application is far from triv- @ number _of issues and consider seve.ral impprtant details.
ial. For each clasé’ that is being substituted with a class Such details are thoroughly presented in Section 2.3.
C', we must (1) modify the application so that any new in- 2 2 Assumptionsand Limitations
stance ofC that is created after the update is an instance
of C', and (2) migrate all the existing objects of typein
the application at the moment of the upgrade to objects of

In the following, we present restrictions and limitations
of our technique.
Access to public and protected field3ur technique re-
4Although different specific cases may need slightly diffésolutions, quires that noclassin the appllcatlon acces.ses pubhcoer pr
we do not describe such solutions because the focus of ttez jzapn the tected fields of any of the target classes d|reCt|_Y- All such
updating technique, rather than on the engineering of idémentation. accesses must be performed through appropriate accessor

methods—typicallygetandsetmethods. (This restriction level interaction with the underlying system.

does not apply to fields that are constant and do not change Requirements for class updatingiVhereas the opera-
value from version to version.) This assumption, which is tions of adding and deleting classes can be performed at
necessary to maintain the level of indirection required by any time, substituting a class requires that no methods of
our technique, is not overly restrictive; it is a common re- the class are executing during the update (i.e., no methods
quirement for object-oriented programming because it en-of the class are on the stack). Therefore, when our tech-
forces information hiding [4, 14]. If this requirement is niqueattemptdo perform a dynamic update, whether or not
not satisfied, we modify the application through bytecode an update actually takes place depends on runtime factors.
rewriting so that all direct accesses are transformedinéo o Although in most cases the ability to perform the update
or more invocations of an accessor method. only depends on waiting for some method of the target class

Reflection.Our technique assumes that reflection is not {0 complete its execution, this limitation could preverg th
applied to any target class or any component of a targetupdatmg of some specific c!asses in the application, that is
class. Reflectiortallows programmatic access to informa- classes such that one of their m(_etho_ds is always on the stack.
tion about the fields, methods and constructors of loadedFOr example, assume that classn Figure 1 has a method
classes, and the use of reflected fields, methods, and cond® N whose body contains an infinite loop in which some
structors to operate on their underlying counterparts en ob Method of3 is called. In such a case, methudi n never
jects, within security restriction” [17]. In this paper, we (€rminatesits execution, and we cannot update clasih-
consider methods that inspect the information about a spe-°ut shutting down the application. _
cific class, such as the method§ iava. | ang. Cl ass, as Security.As we stated above, our technique enables the
a form of reflection as well. If a statement uses information UPdating of classes by analyzing the target classes and gen-
obtained through reflection about either a target classsor it €rating suitable wrapper classes. The process also irs/olve
members, the substitution of that target class with a wrappe performing some changes to the target classes (as described

would affect the behavior of the application (i.e., it would in Section 2.3). Such transformation of the target classes
not be semantics preserving). could involve some security issues—malicious users may

o . obtain access to protected and private members of the target
Unmaodifiable interfacesTo preserve the type safety of :) _
classes. However, this problem does not occur in the orig-

Java, our technique requires that a new version of a target I ! .
X . : . 2~Inal application, which uses the target classes in a secure
class provides the same interface provided by the previous . .
.) . way by construction. For the problem to occur, a malicious
version of the class: each version of a target class must pro- . .
. .) ! user needs to (1) know about the details of our technique,
vide the same set of public methods. This requirement does o .
. : : (2) know about the application internals, and (3) write a
not apply to private methods and instance variables, tiat ca * . o .
: suitable program that reproduces the application behavior
be freely added to or removed from a new version of the tar- while exoloiting the security leak
get class. It is worth noting that, if the interface of a class P 9 ' y '
does need to be changed, our technique can still be used2.3 The Technique
In that case, the class whose interface is changed would The process for the dynamic updating involves two dis-
be deleted from the application, and a new class would betinct steps. The first step consists of transforming the ap-
added that provides the new interface. Consider, for exam-plication to make it swapping-enabled by generating wrap-
ple, the application in Figure 1 and assume that we needpers and utility classes for each target class in the applica
to change clas&’s interface. We would then create a new tion. The second step consists of the update, in which target
classF that provides the new interface and update the appli- classes are updated with new versions and other classes are
cation by removing clasg, adding clasg", and replacing possibly added to or removed from the application. In the
classB’ with a classB” that uses the new interface. In this following, we describe the two steps.
case, though, the state of existing instancef afould be 231 Transformation

lost. The goal of the transformation is to obtain a new application

Native methods. Our technique assumes that target {hat can be dynamically updated and is semantically equiv-
classes do not contain native methoblstive methodsare alent to the original application. To this end, we substi-
methods implemented in another programming language,te each target clags (possibly all classes in the applica-
such as C, that can be used in Java through the Java Nagon), with a compound that consists of an implementation

method, our technique cannot analyze the class to build suit gnq a state clas€y).

able wrapper and implementation classes (see Section 2.3 . _ _ _

for a definition of implementation class). In practice, this , e fact that library classes often use native code is nobblem
. . . for the application of our technique. The requirement orffgcas target

assur_npﬂon _h0|d5 In most cases b_eca_‘use the use of nativgasses, which are almost always in the application, ratieet in the li-

code is required only for a few applications that have a low- brary.

Updat e- enabl ed system

wr apper

B ’_L‘
interface
state

| inpl enent ation
: \\
C D
wr apper wr apper

Oiginal system

Transformation

Rey

—p Userelation

interface
state

i npl enentati on

state

\ interface

i npl enmentation

——p> !Inheritance

relation

Figure 2. Application transformation.

Implementation class(C; contains the implementation
of a version of clas§’. Immediately following the transfor-
mation, clas<’; corresponds to version zero 6f that is,
the version of clasg’ in the original applicationC; con-
tains a slightly modified version of all @’s members, both
fields and methods. In additiof; contains an additional
field, which is used to store a reference to the correspond-
ing wrapper class, an additional method, which endgde
state in an instance of the state class and returns such in-
stance, and a set of special constructors, which are used
when performing an update of the class (see Section 2.3.2
for detalils).

classC; that corresponds to that wrapper. In addition, the
wrapper class contains the following static members:

e A Vect or of C,. This vector is used to store refer-
ences to all instances 6f; in the application. An ele-
ment is added to the array every time a constructor of
the wrapper is called, after the corresponding construc-
tor for C; has been called. Every time an instance of
the wrapper is garbage collected, the reference to the
corresponding instance @f; is eliminated. We refer

to this vector agnstances vector

An integer value that keeps track of the numbef'gé
methods currently on the stack. The wrapper incre-
ment this value each time a method is called, before
calling the corresponding method @;, and decre-
ments it each time one df;'s methods returns. We
refer to this vector astack counter

A method that can be used to request an updatg, of
We refer to this method asvap-request method

Interface class. C, is an abstract class that is imple-
mented by all implementation classes corresponding to dif-
ferent versions ofC. We useC, within the wrapper to
call methods on the implementation class. The wrapper can
access different implementation 6f through a reference .
whose static type i€’,. We could obtain the same results
without usingC,,, by exploiting reflection, but the resulting

o State class.C; is a class whose objects can be used to
wrapper would be much less efficient in this case.

encode the state of an instanc&f ClassC, has the same
Wrapper classC,, provides the same interface that class fields as clas€’; and is used to migrate objects of an up-
C provides and, to any client @f in the application, isin- dated class from the old to the new version, as described in
distinguishable fronC. For every methodn of C, there Section 2.3.2.
is a corresponding methad,, in C,, with the same sig- To give an example of an application transformation,
nature. The goal of each methed, is twofold: perform- Figure 2 shows how the application in Figure 1 would be
ing bookkeeping for the update process, as described belowtransformed to become swapping-enabled.
and performing the same operation thatperforms. m,, When substituting a target class with the set of four
accomplishes the latter goal by invoking the correspondingclasses described above, we must pay special attention to
methodm in the current implementation class f@rand by how we handle object-oriented features in Java. Although
returning the value that the implementation class’s methodthe handling of some features, such as instance methods, is
returns. To be able to call methadin the correctinstance straightforward, the handling of other language conss;uct
of classC;, the wrapper class is provided with a field of such assuper calls, can be very complex (and, if per-
type C, (which is a superclass @f;). For each instance of formed incorrectly, can cause the swapping-enabled appli-
the wrapper, such field contains a reference to the object ofcation to behave differently with respect to the original ap

plication). In the following, we describe how we handle this tiated instead. When a wrapper is instantiated with a spe-
set of “possibly problematic” Java features. cific constructor, it calls the appropriate constructortfor

Inheritance. In the swapping-enabled application, the implementation class and passes a reference to itself as an
class hierarchy differs from the one in the original applica additional argument. Such reference is stored in the gen-
tion. Due to class renaming, the wrapper classes replace therated instance of the implementation class and is used in
corresponding target classes in the inheritance tree. Eactplace oft hi s to avoid direct accesses to the implementa-
implementation class is a subclass of the corresponding in-tion class. Besides storing the reference to the wrapper and
terface class, which does not belong to the original inher- Performing some additional bookkeeping, the constructor
itance tree. State classes are also not part of the originain the implementation class performs the same operations
inheritance tree. For example, assume that in the systenfis the constructor in the target class. Some special con-
shown in Figure 2Ais a superclass d@. In the correspond- Structors are also added to the implementation class: one or
ing swapping-enabled syster,would be a superclass of Mmorecopyconstructors, which perform the migration of the
the wrapper class created fbr whereas the imp|ementa- state from an old to the new version of the implementation
tion class forD would no longer belong to the hierarchy. class during an update, and a constructor that builds (once
There is a specific reason why implementation classes ardP€r class) the special object that is used by the wrapper to
not subclasses of their wrappers: if implementation cksse run static methods.
were subclasses of their wrappers, a new wrapper would be Finalizers. Possible problems may arise if the finalizer
generated every time there is an update, when objects of thdor a target class gets executed when an object of the cor-
new type are created to replace objects of the old type. Be-responding implementation class is garbage collected. Ob-
cause the wrapper is responsible for the bookkeeping durdects of implementation classes are garbage collected as a
ing the updates, it cannot change between different vession consequence of an update, and the finalizer may have a side
and thus cannot be created from scratch every time. Theregffect on elements of the object’s state that survive the ob-
fore, wrappers and implementation classes must be relatedect and migrate to the new version. Consider, for instance,
by delegation, rather than by a class-subclass relation. @ classC that contains a referengfeto a file that is open by

Static methodsStatic methods in the target class are not ¢ constructor and closed b§"s finalizer. When we up-

i
represented as static methods in the implementation classdateC to ¢*, all instances ot are eventually garbage col-

and instance methods are used instead. The wrapper rediected, but referenceg must keep their state because they
rects static method calls to a special instance of the imple-Migrate to the newly created objects of type Therefore,

mentation class that is created to this end. In this way, theWNen creating the implementation class for a target class,
wrapper can exploit method overriding to run the correct W€ rewrite the code so that an implementation class's fi-
version of the method through the interface class, so avoid-"alizer is run only when the finalizer of the corresponding

ing the problem of static methods being statically linked. ~ WraPPer is run. _
. . L Invocations tcsuper methodsAs we described above,
this. The explicit use oft hi s is a problem for

our approach because it allows for bypassing the Wrapperm the swapping-enabled system the original class hierar-

T ; o chy is lost. Therefore, invocations of superclass methods i
class. Ift hi s is returned by a method of an instantiation . : . o
L ; . . an implementation class need to be suitably modified. To
classC;, it is possible for whichever object gets the refer- :
i ; . g handle this problem, we (1) add to wrapper classes ad-hoc
ence tot hi s to accesg’; directly, without going through .)
. methods that invoke the superclass methods, and (2) modify
the wrapper class. Furthermore, direct accessashic . .)
e calls tosuper in the implementation classes so that they
are a problem also withid’; itself, for the same reason.

: : L . resultin invocations of those methods instead.
Therefore, when creating the instantiation class, we eetlir
all references td hi s to references to the corresponding 2.3.2 Dynamic Update

wrapper. (To this end, we add a field to each impIementationGiven a swapping-enabled application, in which all classes

class to store such reference, and modify the CcoNstructorsy o+ can be updated have been suitably processed, code up-

of the implementation class so that the field gets suitably y4e5 are relatively straightforward to accomplish. Note
initialized, as described in the next paragraph.) More pre- that, in the following description, we assume that the user

cisely, any call to ubl i ¢ internal method that occurs in performs valid updates. A dynamic update from progam
an implementation class gets redirected to the correspondf0 programP’ using a given state mappihis valid if, after

ing method in the wrapper class, and any direct referencey,q change, the execution is guaranteed to reach a reachable
to apubl i ¢ field that occurs in an implementation class
gets replaced with a call to an appropriate accessor method ©The state mappingconsists of the way we migrate the state from a

suitably created in the wrapper class. previous to the next version of the class. In the simplest,cstate migra-
. . tion is achieved by performing a shallow copy of correspogdields in
Constructors.Because of renaming, every time a target ihe wo classes. If a more sophisticated migration is negtiecieveloper

class is instantiated, the corresponding wrapper get@rinst must provide an ad-hoc state mapping.

state of P’ in a finite amount of time [6]. In this context, 3 Empirical Evaluation
we can simplify the above definition and say thata dynamic | yhis section, we describe the system that we developed

update is valid if it bringsP’ into a consistent state. and that implements our dynamic-updating technique. We

An update consists of a set of classes that must be addeg|so report on the results of an empirical study that we per-
to the systemA D D), a set of classes that must be removed formed using our system on a real Java subject.

from the systemDE L), and a set of classes that must be
modified, that is, substituted{O D). Addition and dele- 31 System
tion of classes are mostly an engineering problem, as dis-

cussed in Section 2.1, and can be performed straightfor- 10 investigate the usefulness of our technique, we de-
wardly. veloped a tool that implements our dynamic-updating tech-

When an updated version of a target class is available, nique: Dusc (Dynamic Updating through Swapping of

'Classes). Dscis written in Java and exploits SOOT [15]
we first generate the corresponding implementation class,
which will be used during the update. The substitution of capab|l|t|¢s to perfqrm bytecode rewriting. Figures 3 and 4
classes is then performed through interaction with the wrap show a high-level view of Dsc.
pers of the classes to be updated. For each class that must
be updated, the swap-request method is called, and the new

I
version of the implementation class is passed as an argu— s L

I
I
— I
1 1 1 Class .
ment. For the sake of the presentation, in the following, we |:> Byt ecode |:> oyTem G asess |
Cl asses |
I
I

| Targel O asses

II Pr eproc.

d ass

describe the update assuming that a single class is updated. Preprocessor I
In the case of multiple classes, the process is analogotis, bu ||
we use a two-phase thread-based locking mechanism to en- [Mo
sure the atomicity of the updates. - = = =
When a swap-request method is called in the wrapper
for a clasC, passing the new versiati of C; as a param-
eter, the wrapper first checks the value of the stack counter. pyscis logically composed of three main components:
If the value is greater than zero (i.e., at least one method Class Bytecode Preprocessor (CBRJBP takes the
of classCj; is currently executing), the wrapper returns an pytecode of a Java application and a list of target classes
error and cancels the update. Otherwise, the wrapper peras input and produces two sets of classes: the preprocessed
forms the update by iterating through the instances vectorarget classes, which are the classes that will be swap-
and, for each instance (including the instance that we use toyaple in the swapping-enabled application, and the prepro-
“simulate” static members), performs the following acon cessed system classes, which are the classes that will be im-
mutable. The preprocessing stage performs some “normal-
1. Invokes on the instance the special method that en-jzation” of the code, such as modifying all direct accesses
codes the current instance state in a state object ando public fields of target classes with calls to appropriate a
returns it. cessor methods and adding accessor methods to the target
2. Creates a new object of tyi& using the special copy ~ classes if needed.
constructor that takes a state object as a parameter and Proxy Builder (PB).PB takes the bytecode of a prepro-
uses it to suitably initializ&’!'s state. cessed class as input and generates a suitable wrapper class

3. Changes the value of the reference to the old objectintérface class, and state class.
in the instances vector to point to the newly created ~'MPlementation Class Builder (ICBAnalogous to the
object. proxy builder, this component reads bytecode of a prepro-

cessed class and produces the corresponding implementa-
tion class.

Figure 3. Dusc tool—Preprocessing stage.

After each class for which a new version is available has
been suitably substituted, the classes in 2D set are Fr— === - =
added to the system, the classes infiHel set are removed e |
from the system, and the update terminates. &I - Me
executing may be overly restrictive. Static analysis tech-
ings, we shall decide whether it is worth investigating this ~ Figure 4. Dusc tool—Swapping-enabling

Note that the constraint that the swapping of a class can —< | | LE=———=—=
nigues may be used to identify methods whose execution
and other improvements to the technique. stage.

be performed only if no methods of that class are currently ' —
NS
does not prevent an update. Based on our experimental find-

PB and ICB builder are used jointly when producing the For the first goal, we used a regression test suite that we
swapping-enabled version of an application, whereas ICB ishad developed for BiAVOO, and ran it on both the original
used in isolation when a new version of a class is availableapplication and on the swapping-enabled version. For each
and only the corresponding implementation class is neededtest case, we then compared the results and verified that they

Figure 5 shows how updates are performed on amatched for the two applicatiofs.
swapping-enabled application. We integrate into the appli For the second goal, we ran the same regression-test
cation a module, calledpdate Manage(UM), that runs in suite and measured the execution time and the memory re-
its own separate thread. The module is initialized by boot- quirements for both BiAVOO and DEJAVOO,,s.. More
strap code inserted at the entry of the n method(s) ofthe precisely, for both applications, we measured the time and
application and is aware of (1) which wrapper classes are inmemory required to run each test case. For each test case,
the system, and (2) which version of each implementationwe then computed the difference in both time and memory
class is currently in the system. The UM module provides required. The result are reported in Tables 1 and 2.
an interfacéthrough which a user can request an update, by
providing the three sets of classé® D, DEL, andM OD. Table 1. Execution time results.

When UM receives a request for an update, it contacts Differencesin execution time
the wrappers involved in the update (i.e., the wrappers that maximum | minimum | avgerage

. . Absolute 0.79 0.02 0.27
corresponc_is to classef_s in th_éOD set) and, using a_two— Percentagd 3.36% 0.08% 1139
phase locking mechanism, either performs an atomic update
or cancels the update if one or more wrappers cannot per-

form the swapping (because a method in the corresponding Table 2. Memory requirements results.
class is currently executing). If the update is successiMl, Differencesin memory requirements
also suitably handles the addition of classes to and the re- maximum | minimum average
moval of classes from the system, according to the contents | Absolute 6,541 1,034 1,762
ofthe ADD andDEL sets. Percentagg 18.92% 3.98% 6.36%

UM's interface can also be used to perform simple |n Taple 1 (resp., Table 2), we show the maximum, the
queries on the status of the application with respect to theminimum, and the average difference in execution time
updating. To date, we have implemented queries for gather-resp., memory requirements) over all test cases. The fig-
ing three kinds of information: (1) list of the names of the yres are shown both as absolute differences and as percent-
wrappers in the application, (2) current version of the im- ages. Absolute differences are expressed in seconds and
plementation class for a given wrapper, and (3) current list kilobytes for time and memory, respectively.
of pending updates. So far, we have used the query mecha- The results show that our technique can be effectively
nism mostly to check whether a requested update has actugpplied to Java software with only little overhead in both
ally been performed or is still pending. execution time and memory requirements. As far as timing
3.2 Case Study is concerned, the swapping enabled application required a
maximum of 0.79 seconds (3.36%) more than the original

To validate the tool and the technique, we performed two R]
empirical studies using EYAVOO [7], a regression testing application to be executed. Although the maximum for the
memory requirements is 6,699 more kilobytes (18.92%),

tool developed by some of the authors, as a subject program.”~"""™*" i "y
DEJAVOO is part of the dBa (Java Architecture for Byte- which is a worse result w|th respect to the timing, the aver-
code Analysis [1]) analysis framework, and consists of 43 29€ overhead is 1,762 kilobytes (6.36%) over all test cases.

classes and approximately 11KLOC. Given two versions of In the second study, we performed diffgrent dy_namic up-

a program, EJAVOO (1) analyzes them to identify which dates.of IIJAVOO.. The goal of the study is to validate the

parts of the code are affected by the changes between th&/Pdating mechanism with respect to both the class swap-

two versions, and (2) reports to the user what needs to bePing and the state migration. _

retested based on the results of the analysis. DEJAVOO usually terminates its execution after com-
In the first study, we generated a swapping-enabled ver-bleting the comparison of two program’s versions. There-

sion of DEJAVOO (DEJAVOO.s., hereafter) by selecting 8The comparison was performed by comparing the diagnostjouts:
all classes as target classes. The goals of the study ae (1) teroduced by EJA/OO and DEJAVO Oy, s, Which also report intermedi-

i it ; ate analysis results. Although the matching of such outputet a proof of
check that the Onglnal apphcatlon and the (fu"y) Swajgpin correctness as such, almost all parts @B/OO are involved in the gen-

enabled appllcatlon behave in th_e same way, and (2) to 8S%ration of the diagnostic information, and thus it is urlijikéhat a problem
sess the overhead caused byde in terms of both execu- in the application would not result in any difference.

tion time and memory requirements. 9There are a few executions for which the overhead is coratitier
higher than the average. We plan to investigate the chaistte of those
"The current interface is implemented through UNIX socketisig a executions to assess whether there are special conditievtsch our tech-

simple communication protocol. nigue could be improved.

| - Updat e- enabl ed application
A

-
Updat es(ADD, DEL, MOD) - -~
Queries < ~
A A

Updat e B

<:| Manager

wr apper
results interface

bl Y state

i npl enent ati on
N L
A\ ~

R \
N

BT B B e
™| —
wr apper wr apper
| interface | | interface |
state f | state |

i npl enent ati on i npl enent ati on

Figure 5. Dusc tool—Swapping-enabled application.

fore, to simulate a continuously running application, we ping for any of the considered versions. Finally, the time
wrote a driver on top of BJAVOO that indefinitely reads required for an update was always in the order of magni-
an input from the user, performs its analysis on the two pro- tude of a few milliseconds (which could be problematic for
grams, and prints out the results. Based on a set of differenteal-time applications, but is in general an acceptable)}tim
releases of BIAVOO in our repository, we selected a base Like any empirical study, this study has limitations. We
version and a set of four later versions. We then identi- have considered the application of our technique to a single
fied the pairwise differences between the different vession program, a single set of four subsequent versions, and a sin-

and built four updates expressed in terms of the ddid), gle test suite. We cannot therefore claim generality for our
DEL,andMOD. The sizes of the sets for the four updates results. However, the program and modified versions we
are shown in Table 3. used are derived from an implementation, the updates we

considered are real updates, and the test suite we used is a

Table 3. Size of updates sets. coverage-adequate test suite for the program. Nevertheles

5D updg.te#l updgte#z ”pdi‘te#S “pdgte#A' additional studies with other subjects are needed to asldres
DEL 0 1 5 o such questions of external validity.
MOD 2 5 3 3

4 Reated Work

For each update, we performed the following steps: Several dynamic software update techniques and sys-
tems have been presented in the literature [2, 3, 5, 6, 9,8, 10
13, 16, 18]. Here, we do not consider updating techniques
based on hardware redundancy, which are quite costly and
have limited application, as we stated in the Introduction.

Among the software-based techniques, several ap-
We then compared the collected results with the results ob-proaches are targeted to very specific languages and en-
tained for the four original versions of AVOO consid- ~ Vironments and do not directly compare with our tech-
ered. The comparison was performed as for the previoushique [2, 3, 5, 10, 13].
study. Because the different analyses are performed on the Other approaches, such as the one proposed by Segal and
same two versions of a program, any inconsistency in theFrieder [16] and the one presented by Hicks, Moore, and
class swapping or in the migration of the state during an Nettles [8], address the problem in a more general way, but,
update should result in either a runtime error or an incorrec unlike our technique, rely on the support from the runtime
result. The results matched for all the analyses and vession system to perform dynamic updates.

Some details about the second study are worth reporting. Gupta, Jalote, and Barua present a framework for dy-
For the considered updates, we never ran into the problermamic updating and address several theoretical issues re-
of having a method of a class to be updated that was on thdated to this task [6]. Although Gupta et al.’s theoretical
stack (which would have prevented the update from occur-findings are of general validity, the work is mostly focused
ring). Also, we never needed to define ad-hoc state map-on validity of updates.

perform the update,

verify that the update actually occurred,
perform the analysis, and

collect the analysis results.

The approach that is most closely related to our tech- References

nigue is the one presented by Hjalmtysson and Gray [9].
By exploiting the C++'s template mechanism, Hjalmtysson
and Gray's approach allows for defining C++ classes that
can be dynamically updated. Similar to our technique, the
approach is based on the use of a wrapper/proxy that adds [2] T. Bloom.
a level of indirection and permits class swapping. However,
the approach cannot be applied to Java programs because
of the lack of some program features, such as templates,
in the Java language. Moreover, unlike our technique, the
approach by Hjalmtysson and Gray does not permit the up-
dating of static members and, most important, requires the
programmer to explicitly implement a class as swappable.
To the best of our knowledge, our technique is the first

(1]

(3]

(4]

technique that, at the same time, (1) works on Java code, (2) (5]
does not require any runtime-system support and can thus

be applied on any platform that provides a standard imple-
mentation of the JVM, (3) lets parts of the program that are
not involved in the update continue their execution during

(6]

the update, (4) automatically builds the swapping-enabled [7

system without requiring the developer’s interventiorugh
facilitating clear separation between development and up-
dating), and (5) permits updating of both types and imple-

mentation.

5 Conclusion

We presented a new software-based technique for dy-
namic updating of Java software that permits substituting,
adding, and deleting classes without having to stop the pro-
gram. Our technique requires no support from the run-
time system and can thus be applied to any program run-
ning on any standard Java Virtual Machine. Our technique
first modifies the application using class renaming and code

[10

(8]

(9]

]

rewriting, to enable the dynamic update, and then performs11]

the updates by dynamically swapping classes at runtime.
We also presented a tool, U3c (Dynamic Updating

through Swapping of Classes), that we developed and that

implements our technique. We used&c to perform an

[12]

empirical study to validate the technique on a real Java sub—[ls]

ject. The results of the study show that our technique can be

effectively applied to Java software with only little ovedd
in both execution time and program size.

In future work, we plan to improve the existing tool and
to extend our experimentation in two directions. First, we

[14]

[15]

want to apply our technique to additional subjects, to ver- [16]

ify the statistical meaningfulness of our experimental re-
sults. Second, we want to study different releases of ex-
isting subjects to categorize the types of changes ocaurrin

1

7]

between different versions of an application; such a clas- [18]

sification will provide important insight on whether our ap-
proach needs to be extended (e.g., if changes in the ingerfac
of classes between different versions are common, or if ad-

hoc state mappings are often needed).

Aristotle Research Group. A8A: Java Architecture for
Bytecode Analysis. http://wwv. cc. gat ech. edu/
aristotl e/ Tool s/jaba. htnl.

Dynamic module replacement in a dis-
tributed programming system. Technical Report MIT-
LCS//MIT/LCS/TR-303, Massachusetts Institute of Tech-
nology, Laboratory for Computer Science, Mar. 1983.

R. Fabry. How to design A system in which modules can
be changed on the fly. IRroceedings of the Second Inter-
national Conference on Software EngineeritGEE, Oct.
1976.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidegsign
Patterns Addison Wesley, Reading, Mass., 1995.

H. Goullon, R. Isle, and K.-P. Ldhr. Dynamic restruétg

in an experimental operating systefBEE Transactions on
Software Engineeringl(4):298-307, July 1978.

D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version chang&EE Transactions on Soft-
ware Engineering22(2):120-131, Feb. 1996.

M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings
S. Sinha, S. Spoon, and A. Gujarathi. Regression test se-
lection for java software. IfProceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applicationdlovember 2001.

M. Hicks, J. Moore, and S. Nettles. Dynamic software up-
dating. In C. Norris and J. J. B. Fenwick, editoPspceed-
ings of the ACM SIGPLAN '01 Conference on Programming
Language Design and Implementatiolume 36.5 0ACM
SIGPLAN Noticespages 13-23, N.Y., June 20-22 2001.
G. Hjalmtysson and R. Gray. Dynamic C++ classesPio-
ceedings of the USENIX 1998 Annual Technical Conference
pages 65-76. USENIX Association, June 15-19 1998.

I. Lee. DYMOS: A Dynamic Modification SystefhD the-
sis, Department of Computer Science, University of Wis-
consin, April 1983.

S. Liang. Java Native Interface: Programmer’s Guide and
Specification Addison-Wesley, Reading, MA, USA, 1999.
T. Lindholm and F. Yellin.The Java Virtual Machine Spec-
ification. The Java Series. Addison Wesley Longman, Inc.,
second edition, Apr. 1999.

J. Magee, J. Kramer, and M. Sloman. Constructing dis-
tributed systems in coniclEEE Transactions on Software
Engineering 15(6):663—675, June 1989.

B. Meyer. Object-Oriented Software ConstructiorPren-
tice-Hall, Englewood Cliffs, second edition, 1997.

Sable Group. 8oT: A Java Optimization Framework.
http://ww. sabl e. ntgill.cal/soot/.

M. E. Segal and O. Frieder. On-the-fly program modi-
fication: Systems for dynamic updatingEEE Software
10(2):53-65, Mar. 1993.

Sun Microsystems. Java2 Platform, API Specification.
http://java. sun.conlj2se/ 1. 3/ docs/ api/.

First International Workshop on Unanticipated Software
Evolution (USE2002) 2002. http://joint. org/
use2002/ sub/ .

