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Abstract

We consider the problem of randomness extraction from independent sources. We construct
an extractor that can extract from a constant number of independent sources of length n, each of
which have min-entropy nγ for an arbitrarily small constant γ > 0. Our extractor is obtained by
composing seeded extractors in simple ways. We introduce a new technique to condense independent
somewhere-random sources which looks like a useful way to manipulate independent sources. Our
techniques are different from those used in recent work [BIW04, BKS+05, Raz05, Bou05] for this
problem in the sense that they do not rely on any results from additive number theory.

Using Bourgain’s extractor [Bou05] as a black box, we obtain a new extractor for 2 independent
block-sources with few blocks, even when the min-entropy is as small as polylog(n). We also show
how to modify the 2 source disperser for linear min-entropy of Barak et al. [BKS+05] and the 3
source extractor of Raz [Raz05] to get dispersers/extractors with exponentially small error and
linear output length where previously both were constant.

In terms of Ramsey Hypergraphs, for every constant 1 > γ > 0 our construction gives a family
of explicit O(1/γ)-uniform hypergraphs on N vertices that avoid cliques and independent sets of
size 2(log N)γ

.
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1 Introduction

The use of randomness is widespread in computer science. Many of the best performing algorithms and
protocols in many different areas of computer science are randomized. To guarantee their performance
these algorithms usually rely on a perfect source of uncorrelated uniformly random bits, yet such a
source may not be easy to obtain. We might instead have access to an imperfect random source where
the bits are correlated and not uniformly random.

This motivates the study of objects called extractors. Informally, an extractor is an explicit effi-
ciently computable function Ext : {0, 1}n → {0, 1}m that takes as input bits from an imperfect random
source and produces bits that are close to uniformly random (the distance of the output distribution
from the uniform distribution is called the error of the extractor). If we had access to such a function,
we could use it to extract truly random bits from an imperfect random source. We would then use the
extracted bits in our application. Thus we could achieve performance guarantees even with imperfect
sources of randomness. Extractors were first considered and studied with exactly this goal in mind.
A long sequence of works involving many researchers in the 80’s and 90’s has developed extractor
constructions and applications. Extractors are now known to have applications in a wide range of
problems and are interesting objects in their own right. For surveys of the origins, applications and
constructions we refer the interested reader to [Nis96, NT99, Sha02].

1.1 Modeling the source

To formalize the problem of randomness extraction, we must decide on a model for the types of
imperfect sources that the extractors can handle. If we intend to extract m random bits, information
theoretic considerations show that the imperfect source must contain at least m bits of entropy. The
goal is to construct extractors which output the most number of random bits for a source with given
entropy, have small error and work for very general models. The most general model that has been
considered to date is what we will call a weak source [CG88]. The only constraint on a weak source
that supplies n total bits is that the probability of getting any particular string from the source is at
most 2−k, where k is called the min-entropy of the source. Such a source is called an (n, k)-source.
Unfortunately it can be shown that there is no deterministic extractor that can extract from general
weak sources.

One way to get around this problem is to restrict the source so that it consists of a sample from
a weak source and an additional much shorter independent seed of truly uniformly random bits. In
this paper we will call an extractor for such sources a seeded extractor. These kinds of extractors were
first considered by Nisan and Zuckerman [NZ93]. For any n, k ∈ N we now know how to construct
extractors that can extract a constant fraction of k bits which are almost uniformly random using
a very short (only a constant multiple of log n) length seed from any (n, k)-source [LRVW03]. This
is sufficient to simulate any algorithm that relies on truly uniformly random bits for its efficiency
with the aid of a weak source in polynomial time. The assumption that we have access to a truly
uniformly random seed is restrictive. These extractors are not appropriate for many applications
where randomness is needed for more than improving efficiency. For instance, many cryptographic
applications need to pick a key uniformly at random. Such an operation cannot be simulated using a
seeded extractor and a weak source without access to an independent uniformly random seed.

Several other models for sources have been considered [vN51, Blu84, Vaz85, SV86, CFG+85, CW89,
TV00, MU02, KZ03, GRS04, GR05]. In this paper, we assume we have access to a few independent
sources, each of which have high enough min-entropy. The probabilistic method shows that extractors
for this model exist even when given access to just 2 independent (n,polylog(n))-sources. The challenge
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is to construct a polynomial time computable function that is a good extractor for such sources.
One important reason why this model is interesting is its connection to explicit constructions of

Ramsey Graphs. Every function with two inputs can be viewed as a coloring of the corresponding
complete bipartite graph. When the function is an extractor for 2 independent sources, the extractor
property guarantees that this coloring gives a bipartite Ramsey Graph, i.e. a two colored complete
bipartite graph with no large monochromatic bipartite clique. It is easy to convert any bipartite Ram-
sey Graph into a regular Ramsey Graph, so this immediately gives explicit constructions of Ramsey
Graphs. When the extractor requires a few (say constant u) number of sources, the corresonding
coloring can be used to efficiently construct a u-uniform Ramsey Hypergraph.

1.2 Previous Results and Overview of New Results

The problem of extracting from several independent sources was first considered by Chor and Goldreich
[CG88]1. They demonstrated extractors for 2 independent (n, (1/2 + α)n)-sources, for all constant
α ∈ (0, 1/2].

Since then there had not been much success in improving the entropy requirements until Barak,
Impagliazzo and Wigderson [BIW04] showed how to extract from a constant number of independent
(n, δn)-sources, where δ (the min-entropy rate of the source) is allowed to be any arbitrarily small
constant. The number of sources used depends on δ. Subsequently Barak et al. [BKS+05] showed how
to extract a constant number of bits with constant error from 3 (n, δn)-sources, where δ is an arbitrarily
small constant. In this work they also present 2-source dispersers (a disperser is an object similar to
but somewhat weaker than an extractor) that output a constant number of bits with constant error
and work for min-entropy rate δ where δ is an arbitrarily small constant.

Raz [Raz05] gave an extractor for 2 independent sources where one source needs to have min-
entropy rate greater than and bounded away from 1/2 and the other source may have polylogarith-
mically small min-entropy. In this case his extractor can extract a linear fraction of the min-entropy
with exponentially small error. Improving the 3 source extractor of Barak et al., he constructed an
extractor for 3 independent sources where one source must have constant min-entropy rate and the
other two need polylogarithmic min-entropy. In this case his extractor can extract a constant number
of bits with constant error.

Bourgain [Bou05] gave another extractor for 2 independent sources. His extractor can extract from
2 (n, (1/2 − α0)n)-sources, where α0 is some small universal constant. This is the first extractor to
break the 1/2 min-entropy rate barrier for 2 sources. His extractor outputs a linear fraction of the
min-entropy, with exponentially small error.

Other than Raz’s extractor for 2 sources, all of these recent results were made possible by new
breakthroughs on the sum-product estimate for finite fields [BKT04, Kon03], a result from additive
number theory. A common feature of the work of Raz (in the case of 3 sources) [Raz05] and Barak
et al. [BKS+05] is that they reduce the general problem of extracting from independent sources to
the problem of extracting from independent sources that come from a much more restricted class,
called somewhere-random sources. They then build extractors for these sources. A key step in our
construction is building much better extractors for independent somewhere-random sources.

1Santha and Vazirani [SV86] also considered extracting from independent sources, but the sources had additional
restrictions placed on them.
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Construction Min-Entropy Output Error Ref

O(poly(1/δ))-source
extractor

δn Θ(n) 2−Ω(n) [BIW04]

3-source extractor δn, any constant δ Θ(1) O(1) [BKS+05]

3-source extractor One source: δn, any constant δ. Other
sources may have k = polylog(n) min-
entropy.

Θ(1) O(1) [Raz05]

2-source extractor One source: (0.5 + α)n, α > 0. Other
source may have k = polylog(n) min-
entropy.

Θ(k) 2−Ω(k) [Raz05]

2-source extractor (0.5 − α0)n for some universal constant
α0 > 0

Θ(n) 2−Ω(n) [Bou05]

2-source disperser δn, constant δ Θ(1) 0 [BKS+05]

O(1/δ)-source
extractor

k = nδ Θ(k) k−Ω(1) This work.

3-source extractor One source: δn, any constant δ. Other
sources may have k = polylog(n) min-
entropy.

Θ(k) 2−kΩ(1)
This work.

2-source disperser δn, constant δ Θ(n) 2−nΩ(1)
This work.

2-source disperser no(1) 1 0 [BRSW06]

Table 1: Performance of recent extractors and dispersers for independent sources

1.2.1 New Results

• The main result of this paper is a polynomial time computable extractor that extracts k random
bits from O( log n

log k ) independent (n, k)-sources with error 1/nc for any k(n) > log4 n and any
constant c > 1. An interesting setting of parameters is when k = nγ for some 0 < γ < 1. In this
case we get an extractor for a constant number of sources that extracts a constant fraction of
the total min-entropy with polynomially small error. Formally, the theorem we will prove is the
following:

Theorem 1.1 (Main Theorem, Section 3). For every constant c > 0 there exists a constant c′

such that for every n, k with k = k(n) = Ω(log4 n) there exists a polynomial time computable
function IExt : ({0, 1}n)u → {0, 1}k with u ≤ c′ log n

log k s.t. if X1,X2, . . . ,Xu are independent (n, k)
sources then

|IExt(X1, . . . ,Xu) − Uk| < ǫ

with ǫ = 1/nc.

Our construction is the first to extract from a constant number of sources that have polynomially
small min-entropy. In fact we are not aware of previous constructions of explicit dispersers (or
even explicit Ramsey Hypergraphs) of this type for such low min-entropy. Our extractor for
a constant number of independent sources has the additional feature that it does not rely on
results from additive number theory. It is built by composing existing strong seeded extractors
in simple ways.
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• It turns out that with hardly any extra effort, it is easy to use the ideas that go into the main
theorem above to prove something stronger. We can even construct an extractor for just two
independent sources, as long as the sources are guaranteed to be block sources. Block sources
have been involved in many earlier works in extractors. Informally, a source is a block source if
it can broken up into several blocks, such that every block has high enough min-entropy even
conditioned on the event that all the previous blocks in the source are fixed to some value in
their support. Two blocks in a block source aren’t completely independent, but they do satisfy
the property that the second block is hard to predict even if we know what the value of the first
block is. The concatenation of several independent sources is of course a block source. Thus
block-sources are a strictly more general class of sources than independent sources. It can be
shown that there is no deterministic extractor for a single block source.

In this paper, we give a polynomial time computable extractor that extracts Ω(k) random bits
from 2 independent block-sources when each block source is required to have at most O( log n

log k )

blocks of length n, where each block has min-entropy k = k(n) > log4 n conditioned on the
previous blocks. The error for the extractor is 1/nΩ(1). Formally:

Theorem 1.2 (2 Block-Source Extractor, Section 4). For every n, k with k > log4 n, there exists
a polynomial time computable function IExt : {0, 1}un×{0, 1}un → {0, 1}k with u = O( log n

log k ) s.t. ,

for constant γ < 1 if X = X1 ◦ · · · ◦Xu and Y = Y 1 ◦ · · · ◦ Y u are independent (k, . . . , k) block-
sources,

|IExt(X,Y ) − Uk| < ǫ

where ǫ = 1/nΩ(1).

• Several constructions of Barak et al. [BKS+05] and Raz [Raz05] worked by first reducing the
extractor/disperser problem they were solving to the case of extracting from independent some-
where random sources. Then they used brute force search to construct an extractor for this
case. In this paper we obtain much better explicit extractors for independent somewhere ran-
dom sources. This allows us to improve some of the results from earlier works.

– We obtain a polynomial time computable 2-source disperser that outputs a linear number of
bits with exponentially small error when the min-entropy rate of the source is an arbitrarily
small constant, by modifying the construction of Barak et al. [BKS+05], which had constant
output length.

– We construct a polynomial time computable extractor for 3 sources that extracts a linear
number of bits with exponentially small error when one source has min-entropy rate that
is an arbitrarily small constant and the other two may have min-entropy that is polyloga-
rithmically small, by modifying the construction of Raz [Raz05], which had constant error
and constant output length.

Remark 1.3. Recently Ronen Shaltiel showed how to improve the output length of all of the above
extractors [Sha05]. His techniques show how to get extractors which output k − o(k) output bits,
where now k is the total entropy in all sources, by paying a small price in the error of the extractors.

1.2.2 Techniques

Many extractor constructions in the past have been based on the paradigm of iterative condensing
[RSW00, TSUZ01, CRVW02, LRVW03, BIW04]. The idea is to start with some distribution that has
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low min-entropy and apply a function (called a condenser) whose output has a better min-entropy
rate. Repeating this process, we eventually obtain a distribution which has very high min-entropy
rate. Then we can apply some other extractor which works for such a high min-entropy rate to obtain
random bits. The extractor in this paper can also be viewed as an example of this paradigm, with a
slight twist.

We make progress by considering a more restricted model for sources called somewhere random
sources (SR-sources for short). SR-sources were first introduced by by Ta-Shma [TS96]. They have
been used in several earlier works on extractors. A source is a (t×r) SR-source if the bits that it gives
can be divided into t rows, each of length r, such that at least one row contains uniformly random bits.
The other rows may depend on the uniform row in arbitrary ways. SR-sources are general enough so
that there is no deterministic extractor for SR-sources. An important concept that we introduce is
that of aligned SR-sources. Two SR-sources with the same number of rows are said to be aligned if
there is an i such that the i’th row of both sources are distributed uniformly.

We will think of the number of rows of an SR-sources as a measure of the quality of the source.
The fewer the number of rows, the better the quality is. Our construction will manipulate SR-sources.
We will iteratively improve the quality (reduce the number of rows) of the SR-sources that we are
working with until extracting randomness from them becomes easy.

Our construction will use strong seeded extractors as a basic tool. A strong seeded extractor can
be viewed as a small family of deterministic functions (each function in the family indexed by a unique
seed), such that for any fixed adversarially chosen source of randomness, almost all functions from the
family are good extractors for that source. Several constructions of strong seeded extractors with seed
length O(log n) (giving a family of polynomially many functions) are known (e.g. [LRVW03, Tre01]).

Now we describe some observations that go into the construction. We will then show how to put
these together to get the high level view of our extractor construction (Figure 1).

Idea 1: General Sources can be turned into aligned SR-sources. A strong seeded extractor can be
used to convert any general weak source into an SR-source. Given a sample from the weak
source, we simply evaluate the extractor on the sample with all possible seeds, getting one row
of the output for each fixed seed. For any fixed weak source, the strong extractor property
guarantees that most seeds will give a distribution that is statistically close to uniform. As long
as the seed length required by the extractor is O(log n), we get a polynomial time algorithm to
convert any weak source to a distribution that is statistically close to an SR-source with poly(n)
rows. A simple union bound argument can be used to show that if we convert a constant number
of independent sources to independent SR-sources in this way, the SR-sources we obtain are also
aligned.

Idea 2: Extraction is easy from high quality independent aligned SR-sources. It is easy to extract
from independent SR-sources when each source has very few rows relative to the length of each
of the rows. In the extreme case, when an SR-source has just one row, it is a uniformly random
string. A slightly more non-trivial example is when we have two independent aligned SR-sources,
each with two rows. In this case it is easy to see that if we output the bitwise XOR of the first
row of the first source with the second row of the second source, we get uniformly random bits.
Building on these simple ideas, we will show how to build extractors for just 2 aligned SR-sources
even when the number of rows is superconstant. We will be able to extract from such sources as
long as the number of rows is significantly less than the length of each row.

Idea 3: Condensers for low quality SR-sources can be obtained via Idea 2. We build condensers
for SR-sources in the following sense: given a few input independent aligned SR-sources, our

5



Aligned
SR−Sources

Condense

General Sources

Repeat

Idea 1 Idea 1

Idea 3

Idea 4

Figure 1: High level picture of the extractor

condenser’s output is essentially the distribution of independent aligned SR-sources with fewer
rows. Suppose we have a construction of an extractor for c aligned SR-sources with t′ rows.
Suppose we are given c aligned SR-sources, each with t > t′ rows. We can run our extractor
with the first t′ rows of all of the SR-sources to get a single output. Then we can repeat this
with the next t′ rows of each of the SR-sources. In this way we obtain t/t′ outputs, one of which
is guaranteed to be uniformly random, i.e. we obtain a new SR-source with t/t′ rows. In this
way, we obtain a condenser which given c independent SR-sources, outputs one SR-source with
fewer rows.

Idea 4: The quality of SR-sources can be transferred. A single SR-source S with t rows can be used
to convert many other independent sources into SR-sources with t rows. Simply use the t rows
of S as seeds with a strong seeded extractor to extract from each of the other independent
sources. With high probability, the random row of S is a good seed to extract from all the other
independent sources simultaneously. It turns out that the output we obtain in this way is close to
a convex combination of independent aligned SR-sources, each with t rows. This observation can
be interpretted as a way to transfer quality from a single SR-source to many other independent
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sources.

Given these observations, the high level informal view of our extractor construction is the following:

1. Use Idea 1 to convert a constant number of independent sources into SR-sources with t = poly(n)
rows each.

2. Use Idea 3 to condense these sources to get 1 SR-source S with much fewer rows t′. If t′ = 1,
stop and output the random row, else continue.

3. Using Idea 4, take a constant number of input independent sources and transfer the quality of
S to these sources, to get a constant number of independent SR-sources with t′ rows each.

4. Go to step 2.

The number of sources required depends on how quickly the number of rows in the SR-sources we
are working with drop down to 1. We will give two condenser constructions. The first one is simpler
(essentially based on the XOR extractor discussed in Idea 2), but only gives an extractor for log n
sources. The second one is more involved, but gives an extractor for a constant number of sources
when the min-entropy is polynomially small.

2 Preliminaries

2.1 Notation

Throughout this paper, we will use capital letters to denote distributions and sets. When it isn’t
ambiguous we will sometimes use the same capital letter to denote a distribution and its support. We
will usually use the same small letter to denote an instantiation of the capital letter, for e.g. for a set
X, we would use x to denote an element in X. If R is a random variable, we will write r ∈ R when
we really mean r ∈ supp(R).

Given a distribution X over {0, 1}n and a set S ⊆ [n], we will use XS to denote the restriction of
X onto the indices in S.

We use the convention that N = 2n, M = 2m and K = 2k.
All logarithms are meant to be base 2.
We will use Um to denote the uniformly random distribution on {0, 1}m.
We will use the symbol ◦ to denote concatenation.
We will construct and compose several explicit extractors and condensers in this paper. We will

usually use long names to make clear what kinds of sources the functions are meant to manipulate.
When a function f can be applied to a very restricted family of sources (the restrictions may not be
apparent from the naming), we will usually name it f to indicate that its use is restricted.

2.2 Min-Entropy and Special Sources

We will be concerned with the treatment of various kinds of distributions that are nice in that they
contain a lot of usable randomness. Here we discuss some ways to measure this niceness:

Definition 2.1. The min-entropy of a random variable R is defined to be: H∞(R) = − log(maxx∈R(R(x)).
The min-entropy rate of a distribution R on {0, 1}n is H∞(R)/n.

Definition 2.2. An (n, k)-source denotes some random variable X over {0, 1}n with H∞(X) ≥ k.
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Definition 2.3. A distribution X1 ◦ X2 ◦ · · · ◦ Xu is called a (k1, k2, . . . , ku)-block-source if for all
i = 1, . . . , u, we have that for all x1 ∈ X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . ,X

i−1 = xi−1) ≥ ki,
i.e., each block has high min-entropy even conditioned on the previous blocks.

Proposition 2.4. Let X1, . . . ,Xu be independent sources with H∞(Xi) = ki for i = 1, . . . , u.Then
X1 ◦ · · · ◦ Xu is a (k1, k2, . . . , ku)-block-source.

In some situations we will be interested in the min-entropy of a random variable when it is condi-
tioned on typical instantiations. We will need the following proposition:

Proposition 2.5. Let X be a random variable with H∞(X) = k. Let A be any event in the same
probability space. Then

H∞(X|A) < k′ ⇒ Pr[A] < 2k′−k

Definition 2.6. A source X is (t × r) somewhere-random2 (SR-source for short) if it is a random
variable on t rows of {0, 1}r s.t. X is distributed uniformly randomly over one of the rows. Every
other row may depend on the random row in arbitrary ways.

Our constructions are obtained by manipulating somewhere-random sources in various ways. Often
we will need to consider only a small subset of the bits of a somewhere random source.

Definition 2.7. Given a (t × r) somewhere random source X, for w ≤ r, a slice of width w of X is
the (t × w) somewhere random source obtained from X by restricting X to the first w bits in each of
its rows.

Definition 2.8. We will say that a (t × r) source (i.e., a distribution on t rows of {0, 1}r) X has
somewhere-min-entropy k, if X has min-entropy k in one of its rows.

2.3 Statistical Distance

Sometimes the distributions we get are not exactly the distributions we want, but they may be close
enough. The measure of closeness we will use is this one:

Definition 2.9. Let D and F be two distributions on a set S. Their statistical distance is

|D − F | = max
T⊆S

(|D(T ) − F (T )|) =
1

2

∑

s∈S

|D(s) − F (s)|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F .

Proposition 2.10. Let D and F be any two distributions over a set S s.t. |D−F | ≤ ǫ. Let g be any
function on S. Then |g(D) − g(F )| ≤ ǫ.

In a few of our proofs we will need to change a distribution that we are working with to a statistically
close distribution while maintaining its independence from various other distributions.

2This definition is slightly different from the original one used by Ta-Shma [TS96]. The original definition considered
the closure under convex combinations of the class defined here (i.e. convex combinations of sources which have one
random row). We use this definition because we can do so without loss of generality and it considerably simplifies the
presentation.
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Proposition 2.11. If X1, . . . ,X l are independent random variables with |Xi − Y i| < ǫ, then X1 ◦
X2 ◦ · · · ◦ X l is lǫ-close to Y 1 ◦ Y 2 ◦ · · · ◦ Y l where the random variables Y i are independent of each
other.

We will need the following lemma to reduce the error in the constructions.

Lemma 2.12. [BIW04] Let Z1, . . . , Zv be independent distributions over {0, 1}k with |Zi − Uk| < ǫ
for every i = 1, . . . , v. Then

|Z1 ⊕ Z2 ⊕ · · · ⊕ Zv − Uk| < ǫv

2.4 Convex Combinations

Definition 2.13. Let P be a property of sources. Let X be some random variable over some universe.
We will say that X is a convex combination of sources with property P if there exists some random
variable I over an arbitrary universe s.t. for all i ∈ supp(I), X|I = i has property P.

A key observation that is essential to our results is that random variables that are convex com-
binations of sources with some good property are usually good themselves. This is captured in the
following easy propositions:

Proposition 2.14. Let X,Z be random variables s.t. X is a convex combination of sources which
are ǫ-close to Z. Then X is ǫ-close to Z.

Proposition 2.15. Let X, I be random variables s.t. X is a convex combination of random variables
{Xi}i∈I . Let f be some function s.t. for all i ∈ I, f(Xi) is a convex combination of sources that have
some property P. Then f(X) is a convex combination of sources that have property P.

2.5 Extractors and Dispersers

Definition 2.16. A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a strong (k, ǫ) seeded extractor if for
any (n, k) source X and for Y chosen uniformly at random from {0, 1}t, we have

|Y ◦ Ext(X,Y ) − Y ◦ Um| < ǫ

where Um is independent of Y .

Definition 2.17. A function IExt : ({0, 1}n)u → {0, 1}m is a (k, ǫ) extractor for u independent sources
if for any independent (n, k) sources X1, . . . ,Xu we have

|IExt(X1, . . . ,Xu) − Um| < ǫ

Definition 2.18. A function IExt : {0, 1}n ×{0, 1}n → {0, 1}m is a (k, ǫ) 2-source extractor if for any
independent (n, k) sources X,Y we have

|IExt(X,Y ) − Um| < ǫ

We will say that IExt is a strong 2-source extractor if

|Y ◦ IExt(X,Y ) − Y ◦ Um| < ǫ

where Um is independent of Y .
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Definition 2.19. A function IDisp : ({0, 1}n)u → {0, 1}m is an (k, ǫ) u-source disperser if for all sets
A1, A2, . . . , Au ⊆ {0, 1}n, with |A1|, |A2|, . . . , |Au| ≥ 2k, |IDisp(A1, . . . , Au)| ≥ (1 − ǫ)2m.

Many of our extractors use previous extractor constructions as black boxes. The parameters of
our results depend on the parameters of the extractors used as black boxes. Here we list the previous
constructions that we will need to achieve the parameters claimed.

2.6 Seeded Extractors

Theorem 2.20. [LRVW03] For any constant α ∈ (0, 1), every n ∈ N and k ≤ n and every ǫ ∈ (0, 1)
where ǫ > exp(−

√
k), there is an explicit (k, ǫ) seeded extractor Ext : {0, 1}n×{0, 1}O(log n+log(n/k) log(1/ǫ)) →

{0, 1}(1−α)k .

Theorem 2.21. [Tre01, RRV02] For every n, k,m ∈ N and ǫ > 0, such that m ≤ k ≤ n, there is an

explicit (k, ǫ)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O
(

log2(n/ǫ)
log(k/m)

)

.

We shall be interested in the following two instantiations of this theorem, obtained by setting the
parameters appropriately:

Corollary 2.22. [Tre01, RRV02] For every n ∈ N, constants r > 0, γ < 1, there is an explicit

(nγ , n−r)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}nγ′

with d = O(log(n)).

Corollary 2.23. [Tre01, RRV02] For every n, k ∈ N , there is an explicit (k, ǫ)-strong seeded extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}Ω(k) with d = O(log2(n/ǫ)).

The first instantiation will be used when we need an extractor that has a good seed length. The
second will be used when we need an extractor that has good output length.

If we need to get almost all of the randomness in the source out, the following corollary is available:

Corollary 2.24. [Tre01, RRV02] For every n, k ∈ N, ǫ > 0, there is an explicit (k, ǫ)-strong extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}k−O(log3(n/ǫ)) with d = O(log3(n/ǫ)).

2.7 Few Source Extractors

Ran Raz constructed an extractor that can extract when only one source is required to have min-
entropy rate greater than half.

Theorem 2.25. [Raz05] For any n1, n2, k1, k2,m and any 0 < δ < 1/2 s.t. ,

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• m ≤ δ min[n1/8, b2/40] − 1

There is a polynomial time computable function Raz : {0, 1}n1 ×{0, 1}n2 → {0, 1}m s.t. if X is an
(n1, k1) source and Y is an independent (n2, k2) source,

|X ◦ Raz(X,Y ) − X ◦ Um| < ǫ

and

|Y ◦ Raz(X,Y ) − Y ◦ Um| < ǫ

where ǫ = 2−1.5m.
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Recently Jean Bourgain constructed a strong 2-source extractor for min-entropy rate slightly less
than half.

Theorem 2.26. [Bou05] There exists a polynomial time computable function Bou : {0, 1}n×{0, 1}n →
{0, 1}m and a universal constant α0 s.t. if X,Y are independent (n, (1/2 − α0)n) sources,

|Y ◦ Bou(X,Y ) − Y ◦ Um| ≤ 2−Ω(n)

where m = Ω(n) and Um is independent of Y .

2.8 Multisource Dispersers vs Ramsey Hypergraphs

Here we outline how to convert any efficiently computable multisource disperser into an explicit Ramsey
Hypergraph.

Proposition 2.27. Let IDisp : ({0, 1}n)u → {0, 1} be a (k, ǫ) u-source disperser. Then IDisp can
be used to give an explicit u-uniform Ramsey Hypergraph on 2n vertices that avoids monochromatic
cliques of size u2k.

Proof Sketch: Consider the u-uniform hypergraph defined as follows: given any potential edge {a1, a2, . . . , au}
of the graph, first sort the vertices according to some predetermined total order to ensure that
a1 ≥ a2 ≥ · · · ≥ au in this order. Then color the edge red if IDisp(a1, a2, . . . , au) = 0, else color
it blue.

Now let S be any subset of the vertices of this graph of size u2k. Then we can use the total order
to partition the vertices of S into u sets S1, . . . , Su of size 2k by taking the highest 2k vertices in
the total order as S1, then the next 2k vertices as S2 and so on. By the disperser property of IDisp,
IDisp(S1, . . . , Su) = {0, 1}. Thus S contains hyperedges of both colors.

3 Extracting from Independent Sources by Condensing SR-Sources

Our main result is a new deterministic extractor that can extract from a constant number of indepen-
dent sources which have min-entropy that is polynomially small in their length. It turns out that the
extractor we build can actually handle a slightly more general class of sources. We can extract from
just 2 independent sources, where each source is a block-source with a constant number of blocks. To
simplify the presentation, we will first present the extractor assuming that we have access to truly
independent sources. In the next section we will show how to prove that the extractor succeeds even
when given just two independent block-sources.

Our algorithms will repeatedly condense SR-sources. Starting with a number of independent SR-
sources, we will iteratively reduce the number of rows in each of the sources, until the number of rows
is so small that extracting randomness becomes easy.

In this section we will prove the main theorem of this paper, which we restate here.

Theorem 3.1 (Main Theorem). For every constant c > 0 there exists a constant c′ such that for every
n, k with k = k(n) = Ω(log4 n) there exists a polynomial time computable function IExt : ({0, 1}n)u →
{0, 1}k with u ≤ c′ log n

log k s.t. if X1,X2, . . . ,Xu are independent (n, k) sources then

|IExt(X1, . . . ,Xu) − Uk| < ǫ

with ǫ = 1/nc.
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Setting the parameters appropriately gives the following corollary:

Corollary 3.2. For every constant c > 0 and γ < 1 there exists a polynomial time computable function
IExt : ({0, 1}n)u → {0, 1}nγ

with u some large constant s.t. if X1,X2, . . . ,Xu are independent (n, nγ)
sources then

|IExt(X1, . . . ,Xu) − Unγ | < ǫ

with ǫ = 1/nc.

Our first step will be to convert each of the sources to an SR-source. The following proposition,
which we state without proof, shows how to do such a conversion.

Proposition 3.3. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (k, ǫ) strong extractor. Let X be
any (n, k) source. Let {0, 1}d = {s1, s2, . . . , s2d}. Then Ext(X, s1) ◦ Ext(X, s2) ◦ · · · ◦ Ext(X, s2d) is
ǫ-close to a (2d × m) SR-source.

Using any good seeded strong extractor with seed length O(log n), we can do the conversion in
polynomial time.

Definition 3.4. We will say that a collection of SR-sources X1, . . . ,Xu is aligned if there is some i
for which the i’th row of every SR-source in the collection is uniformly distributed.

If the strong extractor that we used to convert the input general sources to SR-sources has error
ǫ, at most

√
ǫ fraction of the rows in each source are not

√
ǫ-close to uniform. Thus, if we are given u

sources, as long as u
√

ǫ < 1, we will have one aligned row in every source which is
√

ǫ-close to uniform.
Using Proposition 2.11 these sources are u

√
ǫ-close to being the distribution of independent aligned

SR-sources.

Proposition 3.5. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded (k, ǫ) strong extractor. Let
X1, . . . ,Xu be independent (n, k) sources, with u

√
ǫ < 1. Let {0, 1}d = {s1, s2, . . . , s2d}. Let Zi denote

Ext(Xi, s1) ◦ Ext(Xi, s2) ◦ · · · ◦ Ext(Xi, s2d). Then Z1 ◦ · · · ◦ Zu is u
√

ǫ-close to the distribution of u
independent aligned (2d × m) SR-sources.

If Ext is a strong seeded extractor with seed length O(log n) and output length m, we can use
Proposition 3.5 to reduce the problem of extracting from independent sources to the problem of ex-
tracting from aligned independent (poly(n) × m) SR-sources. It turns out that it is easy to extract
from independent aligned SR-sources when each SR-source contains very few rows.

The rest of this section is organized in the following way:

1. We will describe a couple of ways to extract from a few independent aligned (c × n) SR-sources
when c is a constant.

2. We will show how to use the extractors from the previous step to build condensers for independent
aligned SR-sources. We will use the condensers to give a basic extractor that can extract from
O(log n) independent aligned SR-sources which have poly(n) rows. Using Proposition 3.5, this
will give an extractor for O(log n) general independent sources.

3. We will add a few more tricks to bring down the number of sources required to O(log n/ log k).
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3.1 Strong Extractors for independent aligned (2 × n) SR-sources

If we were given just 2 independent aligned (2 × n) SR-sources X1 and X2, it is easy to see that

|X1
{1}×[n] ⊕ X2

{2}×[n] − Un| = 0

i.e. to get random bits we just have to XOR the first row from the first source with the second
row from the second source.

We will actually need something stronger: a strong extractor for such sources. We can get such a
strong extractor for 3 (2 × n) aligned independent SR-sources by composing the XOR function with
a strong seeded extractor. The following theorem is easy to see. We state it without proof.

Theorem 3.6. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be an (k, ǫ) strong seeded extractor. Let
BasicSRExt : {0, 1}n×{0, 1}2d×{0, 1}2d → {0, 1}m be defined as BasicSRExt(x, y1, y2) = Ext(x, y1

{1}×[d]⊕
y2
{2}×[d]). Then if X,Y 1, Y 2 are independent sources, with X an (n, k) source and Y 1, Y 2 aligned (2×d)

SR-sources,

|−→Y ◦ BasicSRExt(X,
−→
Y ) −−→

Y ◦ Um| < ǫ

where
−→
Y denotes Y 1 ◦ Y 2 and Um is independent of

−→
Y .

Claim 3.7. Let X and Y be as in Theorem 3.6. Then

Pr
~y←R

−→
Y

[|BasicSRExt(X,~y) − Um| ≥
√

ǫ] <
√

ǫ

To give an example of the kinds of parameters that can be achieved, if we start with 3 independent
aligned (2 × n) SR-sources and use the extractor promised by Corollary 2.24, we can get n − o(n)
random bits out, with error that is exponentially small in n. Setting parameters appropriately, we can
get the following corollaries.

Corollary 3.8. Let Ext be the extractor from Corollary 2.24. For all n, k, d with d > log4(n/ǫ),
BasicSRExt can be set up to output m = k − O(log3(n/ǫ)) random bits with error ǫ.

Corollary 3.9. Let Ext be the extractor from Corollary 2.24. For all n, k, d with d > log7(n),

BasicSRExt can be set up to output m = k − O(log6 n) random bits with error ǫ < 2− log2 n.

Corollary 3.10. Let Ext be the extractor from Corollary 2.24. For all n, k, d, there is a constant
γ < 1 s.t. as long as d = nγ, BasicSRExt can be set up to output m = k −√

n random bits with error

ǫ < 2−nΩ(1)
.

Another way to get a strong extractor from just two SR-sources of this type is to use Bourgain’s
recent extractor Theorem 2.26. This already gives a strong extractor for two SR-sources with min-
entropy rate half. However Bourgain’s extractor extracts only a constant fraction of the randomness.
We can remedy this by composing it with a strong seeded extractor to get almost all the randomness
out. We state the following theorem without proof.

Theorem 3.11. Let Ext : {0, 1}2n ×{0, 1}d → {0, 1}m be a (k, ǫ) strong seeded extractor. Let Bou and
α0 be as in Theorem 2.26. Let n, k′ be such that n− 100k′ > k and d be the output length of Bou when
applied to two independent (2k′, k′) sources. Let Basic2SRExt : {0, 1}2n ×{0, 1}2n → {0, 1}m be defined
as Basic2SRExt(X,Y ) = Ext(X{1,2}×[n],Bou(Y{1,2}×[k′],X{1,2}×[k′])). Then if X,Y are independent
aligned (2 × n) SR-sources,
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|Y ◦ Basic2SRExt(X,Y ) − Y ◦ Um| < ǫ + 2−Ω(k′)

where Um is independent of Y .

As with the previous construction, depending on the parameters of the strong seeded extractor
used, we can get various tradeoffs between the error and the output length.

Claim 3.12. Let X and Y be as in Theorem 3.11. Then

Pr
y←RY

[|Basic2SRExt(X, y) − Um| ≥
√

ǫ + 2−Ω(k′)] <
√

ǫ + 2−Ω(k′)

3.2 Warm-up: Extracting randomness from O(log n) independent sources

To illustrate some of the ideas behind the final few source extractor, we will first describe how to
extract from O(log n) independent sources. The final extractor construction will be slightly more
involved but will use the major ideas that we develop here.

In this section, we will prove the following theorem:

Theorem 3.13. For every n, k with k = k(n) = Ω(log4 n), there exists a polynomial time computable
function IExt′ : ({0, 1}n)u → {0, 1}m s.t. m = Ω(k) , u = O(log(n)) and if X1,X2, . . . ,Xu are
independent (n, k) sources then

|IExt′(X1, . . . ,Xu) − Um| < ǫ

where ǫ = 1/nΩ(1).

As discussed, we will start by converting the independent (n, k) sources to distributions which are
statistically close to being independent aligned (nO(1) ×m) SR-sources using Proposition 3.5. Here m
is the output length of the strong seeded extractor used in the conversion 3.

Our extractor will then be obtained by iteratively condensing the original distribution. We will
start with O(log n) independent aligned (n×k) SR-sources. In each step we will consume 2 SR-sources,
but will reduce the number of rows in each of the other SR-sources by a factor of 2 4. After O(log n)
steps, we will have reduced the number of rows to 2. We can then use the XOR function to extract
random bits. Now we describe one condensing step in detail.

Let Xj denote the j’th pair of rows of the SR-source X.

Construction: ICond(x1, . . . , xu)
Input: x1, . . . , xu, a sample from u (t × r) SR-sources.
Output: z1, . . . , zu−2.
Let BasicSRExt be as in Theorem 3.6.

1. For 1 ≤ i ≤ u − 2, 1 ≤ j ≤ t/2 let zi
j = BasicSRExt(xi

j , x
u−1
j , xu

j ).

2. For 1 ≤ i ≤ u − 2, let zi be the SR-source whose rows are zi
1, z

i
2, . . . , z

i
t/2.

3There is a tradeoff between m and the error incurred in the conversion. This tradeoff in general depends on the
relationship between n and k. To give a feel for the parameters, if k = nγ for some γ ∈ (0, 1), we can do the conversion
with m = k − o(k) and error that is polynomially small.

4Actually, in each step we will convert SR-sources with t rows into SR-sources with ⌈t/2⌉ rows. To simplify the
presentation we will assume that t is always even, this does not really affect any of the claims made
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Lemma 3.14. If X1, . . . ,Xu are independent aligned (t×r) SR-sources, Z1, . . . , Zu−2 are 2u
√

ǫ-close
to being a convex combination of independent aligned (t/2 × m) SR-sources, where m and ǫ are the
output length and error of BasicSRExt.

Assuming this lemma, we can prove the theorem for this section.

Proof of Theorem 3.13. If we use the strong SR-source extractor promised by Corollary 3.10, after
applying the condenser O(log n) times, we will have reduced the number of rows in each of the sources
to 2 and the length of each of the sources will still be k − O(

√
k log n). We can then use the XOR

function to get a distribution which is statistically close to uniform. The error adds in each step, but
since the error of BasicSRExt can be made as small as 2−kΩ(1)

, for large k this does not affect the final
error. The dominant error comes in the first step, when we convert the general sources to SR-sources.
This concludes the proof of Theorem 3.13.

Proof of Lemma 3.14. Let
−→
Y denote the concatenation of Xu−1,Xu. Let h be s.t. the h’th pair of

rows Xi
h in each of the sources Xi contains the truly random row. Let

−→
Yh denote the concatenation of

Xu−1
h ,Xu

h . Let m be the output length of BasicSRExt. We will prove the lemma by partitioning the

support of
−→
Y into a good set and a bad set s.t.

Claim 3.15. For good ~y, the distribution Z1|−→Y =~y◦· · ·◦Zu−2|−→Y =~y is u
√

ǫ-close to being a collection
of independent aligned (⌈t/2⌉ × m) SR-sources.

Claim 3.16. Pr[
−→
Y is not good] < u

√
ǫ

We will call ~y good for Xi if

|BasicSRExt(Xi
h, ~yh) − Um| <

√
ǫ

We will call ~y good if it is good for all 1 ≤ i ≤ u − 2.
Since BasicSRExt is a strong extractor, for any i, at most a

√
ǫ fraction of the seeds are bad for Xi

by Claim 3.7. The second claim then follows by the union bound.

For any fixed ~y, Z1|−→Y = ~y, . . . , Zu|−→Y = ~y are independent. When ~y is good, each of the Zi’s is√
ǫ-close to being a (t/2×m) SR-source, with the hth row being the random one. By the union bound

and Proposition 2.11 we get the first claim and the lemma follows.

3.3 Extracting from fewer sources

In this section we will prove Theorem 3.1. We will obtain the final extractor in the following steps.

1. We will show how to extract from 3 independent aligned (nγ × n) SR-sources for any constant
γ < 1.

2. We will show how to use the extractor from the previous step to extract from O( log n
log k ) independent

(n, k) sources when k > log4 n.
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3.3.1 Extracting from 3 independent aligned (nγ × n) SR-sources, for γ < 1

Theorem 3.17. For every constant γ < 1 there exists a polynomial time computable function 3SRExt :
({0, 1}nγ+1

)3 → {0, 1}m s.t. for if X1,X2,X3 are independent aligned (nγ × n) SR-sources,

|3SRExt(X1,X2,X3) − Um| < 2−nΩ(1)

where m = n − O(nβ) for some β ∈ (0, 1).

Our starting point is the extractor that can extract from O(log n) sources. We’d like to do more
or less the same thing in this situation, but somehow reuse the sources. As in that situation, our
extractor will work by repeated condensing, but this time we will not discard any sources. Starting
with 3 independent aligned SR-sources, in each step we will output a distribution that is a convex
combination of 3 independent aligned SR-sources. The number of rows in each of the sources will be
reduced by a factor of 2 and the length of each row will be reduced by a little bit.

Intuitively what we will try and do is: to condense the i’th source, we will get the other two sources
to conspire against it. We will use the strong independent aligned (2 × n) SR-sources extractor of
Theorem 3.6 on the i’th source, with small slices of the other sources as ’seed’. Conditioned on all the
small sections of the sources that we’ve used as seed, we show that the condensing succeeds, we obtain
3 new SR-sources which have half the number of rows as the original sources. Since we’re conditioning
on the only part that’s involved in the interactions between the sources, after conditioning, the output
of the condensing step is a collection of independent sources. Iterating this condensing process, we
will eventually obtain a single string that is statistically close to uniformly distributed.

Now we describe one condensing step in detail. As in the previous section, we will assume that t
is even.

We are given: X1,X2,X3, independent aligned (t × r) SR-sources.
Let w and l be parameters that we will choose later (we will have to set w to roughly polylog(r) and l

to roughly rµ for some constant µ < 1). Let S1 = {1, 2}×[w], S2 = {3, 4}×[w], . . . , St/2 = {t−1, t}×[w].

X
i

i

2

t

w

X

1X

X

X

i

i

i
t/2

2

r

Figure 2: Notation in one source

We will adhere to the following notational guidelines:
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X
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X22X
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Figure 3: The region X

• The superscript of an expression (if any) indicates which one of the independent sources we are
referring to.

• The subscript of an expression (if any) indicates which of the rows we are referring to.

• An over-line (for example: X) indicates whether we are referring to the entire row or just a small
section of the rows.

For all i, j, we introduce the following notation:

• Xi
j = Xi

Sj
, a small slice of the jth pair of rows in Xi.

• Xi = Xi
[t]×[w] = Xi

1 ◦ · · · ◦ Xi
t/2, a small slice of Xi.

• X = X1 ◦ X2 ◦ X3.

• Xj = X1
j ◦ X2

j ◦ X3
j .

• X 6=i
j denotes the concatenation of Xv

j for all v 6= i.

Construction: ICond(x1, x2, x3)
Input: x1, x2, x3, a sample from independent aligned (t × r) SR-sources.
Output: z1, z2, z3.
Let BasicSRExt be the extractor that can extract from 3 independent sources A,B,C when A is a

(tr, r − l) source and B,C are independent aligned (2 × w) sources promised by Theorem 3.6.

1. For all i, j let zi
j = BasicSRExt(xi, x 6=i

j ).

2. For all i, let xi be the SR-source whose rows are zi
1, z

i
2, . . . , z

i
t/2.

3. For all i, output zi.

Lemma 3.18. Let ICond be as above. If X1,X2,X3 are independent aligned (t × r) SR-sources,
Z1, Z2, Z3 obtained by ICond are 3(2

√
ǫ+2−(l−tw))-close to being a convex combination of independent

aligned (t/2 × m) SR-sources, where m and ǫ are the output length and error of BasicSRExt.
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Proof. We will roughly follow the proof for the situation in which we had O(log n) sources. There are
a few additional complications that we have to deal with now.

Let h be s.t. Sh contains the truly random row. We will prove the lemma by partitioning the
support of X into a good set and a bad set s.t.

Claim 3.19. For good x, the distribution (Z1|X =x) ◦ (Z2|X =x) ◦ (Z3|X =x) is 3
√

ǫ-close to being
a collection of independent aligned (t/2 × m) SR-sources.

Claim 3.20. Pr[X is not good] < 3(
√

ǫ + 2−(l−tw)).

Here we will need a more involved notion of good. For any fixed i, we will say x is good for i if

|BasicSRExt(Xi|Xi =xi, x 6=i
h ) − Um| <

√
ǫ

We will call x good if it is good for all i.
For any fixed x, Z1|X =x,Z2|X =x,Z3|X =x are independent. When x is good, we have that for

any i,

(Zi
h|X =x) = BasicSRExt(Xi|X =x, x 6=i

h )

= BasicSRExt(Xi|Xi =xi, x 6=i
h ) since Xi is independent of Xj for j 6= i

which is
√

ǫ-close to the uniform distribution by our notion of good. Thus we get that Zi is
√

ǫ-close
to being a (t/2 × m) SR-source, with the hth row being the random one. This proves the first claim.

Now we prove the second claim.

Proof of Claim 3.20. We will first bound the probability that X is bad for a fixed i and then use the
union bound to bound the probability that it is bad for all i.

Intuitively there are two ways in which X can be bad for i. Either the bits in X that came from
Xi stole too much entropy from Xi, or the bits of X that are not from Xi failed to produce a good

seed to extract from Xi|Xi
=xi. Both of these events happen with extremely small probability, so we

can use the union bound to say that with high probability neither occurs.
In the following statements, we will explicitly state what the probabilities are over to avoid confu-

sion. The probability we are trying to bound is this one:

Pr
x←RX

[x is bad for i]

= Pr
x←RX

[|BasicSRExt((Xi|Xi =xi), x 6=i
h ) − Um| ≥

√
ǫ]

We will rewrite this probability in this way:

Pr
x←RX

[x is bad for i]

=
∑

p∈supp(Xi)

Pr
x←R(X|Xi

=p)

[x is bad for i] Pr
v←RX

i
[v = p]
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We’d like to argue that for every term in this sum, either the first probability is small, or the

second probability is small. To this end, we partition the support of X
i

into two sets. Recall that
H∞(Xi) ≥ r. We will say p is atypical if H∞(Xi|Xi = p) < r − l. Otherwise we will say that p is
typical. By Proposition 2.5,

Claim 3.21. For atypical p, Pr
v←RX

i [v = p] < 2−l.

On the other hand, when p is typical,

Pr
x←R(X |Xi=p)

[x is bad for i]

= Pr
x←R(X |Xi=p)

[|BasicSRExt(Xi|Xi =p, x 6=i
h ) − Um| ≥

√
ǫ]

= Pr
x′←R(X 6=i

h
|Xi=p)

[|BasicSRExt(Xi|Xi =p, x′) − Um| ≥
√

ǫ]

Now observe that

X 6=1
h |X1 =p

= X2
h|X1 =p ◦ X3

h|X1 =p

= X2
h ◦ X3

h

since X2
h and X3

h are independent of X1. We get similar statements for X 6=2
h |X2 =p and X 6=3

h |X3 =p.
Therefore, for p that is typical, using Claim 3.7 we have,

Pr
x←R(X|Xi=p)

[x is bad for i]

= Pr
x′←RX 6=i

h

[|BasicSRExt(Xi|Xi =p, x′) − Um| ≥
√

ǫ]

<
√

ǫ

Thus,

Claim 3.22. For typical p, Pr
x←R(X|Xi=p)

[x is bad for i] <
√

ǫ.

Going back to the quantity we were trying to bound,

Pr
x←RX

[x is bad for i]

=
∑

p∈supp(Xi)

Pr
x←R(X |Xi=p)

[x is bad for i] Pr
v←RXi

[v = p]

=
∑

p is typical

Pr
x←R(X|Xi=p)

[x is bad for i] Pr
v←RXi

[v = p] +
∑

p is atypical

Pr
x←R(X |Xi=p)

[x is bad for i] Pr
v←RXi

[v = p]

≤
√

ǫ + 2−l2tw
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The first sum was bounded using the fact that
∑

p Pr
v←RXi [v = p] ≤ 1 and Claim 3.22. The

second sum was bounded using the fact that the total number of possible atypical p’s is at most 2tw

and Claim 3.21. Using the union bound over all i, Claim 3.20 follows.

This concludes the proof of Lemma 3.18.

Proof of Theorem 3.17. Let 3SRExt be the following function.

Construction: 3SRExt(x1, x2, x3)
Input: x1, x2, x3, independent aligned (nγ × n) SR-sources, γ ∈ (0, 1).
Output: z.

1. Repeatedly condense the sources using ICond from Lemma 3.18 until each source has just one
row.

2. Output z, the row from the first source.

Since we need to repeat the condensation step at most ⌈log n⌉ times, by Lemma 3.18 the final error
is O((

√
ǫ+2−(l−tw)) log n). If we use BasicSRExt as in Corollary 3.8, the final output length is at least

n − O(l log4(n/ǫ)).

Setting l = 2n(1+γ)/2, w = l/(2t) and ǫ = 2−nΩ(1)
, we get a total error of 2−nΩ(1)

with final output
length at least n − nβ for some β ∈ (0, 1).

Replacing the extractor from Theorem 3.6 with Bourgain’s extractor from Theorem 3.11, we can
extract from just 2 independent aligned (nγ × n) SR-sources for any γ ∈ (0, 1). In addition, we can
actually show that the extractor is strong. To summarize, we obtain the following theorem, which we
state without proof:

Theorem 3.23. For every constant γ < 1 and n, n′, t with t = t(n, n′) s.t. t < nγ and t < n′γ there
exists a constant α < 1 and a polynomial time computable function 2SRExt : {0, 1}tn × {0, 1}tn′ →
{0, 1}m s.t. if X is a (t × n) SR-source and Y is an independent aligned (t × n′) SR-source,

|Y ◦ 2SRExt(X,Y ) − Y ◦ Um| < ǫ

and

|X ◦ 2SRExt(X,Y ) − X ◦ Um| < ǫ

where Um is independent of X,Y , m = min[n, n′] − min[n, n′]α and ǫ = 2−min[n,n′]Ω(1)
.

Remark 3.24. Using Bourgain’s extractor here seems like overkill. Bourgain’s extractor can extract
from any 2 sources with min-entropy rate slightly less than half, where as our sources have a lot of
structure. It would be interesting to find a simple construction like that in Theorem 3.6 which is a
strong extractor for 2 independent aligned (2 × n) SR-sources.
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3.3.2 Extracting from O( log n
log k ) independent (n, k) SR-sources

In this section we describe the final trick needed to build the independent sources extractor. To do
so we will use the extractor 3SRExt from Theorem 3.17 as a black box to build a condenser. For
a parameter r, we will set up 3SRExt to extract from three independent (

√
r × r) SR-sources. The

extractor is obtained by repeatedly using the construction from the previous section to obtain SR
sources with few and fewer rows.

Let S1 = {1, . . . ,√r} × [r], S2 = {√r + 1, . . . , 2
√

r} × [r], . . . , St/
√

r = {t −√
r + 1, . . . , t} × [r].

Construction: ICond(x, y1, y2, y3)
Input: x, a sample from an (n, k) source and y1, y2, y3, a sample from independent (t × r) SR-

sources.
Output: z.
Let Ext be a (k, ǫ) extractor with output length m and seed length r.

1. For all 1 ≤ j ≤ t/
√

r, let zj = Ext(x, 3SRExt(y1
Sj

, y2
Sj

, y3
Sj

)).

2. Let z = z1 ◦ · · · ◦ zt/
√

r.

The following lemma is easy to see given our previous work:

Lemma 3.25. If X,Y 1, Y 2, Y 3 are independent sources, with X an (n, k) source and Y 1, Y 2, Y 3

aligned (t × r) SR-sources, then Z is ǫ close to a (t/
√

r × m) SR-sources.

Here the error can be made exponentially small in r. In addition, notice that if X1,X2,X3 are in-
dependent (n, k) sources and Y 1, Y 2, Y 3 are as before, ICond(X1, Y 1, Y 2, Y 3)◦ ICond(X2, Y 1, Y 2, Y 3)◦
ICond(X3, Y 1, Y 2, Y 3) is

√
ǫ close to being a convex combination of independent aligned (t/

√
r × m)

SR-sources as long as 3
√

ǫ < 1. Using this basic tool, we can now prove the main theorem.

Proof of Theorem 3.1. First consider the following function to extract from independent (n, k) sources.
Here h is a constant that depends on the seed length of the strong seeded extractor used and the output
length of the strong extractor.

Construction: IExt(X1, . . . , X
3h log n

log k
+3)

1. First use a strong seeded extractor to convert three of the sources to aligned independent SR-
sources.

2. Iteratively run ICond on three general input sources using the three SR-sources as seed. In each
step we obtain three SR-sources with fewer rows. After h log(n)/ log(k) iterations, we will have
brought the number of rows down to small enough.

3. Finally apply 3SRExt to get random bits.

The error adds in each step, but as long as k > log4 n, the dominant error comes from the conversion
of the general source to an SR-source (where we incur error of 1/poly(n)).

In this way we get an extractor for O( log n
log k ) independent (n, k) sources with output length k− o(k)

and error of 1/poly(n). To get k bits, we can simply run the extractor twice on two disjoint sets of
independent sources to double the output length. To reduce the error, we will use Lemma 2.12. Using
the lemma, we can increase the number of sources used by a constant factor to reduce the error to less
than 1/nc for any constant c.
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4 Extracting from 2 Independent Block-Sources

In this section we show how to use essentially the same construction from the previous section to obtain
an extractor for 2 independent block-sources with very few blocks. This is analogous to an idea from
[BKS+05], where they show how to use a 4-source extractor to get an extractor for 2 block-sources
with just 2 blocks each. The main theorem of this section is the following:

Theorem 4.1 (2 Block-Source Extractor). For every n, k with k > log4 n, there exists a polynomial
time computable function IExt : {0, 1}un × {0, 1}un → {0, 1}k with u = O( log n

log k ) s.t. , for constant

γ < 1 if X = X1 ◦ · · · ◦ Xu and Y = Y 1 ◦ · · · ◦ Y u are independent (k, . . . , k) block-sources,

|IExt(X,Y ) − Uk| < ǫ

where ǫ = 1/nΩ(1).

The extractor here is essentially the same one as the one we constructed in the previous section
for a few truly independent sources, if we use 2SRExt from Theorem 3.23 at the lowest level instead
of 3SRExt.

Let S1 = {1, . . . ,√r} × [r], S2 = {√r + 1, . . . , 2
√

r} × [r], . . . , St/
√

r = {t −√
r + 1, . . . , t} × [r].

Construction: ICond(x1 ◦ · · · ◦ xu, y1 ◦ · · · ◦ yu)
Input: x = x1 ◦ · · · ◦ xu and y = y1 ◦ · · · ◦ yu, samples from independent block-sources with x1 and

y1 independent aligned (t × r) SR-sources.
Output: a = a1 ◦ · · · ◦ au−1 and b = b1 ◦ · · · ◦ bu−1.
Let Ext be a (k, ǫ) extractor with output length m and seed length r.

1. For all 1 ≤ j ≤ t/
√

r, let a1
j = Ext(X2, 2SRExt(Y 1

Sj
,X1

Sj
)).

2. For all 1 ≤ j ≤ t/
√

r, let b1
j = Ext(Y 2, 2SRExt(X1

Sj
, Y 1

Sj
)).

3. Let a1 = a1
1 ◦ · · · ◦ a1

t/
√

r
.

4. Let b1 = b1
1 ◦ · · · ◦ b1

t/
√

r
.

5. For all 2 ≤ i ≤ u − 1, let ai = Xi+1, bi = Y i+1.

The following lemma can be obtained by applying the techniques from the previous section. We
state it without proof.

Lemma 4.2. If X = X1 ◦ · · · ◦Xu and Y = Y 1 ◦ · · · ◦Y u are independent (k, . . . , k)-block-sources with
each block except the first one of length n, and X1 and Y 1 independent aligned (t × r) SR-sources,
then A = A1 ◦ · · · ◦Au−1 and B = B1 ◦ · · · ◦Bu−1 are statistically close to being a convex combination
of independent (k, . . . , k)-block-sources with each block except the first one of length n with A1 and B1

independent aligned (t/
√

r × m) SR-sources.

Here the error can be made exponentially small in r. Iteratively applying this condenser, we obtain
the extractor for Theorem 4.1.

Remark 4.3. It can be shown that the extractor from Theorem 4.1 is strong. The extractor can
also be made to work when the two sources and all blocks are of different lengths with different
min-entropies, as long as the parameters are all polynomially related.
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4.1 A new 2-source somewhere-extractor

One of the main results in the work of Barak et al. [BKS+05] was a new explicit bipartite Ramsey
Graph (a 2-source disperser). A basic tool used as a black box in their disperser is a somewhere-
extractor :

Definition 4.4. A function SExt : {0, 1}n1 ×{0, 1}n2 → ({0, 1}m)u is a (k1, k2, ǫ) 2-source somewhere-
extractor if for all X,Y independent (n1, k1) and (n2, k2) sources respectively, SExt is ǫ close to a
(u × m) somewhere-random source.

To build the 2-source disperser, the techniques of [BKS+05] require that the somewhere-extractor
used outputs a constant number of rows with each row of length some arbitrarily large constant and
error that is some arbitrarily small constant when given two independent constant min-entropy rate
sources. Using their constant seed condenser, they construct a 2-source somewhere-extractor that
outputs a constant number of rows of linear length, with exponentially small error. Here we outline
how to use our previous construction to give an alternate somewhere-extractor for two constant min-
entropy rate sources that outputs a constant number of rows of linear length with polynomially small
error. This is good enough for the application of building a 2-source disperser.

Construction: SExt(x, y)
Input: x, y, a sample from two independent (n1, δ1n1), (n2, δ2n2) sources.
Output: z = z1 ◦ · · · ◦ zv

Let IExt be as in Theorem 4.1.

1. Let u be the number of blocks required by IExt in each source when the two sources have min-
entropy rate min(δ1/2, δ2/2).

2. Let γ be s.t. uγ ≪ min(δ1/100, δ2/100).

3. Partition the bits of x and y into 1/γ blocks, each of equal length. x = x1, . . . , x1/γ , y =
y1, . . . , y1/γ .

4. For i = 1, 2, . . . ,
(1/γ

u

)

u!, let πi(x) denote the string obtained by choosing u blocks from x1, . . . , xu

and permuting them in the i’th way. Similarly define πi(y).

5. For all pairs (i, j) ∈ [
(1/γ

u

)

u!] × [
(1/γ

u

)

u!], let the (i, j)’th block of z be IExt(πi(x), πj(y)).

6. Output z.

Lemma 4.5. If X is an (n1, δ1n1) source and Y is an independent (n2, δ2n2) source, SExt(X,Y ) is
1/nΩ(1) close to being somewhere-random.

Proof Sketch: It can be shown that every (n1, δ1n1) source X is statistically close to a convex combina-
tion of sources {X l}l∈I s.t. for each X l, there exists an i for which πi(X

l) is a block-source. A similar
statement is true for every source Y that is a (n2, δ2n2) source. Thus we get that X ◦Y is statistically
close to a convex combination of sources s.t. for every source in the combination there exists some
(i, j) s.t. πi(X), πj(Y ) are independent block-sources. The extractor succeeds in extracting random
bits for that choice of (i, j). Further, the number of possible choices for (i, j) is just a constant.

Remark 4.6. Applying Raz’s merger [Raz05] to the sources before we partition them, we can actually
ensure that almost all rows in the output are statistically close to uniformly random.
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5 Improving the constructions of Barak et al. [BKS+05] and Raz
[Raz05]

The constructions of Barak et al. [BKS+05] and Raz [Raz05] work by first converting the input
sources to a convex combination of two or more independent somewhere-random sources, where each
somewhere-random source has a constant number of rows. At this point they take a constant sized
section of each of the sources and do a brute force search for an optimal independent sources extractor.
In this way they obtain a constant number (you can actually get say log log log n) random bits with
large error (say 1/ log log n).

Instead of doing brute force search in these construction, we can apply our techniques to get almost
all the random bits out of the somewhere random sources, with exponentially small error.

Here we list the new theorems we can obtain by composing our SR-source extractor with the
techniques of these papers:

Theorem 5.1 (3 source extractor, enhancing [BKS+05]). For every n and constant δ > 0 there exists
a polynomial time computable function IExt : ({0, 1}n)3 → {0, 1}m s.t. if X1,X2,X3 are independent
(n, δn) sources,

|IExt(X1,X2,X3) − Um| < ǫ

where m = Ω(n) and ǫ = 2−Ω(n)

Theorem 5.2 (2 source disperser, enhancing [BKS+05]). For every n and constant δ > 0 there exists
a polynomial time computable function IDisp : {0, 1}n × {0, 1}n → {0, 1}m s.t. if X,Y ⊆ {0, 1}n are
sets s.t. |X|, |Y | ≥ 2δn, 2m − |IDisp(X,Y )| < ǫ2m, where m = Ω(n) and ǫ = 2−Ω(n).

Theorem 5.3 (3 source weak seed extractor, enhancing [Raz05]). For every n, k = k(n) = log4(n)
and constant δ there exists a polynomial time computable function IExt : ({0, 1}n)3 → {0, 1}m s.t. for
all independent sources X1,X2, Y with X1,X2 (n, k) sources and Y a (n, δn) source,

|IExt(X1,X2, Y ) − Um| < ǫ

where m = Ω(k) and ǫ = 2−Ω(k).

As we have discussed, all of these theorems are obtained by modifying the corresponding construc-
tions from [BKS+05, Raz05]. We defer the discussion of the details of the modifications to the full
version of this paper, but it is not hard to obtain the constructions for these theorems given those
works and the techniques in this paper. These previous works simply reduce the problem to that of
extracting from independent SR-sources which have a constant number of rows. Given the work in
the earlier sections, this is a scenario that we can easily handle. In fact we can even get the extremely
low error bounds that we have claimed in the theorems above.

Another way to compose our techniques with previous work to get something new was noticed
by Avi Wigderson. The rest of the results in this section are due to him. He observed that recent
constructions of randomness efficient condensers [BKS+05, Raz05] immediately imply the following
theorem:

Theorem 5.4. For every sufficiently small constant γ > 0 there exist constants α = α(γ) > 0,

β(γ) > 2γ and a polynomial time computable function Cond : {0, 1}n → ({0, 1}nβ
)n

γ
s.t. for any

(n, n1−α) source X, Cond(X) is 2−nΩ(1)
-close to a source with somewhere min-entropy rate 0.9.
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Once we have this condenser, we can compose it with Theorem 2.25 to get the following theorem:

Theorem 5.5. There exists a polynomial time computable function Ext : ({0, 1}n)3 → {0, 1}Ω(nδ ) s.t.
for any sufficiently small constant δ > 0 there exists a constant α = α(δ) > 0 so that if X1

is an (n, n1−α) source and X2,X3 are (n, nδ) sources, with all sources independent of each other,

Ext(X1,X2,X3) is ǫ-close to the uniform distribution with with ǫ < 2−nΩ(1)
.

Proof Sketch: Set γ = δ/2. Let α(γ) be as in Theorem 5.4. We first apply the function Cond promised
by Theorem 5.4 to convert the first source to a source with nγ rows, so that the source has somewhere-
min-entropy rate 0.9. We now interpret this source as nγ candidate 0.9-min-entropy rate seeds. We
use these seeds with Raz’s strong extractor from Theorem 2.25 and the other two sources to obtain
two sources which, conditioned on the seeds, are statistically close to independent aligned (nγ × nδ)
somewhere random sources. Since δ > γ = δ/2, we can then use our extractor from Theorem 3.23 to
get Ω(nδ) bits which are exponentially close to uniformly distributed.

In this way we obtain an extractor that can extract from just 3 sources which need have only
polynomial min-entropy (the polynomial cannot be arbitrarily small).

6 Subsequent Work

Recently Ronen Shaltiel came up with a generic way to improve the output length of certain kinds
of extractors [Sha05]. It turns out that our extractor is of the kind that can be improved using his
techniques. As a consequence, we can improve the output length of all of our extractors to output
k − o(k) bits, where k is the total entropy in all of the input sources.
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