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Abstract

We give polynomial-time, deterministic randomness extractors for sources generated in small space,
where we model space s sources on {0, 1}n as sources generated by width 2s branching programs.
Specifically, there is a constant η > 0 such that for any ζ > n−η , our algorithm extractsm = (δ−ζ)n bits
that are exponentially close to uniform (in variation distance) from space s sources with min-entropy δn,
where s = Ω(ζ3n). Previously, nothing was known for δ ≤ 1/2, even for space 0.

Our results are obtained by a reduction to the class of total-entropy independent sources. This model
generalizes both the well-studied models of independent sources and symbol-fixing sources. These
sources consist of a set of r independent smaller sources over {0, 1}`, where the total min-entropy over
all the smaller sources is k. We give deterministic extractors for such sources when k is as small as
polylog(r), for small enough `.
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1 Introduction

True randomness is needed for many applications, yet most physical sources of randomness are not truly
random, and some are quite weak in that they can have substantial biases and correlations. Weak random
sources can also arise in cryptography when an adversary learns some partial information about a random
string. A natural approach to dealing with weak random sources is to apply an extractor — a function
that transforms a weak random source into an almost-perfect random source. For example, Intel’s random
number generator (cf., [JK99]) uses the extractor of von Neumann [vN51] as one of its components.

There was a significant body of work in the 80’s focused on this problem of randomness extraction,
with researchers considering richer and richer models of weak sources, e.g. [Blu86, SV86a, CG88, Vaz87b,
CFG+85, BBR88, BOL90, LLS89]. However, attempts to handle sources lacking a significant amount of
independence were thwarted by results showing that it is impossible to devise a single function that extracts
even one bit of randomness from sufficiently general classes of sources [SV86a].

These impossibility results led researchers to focus on the weaker task of simulating probabilistic algo-
rithms with weak random sources [VV85, CG88, Vaz86, CW89, Zuc96]. This line of work culminated in
the introduction, by Nisan and Zuckerman [NZ96], of the notion of a seeded extractor, which uses a small
number of additional truly random bits, known as the seed, as a catalyst for the randomness extraction.
When simulating probabilistic algorithms with weak random sources, the need for truly random bits can be
eliminated by enumerating over all choices of the seed. Seeded extractors have turned out to have a wide
variety of other applications and were found to be closely related to many other important pseudorandom
objects. Thus, they were the main focus of attention in the area of randomness extraction in the 90’s, with a
variety of very efficient constructions. (See [NTS99, Sha02] for surveys.)

In the last few years, however, there has been a resurgence of interest in the original concept of a
“seedless” (or deterministic) extractor, cf. [TV00, Dod00b]. This is motivated in part by the realization that
seeded extractors do not seem suitable for many settings where we need randomness, such as cryptography.
In addition, seedless extractors for specific classes of sources were found to be useful in mitigating partial
key exposure in cryptography [CDH+00, Dod00b]. Recent attention on seedless extractors has focused on
several classes of sources, the main ones being independent sources, which consist of several independent
parts, each of which has some randomness [CG88, BIW06, BKS+05, Raz05, Rao06]; bit-fixing sources,
where some of the bits are perfectly random and the rest are fixed [CFG+85, CW89, KZ06, GRS06]; and
samplable sources, where the source is generated by an efficient algorithm [TV00]. Our work relates to
all of these models; indeed, we establish connections between them. However, our main motivation is a
particular form of samplable sources — namely ones generated by algorithms that have small space.

Before proceeding, we recall a few standard definitions. A source is a probability distribution. The
min-entropy k of a source X is defined as H∞(X) = mins(log(1/Pr[X = s])). (Here and throughout,
all logarithms are base 2 unless otherwise specified.) The min-entropy rate δ for a source on {0, 1}n is
defined as δ = H∞(X)/n. The variation distance between random variables X1 and X2 on Ω is defined as
|X1 −X2| = maxS⊆Ω |Pr[X1 ∈ S]− Pr[X2 ∈ S]| = 1

2

∑
s∈Ω |Pr[X1 = s]− Pr[X2 = s]|.

Definition 1.1. A function Ext : {0, 1}n → {0, 1}m is an ε-extractor for a class X of random sources if for
every X ∈ X , Ext(X) is ε-close to uniform in variation distance.

1.1 Small-Space Sources

Trevisan and Vadhan [TV00] proposed the study of extraction from weak random sources that are generated
by a process that has a bounded amount of computational resources. This seems to be a plausible model
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for physical random sources and generalizes a number of the previously studied models. They focused on
the case that the source is sampled by either a small circuit or an algorithm with a limited running time.
Their main result is a construction of polynomial-time extractors for such sources based on some strong
but plausible complexity assumptions. It would be nice to have unconditional constructions (as well as
ones that are more efficient and have better error). However, they showed that complexity assumptions are
needed for the original model of sources generated by time-bounded algorithms. Thus, they suggested, as
a research direction, that we might be able to construct unconditional extractors for sources generated by
space-bounded algorithms. This model is our focus.

Small space sources are very general in that most other classes of sources that have been considered
previously can be computed with a small amount of space. This includes von Neumann’s model of a coin
with unknown bias [vN51], Blum’s finite Markov chain model [Blu86], symbol-fixing sources [KZ06], and
sources that consist of many independent sources.1 In fact, the only model for which deterministic extractors
have been given that appears unrelated to our model is “affine sources”. Yet despite the small-space model
being so natural, very little in the way of explicit constructions for such sources was known. The first
example of an explicit construction was due to Blum [Blu86], who showed how to extract from sources
generated by a finite Markov chain with a constant number of states. His results generalized the earlier
results of von Neumann [vN51] for extracting from an independent coin with unknown bias. However, the
finite Markov chain model is very restricted; it has a constant-size description and the transitions must be
the same at each time step.

We study a generalization of the Markov chain model to time-dependent Markov chains. This yields
a much richer class of sources, and is similar to models previously considered by Vazirani [Vaz87a] and
Koenig and Maurer [KM04, KM05]. Our model of a space s source is basically a source generated by a
width 2s branching program. More specifically, at each step the process generating the source is in one of 2s

states. We model this by a layered graph with each layer corresponding to a single time-step and consisting
of vertices corresponding to each of the states. From each node v in layer i, the edges leaving v (going to
layer i + 1) are assigned a probability distribution as well as an output bit for each edge. Unlike in Blum’s
model [Blu86], the transitions can be different at each time-step. Our model is also related to the trellis
representation of error-correcting codes.

n

.25, 1

.15, 0

.4, 1

.8, 0

.2, 1

.3, 0

.2, 0

.1, 1

.4, 0

.2, 1

2s

Figure 1: Part of a space s = 2 source
1Any source consisting of t independent (flat) sources of min-entropy k can be computed in our model using space s =

k. We show that (nonconstructive) extractors for small-space sources exist provided that the total min-entropy is greater than
2s + O(log n), which in turn yield good extractors for t independent sources of min-entropy k = s provided t ≥ 3.
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Reference Min-entropy Rate Space Error

Thm. 1.2 δ ≥ n−c cδ3n exp(−nc)

Thm. 1.3 Any constant δ cn exp(−Ω̃(n))

Thm. 1.4 δ ≥ C/ log n cδ log n exp(−n.99)

Thm. 1.5 (nonconstructive) δ ≥ 2 log n/n (δn)/2.01 exp(−Ω(δn))

Table 1: Small space extractors for sources on {0, 1}n that extract 99% of the min-entropy. In this table c
and C represent sufficiently small and large constants, respectively.

It can be shown using the probabilistic method that there exist extractors even when the space s is a
constant fraction of the min-entropy k, even when the min-entropy is logarithmically small. Our goal is
to provide efficient and deterministic constructions with parameters that come as close to these bounds as
possible.

Vazirani [Vaz87a] gave explicit extractors for space-bounded sources in which every bit has bounded
bias conditioned on the previous state of the algorithm. (This is a space-bounded analogue of semi-random
sources [SV86b].) Koenig and Maurer [KM04, KM05] gave the first explicit constructions of extractors
for space-bounded sources where we only assume a lower bound on the total min-entropy. Their extractors
require the min-entropy rate to be least 1/2. We do not know of any other constructions for space-bounded
sources, even space 1. In fact, for space 0 sources, which are simply sources of independent bits each of
which has a different and unknown bias, the only other extractor we know for low min-entropy is parity,
which outputs just 1 bit.

1.1.1 Our Results

For space s sources with min-entropy k = δn, we have several constructions, all of which are able to extract
almost all of the entropy in the source. These extractors are summarized in Table 1.1.1 and stated more
precisely below.

Our first extractor extracts whenever δ > n−η for some fixed constant η and extracts almost all of the
entropy.

Theorem 1.2. There is a constant η > 0 such that for every n ∈ N, and δ > ζ > n−η, there is a polynomial-
time computable ε-extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy rate δ, where
s = Ω(ζ3n), m = (δ − ζ)n, and ε = 2−n

Ω(1)
.

We also have a simpler construction for constant min-entropy rate, which achieves somewhat better
error.

Theorem 1.3. For any constants δ > ζ > 0 and every n ∈ N, there is a polynomial-time computable
ε-extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy rate δ, where s = Ω(n), m =
(δ − ζ)n, and ε = 2−Ω(n/ log3 n).

We give an alternate construction for min-entropy rate δ = Ω(1/ log n) and space O(δ log n), although
for most parameters the previous constructions will dominate.

Theorem 1.4. For every n ∈ N and δ > ζ > 28/ log n and s ≤ (ζ log n)/28, there is a polynomial-
time computable ε-extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy rate δ, where
m = (δ − ζ)n and ε = exp(−n/(2O(s/ζ) · log5 n)).
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In comparison to the previous results (e.g. [KM04, KM05]) we have reduced the min-entropy required
from n/2 to n1−Ω(1) (in Theorem 1.2). However, we are still far from achieving what is possible noncon-
structively:

Theorem 1.5. For space s sources with min-entropy k, a function f : {0, 1}n → {0, 1}m chosen uniformly
at random is an ε-extractor with output length m = k − 2 log(1/ε) − O(1) with probability at least 1 −
exp(−Ω(2kε2)), as long as k ≥ 2s+ log s+ 2 log n+ 3 log(1/ε) +O(1).

Note that here the min-entropy can be as small asO(log n), while our results require min-entropy nearly
linear in n. In addition, We also have a gap in terms of the space tolerated. Nonconstructively we can get s
to be almost δn/2 while our results require s to be smaller than δ3n.

The constant factor 2 in the min-entropy bound in Theorem 1.5 is tight. However, if we restrict to small-
space sources where all transition probabilities are multiples of some fixed constant, e.g. 1/2, then we can
reduce the bound to k ≥ s+ log s+ log n+ 2 log(1/ε) +O(1).

In a partial attempt to close the entropy gap for the case of space 1 sources, we also have an extractor
that extracts about Ω(k2/n) bits from a more restricted model when k > n0.81. The extra restriction is that
the output bit is required to be the same as the state.

1.2 Total-Entropy Independent Sources

Our extractors for small-space sources are all obtained via a reduction to a new model of sources we intro-
duce called total-entropy independent sources. The reduction we use is based on one of Koenig and Maurer
[KM04, KM05], who used it to show how reduce the task of extracting from two sources of “bounded depen-
dency” to extracting from two independent sources. Total-entropy independent sources consist of a string of
r independent sources of length ` such that the total min-entropy of all r sources is at least k. Our reduction
shows that optimal extractors for total-entropy independent sources are also essentially optimal extractors
for small-space sources. In addition to being a natural model, these sources are a common generalization
of two of the main models studied for seedless extraction, namely symbol-fixing sources [CFG+85, KZ06]
and independent sources [CG88, BIW06], which we proceed to discuss below.

1.2.1 Independent Sources

One of the most well-studied models of sources is that of extracting from a small number of independent
sources, each of which has a certain amount of min-entropy, a model essentially proposed by Chor and Gol-
dreich [CG88]. They constructed extractors for two independent sources with entropy rate greater than 1/2.
Recently, similar extractors have been obtained for multiple independent sources with any constant and
even subconstant entropy rate, but each of these require at least 3 independent sources [BIW06, BKS+05,
Raz05, Rao06]. This model is appealing because the individual sources can have arbitrary correlations and
biases, and it seems plausible that we can ensure independence between a few such sources. However, such
extractors require knowing that all of the sources have large entropy. This motivates our generalization of
independent sources to total-entropy independent sources, where we only require that the total min-entropy
over all of the sources is high. Another difference between what we consider is that the usual independent
source model consists of few sources that are long, whereas total-entropy independent sources are interesting
even if we have many short sources.
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1.2.2 Oblivious Bit-Fixing and Symbol-Fixing Sources

Another particular class that has been studied a great deal is that of bit-fixing sources, where some subset
of the bit-positions in the source are fixed and the rest are chosen uniformly at random. The first extractors
for bit-fixing sources extracted perfectly random bits [CFG+85, CW89] but required the source to have a
large number of random positions. Kamp and Zuckerman [KZ06] constructed extractors that worked for
sources with a much smaller number of random bits. They also generalized the notion of bit-fixing sources
to symbol-fixing sources, where instead of bits the values are taken from a d-symbol alphabet. Gabizon,
Raz and Shaltiel [GRS06] gave a construction that converts any extractor for bit-fixing sources into one that
extracts almost all of the randomness, which they apply to the extractor from [KZ06].

Total-entropy independent sources can be seen as a generalization of symbol-fixing sources, where each
symbol is viewed as a separate source.2 The difference is that instead of each symbol being only fixed
or uniformly random, the symbols (sources) in total-entropy independent sources are allowed to have any
distribution as long as the symbols are independent. Naturally, we place a lower bound on the total min-
entropy rather than just the number of random positions. Usually, symbol-fixing sources are thought of as
having many symbols that come from a small alphabet (e.g. {0, 1}). This restriction is not necessary to the
definition, however, and here we consider the full range of parameters, including even the case that we have
a constant number of symbols from an exponentially large “alphabet” (e.g. {0, 1}`).

1.2.3 Our Results

Our extractors for total-entropy independent sources are all based on generalizing various techniques from
extractors for independent and symbol-fixing sources.

Koenig and Maurer [KM04, KM05] showed how any extractor for two independent sources with certain
algebraic properties can be translated into an extractor for many sources where only two of the sources have
sufficient entropy. Their technique generalizes to extractors for more than two sources. We show that it also
yields extractors for independent-symbol sources. In particular, we apply this to extractors for independent
sources that follow from the exponential sum estimates of Bourgain, Glibichuk, and Konyagin [BGK06]
(see Bourgain [Bou05]), and thereby obtain extractors for total-entropy independent sources of any constant
min-entropy rate. These extractors are quite simple. Each source is viewed as being an element of a finite
field, and the output of the extractor is simply the least significant bits of the product of these finite field
elements.

We also show how to use ideas from the work of Rao [Rao06] for extracting from several independent
sources, together with recent constructions of randomness-efficient condensers [BKS+05, Raz05], to get
extractors for total-entropy independent sources that extract from sources of min-entropy (r`)1−Ω(1).

When the smaller sources each have short length `, we use ideas from the work of Kamp and Zuckerman
[KZ06] about bit-fixing sources to construct extractors for total-entropy independent sources with min-
entropy k. We can extract many bits when k > 2`

√
r`, and for k = Ω(22``) we can still extract Ω(log k)

bits. The base extractor simply takes the sum of the sources modulo p for some p > 2`, similar to the cycle
walk extractor in [KZ06]. Using this extractor we can extract Ω(log k) bits. To extract more bits when k is
sufficiently large, we divide the source into blocks, apply the base extractor to each block, and then use the
result to take a random walk on an expander as in [KZ06].

2Though for ease of presentation we define total-entropy independent sources only over sources with alphabet size 2`, more
generally the sources could be over alphabets of any size d, as with symbol-fixing sources. All of our results naturally generalize
to this more general case.
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Reference Min-entropy Rate Error

Thm. 1.6 δ ≥ 1/(r`)c exp(−(r`)c)

Thm. 1.7 Any constant δ exp(−Ω̃(r`))
Thm. 1.8 (` = o(log r)) δ ≥ 1/(r`)(1−γ−o(1))/2 exp(−(r`)γ)

Thm. 1.9 δ = (2` log r)C/r (δr`)−c

Thm. 1.10 (nonconstructive) δ ≥ 1.01(`+ log r)/(`r) exp(−Ω(δ`r))

Table 2: Total-entropy independent source extractors for sources on ({0, 1}`)r that extract 99% of the min-
entropy. In this table c andC represent sufficiently small and large constants, respectively, and γ is a variable
parameter that can be set to any desired value in (0, 1).

Unlike the first two extractors, the extractors obtained using this technique use the full generality of
the total-entropy independent sources. In the first two constructions, using a Markov argument we can
essentially first reduce the total-entropy independent sources into sources where some of the input sources
have sufficiently high min-entropy while the rest may or may not have any min-entropy. These reductions
also cause some entropy to be lost. In this last construction, however, we benefit even from those sources
that have very little min-entropy. Thus we are able to take advantage of all of the entropy, which helps us
extract from smaller values of k.

We also show how to generalize the construction of Gabizon et al. [GRS06] to total-entropy independent
sources to enable us to extract more of the entropy. Note that we use it to improve not only the extractors
based on [KZ06] (analogous to what was done in [GRS06] for bit-fixing sources), but also our extractors
based on techniques developed for independent sources. Independently of our work, Shaltiel [Sha06] has
recently generalized the ideas in [GRS06] to give a framework for constructing deterministic extractors
which extract almost all of the entropy from extractors which extract fewer bits. Our extractor can be seen
to fit inside this framework, although we cannot directly use his results as a black box to obtain our results.

Applying the techniques based on [GRS06] to our extractors that use the independent sources techniques
of Rao [Rao06], the results of [BGK06], and two different bit-fixing source extractors from [KZ06], respec-
tively, we get the following four theorems. The first three of these theorems are directly used to obtain the
small-space extractors from Theorem 1.2, Theorem 1.3, and Theorem 1.4. Table 1.2.3 presents a summary
of these extractors.

Theorem 1.6. There is a constant η such that for every r, ` ∈ N and δ > ζ > (r`)−η, there is a polynomial-
time computable ε-extractor Ext : ({0, 1}`)r → {0, 1}m for sets of r independent sources over {0, 1}` with
total min-entropy rate δ, where m = (δ − ζ)r` and ε = exp(−(r`)Ω(1)).

We note that in the independent sources model this extractor gives comparable results to the extractor
from [BIW06] as a corollary.

The following extractor extracts a constant fraction of the entropy from any constant rate source.

Theorem 1.7. For any constants δ > ζ > 0 and every r, ` ∈ N, there is a polynomial-time computable
ε-extractor Ext : ({0, 1}`)r → {0, 1}m for sets of r independent sources over {0, 1}` with total min-entropy
rate δ, where m = (δ − ζ)r` and ε = exp(−Ω((r`)/ log3(r`))).

For the following extractor we can take ζ = Õ(1/
√
r) and can then extract randomness from sources

with min-entropy rate as small as δ = Õ(1/
√
r).
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Theorem 1.8. For every r, ` ∈ N such that 1 ≤ ` ≤ 1
2 log r and δ > ζ >

√
22` log3 r/r` there is a

polynomial-time computable ε-extractor Ext : ({0, 1}`)r → {0, 1}m for r independent sources over {0, 1}`
of total min-entropy rate δ, where m = (δ − ζ)r` and ε = exp(−Ω((ζ2r`)/(22` log3 r))).

Our last extractor for total-entropy sources works even for polylogarithmic min-entropy k, provided ` is
small enough:

Theorem 1.9. There exists a constant C > 0 such that for every r, `, k ∈ N such that k ≥ (2` log r)C , there
exists a polynomial-time computable ε-extractor Ext : ({0, 1}`)r → {0, 1}m for r independent sources over
{0, 1}` with total min-entropy k, where m = k − k1−Ω(1) and ε = k−Ω(1).

Using the probabilistic method, we show that there exist (nonconstructive) extractors that extract even
when the min-entropy k is as small as `+ log r:

Theorem 1.10. For total-entropy k independent sources, a function f : ({0, 1}`)r → {0, 1}m chosen
uniformly at random is an ε-extractor with output length m = k − 2 log(1/ε) − O(1) with probability
1− exp(−Ω(2kε2)) as long as k ≥ max{`, log log(r/ε)}+ log r + 2 log(1/ε) +O(1).

Note that we always need k > `, since otherwise all of the entropy could be in a single source, and thus
extraction would be impossible. The extractor from Theorem 1.9 comes closest to meeting this bound on k,
but only works for small ` and has suboptimal error, so there is still much room for improvement.

1.3 Organization

In Section 3 we describe our reduction from small-space sources to total-entropy independent sources. We
then restrict our focus to extracting from total-entropy independent sources, starting with the basic extrac-
tors. In Section 4 we describe the extractor that provides the basis for the extractor from Theorem 1.7. In
Section 5 we describe the extractor that provides the basis for the extractor from Theorem 1.6. In Section 6
we describe the extractors that provide the basis for the extractors from Theorem 1.8 and Theorem 1.9. Then
in Section 7, we describe how to generalize the techniques of Gabizon et al. [GRS06] so that we can extract
almost all of the entropy, and so achieve the theorems described in the introduction. Next, in Section 8,
we give nonconstructive results on extractors for both small-space and total-entropy independent sources.
Finally, in Section 9, we give the improved extractor for our more restrictive model of space 1 sources.

2 Preliminaries

Notation: Given a string x ∈ ({0, 1}`)r and a set S ⊆ [r] we use xS to denote the string obtained by
restricting x to the indices in S. We use ◦ to denote concatenation.

2.1 Convex Combinations

Definition 2.1. Let P be a property of sources. Let X be some random variable over some universe. We
will say that X is a convex combination of sources with property P if there are random variables {Xi} and
nonnegative real numbers γi such that

∑
i γi = 1, X =

∑
i γiXi (where we identify random variables with

the probability mass vectors), and each random variable Xi has property P .

A key observation that is essential to our results is that random variables that are convex combinations
of sources with certain good properties are good themselves. This is captured in the following easy propo-
sitions:
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Proposition 2.2. Let X,Y be random variables such that X is a convex combination of sources that are
ε-close to Y . Then X is ε-close to Y .

Proposition 2.3. Let X, I be random variables such that X is a convex combination of random variables
{Xi}i∈I . Let f be some function such that for all i ∈ I , f(Xi) is a convex combination of sources that have
some property P . Then f(X) is a convex combination of sources that have property P .

We’ll also need the following simple lemma.

Lemma 2.4. Let X , Y , and V be distributions over Ω such that X is ε-close to uniform and Y = γ · V +
(1− γ) ·X . Then Y is (γ + ε)-close to uniform.

Proof. Let U denote the uniform distribution on Ω and S ⊆ Ω. Then

|Pr[Y ∈ S]− Pr[U ∈ S]| = |γ · Pr[V ∈ S] + (1− γ) · Pr[X ∈ S]− Pr[U ∈ S]|
≤ γ|Pr[V ∈ S]− Pr[X ∈ S]|+ |Pr[X ∈ S]− Pr[U ∈ S]|
≤ γ + ε.

2.2 Classes of Sources

We formally define the various classes of sources we will study.

Definition 2.5. A space s sourceX on {0, 1}n is a source generated by a width 2s branching program. That
is, the branching program is viewed as a layered graph with n+ 1 layers with a single start vertex in the first
layer and 2s vertices in each subsequent layer. Each edge is labeled with a probability and a bit value. From
a single vertex we can have multiple edges corresponding to the same output bit. The source is generated by
taking a random walk starting from the start vertex and outputting the bit values on every edge.

This definition is very similar to the general Markov sources studied by Koenig and Maurer [KM04,
KM05]. This is not quite the most general model of such space-bounded sources imaginable, because we
could consider sources that output a variable number of bits depending on which edge is chosen at each step,
including possibly not outputting any bits. However, this restriction makes sense in light of the fact that we
are primarily interested in sources of fixed length. In this case, it is not hard to transform the sources in the
more general model into our model by modifying the states appropriately.

The other important class of sources we study are independent sources.

Definition 2.6. A source consisting of r smaller sources on {0, 1}` is an independent source on ({0, 1}`)r
if each of the r smaller sources are independent. An independent source on ({0, 1}`)r has total-rate δ if the
total min-entropy over all of the sources is δr` and total-entropy k if the total min-entropy is k.

Definition 2.7. A source on {0, 1}` is flat if it is uniformly distributed over a non-empty subset of {0, 1}`.
In particular, a flate independent source is uniform on a cross product of sets.

Note that when ` = 1, a flat independent source is the same as an oblivious bit-fixing source.

Definition 2.8. LetX be a random variable taking values in {0, 1}t×a, viewed as t×amatrices with entries
in {0, 1}. We say that X on ({0, 1}a)t is (t×a) somewhere-random 3 (SR-source for short) if it is a random

3This definition is slightly different from the original one used by Ta-Shma [TS96]. The original definition considered the
closure under convex combinations of the class defined here (i.e. convex combinations of sources that have one random row). We
use this definition because we can do so without loss of generality and it considerably simplifies the presentation.
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variable on t rows of r bits each such that one of the rows of X is uniformly random. Every other row
may depend on the random row in arbitrary ways. We will say that a collection X1, . . . , Xm of (t × a)
SR-sources is aligned if there is some i for which the i’th row of each Xj is uniformly distributed.

We will also need a relaxed notion of the previous definition to where the “random” row is not completely
random, but only has some min-entropy.

Definition 2.9. We say that a (t× a) source X on ({0, 1}a)t has somewhere-min-entropy k, if X has min-
entropy k in one of its t rows. We will say that a collection X1, . . . , Xm of (t× a) somewhere-min-entropy
k sources is aligned if there is some i for which the i’th row of each Xj has min-entropy k.

2.3 Seeded Extractors

We will also need to define what it means to have a seeded extractor for a given class of sources.

Definition 2.10. A polynomial-time computable function Ext : {0, 1}n × {0, 1}s → {0, 1}m is a seeded
ε-extractor for a set of random sources X , if for every X ∈ X , Ext(X,Us) is ε-close to uniform. The
extractor is called strong if for Y chosen according to Us, Y ◦ Ext(X,Y ) is also ε-close to uniform.

We use the following seeded extractor in our constructions, which allows us to get almost all the ran-
domness out.

Theorem 2.11. [Tre01, RRV02] For every n, k ∈ N, ε > 0, there is a polynomial-time computable strong
seeded ε-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}k−O(log3(n/ε)) for sources with min-entropy k, with
t = O(log3(n/ε)).

3 Small-Space Sources As Convex Combinations Of Independent Sources

Following Koenig and Maurer [KM04, KM05], we show how small-space sources can be decomposed into
convex combinations of independent sources. Thus we will be able to use our extractor constructions from
subsequent sections to extract from small-space sources. The idea is simple: to extract from a space s source
X , we divide the n bits in X into n/t blocks of size t. We view each block as a source on t bits. If we
condition on the states of the source at the start of each block, all of the blocks become independent, so
we end up with a set of n/t independent smaller sources on {0, 1}t. It can be shown that this conditioning
reduces the min-entropy of the source by at most roughly s · (n/t) (with high probability), and thus we
obtain a total-entropy source.

Koenig and Maurer [KM04, KM05] applied this reduction for partitioning into 2 blocks and thereby
reduced extraction from small-space sources of min-entropy rate greater than 1/2 to the well-studied problem
of extracting from two independent sources, each of which has some min-entropy. (Min-entropy rate greater
than 1/2 is needed, or else all of the min-entropy may be contained in just one of the blocks and deterministic
extraction is impossible.) In this paper, we handle lower min-entropy rates by partitioning into many shorter
blocks; although this reduces the min-entropy by more, it ensures that the total min-entropy is spread among
several of the independent blocks and thus deterministic extraction is possible.

Lemma 3.1. Let X be a space s source on {0, 1}n with min-entropy rate δ. Then for any 0 < α < 1,
X is 2−αδn/2-close to a convex combination of independent sources on ({0, 1}`)r with total-rate δ′, where
` = 2s/(αδ), r = αδn/2s and δ′ = (1− α)δ.
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All of our extractors for small-space sources are obtained by combining Lemma 3.1 with the corre-
sponding extractor for total-entropy independent sources. We note that the reduction in this lemma is only
interesting when the min-entropy rate δ > 1/

√
n, since otherwise the total entropy of the independent

sources would be less than the length of an individual source. In this case all of the entropy could be in a
single source and thus extraction would be impossible.

To prove Lemma 3.1 we use the following standard lemma (for a direct proof see Lemma 5 in Maurer
and Wolf [MW97], although it has been used implicitly earlier in, e.g., [WZ99]).

Lemma 3.2. Let X and Y be random variables and let Y denote the range of Y . Then for all ε > 0

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1
ε

)]
≥ 1− ε

Proof. (Of Lemma 3.1.) Divide X into αδn/(2s) blocks of size 2s/αδ. Let Y represent the values of the
initial states for each block. Then for each y, (X|Y = y) is a set of independent smaller sources with each
block viewed as a smaller source of length 2s/(αδ). By Lemma 3.2, since |Y| = (2s)(αδn)/(2s) = 2αδn/2,
with probability 1−2−αδn/2 the sources (X|Y = y) have min-entropy (1−α)δn and thus min-entropy rate
(1− α)δ.

4 Extracting From Total-Entropy Independent Sources By Reducing To Stan-
dard Independent Sources

In this section, we show how to construct extractors for total-entropy independent sources using techniques
from standard independent sources.

The following Markov-like lemma will be used to show that if we divide a source into blocks, many of
the blocks will have a large entropy rate.

Lemma 4.1. For any partition of a total-rate δ independent source on ({0, 1}`)r into t blocks of r/t smaller
sources each, the number b of blocks with min-entropy rate greater than δ/2 satisfies b > δt/2.

Therefore we can view this source as a set of t independent smaller sources on {0, 1}`r/t where at least
δt/2 of the smaller sources have min-entropy rate greater than δ/2.

Proof. We know that b blocks have min-entropy rate greater than δ/2 and at most 1. In each of the remaining
blocks the min-entropy rate is at most δ/2. Since the total entropy rate is δ and min-entropies add for
independent sources, after dividing by the length of the source we get δ ≤ (b + (t − b)(δ/2))/t. A simple
calculation then gives the desired result.

Once we are in this model, we can generalize the result from Koenig and Maurer [KM04, KM05] that
states that any two source extractor of the form f(x1 · x2), where the xi are elements of some group, can be
extended to any number of sources where only two of the sources have sufficient min-entropy.

Lemma 4.2. Let (G, ∗) be a group, and let Ext(x1, x2, . . . , xb) be an extractor for b independent sources
over G, each of which has min-entropy rate at least δ. Suppose Ext has the form Ext(x1, x2, . . . , xb) :=
f(x1 ∗ x2 · · · · ∗ xb) for some f . Then F (x1, . . . , xr) := f(x1 ∗ · · · ∗ xr) is an extractor for r independent
sources over G, b of which have min-entropy rate at least δ.
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The proof is simple and is the same as in [KM04, KM05]. The key idea is that the r sources can be
divided into b blocks, each of which contains exactly one of the high entropy sources, since the group
operation cannot lower the entropy.

Bourgain, Glibichuk, and Konyagin [BGK06] gave bounds on the exponential sums of the function∏b
i=1 xi over large subsets of fields without large subfields, in particular GF(p) and GF(2p) for p prime.

This estimate gives an extractor for b independent sources where each source has high entropy via Vazirani’s
XOR lemma [Vaz86].

Theorem 4.3. [BGK06] For every δ > 0, there exist b = b(δ), c = c(δ) ∈ N such that the following holds.
Let K be a finite field of the form GF(p) or GF(2p) for a prime p.Then the function BGK(x1, . . . , xb) that
outputs the m least significant bits4 of the product

∏
i xiis an ε-extractor for b independent sources over K

with min-entropy rate δ, for some m = Ω(c log |K|) and ε = 2−Ω(m).

Note that for constant δ, we can extract Θ(log |K|) bits with only a constant number of sources. Using
the explicit relationship between δ and the number of sources and entropy from [BGK06], we can handle
slightly subconstant δ, down to δ = Ω(1/(log log |K|)(1/C)) for some constant C.

Combining this theorem with Lemma 4.2, restricting the sources to be over the multiplicative groupK∗,
we get the following corollary.

Corollary 4.4. For every δ > 0, there exist b = b(δ), c = c(δ) ∈ N such that the following holds. Let K be
a finite field of the form GF(p) or GF(2p) for a prime p, let r ∈ N, and define f : Kr → {0, . . . , |K| −
1} by setting f(x1, . . . , xr) to equal

∏
i xi, viewed as an integer from 0 to |K| − 1. Then the function

BGK(x1, . . . , xr) = b(2mf(x1, . . . , xr))/|K|c is an ε-extractor for r independent sources over K, at least
b of which have min-entropy rate δ, for some m = Ω(c log |K|) and ε = 2−Ω(m).

It will also be useful to formulate the following corollary.

Corollary 4.5. For every constant δ > 0, there exists a constant v = v(δ), such that for every `, r ∈ N,
there is a polynomial-time computable function BGK : ({0, 1}`)r → {0, 1}m that is an ε-extractor for
r independent sources on {0, 1}`, at least v of which have min-entropy rate δ, for some m = Ω(`) and
ε = 2−Ω(`).

Proof. Find the next smallest prime p > ` (we know p ≤ 2`), and apply the extractor from Corollary 4.4
over GF (2p), viewing each source as being embedded in GF (2p)∗.

Now we can combine this extractor with Lemma 4.1 to get an extractor for independent sources with
constant total min-entropy rate.

Theorem 4.6. For every constant δ > 0, we can construct a polynomial-time computable ε-extractor Ext :
({0, 1}`)r → {0, 1}m for total-rate δ independent sources on ({0, 1}`)r, with m = Ω(r`) and ε = 2−Ω(m).
This extractor can be computed in time poly(r, `).

Proof. Given an independent source X = X1, . . . , Xn on ({0, 1}`)r, divide it into t = 2b(δ/2)/δ blocks
of r/t smaller sources each, where b(δ) is the constant from Corollary 4.4. Then by Lemma 4.1, we can
view X as an independent source on ({0, 1}`r/t)t, where at least δt/2 = b(δ/2) of the smaller sources have
min-entropy rate at least δ/2. Find the smallest prime p > (r`)/t. By Bertrand’s postulate, p ≤ 2(r`)/t,
we can find such a prime in time poly(r, `) by brute force search. Then we can embed each of our smaller
sources into GF (2p)∗ and apply the extractor from Corollary 4.4 to get the stated result.

4Here the least significant bits of an element in GF(2p) are simply the coefficients of the low degree terms when the element is
viewed as a polynomial of degree smaller than p in GF(2)[X].
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5 Extracting From Polynomial Entropy Rate

In this section we will show how to extract from total-entropy independent sources when the min-entropy of
the sources is polynomially small. As in the previous section, we will reduce the problem to another model:
we will try to extract from a few independent sources when just some of them have a polynomial amount
of entropy, but we don’t know exactly which ones. The probabilistic method shows that extractors exist for
this model even when just two sources contain logarithmic min-entropy and the total number of sources is
polynomially large. Our main theorem is as follows.

Theorem 5.1. There is a constant β > 0 such that for every ` ∈ N and δ ≥ `−β , there exists a polynomial-
time computable ε-extractor Ext : ({0, 1}`)r → {0, 1}m for total-rate δ independent sources on ({0, 1}`)r,
with r = Ω(1/δ2), m = `Ω(1) and ε = 2−`

Ω(1)
.

We also get the following corollary when we have a larger number of smaller sources.

Corollary 5.2. There exists a constant η > 0 such that for every r, ` ∈ N, δ ≥ (r`)−η, there exists a
polynomial-time computable ε-extractor Ext : ({0, 1}`)r → {0, 1}m for total-rate δ independent sources
on ({0, 1}`)r, with m = (δ2r`)Ω(1) and ε = 2−(δ2r`)Ω(1)

.

Proof. Let r′ = Ω(1/δ2) be the number of sources that the extractor of Theorem 5.1 can handle. Divide the
source into r′ blocks of r/r′ = O(δ2r) smaller sources each and apply Theorem 5.1.

In this section we will describe a generic technique to turn any extractor for the model where a few
smaller sources have min-entropy rate less than half into an extractor that can extract when the min-entropy
is as small as `1−α0 for some universal constant α0. There are two major ingredients that will go into our
construction:

• The first ingredient is based on recent constructions of randomness efficient condensers [BKS+05,
Raz05]. We use these condensers to transform a set of sources with polynomial min-entropy rate into
a set of aligned sources with somewhere-min-entropy rate 0.9. It won’t actually be a set of aligned
sources; instead, it will be a convex combination of sets of aligned sources, which will be good
enough. An important property that we will need is that the length of each of the rows is much higher
than the number of rows. We prove the following theorem in Section 5.2.

Theorem 5.3. For every constantB ∈ N and every sufficiently small constant α, there exist constants
γ and µ > 2γ for which the following holds. For every ` ∈ N, there is a polynomial-time computable
function ACond : {0, 1}` → ({0, 1}`µ)`

γ
such that ifX1, . . . , XB are independent sources on {0, 1}`

of min-entropy rate δ = `−α, then

ACond(X1),ACond(X2), . . . ,ACond(XB)

is 2−Ω(`1−2α)-close to a convex combination of sets of aligned somewhere-min-entropy rate 0.9 sources.

• The second ingredient is the technique of condensing independent SR-sources from the work of Rao
[Rao06]. We will generalize a theorem from that work. We show how to extract from independent
sources with only a few of them being aligned SR-sources that have rows that are much longer than
the number of rows. Formally, we get the following, proved in Section 5.3:
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Theorem 5.4. There exists a constant v ∈ N such that the following holds for every constant γ < 1.
For every `, u ∈ N, there is a 2−`

Ω(1)
-extractor SRExt : ({0, 1}`γ×`)u → {0, 1}m for u independent

sources, of which v are independent aligned (`γ × `) SR-sources, where m = `− `1−Ω(1).

We will first describe how to use these two ingredients to extract from an intermediate model. Then we
will see that total-entropy independent sources can be easily reduced to this intermediate model to prove
Theorem 5.1.

5.1 Extracting From The Intermediate Model

The intermediate model we work with is defined as follows.

Definition 5.5. A (u, v, α) intermediate source X consists of u2 smaller sources X1, . . . , Xu2
, each on

{0, 1}`. These smaller sources are partitioned into u sets S1, . . . , Su of u sources each, such that v of the
sets have the property that at least v of their sources have min-entropy at least `1−α.

Now we show that for certain constant v and α > 0 we can extract from this model.

Theorem 5.6. There are constants v ∈ N and α > 0 such that for every ` ∈ N there exists a polynomial
time computable 2−`

Ω(1)
-extractor IExt for (u, v, α) intermediate sources, with m = `Ω(1).

Using this theorem together with Lemma 4.1, we can prove Theorem 5.1.

Proof. (Of Theorem 5.1.) Let X = X1, . . . , Xr be an independent source on ({0, 1}`)r with total min-
entropy rate δ ≥ 4`−α, where α is the constant from Theorem 5.6 and r = u2 where u will be chosen
later. Divide the source into u blocks with u smaller sources each. By Lemma 4.1, δu/2 of the blocks have
min-entropy rate at least δ/2. Now further divide each of the blocks into u sub-blocks of one smaller source
each. By Lemma 4.1, for the blocks with min-entropy rate at least δ/2, at least δu/4 of the sub-blocks have
min-entropy rate δ/4 ≥ `−α, for large enough `. Let u = 4v/δ, where v is the constant from Theorem 5.6.
ThenX is a (u, v, α) intermediate source satisfying the conditions of Theorem 5.6, which immediately gives
us the theorem.

Now we prove Theorem 5.6:

Proof. (Of Theorem 5.6)
We begin by describing the extractor. Let v be the constant that we will pick later. We use the following

ingredients:

• Let BGK be as in Corollary 4.5 — an extractor for independent sources when v − 1 of the smaller
sources have min-entropy.

• Let ACond be as in Theorem 5.3, letting B = v2 — a condenser that converts sources with min-
entropy rate `−α into a convex combination of aligned sources consisting of `γ sources of length `µ,
with somewhere-min-entropy rate 0.9, for appropriate constants α, γ, and µ, where µ > 2γ.

• Let SRExt be as in Theorem 5.4 — an extractor for independent sources that works when just v of the
inputs come from aligned SR-sources.
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The extractor works as follows:

Construction: IExt(x1, . . . , xu
2
)

Input: x1, . . . , xu
2

partitioned into sets S1, . . . , Su
Output: z.

1. Compute yi = ACond(xi) for every source in the input. Let yij denote the jth row of yi.

2. For every l ∈ [u], and every j ∈ [2`
γ
], let blj be the string obtained by applying BGK using the yij from

all i ∈ Sl as input.

We think of bl as a sample from an SR-source with `γ rows.

3. Output SRExt(b1, . . . , bu).

Now we analyze the extractor. If we restrict our attention to the v2 high min-entropy smaller sources,
from Theorem 5.3 we know that from the first step from these smaller sources is 2−Ω(`1−2α) close to a convex
combination of sets of aligned somewhere-min-entropy rate 0.9 sources.

Then in the second step, for each distribution in the convex combination BGK succeeds in extracting
from the aligned min-entropy rate 0.9 row in each set that contains v high min-entropy smaller sources.

Thus the result of the first two steps in the algorithm is a distribution that is 2−`
Ω(1)

-close to a convex
combination of collections of u independent sources, v of which are independent aligned SR-sources.

Our extractor SRExt then extracts from each distribution in the convex combination, and thus extracts
from the entire convex combination. So our algorithm succeeds in extracting from the input.

5.2 Condensing To Aligned Sources With High Somewhere-Min-Entropy

In this section we give the condenser from Theorem 5.3. The first ingredient we’ll need is the following
condenser from [Zuc07], which improves on the condenser from [BKS+05].

Lemma 5.7. [Zuc07] There is a constant α > 0 such that for every t, ` ∈ N, there exists a polynomial-time
computable condenser Zuck : {0, 1}` → ({0, 1}(2/3)t`)2t such that if X has min-entropy rate δ, Zuck(X)
is t2−Ω(αδ`) close to somewhere-min-entropy rate min((1 + α)tδ, 0.9).

We’ll also need to use the condenser from Raz’s work [Raz05] with the improved analysis of Dvir and
Raz (Lemma 3.2 in [DR08]), which shows that most of the output rows are statistically close to having high
min-entropy.

Lemma 5.8. [DR08] For any constant c > 0 and every `, r ∈ N, there is a polynomial-time computable
function Raz : ({0, 1}`)r → ({0, 1}Ω(`))2O(r)

such that the following holds. If the input source X has
somewhere-min-entropy rate δ, the output Raz(X) is 2−Ω(δ`) close to a convex combination of distributions,
each of which has the property that at least a (1−c) fraction of its 2O(r) rows have min-entropy rate at least
0.9δ.

Now we can apply the functions from the previous two lemmas in succession to transform any source
with min-entropy rate δ into a convex combination of sources with high somewhere-min-entropy sources
where almost all of the rows in the sources have high min-entropy.
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Lemma 5.9. For every constant c > 0, there is a constant C ∈ N, such that for every ` ∈ N there exists
a polynomial-time computable function Cond : {0, 1}` → ({0, 1}Ω(`))C with the following property. If the
input sourceX has min-entropy rate at least δ, the output Cond(X) is 2−Ω(δ`)-close to a convex combination
of distributions, each of which has the property that at least a (1−c) fraction of its C rows have min-entropy
rate at least min(2δ, 0.9).

Proof. Let Cond(x) = Raz(Zuck(x)), picking t large enough in Lemma 5.7 so that 0.9(1 + α)t ≥ 2.

Now we can use this basic condenser to help prove Theorem 5.3. To do this, we apply this condenser to
our input smaller sources and then recursively apply it to the outputs. We might think we could just apply
the union bound to show that most of the output rows are aligned, but we will be applying the condenser
many more than 1/c times. However, we only need that one single row in the output is aligned, which we
can accomplish by ensuring that at each step we have an aligned row, and then concentrating the analysis of
the recursion on that one aligned row.

Proof. (Of Theorem 5.3.) First, apply the function Cond from Lemma 5.9 to each Xi, choosing c <
1/B. Then the output 〈Cond(X1),Cond(X2), . . . ,Cond(XB)〉 is 2−Ω(δ`) close to a convex combination
of distributions Y =

∑
j βjY

(j), where Y (j) = 〈Y (j)
1 , Y

(j)
2 , . . . , Y

(j)
B 〉 and

∑
j βj = 1. Each smaller

source Y (j)
i has the property that at least a (1 − c) fraction of its rows have min-entropy rate at least 2δ.

Now we restrict our attention to a single source Y (j) in the convex combination. In this source, at most a
cB < 1 fraction of the rows have a smaller source Y (j)

i with min-entropy rate less than 2δ in that row. Thus
there is at least one row where the min-entropy rate for all the smaller sources is at least 2δ, i.e., the output
is aligned with somewhere-min-entropy rate min(2δ, .9). Now we recursively apply Cond to each row in
each output source. When we apply it to the aligned row, we’ll get another aligned row with min-entropy
rate 4δ. If we recursively do this t times, we end up close to a convex combination of a set of aligned
sources with somewhere-min-entropy rate 2tδ. If we let t = log(0.9/δ) = log(0.9`α), then these sources
have somewhere-min-entropy rate 0.9. The total number of sources we ultimately construct is Ct = `γ for
γ = O(α), and the length of each source is `/2O(t) = `µ for µ = 1−O(α). If we choose α small enough,
then we can achieve µ > 2γ, as desired.

5.3 Extracting From Independent Sources, A Few Of Which Are Aligned SR-Sources

Here we will prove Theorem 5.4. Our extractor will be obtained by condensing the aligned SR-sources,
closely following a similar construction of Rao [Rao06]. The additional challenge we face is that whereas in
[Rao06] every source was assumed to have a random row, in our model only some of the sources contain a
random row and the rest may be arbitrary. We will build a condenser that when given u independent sources,
v of which are aligned SR-sources, outputs a distribution that is statistically close to a convex combination
of sources of the same type, with far fewer rows in each SR-source. Our condenser can handle an arbitrarily
large u and some small universal constant v.

Iterating our condenser, we will eventually obtain just one row in our SR-sources, at which point we can
use BGK from Corollary 4.5 to extract from the sources, or even simply XOR all the sources together.

To condense a single source from the input, we will take a small slice of bits from all other sources in the
input. We will use these slices to generate a short list of candidate seeds that are independent of the source
we are trying to condense. Then we will use these seeds with a strong seeded extractor to extract from the
source we are trying to condense. In this way we reduce the number of rows of one source.
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To condense all of the sources, we repeat the same construction with all sources: each source is con-
densed using seeds generated from slices of the other sources. The output of all this condensing is u sources
that are no longer independent. Still, we will argue that if we fix all the slices of bits we used to generate the
seeds, the output is the distribution of independent sources of the type that we want.

Remark 5.10. Although we do not include the details here, it is not hard to modify the construction in
this subsection to extract even when v = 2 and u is arbitrarily large, by replacing the function BGK from
Corollary 4.5 in the composition below with a generalization of Bourgain’s extractor [Bou05]. We can also
show that our construction is strong, i.e. the output of our extractor is statistically close to being independent
of any one source from the input.

Now we describe our condenser in detail. The ingredients are the following:

• Let w, l be parameters that we will set later.

• Let BGK be as in Corollary 4.5 — an extractor for independent sources when v − 1 of them have
min-entropy rate 0.2. Let a be the output length of BGK. Let ε1 be the error of BGK.

• Let Ext be the strong seeded extractor promised by Theorem 2.11. We will set up Ext to extract from
sources on {0, 1}t` with min-entropy at least ` − l and to have output length m, using seed length a.
Let ε2 be the error of Ext.

X
i

i

2

t

w

X

1X

X

X

i

i

i
t/2

2

r

Figure 2: Notation in one source

Construction: Cond(x1, . . . , xu)
Input: x1, . . . , xu, strings each divided into t rows of length r.
Output: z1, . . . , zu.
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1. For each source, group its rows into pairs of rows.

2. For i = 1, 2, . . . , u and j = 1, 2, . . . , t/2 let xij denote the first w bits of the j′th pair of rows in the

string xi. Let xi denote the first w bits of every row of xi. Let x 6=ij denote the first w bits of the j’th
pair rows of all sources except the i’th source.

3. For every i = 1, 2, . . . , u, and j = 1, 2, . . . , t/2, let zij = Ext(xi,BGK(x 6=ij )).

4. For every i = 1, 2, . . . , u, let zi consist of rows (zi1, . . . , z
i
t/2).

Lemma 5.11. Let Cond be as above. If X1, X2, . . . , Xu are independent sources, with v of them being
aligned (t×a) SR-sources, then Z1, Z2, . . . , Zu are v(ε1 +2

√
ε2 +2−(l−tw))-close to a convex combination

of independent sources, v of which are aligned (t/2×m) SR-sources.

Proof. Let h be such that the h’th pair of rows in Xi1 , . . . , Xiv contains a random row for some distinct
sources i1, . . . , iv ∈ [u]. We will argue that the h’th row of the output sources Zi1, . . . , Ziv is statistically
close to uniform.

To see this, consider the random variable X = X
1 ◦ · · · ◦Xu, the concatenation of all the slices that are

used to generate the various seeds.
We will partition the support of this variable into two sets, a good set and a bad set. We will then make

the following two claims, which clearly imply the lemma.

Claim 5.12. For good x, (Z1 ◦ · · · ◦Zu)|X=x is the distribution of u independent sources, with v of them
being v

√
ε2-close to aligned SR-sources.

Claim 5.13. Pr[X is not good ] < vε1 + v
√
ε2 + v2tw−l

To ensure these claims, the notion of good we will use is this one: call x good for source Xi if

1. Xi|X=x has min-entropy at least r − l

2. BGK(x 6=ih ) is a good seed to extract from Xi|X=x, i.e.

‖ Ext(Xi|X=x,BGK(x 6=ih ))− Um ‖≤
√
ε2

We will say that x is good if it is good for all the v sources Xi1 , . . . , Xiv whose h’th row is random.
Claim 5.12 immediately follows from this notion of good. All we have left to prove is Claim 5.13. The
proof requires the following simple proposition.

Proposition 5.14. Let X be a random variable with H∞(X) = k. Let A be any event in the same proba-
bility space. Then H∞(X|A) < k′ ⇒ Pr[A] < 2k

′−k.

Proof. (of Claim 5.13) Fix an i so that Xi is one of the v aligned SR-sources Xi1 , . . . , Xiv whose h’th row
is random. We will first argue that X is good for Xi with high probability. Then we will use the union
bound to claim that X is good with high probability.

X is good for Xi when two events occur:

1. Event T : Xi|X =x has min-entropy at least r − l. This event is equivalent to the event Xi|Xi =xi

has min-entropy at least r − l, since Xi only depends on those bits of X .
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2. Event U : BGK(x 6=ih ) is a good seed to extract from Xi|X=x, i.e.

‖ Ext(Xi|X=x,BGK(x 6=ih ))− Um ‖≤
√
ε2

The probability that event T does not occur is at most 2−l2tw. This is because by Proposition 5.14, there
are 2tw possible settings for xi. Every bad setting occurs with probability at most 2−l, thus by the union
bound, the probability that any bad setting occurs is at most 2tw−l.

Now given that T does occur, event U has probability at most
√
ε2 + ε1. This is because the output of

BGK is ε1-close to uniform and for a uniformly chosen seed the probability that Ext fails to extract from the
source is at most

√
ε2 by the strong extractor property and Markov’s inequality.

Thus by the union bound, the probability that either T or U do not occur is at most 2tw−l +
√
ε2 + ε1.

Applying the union bound again,X is good forXi1 , . . . , Xiv whose h’th row is random with probability
at least 1− v · (2tw−l +

√
ε2 + ε1).

This concludes the proof of the lemma.

Now we can prove the main theorem of this section.

Proof. (of Theorem 5.4)
We will use the condenser Cond repeatedly. In each step we reduce the number of rows in each of the

sources by a factor of 2. We need to repeat the condensation step at most dγ log `e times to obtain a single
row, at which point we XOR the sources together to obtain an almost-uniform output. By Lemma 5.11 the
error in each step is v · (ε1 + 2

√
ε2 + 2−(l−tw)).

Recall that ε1 is the error of BGK from Corollary 4.5. Thus ε1 = 2−Ω(w) in every step, since w is the
length of the inputs to BGK. ε2 was the error of Ext from Theorem 2.11. Since the seed length is a = Ω(w),
the error ε2 is at most 2−w

Ω(1)
in every step.

Setting l = 2`(1+γ)/2, w = l/(2t) = `Ω(1), we get a total error of 2−`
Ω(1)

.
In each step, the length r of the sources drops additively by O(l). Thus the final output length is at

least `− `β for some β ∈ (0, 1).

6 Better Extractors For Total-Entropy Independent Sources With Many
Short Smaller Sources

Now we show how for sources consisting of many smaller sources of length ` we can do better than the
constructions in the previous sections by generalizing earlier constructions for symbol-fixing sources. The
base extractor simply takes the sum of the smaller sources modulo p for some prime p > 2`. Then we divide
the source into blocks, apply the base extractor to each block, and then use the result to take a random walk
on an expander as in [KZ06].

We will need the following definition from [KZ06].

Definition 6.1. An independent source on ({0, 1}`)r is a (k, ε)-approximate symbol-fixing source if k of the
r smaller sources have distributions within an `2 distance ε of uniform.
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These sources will be used as intermediate sources. We will transform the sources we wish to ex-
tract from into approximate symbol-fixing sources and then use the results of [KZ06] to extract from these
sources.

6.1 Random Walks

Let λ(P ) be the second largest eigenvalue in absolute value of the transition matrix P for a random walk on
a graph G. It is well known that the `2 distance from the uniform distribution decreases by a factor of λ(P )
for each uniform step of the random walk (see e.g. [Lov96]).

We will also need the following Lemma from [KZ06], which shows that we can use a random walk to
extract from approximate symbol-fixing sources.

Lemma 6.2. [KZ06] Let G be an undirected non-bipartite d-regular graph on M vertices with uniform
transition matrix P . Suppose we take a walk on G for r steps, with the steps taken according to the symbols
from a (k, ε)-approximate oblivious symbol-fixing sources on [d]r. For any initial probability distribution ,
the variation distance from uniform at the end of the walk is at most 1

2(λ(P ) + ε
√
d)k
√
M .

Note that if λ(P ) + ε
√
d is bounded above by a constant, as would happen if G were an expander and ε

was small enough, then this immediately gives us a good extractor for approximate symbol-fixing sources.
This is shown in the following proposition, which follows immediately from Lemma 6.2.

Proposition 6.3. Let G be an undirected non-bipartite d-regular graph on 2m vertices with uniform tran-
sition matrix P . Then we can construct a polynomial-time computable ε′-extractor for the set of (k, ε)-
approximate oblivious symbol-fixing sources on [d]r, where ε′ = 1

2(λ(P ) + ε
√
d)k2m/2. This extractor

simply uses the input from the source to take a random walk on G starting from an arbitrary vertex, and
outputs the label of the final vertex.

6.2 Reducing to Flat Total-Entropy Independent Sources

It will be simpler to analyze our extractor for flat total-entropy independent sources. We show that any ex-
tractor that works for flat total-entropy independent sources also works for general total-entropy independent
sources because any total-entropy independent source is close to a convex combination of flat independent
sources with high total-entropy.

Lemma 6.4. Any ε-extractor for the set of flat independent sources on ({0, 1}`)r with total min-entropy
k/(2 log 3) is also an (ε+e−k/9)-extractor for the set of independent sources on ({0, 1}`)r with min-entropy
k.

This lemma follows directly from the following lemma.

Lemma 6.5. Any independent source X = X1, . . . , Xr on ({0, 1}`)r with total min-entropy k is e−k/9-
close to a convex combination of flat independent sources on ({0, 1}`)r with total min-entropy k/(2 log 3).

Proof. Let H∞(Xi) = ki for all i. If ki ≥ 1, we can write Xi as a convex combination of flat sources with
support size b2kic. Each of these flat sources has min-entropy log b2kic > ki

log 3 , since we lose the largest
fraction of min-entropy from taking the floor when 2ki is nearly 3.

If ki < 1, then we must have constant sources in our convex combination, so if we did as above, we’d
lose up to a bit of entropy for each such i. Instead, suppose k′ of the total entropy is contained in Xi with
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less than a bit of entropy each. Call this set S ⊆ [r]. Now suppose k′ ≤ k/2. In this case, we can write XS

as a convex combination of constant sources and we are still left with (k − k′)/ log 3 ≥ k/(2 log 3) bits of
entropy in each of our sources, as desired.

From now on we will assume k′ ≥ k/2. We will show we can write XS as a convex combination of
sources that with probability 1 − ε have min-entropy k′/3. For each i ∈ S, we can write Xi as a convex
combination of flat sources with one or zero bits of entropy. The one bit sources are obtained by choosing
uniformly between the most probable value and each of the other values for Xi. Each of these sources
occurs with probability equal to twice the probability of the less probable value. Since the most probable
value occurs with probability 2−ki , we get one bit of entropy with probability 2(1 − 2−ki). Otherwise, Xi

is fixed to the most probable value.
Now we can use a Chernoff bound to bound the entropy in the sources in the overall convex combination

of sources for XS . Let Yi be an indicator random variable for the ith source having one bit of entropy. Then
Y =

∑
Yi is a random variable representing the total entropy. Note that E[Y ] =

∑
E[Yi] =

∑
2(1 −

2−ki) ≥
∑
ki = k′, where the inequality is true because ki < 1. Now we are ready to apply the Chernoff

bound (Theorem A.1.13 in Alon and Spencer [AS00]).

Pr[Y < (1− λ)k′] ≤ Pr[Y < (1− λ)E[Y ]] < e−λ
2(

P
(1−2−ki )) ≤ e−λ2 k′

2 ≤ e−λ2 k
4

Setting λ = 2/3 we get the desired error bound ε = e−
k
9 . Then with probability 1 − ε we have at least

(k − k′)/ log 3 + k′/3 ≥ k/(2 log 3) bits of entropy, as desired.

6.3 Extracting From Flat Total-Entropy Independent Sources

Now we show how to extract from flat total-entropy independent sources for small `. Our initial extractor
simply takes the sum modulo p of the individual sources, for some prime p ≥ 2`

Theorem 6.6. Let ` ≥ 1 and p ≥ 2` a prime. Then Sump : ({0, 1}`)r → [p], where Sump(x) =
∑

i xi
mod p (viewing each `-bit string xi as a number in {0, 1, . . . , 2` − 1}), is an ε-extractor for the set of flat
independent sources on ({0, 1}`)r with total min-entropy k, where ε = 1

22−2k/p2√
p.

Combining Theorem 6.6 with Lemma 6.4 we get an extractor for total-entropy independent sources.

Corollary 6.7. Suppose p ≥ 2` is a prime. Then Sump is an ε-extractor for the set of independent sources
on ({0, 1}`)r with total min-entropy k ≥ Ω(p2 log p), where ε = 2−Ω(k/p2).

We will prove Theorem 6.6 via the following lemma, which will be useful later.

Lemma 6.8. Let ` ≥ 1 and p ≥ 2` a prime. Then for all sets of flat independent sources X = X1, . . . , Xr

on ({0, 1}`)r with min-entropy k, Sump(x) has `2 distance from uniform at most 2−2k/p2
.

It is well known that if X and Y are both distributed over a universe of size p, then |X − Y | ≤
1
2

√
p||X − Y ||2. Theorem 6.6 then follows by combining this lemma with this relation between `2 and

variation distance.
To analyze the distance from uniform of the sum modulo p, we use the following lemma that relates this

distance to the additive characters of Zp. For Zp, the jth additive character is defined as χj(a) = e2πija/p.

21



Lemma 6.9. For any random variable W over Zp,

||W − Up||22 =
1
p

p−1∑
j=1

|E[χj(W )]|2 ≤ max
j 6=0
|E[χj(W )]|2,

where Up denotes the uniform distribution over Zp.

Proof. Let Y = W−Up. Thus Y is a vector with p coordinates, with Pr[W = i]−1/p in the ith coordinate.
The jth Fourier coefficient of Y is given by Ŷj =

∑p−1
y=0 Y (y)χj(y). By Parseval’s Identity and using the

fact that
∑p−1

y=0 χj(y) = 0 when j 6= 0 we get

||Y ||22 =
1
p

p−1∑
j=0

|Ŷj |2 =
1
p

p−1∑
j=0

∣∣∣∣∣∣
p−1∑
y=0

Y (y)χj(y)

∣∣∣∣∣∣
2

=
1
p

p−1∑
j=0

∣∣∣∣∣∣
p−1∑
y=0

Pr[W = y]χj(y)− 1
p

p−1∑
y=0

χj(y)

∣∣∣∣∣∣
2

=
1
p

p−1∑
j=1

|E[χj(W )]|2

≤ max
j 6=0
|E[χj(W )]|2.

Here we used the fact that χ0(y) = 1, for every y.

Using the previous lemma we can now prove Theorem 6.6.

Proof. Let (X1, . . . , Xn) be a flat independent source on ({0, 1}`)r with total min-entropy k, and let W =∑
tXt mod p. Let W =

∑r
t=1Xt and fix j 6= 0. Then |E[χj(W )]|2 =

∏r
t=1 |E[χj(Xt)]|2. Suppose Xt

has min-entropy kt, so k =
∑

t kt. Then since each Xt is a flat source, Xt is uniformly distributed over
Kt = 2kt values. Our goal is to upper bound |E[χj(Xt)]|2 over all possible choices of Xt. Doing so, we get

|E[χj(Xt)]|2 ≤ max
Xt:Zp→{0,1/Kt},

P
xXt(x)=1

|E[χj(Xt)]|2

= max
Xt:Zp→{0,1/Kt},

P
xXt(x)=1

∣∣∣∣∣∣
∑
x∈Zp

Xt(x)χj(x)

∣∣∣∣∣∣
2

= max
y,|y|=1

 max
Xt:Zp→{0,1/Kt},

P
xXt(x)=1

∑
x∈Zp

Xt(x)χj(x)

� y
2

= max
Xt:Zp→{0,1/Kt},

P
xXt(x)=1

 max
y,|y|=1

∑
x∈Zp

Xt(x)(χj(x)� y)

2 ,

where � : C× C→ R denotes the dot product, where the complex numbers are viewed as vectors R2, and
the third line follows from the observation that the dot product is maximized when y is in the same direction
as (
∑

x∈Zp Xt(x)χj(x)), in which case we get exactly the length. Now we further note that χj(x) � y is
greatest for values of x for which χj(x) is closest to y. Thus we achieve the maximum whenXt is distributed
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over the Kt values closest to y. Without loss of generality we can assume these values correspond to x = 0
to Kt − 1 (since we only care about the magnitude). Thus

|E[χj(Xt)]|2 ≤

∣∣∣∣∣ 1
Kt
·

(
Kt−1∑
x=0

e2πix/p

)∣∣∣∣∣
2

=

∣∣∣∣∣ 1
Kt
· 1− e2πiKt/p

1− e2πi/p

∣∣∣∣∣
2

=

∣∣∣∣∣ 1
Kt
· e

πiKt/p · (e−πiKt/p − eπiKt/p)
eπi/p · (e−πi/p − eπi/p)

∣∣∣∣∣
2

=

(
1
Kt
·

sin(πKtp )

sin(πp )

)2

=

 1
Kt
·

(πKt/p) ·
∏∞
m=1(1− K2

t
p2m2 )

(π/p) ·
∏∞
m=1(1− 1

p2m2 )

2

=

( ∞∏
m=1

(
1− K2

t − 1
p2m2 − 1

))2

<

(
1− K2

t − 1
p2 − 1

)2

< e−2(K2
t−1)/(p2−1)

< e−(4 ln 2)kt/(p2−1),

where in the fifth line we use the infinite product representation of sine and in the last line we use 2x ≥
1 + (ln 2)x. So

|E[χj(W )]|2 =
r∏
t=1

|E[χj(Xt)]|2

<
r∏
t=1

e−(4 ln 2)kt/(p2−1)

= e−(4 ln 2)k/(p2−1)

< e−2k/p2
.

Thus,

|X − Y | ≤
√
p

2
· ||X − Y ||2 ≤

√
p

2
·max
j 6=0
|E[χj(W )]|2 ≤

√
p

2
· e−2k/p2

.

Now we show that if we divide the source into blocks and take the sum modulo p for each block, we get
a convex combination of approximate symbol-fixing sources, which we can then use an expander walk to
extract from.

Lemma 6.10. For any prime p ≥ 2` and any t, any flat independent source X on ({0, 1}`)r with total min-
entropy k can be transformed in polynomial-time into a (k′, 1/pΩ(1))-approximate oblivious symbol-fixing
source f(X) on [p]r

′
, where r′ = k/(2p2 log p) and k′ = k2/(4trp2 log2 p).
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Proof. First divide X into k
2t blocks consisting of 2t

k r smaller sources, for t = p2 log p. Then for each block
take the sum modulo p of the smaller sources in the block. Then f(X) is the concatenation of the resulting
symbols for each block.

By Lemma 4.1, the number of blocks with min-entropy at least t is greater than k2

4tr` >
k2

4tr log p . For

each of these blocks, by Corollary 6.7, we mix within 2−Ω(t/p2) = 1
p of uniform.

Now, as in [KZ06], we use f(X) as defined above to take a random walk on an expander graph, which
will mix to uniform by Lemma 6.2 and thus give us our extractor.

Theorem 6.11. There exists an ε-extractor for the set of flat independent sources on ({0, 1}`)r with total
min-entropy k that outputs m = Ω(k2/(r22``)) bits and has error ε = 2−m. This extractor is computable
in time poly(r, 2`).

Proof. Let p be the least prime greater than 2`. Since by Bertrand’s Postulate p < 2 · 2`, p can easily be
found in polynomial time in 2` by exhaustive search. Given a source X , first apply f(X) from Lemma 6.10
to get a (k′, 1/p)-approximate oblivious symbol-fixing source on [p]r

′
, where r′ = k/(2p2 log p) and k′ =

k2/(4rp2 log2 p). Then apply the extractor from Proposition 6.3 to f(X), taking the graph G to be a p
regular expander graph on 2m vertices (form to be given later). Specifically, assumeG has λ(G) ≤ 1

pα−
1√
p

for some constant α < 1/2. This can be achieved, for example, by taking G to be an O(log p) power of a
constant degree expander with self loops added to make it degree p. Then by Proposition 6.3 f(X) is within

ε ≤ 1
2

(
λ(G) +

1
√
p

)(k2/4rp2 log2 p)

2m/2

< p−(αk2/4rp2 log2 p)2m/2

= 2−((αk2/4rp2 log p)−(m/2))

of uniform. Then let m = αk2/6rp2 log p so then ε < 2−m.

Combining this theorem with our reduction from general to flat sources, we get that this same extractor
works for general total-entropy independent sources.

Theorem 6.12. There exists an ε-extractor for the set of independent sources on ({0, 1}`)r with total min-
entropy k that outputs m = Ω(k2/r22``) bits and has error ε = 2−m. This extractor is computable in time
poly(r, 2`).

Proof. Combine Theorem 6.11 and Lemma 6.4.

7 Extracting More Bits From Total-Entropy Independent Sources

7.1 Seed Obtainers

Now that we have extractors for total-entropy independent sources, we can extract even more bits using the
techniques that Gabizon et al. [GRS06] used to extract more bits out of oblivious bit-fixing sources. The
results in this section may be simplified by the ideas of Shaltiel [Sha06]. Assuming the entropy is high
enough to use the extractors from Theorem 6.12, Theorem 4.6, or Corollary 5.2, we can extract almost all of
the entropy. Their construction works by using an extractor for bit-fixing sources and a sampler to construct
a seed obtainer. This seed obtainer outputs a source and a seed that is close to a convex combination of
independent bit-fixing sources and uniform seeds. We generalize their definition of seed obtainer to total-
entropy independent sources.
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Definition 7.1. A function F : ({0, 1}`)r → ({0, 1}`)r × {0, 1}d is a (k′, ρ)-seed obtainer for all indepen-
dent sources X on ({0, 1}`)r with total min-entropy k if the distribution R = F (X) can be expressed as a
convex combination of distributions R = ηQ+

∑
a αaRa (where the coefficients η and αa are nonnegative

and η +
∑

a αa = 1) such that η ≤ ρ and for every a there exists an independent source Za on ({0, 1}`)r
with min-entropy k′ such that Ra is ρ-close to Za ⊗ Ud.

Now, as in the bit-fixing case, we can use a seeded extractor for total-entropy independent sources
together with a seed obtainer to construct a deterministic extractor for total-entropy independent sources.
The proof for the following Theorem is the same as the proof for the bit-fixing case in [GRS06].

Theorem 7.2. Let F : ({0, 1}`)r → ({0, 1}`)r ×{0, 1}t be a (k′, ρ)-seed obtainer for independent sources
X on ({0, 1}`)r with total min-entropy k. Let E1 : ({0, 1}`)r × {0, 1}d → {0, 1}m be a seeded ε-extractor
for independent sources on ({0, 1}`)r with total min-entropy k. Then E : ({0, 1}`)r → {0, 1}m defined by:
E(x) = E1(F (x)) is a deterministic (ε + 2ρ)-extractor for independent sources on ({0, 1}`)r with total
min-entropy k.

To construct seed obtainers, we need to extend the definition of averaging samplers from [GRS06] to
general functions as follows. This definition is similar in spirit to that of [Vad04], except the sample size is
not fixed and we both upper and lower bound the total value of the sample.

Definition 7.3. A function Samp : {0, 1}t → P ([r]) is a (δ, θ1, θ2, γ) averaging sampler if for every
function f : [r]→ [0, 1] with average value 1

r

∑
i f(i) = δ, it holds that

Pr
w←Ut

θ1 ≤
∑

i∈Samp(w)

f(i) ≤ θ2

 ≥ 1− γ.

When applying these samplers to total-entropy independent sources, we get the following lemma.

Lemma 7.4. Let Samp : {0, 1}t → P ([r]) be a (δ, δ1r, δ2r, γ) averaging sampler. Then for any indepen-
dent source X on ({0, 1}`)r with total min-entropy k = δr`, we have

Pr
w←Ut

[δ1r` ≤ H∞(XSamp(w)) ≤ δ2r`] ≥ 1− γ.

Proof. Let f(i) = H∞(Xi)/`.

Given these definitions, we can show that essentially the same construction from Gabizon et al. [GRS06]
for bit-fixing seed obtainers works for total-entropy independent source seed obtainers.

Theorem 7.5. Let Samp : {0, 1}t → P ([r]) be a (δ, δ1r, δ2r, γ) averaging sampler and E : ({0, 1}`)r →
{0, 1}m be an ε-extractor for independent sources on ({0, 1}`)r with total min-entropy k = δ1r`. Then
F : ({0, 1}`)r → ({0, 1}`)r × {0, 1}m−t defined as follows is a (k′, ρ)-seed obtainer for independent
sources on ({0, 1}`)r with total min-entropy k = δr` with k′ = (δ − δ2)r` and ρ = max(ε+ γ, ε · 2t+1).

The Construction of F:

• Given x ∈ ({0, 1}`)r compute z = E(x). Let E1(x) denote the first t bits of E(x) and E2(x) denote
the remaining m− t bits.

• Let T = Samp(E1(x)).
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• Let x′ = x[r]\T , padded with ` · |T | zeroes to get a string in ({0, 1}`)r.

• Let y = E2(x). Output (x′, y).

The proof of this theorem is almost exactly the same as the proof in [GRS06], except substituting in-
dependent sources and the associated sampler and extractor for bit-fixing sources, so we omit it here. This
theorem also follows from the main theorem of [Sha06].

7.2 Constructing Samplers

In order to use the seed obtainer construction to extract more bits, we first need a good averaging sampler. We
will show that the same sampler construction given in Gabizon et al. [GRS06] generalizes to our definition.
Our sampler works by generating d-wise independent variables Z1, . . . , Zr ∈ [b] and letting Samp(Ut) =
{i|Zi = 1}.
Lemma 7.6. For all δ > 0 and r, b, t ∈ N such that b/r ≤ δ ≤ 1 and 6 log r ≤ t ≤ δr log r

20b there is a
polynomial-time computable (δ, δr2b ,

3δr
b , 2

−Ω(t/ log r)) averaging sampler Samp : {0, 1}t → P ([r])

We use the following tail inequality for d-wise independent variables due to Bellare and Rompel [BR94].

Theorem 7.7. [BR94] Let d ≥ 6 be an even integer. Suppose that X1, . . . , Xr are d-wise independent
random variables taking values in [0, 1]. Let Y =

∑
1≤i≤r Yi, µ = E[Y ], and A > 0. Then

Pr[|Y − µ| ≥ A] ≤ 8
(
dµ+ d2

A2

)d/2
Proof. (of Lemma 7.6) Let d be the largest even integer such that d log r ≤ t and let q = blog bc ≤ log r.
Use d log r random bits to generate r d-wise independent random variables Z1, . . . , Zr ∈ {0, 1}q using the
construction from [CW79]. Fix a ∈ {0, 1}q. Let the random variable denoting the output of the sampler be
Samp(Ut) = {i|Zi = a}. For 1 ≤ i ≤ r, define a random variable Yi that is set to f(i) if i ∈ Samp(Ut) and
0 otherwise. Let Y =

∑
i Yi (note that Y is exactly the sum we wish to bound). Note that µ = E[Y ] = δr/2q

and that the random variables Y1, . . . , Yr are d-wise independent. Applying Theorem 7.7 with A = δr/2b,

Pr[|Y − µ| ≥ A] ≤ 8

(
d δr2q + d2

A2

)d/2
.

Note that

{|Y − µ| < A} ⊆
{
δr

2q
−A < Y <

δr

2q
+A

}
⊆
{
δr

b
−A < Y <

2δr
b

+A

}
⊆
{
δr

2b
≤ Y ≤ 3δr

b

}
=

δr2b ≤ ∑
i∈Samp(w)

f(i) ≤ 3δn
b

 .

Note that d ≤ t/ log r ≤ δr/20b by assumption. We conclude that:

Pr
w←Ut

δr
2b
≤

∑
i∈Samp(w)

f(i) ≤ 3δr
b

 ≥ 1− 8

(
d δr2q + d2

(δr/2b)2

)d/2
≥ 1− 8

(
4b2

(δr)2

(
2dδr
b

+
dδr

20b

))d/2
≥ 1− 8

(
10db
δr

)d/2
≥ 1− 2−(d/2+3) ≥ 1− 2−Ω(t/ log r)
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7.3 Extractors From Seed Obtainers

As in [GRS06] it will be convenient to combine Theorem 7.2 and Theorem 7.5 to get the following theorem.

Theorem 7.8. Assume we have the following:

• A (δ, δ1r, δ2r, γ) averaging sampler Samp : {0, 1}t → P ([r]).

• A deterministic ε∗-extractor for total-rate δ1 independent sources E∗ : ({0, 1}`)r → {0, 1}m′ .

• A seeded ε1-extractor for total-rate δ− δ2 independent sources E1 : ({0, 1}`)r ×{0, 1}s → {0, 1}m,
where m′ ≥ s+ t.

Then we get a deterministic ε-extractor for total-rate δ independent sources E : ({0, 1}`)r → {0, 1}m
where ε = ε1 + 3 ·max(ε∗ + γ, ε∗ · 2t+1).

We will use the following seeded extractor from Raz, Reingold, and Vadhan [RRV02].

Theorem 7.9. [RRV02] For any r, k ∈ N, and ε > 0, there exists a ε-extractor Ext : {0, 1}r × {0, 1}s →
{0, 1}m for all sources with min-entropy k, where m = k and s = Θ(log2 r · log(1/ε) · logm).

Combining the extractor from [RRV02] with the sampler from the previous section, we get the following
general corollary, which shows how to transform a deterministic extractor that extracts just some of the min-
entropy into one that extracts almost all of the min-entropy.

Corollary 7.10. Let δ, δ1, ε1 ∈ (0, 1) and r, t ∈ N be such that δ1 ≥ 1/2r and 6 log r ≤ t ≤ δ1r log r
10 . Also

let m = (δ − 6δ1)r` and s = Θ(log2(r`) · log(1/ε1) · logm). Then given any deterministic ε∗-extractor
for total-rate δ1 independent sources E∗ : ({0, 1}`)r → {0, 1}m′ with m′ ≥ s + t, we can construct an
ε-extractor for total-rate δ independent sources E : ({0, 1}`)r → {0, 1}m where ε = ε1 + 3 · max(ε∗ +
2−Ω(t/ log r), ε∗ · 2t+1).

Proof. Combine Lemma 7.6 with b = δ/2δ1, Theorem 7.9, and Theorem 7.8.

Now we can use Corollary 7.10 together with our previous deterministic extractor construction from
Theorem 6.12 to show how we can extract nearly all of the entropy from total-entropy independent sources
with sufficiently high min-entropy, proving Theorem 1.8.

Proof. (Of Theorem 1.8.) Use the construction from Corollary 7.10 with the extractor from Theorem 6.12 as
E∗ and let ε1 = 2−Ω((δ2

1r`)(2
2` log3 r)) and t = Ω( δ

2
1

22` r`). Then it’s not hard to see that (choosing appropriate
constants) these values satisfy 6 log r ≤ t ≤ δ1r log r

10 and m′ ≥ s+ t for sufficiently large r.

The extractor for small-space sources from Theorem 1.4 is then obtained by combining Theorem 1.8
with Lemma 3.1.

We could also use a seed obtainer together with the extractor for constant rate sources from Theorem 4.6.
This lets us extract any constant fraction of the entropy and proves Theorem 1.7.

Proof. (Of Theorem 1.7.) Use the construction from Corollary 7.10 with the extractor from Theorem 4.6 as
E∗ and let ε1 = 2−Ω((r`)/(log3(r`))) and t = Θ(r log(min(2`, r))). Then it’s not hard to see that (choosing
appropriate constants) these values satisfy 6 log r ≤ t ≤ δ1r log r

10 and m′ ≥ s+ t for sufficiently large r.
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The extractor for small-space sources from Theorem 1.3 is then obtained by combining Theorem 1.8
with Lemma 3.1. We can also apply this construction to the polynomial entropy rate extractor from Corol-
lary 5.2, which proves Theorem 1.6.

Proof. (Of Theorem 1.6.) Use the construction from Corollary 7.10 with the extractor from Corollary 5.2
as E∗ and let ε1 = 2−(δ2

1r`)
Ω(1)/(log3(r`)) and t = (δ2

1r`)
Ω(1). Then it’s not hard to see that (choosing

appropriate constants) these values satisfy 6 log r ≤ t ≤ δ1r log r
10 and m′ ≥ s+ t for sufficiently large r.

The extractor for small-space sources from Theorem 1.2 is then obtained by combining Theorem 1.6
with Lemma 3.1.

7.4 Extractors For Smaller Entropy

Notice that the method given by Corollary 7.10 requires m > s = polylog(r, `). Gabizon et. al [GRS06]
also showed how to use seed obtainers to extract more bits even when the initial extractor only extracts s
small logarithmic number of bits, which they’re able to get from the cycle walk extractor from [KZ06]. We
can generalize their construction to work for total-entropy independent sources, which together with our
generalization of the cycle walk extractor allows us to extract more bits from smaller entropy rates.

In order to get a seed obtainer that can use only a small logarithmic number of bits, we need both a
sampler and a seeded extractor for total-entropy independent sources. To do so, as in [GRS06], we use
d-wise ε-dependent random variables to both sample and partition. The proofs of the following two lemmas
easily generalize the construction from [GRS06] in a similar way to our earlier sampler construction.

Lemma 7.11. For any constant 0 < α < 1, there exist constants c > 0 and 0 < b < 1/2 (both depending
on α) such that for any r ≥ 16 and k = δr` ≥ logc r, the following holds. There is a polynomial-time
computable (δ, δr/2kb, 3δr/kb, O(k−b)) sampler Samp : {0, 1}t → P ([r]) where t = α · log k.

Lemma 7.12. Fix any constant 0 < α < 1. There exist constants c > 0 and 0 < b < 1/2 (both depending
on α) such that for any r ≥ 16 and k = δr` ≥ logc r, we can use α · log k random bits to explicitly
partition [r] into m = O(kb) sets T1, . . . , Tm such that for every function f : [r] → [0, 1] with average
value 1

r

∑
i f(i) = δ,

Pr

∀i, δr/2kb ≤∑
j∈Ti

f(j) ≤ 3δr/kb

 ≥ 1−O(k−b).

As in Lemma 7.6, this lemma implies that if we partition a total-rate δ independent source, with high
probability each Ti has some min-entropy.

Corollary 7.13. For any constant 0 < α < 1, there exist constants c > 0 and 0 < b < 1/2 (both depending
on α) such that for any r ≥ 16 and k ≥ logc r, the following holds. We can use α · log k random bits
to explicitly partition [r] into m = Θ(kb) sets T1, . . . , Tm such that for any independent sources X on
({0, 1}`)r with total min-entropy k,

Pr
[
∀i, k1−b/2 ≤ H∞(XTi) ≤ 3k1−b

]
≥ 1−O(k−b).

Now we will use this partitioning to construct a seeded extractor for total-entropy independent sources
that uses a small seed. As in [GRS06] once we partition the source, we apply an extractor to each part. The
extractor we will use is our sum mod p extractor.
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Theorem 7.14. For any constant 0 < α < 1, there exist constants c > 0 and 0 < b < 1/2 (both depending
on α) such that for any r ≥ 16, k ≥ logc r, 0 < δ ≤ 1 and 2` ≤ k(1−b)/2/(c

√
log k2b), the following

holds. There is a polynomial-time computable seeded ε-extractor E : ({0, 1}`)r × {0, 1}s → {0, 1}m for
independent sources on ({0, 1}`)r with total min-entropy k, with s = α·log k,m = Θ(kb`) and ε = O(k−b).

Proof. As stated above, E works by first partitioning the input x into m′ = Θ(kb) parts T1, . . . , Tm′ using
Corollary 7.13. Next we find the next largest prime p ≥ 2`, which by Bertrand’s postulate is at most 2 · 2`,
so we can find it efficiently by brute force search. Then for each Ti we compute zi =

∑
j∈Ti xj mod p and

output z = z1, . . . , zm′ .
Let Z be the distribution of the output string z. Let A be the “good” event that all sets Ti have entropy

at least k1−b/2. Then we decompose Z as

Z = Pr[Ac] · (Z|Ac) + Pr[A] · (Z|A).

Now by Corollary 7.13, Pr[A] ≥ 1−O(k−b). By Corollary 6.7, (Z|A) ism′ ·2−Ω(k1−b/22`) close to uniform.
Since 22` ≤ k1−b/(c2 log k2b), (Z|A) is O(k−b) close to uniform. Thus by Lemma 2.4, Z is O(k−b) close
to uniform.

Now we are ready to combine these ingredients using Theorem 7.8 to get an improved extractor.

Theorem 7.15. There exist constants c > 0 and 0 < b < 1/2 such that for k ≥ logc r and 2` ≤
k(1−b)/2/(c

√
log k2b), the following holds. There exists a polynomial-time computable ε-extractor E :

({0, 1}`)r → {0, 1}m for independent sources on ({0, 1}`)r with total min-entropy k, where m = Θ(kb`)
and ε = O(k−b).

Proof. Use Theorem 7.8 together with the sampler from Lemma 7.11, the deterministic extractor from
Corollary 6.7, and the seeded extractor from Theorem 7.14

This still doesn’t get all of the entropy out of the source, but now we have a long enough output that we
can use the seeded extractor from Theorem 7.9 to get the rest of the entropy, which proves Theorem 1.9.

Proof. (Of Theorem 1.9.) Use Theorem 7.8 together with the sampler from Lemma 7.11, the deterministic
extractor from Theorem 7.15, and the seeded extractor from Theorem 7.9.

8 Nonconstructive Results

In this section, we describe nonconstructive results for both small-space and total-entropy independent
sources. We show that a randomly chosen function is an extractor for each of these classes of sources
with high probability, and is able to extract almost all of the entropy even when the entropy is logarithmi-
cally small. In particular, this argument shows that a function achieving these parameters exists. To do so we
use a standard argument that shows that a randomly chosen function is an extractor for any class of sources
that is not too large, as long as the sources in the class are close to having high min-entropy.5

5In fact, if we wish to save randomness in selecting the function, then [TV00, Dod00a] showed that we can get a similar result
by using a random d-wise independent function instead of a completely random function. However, the parameters proved there
are not quite as good as in Theorem 8.1.
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Theorem 8.1. Suppose we have a set X of random sources on {0, 1}n and ε > 0 such that ∀X ∈ X , there
is a source X ′ with |X ′−X| ≤ ε

2 and H∞(X ′) ≥ k. Then, with probability 1− exp(−Ω(2kε2)) a function
chosen uniformly at random is an extractor for X as long as k ≥ log(2m + log |X |) + 2 log(1/ε) + O(1).
In particular, as long as k ≥ log log |X |+ 2 log(1/ε) + O(1), we can extract m = k − 2 log(1/ε)− O(1)
bits.

We need the following Chernoff bound to prove Theorem 8.1.

Lemma 8.2. Let Z1, . . . , Zr be independent indicator random variables such that Pr[Z1 = 1] = pi. Let
Z =

∑n
i=1 aiZi where 0 ≤ ai ≤ 1 for all i, and let µ = E[Z]. Then for any 0 < ε ≤ 1

Pr[|Z − µ| ≥ εµ] < 2 exp(−µε2/3).

Proof. (of Theorem 8.1) We’ll first use Lemma 8.2 to show that a random function is a good extractor for a
single source, and then apply the union bound.

Let f : {0, 1}n → {0, 1}m be chosen uniformly at random from all functions from n bits to m bits. Fix
X ∈ X and S ⊂ {0, 1}m. Let X ′ be such that |X ′ −X| ≤ ε/2 and H∞(X ′) ≥ k. Let Zx be the indicator
random variable for whether f(x) ∈ S. Let

Z = 2k Pr
x←RX′

[f(x) ∈ S] =
∑

x∈supp(X′)

(2k Pr[X ′ = x])Zx

Note that the coefficients 2k Pr[X ′ = x] are in the interval [0, 1]. Since the function f is chosen uni-
formly at random, the random variables Zx are independent, and E[Z] = 2k|S|/2m. Thus we can apply
Lemma 8.2 to get

Pr
f

[∣∣∣∣ Pr
x∈X′

[f(x) ∈ S]− |S|
2m

∣∣∣∣ ≥ ε′ |S|2m

]
= Pr

f

[∣∣∣∣Z − 2k|S|
2m

∣∣∣∣ ≥ ε′ 2k|S|2m

]
≤ 2 exp

(
−ε′2 2k|S|

3 · 2m

)
Making the change of variables ε′ = ε2m/|S|, we get that for any fixed set S, we proved that

Pr
f

[|Pr[f(X ′) ∈ S]− Pr[Um ∈ S]| ≥ ε/2] ≤ 2 exp

(
−
(
ε2m

2|S|

)2 2k|S|
3 · 2m

)
= 2 exp

(
−ε

22k2m

12|S|

)
Recall that |f(X ′) − Um| = maxS{|Pr[f(X ′) ∈ S] − |S|/2m|}. By the union bound over all sets

S ⊂ {0, 1}m and all X ∈ X , and since 2m/|S| ≥ 1,

Pr
f

[max
S
{|f(X ′)− Um| ≥ ε/2}] ≤ 2 exp

(
−ε22k/12

)
22m |X |

Now whenever f does satisfy |f(X ′) − Um| < ε/2, we have that |f(X) − Um| < ε/2 + ε/2 = ε.
Setting the above error to 1/22m |X | and solving for k, we get that a function chosen uniformly at random is
an extractor for |X | with probability 1− 1/22m |X | as long as k ≥ log(2m + log |X |) + 2 log(1/ε) +O(1).
In particular, as long as k ≥ log log |X | + 2 log(1/ε) + O(1), we can extract m = k − 2 log(1/ε) − O(1)
bits.
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8.1 Small-Space Sources

Since the probabilities on the edges in small-space sources can be any real number in [0, 1], there are an
infinite number of such sources, and so we cannot directly apply Theorem 8.1. We instead introduce a more
restricted model to which we can apply Theorem 8.1, and show that general small-space sources are close
to convex combinations of this more restricted model. The more restricted model we consider restricts all
probabilities to be a multiple of some α.

Definition 8.3. An α-approximate space s source is a space s source where the probabilities on all edges
are multiples of α.

Note that α must be a reciprocal of an integer for the above definition to be achievable.
We’ll show that any rate δ small-space source is a convex combination of α-approximate small-space

sources, each of which is close to the original source. Thus any extractor that works on α-approximate
sources that are close to having rate δ will also be an extractor for rate δ small-space sources.

Lemma 8.4. Let X be a space s source on {0, 1}n with min-entropy rate δ, and let α = 1/d for some
d ∈ N. Then the source X is a convex combination of α-approximate space s sources, each of which has
distance at most αn2s to X .

Proof. We can write X as a convex combination of sources Xa such that each Xa is obtained from X by
replacing each edge probability p in the branching program for X with either b pαcα or (b pαc+ 1)α.

We will show that Xa is close to X via a hybrid argument. Let Xi
a be the hybrid generated by the

branching program whose first i layers are as in the branching program for X and the rest are is in the
branching program for Xs. So X = X0

a and Xa = Xn
a . Then |X − Xa| = |

∑n
i=1(Xi−1

a − Xi
a)| ≤∑n

i=1 |Xi−1
a −Xi

a|.
For each term |Xi−1

a −Xi
a| the only difference is in the probabilities on the edges in the ith layer, which

each differ by at most α. We fix i and calculate this distance. Let vi,j denote the jth vertex in the ith layer.
Let qi−1,j denote the probability of reaching vi−1,j in Xa and p0

j,j′ (p1
j,j′) denote the probability on the 0 (1)

edge from vi−1,j to vi,j′ in X . Then

|Xi−1
a −Xi

a| ≤
1
2

∑
j,j′

qi−1,j((p0
j,j′ + α− p0

j,j′) + (p1
j,j′ + α− p1

j,j′)) ≤ α
∑
j′

∑
j

qi−1,j = α
∑
j′

1 = α2s.

So the overall error is bounded by |X −Xa| ≤
∑n

i=1 α2s = αn2s.

Lemma 8.5. The number of α-approximate space s sources on {0, 1}n is less than 2(s+1)2sn/α.

Proof. First count the number of possible edge configurations from any given vertex. There are 2s+1 pos-
sible edges, since there is a 0 edge and a 1 edge for each of the 2s vertices in the next layer. Since all
probabilities are multiples of α, there are less than (2s+1)1/α ways to allocate probabilities to these edges.
(For each of the 1/α “units” of probability, we can assign it to one of the 2s+1 edges.) Since there are n
layers and 2s vertices at each layer, the total number of possible sources is 2(s+1)2sn/α.

Now we invoke Theorem 8.1 to show that a random function is a good extractor for small-space sources.

Theorem 8.6 (Thm. 1.5, restated). For space s sources with min-entropy k, a function f : {0, 1}n →
{0, 1}m chosen uniformly at random is an ε-extractor with output length m = k − 2 log(1/ε)− O(1) with
probability at least 1− exp(−Ω(2kε2)), as long as k ≥ 2s+ log s+ 2 log n+ 3 log(1/ε) +O(1).
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This theorem says that extractors exist for sources with space almost as large as k/2 and with min-
entropy as low as Θ(log n). This factor of 2 in the relationship between space and min-entropy is necessary,
as we’ll see shortly. On the other hand, note that if we restrict to α-approximate space s sources for a fixed
constant α (e.g. α = 1/2), then we can reduce the bound to k ≥ s+ log s+ log n+ 2 log(1/ε) +O(1).

Proof. First apply Lemma 8.4 with α = ε/n2s+1 to show that the each small-space source X is a convex
combination of α-approximate sources that are ε/2 close to X . Then apply Theorem 8.1 to the set of α-
approximate sources that are ε/2 close to having min-entropy k, using Lemma 8.5 as the bound on the
number of such sources (since this set is a subset of all α-approximate space s sources). Since each min-
entropy k space s source is a convex combination of these α-approximate sources, the extractors given by
Theorem 8.1 also work with these sources.

To see that the factor of 2 is necessary, we show that our model of a space s source can sample an
arbitrary distribution of length ` = 2s (actually even 2s+1). It is known [CG88] that there is no deterministic
extractor that works for all sources of length ` and min-entropy ` − 1. (Indeed, for every Ext : {0, 1}` →
{0, 1}m, there is a source Z of min-entropy `−1 on which the first bit of Ext(Z) is constant.) The following
space s source samples an arbitrary source (X,Y ), where X and Y are each of length s.

1. In the first layer, choose x according to X , output the first bit of x, and move to state x.

2. In the next s− 1 steps, output the remaining bits of x, and remain in state x.

3. In the next layer, choose y according to the distribution (Y |X = x), output the first bit of y, and move
to state y.

4. In the next s− 1 steps, output the remaining bits of y and remain in state y.

8.2 Total-Entropy Independent Sources

We can also apply Theorem 8.1 to total-entropy independent sources. Similarly to the small-space case, we
define an intermediate model to reduce the number of sources.

Definition 8.7. An approximate flat source X is a source in which all elements of supp(X) have the same
probability, except for at most one exceptional string x∗. If the probability of x∗ is an integer multiple of α,
we call X an α-approximate flat source.

An α-approximate flat independent source X1, . . . , Xr on ({0, 1}`)r is an independent source such that
for every i, Xi is an α-approximate flat source.

The following lemma allows us to restrict our attention to α-approximate independent sources. We’ll
show that any total-rate δ independent-symbol source is a convex combination of α-approximate indepen-
dent sources, each of which is close to the original source.

Lemma 8.8. Let X = X1, . . . , Xr be an independent source on ({0, 1}`)r of total entropy k. For every
α > 0, X is rα-close to a convex combination of α-approximate flat independent sources, each of which is
rα-close to some independent source of total entropy k.

32



Proof. For each i, let ki be the min-entropy ofXi, so
∑

i ki = k. Xi can be written as a convex combination
of approximate flat sources of min-entropy ki.6 This induces a decomposition ofX as a convex combination
of approximate flat independent sources X ′ of min-entropy k. For each such X ′ = (X ′1, . . . , X

′
r), we can

round the probabilities of the r exceptional strings to integer multiples of α while paying αr in statistical
distance.

Lemma 8.9. The number of α-approximate flat independent sources on ({0, 1}`)r is less than (22` ·2`/α)r.

Proof. To specify an α-approximate flat independent sources on ({0, 1}`)r, we can specify each of its r
components, each of which is specified by the exceptional string (2` possibilities), the probability mass of
the exceptional string (at most 1/α possibilities) and the support of the distribution (at most 22` possibilities).

Now we can apply Theorem 8.1 to show that a random function is a good extractor for total-rate δ
independent sources.

Theorem 8.10 (Thm. 1.10, restated). For total-entropy k independent sources, a function f : ({0, 1}`)r →
{0, 1}m chosen uniformly at random is an ε-extractor with output length m = k − 2 log(1/ε)− O(1) with
probability 1− exp(−Ω(2kε2)) as long as k ≥ max{`, log log(r/ε)}+ log r + 2 log(1/ε) +O(1).

Note that the k > ` is necessary because otherwise all of the entropy could be contained within a single
source, which we know is impossible to extract from. Thus, the bound in this theorem is close to the best
we could hope for.

Proof. First apply Lemma 8.8 with α = ε/(2r) to show that the each total-entropy k independent source
X is a convex combination of α-approximate flat independent sources of total-entropy k that are ε/2 close
to having min-entropy k. Then apply Theorem 8.1 to the set of α-approximate total-entropy k independent
sources that are ε/2 close to having min-entropy k, using Lemma 8.9 as the bound on the number of such
sources (since this set is a subset of all α-approximate independent sources). Since each total-entropy
k independent source is a convex combination of these α-approximate sources, the extractors given by
Theorem 8.1 also work with these sources.

9 Doing Better For Width Two

We consider the case of space 1 (width 2) sources where the output bit is restricted to be the same as the
label of the next state, which we will call restricted width two sources. For such sources, we can improve
our results by decreasing the alphabet size in the total-entropy independent sources. This will allow us to
extract from smaller entropy rates. We will need the following class of sources.

Definition 9.1. A previous-bit source X on {0, 1}n with min-entropy k has at least k uniformly random
bits Xi and the rest of the bits Xj are functions of the previous bit (i.e. Xj = Xj−1, Xj = ¬Xj−1, Xj = 0,
or Xj = 1).

6It is well-known that if 2ki is an integer, then Xi is a convex combination of standard flat sources (with no exceptional string).
The general case is proven in the same way: the set of sources of min-entropy at least ki is a convex polytope defined by the
inequalities ∀x 0 ≤ px ≤ 2−ki and

P
x px = 1. Every element of the polytope is a convex combination of the vertices of

the polytope, which are the points that make a maximal set of inequalities tight, which in turn correspond to the approximate flat
sources of min-entropy ki. We note that rounding 2ki down to the nearest integer to get standard flat sources may cost too much
entropy (e.g. in the case when the sources are of length 1, so ki ∈ [0, 1]).
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We will show that restricted width two sources are close to a convex combination of previous-bit sources,
and then show that these previous bit sources can be converted into total-entropy independent sources with
small alphabet size.

9.1 Extracting From Previous-Bit Sources

To convert a previous-bit source to a total-entropy independent source, we first divide the source into blocks
as before, but instead of simply viewing each block as a binary number, we apply a function to reduce the
alphabet size while still maintaining some of the entropy. Specifically, we will show that if a block has at
least one random bit, then the output symbol will have at least one bit of entropy. The main lemma is as
follows.

Lemma 9.2. Any length n previous-bit source X with min-entropy k can be converted in polynomial time
to a convex combination of flat independent sources on ({0, 1}`)r with min-entropy k′, where r = k/2,
k′ = k2/4n and ` = dlog (2n/k + 1)e.

The following lemma shows that any block that contains at least one random bit will give a random
source.

Lemma 9.3. For every t ∈ N, there is a polynomial-time computable function f : {0, 1}t → {0, 1}dlog(t+1)e

so that for any previous-bit source Y on {0, 1}t with exactly one random bit, f attains different values
depending on whether the random bit in Y is set to 0 or 1.

Proof. For 0 ≤ i ≤ t, let zi ∈ Zdlog(t+1)e
2 be the standard representation of i as a vector over Z2. (More

generally, we only require the zi to be distinct vectors.) Then f(y) =
∑t

i=1 yi(zi − zi−1) ∈ Zdlog(t+1)e
2 .

Let y0 (y1) be Y with the random bit set to 0 (1). Now we show that f(y0) 6= f(y1). We see that

f(y0)− f(y1) =
t∑
i=1

(y0i − y1i)(zi − zi−1).

It’s easy to see that y0i−y1i will be 0 for all fixed bits and 1 whenever the random bit or its negation appears
(as addition is modulo 2). For our sources, all appearances of the random bit must appear consecutively.
This means that if the random bit appears from positions j through k, f(y0)− f(y1) = zk − zj−1, since all
of the other terms cancel. Thus since zk 6= zj−1, f(y0)− f(y1) 6= 0.

Now we can prove Lemma 9.2.

Proof. Divide X into r = k/2 blocks of size n/r = 2n/k. Then apply the function f from Lemma 9.3 to
each block to get Y .

To see that this works, fix all of the random bits that cross between blocks. Also, for each block fix all
but one of the random bits that are contained within the block. Now X is a convex combination of all of the
sources given by every possible such fixing. Let X ′ be a source corresponding to one particular fixing. We
will show that if we apply f to every block of X ′, we will get a source with enough random blocks. Any
block of X ′ with a random source is a previous-bit source with one random bit, so we can apply Lemma 9.3
to see that the output of f on this block is uniformly chosen from among two different strings, as desired.

Now we just need to see how many blocks with at least one random bit there are. There can be at most r
random bits that cross between blocks. So removing those bits we are left with at least k− r = k/2 random
bits. These k/2 random bits must be contained in at least k′ = (k/2)/(n/r) = k2/4n different blocks,
which gives us the desired bound.
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Now we can combine Theorem 1.8 and Lemma 9.2 to get an extractor for previous-bit sources.

Theorem 9.4. There exists a polynomial-time computable ε-extractor for the set of previous-bit sources of
length nwith min-entropy k that outputsm ≥ k2/8n bits and has error ε = exp(−Ω(bk5/(n4 log(n/k) log3 kc))).

Proof. Given a source X , apply Lemma 9.2 to convert X into a convex combination of flat independent
sources on ({0, 1}`)r with total min-entropy k′, where r = k/2, k′ = k2/4n, and ` = dlog (2n/k + 1)e.
Then apply the extractor from Theorem 1.8 with ζ = k2/(8n · r`).

9.2 Restricted Width Two Sources As Convex Combinations Of Previous-Bit Sources

To show we can extract from restricted width two sources, we will prove that these sources can be viewed
as convex combinations of previous bit sources. With high probability, these previous-bit sources will have
sufficient entropy so that our extractor from the previous section will work.

Lemma 9.5. Any length n restricted width two source X with min-entropy k is a convex combination of
length n previous bit sources Zj so that at least a 1− 2−k/4− e−9(k′)2/2n fraction of the sources Zj have at
least k′ = min(k/48 log(n/k), k/96) random bits.

To get our extractor, we just combine this lemma with the extractor from Theorem 9.4.

Theorem 9.6. There exists a polynomial-time computable ε-extractor for the set of length n restricted width
two sources with min-entropy k that outputs m = Ω(k2/n(max(log(n/k), 1))2) bits and has error ε =
exp(−Ω((k′)5/(n4 log(n/k′) log3 k′), where k′ = min(k/48 log(n/k), k/96).

Proof. By Lemma 9.5 our source X is 2−k/4 + e−9(k′)2/2n close to a convex combination of length n
previous-bit sources with k′ = min(k/48 log(n/k), k/96) random bits. We can then apply the extractor
from Theorem 9.4 to get out m = (k′)2

8n = Ω(k2/n(max(log(n/k), 1))2) bits.

Notice that here we only need k � n4/5 whereas all of our extractors for general small-space sources
require k � n1−η for some small constant η.

In order to prove Lemma 9.5, we now describe how to express the restricted width two source X as
a convex combination of previous-bit sources Zj . This is done recursively on the layers of the branching
program for the source. We say we are in a given state at each layer; either “open”, “closed at 0”, or “closed
at 1”. Each sequence of states corresponds to a previous-bit source. The way we divide the next layer up
depends on the state we are in. The high level picture is that each random bit corresponds to going into the
open state, which we are in until we get a fixed bit, which takes us to the corresponding closed state. We
stay closed until another random bit occurs. An example is shown in Figure 3.

Let X = (X1, . . . , Xn) be the bits of our restricted width 2 source. We will define (correlated) random
variables G = (G1, . . . , Gn) ∈ {0, 1, ∗}n (to represent the states) and X ′ = (X ′1, . . . , X

′
n) ∈ {0, 1}n such

that:

1. X ′ is identically distributed to X .

2. For every g = (g1, . . . , gn) in the support of G, X ′|G=g is a previous-bit source.

3. For every g = (g1, . . . , gn), if gi ∈ {0, 1}, then X ′i|G=g is always equal to gi. In such a case, we say
“Xi is closed at gi.”
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0

1

Closed at 0 Open Closed at 1 Closed at 0

Figure 3: A previous-bit source viewed as a restricted width two source. This source consists of the bits
0, 0, r, r, r, 1, 0, where r is a random bit.

4. For every g = (g1, . . . , gn), if gi = ∗, then X ′i|G=g is a uniformly random bit (possibly equal to the
previous bit or its negation). In such a case, we say “Xi is open.”

Then it follows that X is a convex combination of the random variables X ′|G=g, where these are weighted
according to Pr[G = g].

We construct X ′i and Gi inductively conditioned on the values of X ′i−1 = x′i−1 and Gi = gi−1. To do
this, we consider the following transition probabilities, shown in Figure 4.

pi0 = Pr[Xi = 0|Xi−1 = 0]
pi1 = Pr[Xi = 1|Xi−1 = 0]
qi0 = Pr[Xi = 0|Xi−1 = 1]
qi1 = Pr[Xi = 1|Xi−1 = 1]

0

1

pi0

pi1

qi0

qi1

Figure 4: The probabilities for a single bit of a restricted width two source.

First, we describe what happens if we are currently in the open state (i.e. gi−1 = ∗). We become
closed at 0 (i.e. we set X ′i = Gi = 0) with probability min(pi0, qi0). We become closed at 1 (i.e. we set
X ′i = Gi = 1) with probability min(pi1, qi1). Otherwise, we stay open (i.e. set Gi = ∗), and consider the
remaining probabilities, namely p′ib = pib−min{pib, qib} and q′ib = qib−min{pib, qib} for b ∈ {0, 1}. Then
we have either p′i0 = q′i1 = 0, in which case we set X ′i = ¬xi−1, or we have p′i1 = q′i0 = 0, in which case
we set X ′i = xi−1.

If we are closed at 0 (i.e. gi−1 = 0), then with probability 2 min(pi0, pi1), we go into the open state (i.e.
set Gi = ∗ and X ′i to be a uniformly random bit). If pi0 < pi1, then with probability 1 − 2pi0, we go into
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the closed at 1 state (i.e. we set X ′i = Gi = 1). Otherwise, with probability 1− 2pi1, we go into the closed
at 0 state (i.e. set X ′i = Gi = 0).

If we are closed at 1 (i.e. gi−1 = 1), then with probability 2 min(qi0, qi1), we go into the open state (i.e.
set Gi = ∗ and X ′i to be a uniformly random bit). If qi0 < qi1, then with probability 1 − 2qi0, we go into
the closed at 1 state (i.e. set X ′i = Gi = 1). Otherwise, with probability 1− 2qi1, we go into the closed at 0
state (i.e. set X ′i = Gi = 0).

Now we show that with high probability, the sources in the convex combination have sufficient min-
entropy. We do this by looking at the relationships between paths in the original source X and the min-
entropy of the Zj . First, note that each path in the branching program corresponds to an output value of X ,
so each path has probability at most 2−k. Note that the min-entropy of Zj is equal to the number of openings
in Zj .

Every node has a more probable edge and a less probable edge exiting it (breaking ties arbitrarily), where
the probabilities are according to distribution X . We will show how the number of less probable edges on a
path in X relates to the min-entropy of a Zj that contains this path. First note that every less probable edge
corresponds to either an opening, a closing, or what we call a “false closing”. A false closing is defined as
transitioning from the open state to the open state yet still taking a less probable edge. Let C(Zj) denote
the number of closings in Zj , A(Zj) denote the number of openings, and B(Zj) denote the number of false
closings.

If we could ignore the false closings, then it would suffice to show that with high probability, we take
the less probable edge a large number of times. Since C(Zj) ≤ A(Zj), this would imply that with high
probability A(Zj) is large, and thus the Zj have large min-entropy with high probability. To take account of
the false closings, we also have to show that there aren’t too many of them, which we will do by a martingale
argument.

First, we show that with high probability over all paths in X , we take the less probable edge a large
number of times.

Lemma 9.7. For any length n restricted width two source with min-entropy k, the total probability of all
paths that have at most t = min(k/(8 log(n/k)), k/16) less probable edges is less than 2−k/4.

Proof. Since the source has min-entropy k, each path has probability at most 2−k. There are
(
n
i

)
paths that

have i least probable edges. Thus the total probability of all paths that have at most t less probable edges is
at most

2−k
t∑
i=0

(
n

i

)
≤ 2−k2nH(t/n) < 2−k+2t log(n/t)

where H(t/n) is the standard Shannon entropy H(p) = −p log p− (1− p) log(1− p).
Suppose k ≤ n/4. Then t, as defined in the lemma is equal to k/(8 log(n/k)), so

2t log
n

t
=
k

4

(
1 +

log(8 log n
k )

log n
k

)
≤ 3k

4
.

If k > n/4, then t = k/16, so

2t log
n

t
=
k

8

(
4 + log

n

k

)
≤ 3k

4
.

Thus the probability of taking at most t less probable edges is at most 2−k+2t log(n/t) ≤ 2−k/4.
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To show that the number of false closings is small, we first define a submartingale that is equal to the
number of closings minus the number of false closings after the first i bits. Then we use the following simple
variant of Azuma’s inequality for submartingales (see [Wor99] for a proof).

Definition 9.8. A stochastic process Y0, Y1, . . . is a submartingale with respect to a stochastic process
G0, G1, . . . if

E[Yi+1|G0, G1, . . . , Gi] ≥ Yi

for all i ≥ 0.

Lemma 9.9. Let Y0, Y1, . . . , Yn be a submartingale with respect to G0, G1, . . . , Gn, where Y0 = 0 and
|Yi − Yi−1| ≤ 1 for i ≥ 1. Then for all α > 0,

Pr[Yn ≤ −α] ≤ e−α2/2n.

Now we are ready to prove that with high probability the number of false closings can’t be too large.

Lemma 9.10. For all α > 0,

Pr[B(Zj) ≥ C(Zj) + α] ≤ e−α2/2n.

Proof. Let Yi be the number of closings fromX1, . . . , Xi minus the number of false closings fromX1, . . . , Xi

and let Y0 = 0. Let G0, G1, . . . , Gn be the states as defined earlier.
Now we show that Y0, . . . , Yn is a submartingale with respect to G0, G1, . . . , Gn. If Gi = 0 or 1, then

we have no closings or false closings at i + 1, so E[Yi+1|G0, G1, . . . , Gi] = Yi. We show that if Gi = ∗,
then the probability of closing is greater than 1/2, and in particular is greater than the probability of a false
closing. This would imply that E[Yi+1|G0, G1, . . . , Gi] ≥ Yi, as desired. First, note that the probability of
closing at i+ 1 is

min(pi+1,0, qi+1,0) + min(pi+1,1, qi+1,1) = min(pi+1,0 + qi+1,1, qi+1,0 + pi+1,1).

Suppose without loss of generality that pi+1,0 + qi+1,1 ≥ qi+1,0 + pi+1,1, so we close with probability
qi+1,0 + pi+1,1. In this case, the edges we would take in a false closing are the 00 and 11 edges. So if we
have a false closing, either pi+1,0 ≤ 1/2 or qi+1,1 ≤ 1/2, which implies either pi+1,1 ≥ 1/2 or qi+1,0 ≥ 1/2,
and thus the probability of closing is at least 1/2.

By the definition of Yi, |Yi − Yi−1| ≤ 1, so we can apply Lemma 9.9 to get

Pr[Yn ≤ −α] ≤ e−α2/2n,

which implies the desired result.

Now we are finally ready to prove Lemma 9.5.

Proof. (Of Lemma 9.5.)
First, express the restricted width two source X as a convex combination of previous-bit sources Zj as

described previously, so X =
∑

j αjZj . Now look at a randomly chosen Zj , chosen with probability αj .
The number of random bits in Zj is equal to the number of openings A(Zj). Since the number of closings is
either equal to or one less than the number of openings, either C(Zj) = A(Zj) or C(Zj) = A(Zj)− 1. So
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if we can prove with high probability that C(Zj) is large, then with high probability the number of random
bits in Zj is also large. For every path in Zj , every less probable edge on the path corresponds to either an
opening, a closing, or a false closing. Thus the probability that A(Zj) +B(Zj) + C(Zj) ≥ s is at least the
probability over all paths that the path has at least s least probable edges. Thus we can apply Lemma 9.7
and get

Pr[B(Zj) + 2C(Zj) ≥ s− 1] ≥ Pr[A(Zj) +B(Zj) + C(Zj) ≥ s] > 1− 2−k/4

for s = min(k/8 log(n/k), k/16).
By Lemma 9.10,

Pr[B(Zj) < C(Zj) +
s

2
] ≥ 1− e−s2/8n.

With high probability both of these events occur, so

Pr[C(Zj) ≥
s

6
] ≥ 1− 2−k/4 − e−s2/8n.

Acknowledgment

In this special issue in honor of Dick Karp’s Kyoto Prize, we would like to recognize Dick’s tremendous
contributions to theoretical computer science. His notable contributions to probabilistic analysis and ran-
domized algorithms are most relevant for this paper. The last author in particular is grateful for learning a
lot of probability from Dick’s excellent courses.

We thank the anonymous referee for many helpful comments.

References

[AS00] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley–Interscience Series, John Wiley
& Sons, Inc., New York, 2000.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, April 1988.

[BGK06] J. Bourgain, A. Glibichuk, and S. Konyagin. Estimates for the number of sums and products
and for exponential sums in fields of prime order. J. London Math. Soc., 73(2):380–398, 2006.

[BIW06] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent
sources. SIAM Journal on Computing, 36:1095–1118, 2006.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
independence: new constructions of condensers, ramsey graphs, dispersers, and extractors. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10, 2005.

[Blu86] M. Blum. Independent unbiased coin flips from a correlated biased source: a finite Markov
chain. Combinatorica, 6(2):97–108, 1986.

39



[BOL90] M. Ben-Or and N. Linial. Collective coin flipping. In S. Micali, editor, Randomness and
Computation, pages 91–115. Academic Press, New York, 1990.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. Inter-
national Journal of Number Theory, 1:1–32, 2005.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings of the
35th Annual IEEE Symposium on Foundations of Computer Science, pages 276–287, 1994.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-resilient
functions and all-or-nothing transforms. In Bart Preneel, editor, Advances in Cryptology — EU-
ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 453–469. Springer-
Verlag, May 2000.

[CFG+85] B. Chor, J. Friedman, O. Goldreich, J. Håstad, S. Rudich, and R. Smolensky. The bit extrac-
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