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Abstract

We consider the problem of providing a resolution
proof of the statement that a given graph with n ver-
tices and An edges does not contain an independent
set of size k. For randomly chosen graphs with con-
stant A, we show that such proofs almost surely re-
quire size exponential in n. Further, for A = o(n'/?)
and any k < n/5, we show that these proofs almost
surely require size on’ for some global constant § > 0,
even though the largest independent set in graphs with
A = nl/5 is much smaller than n/5. Our result shows
that almost all instances of the independent set problem
are hard for resolution. It also provides a lower bound
on the running time of a certain class of search algo-
rithms for finding a largest independent set in a given
graph.

1. Introduction

The problem of determining if a given graph contains
an independent set of a certain size is NP-complete and
thus the dual problem of determining non-existence of
independent sets of that size in a given graph is co-NP-
complete. For a graph chosen at random, its indepen-
dent sets have nice combinatorial properties; the size
of the largest such independent set can be described in
terms of simple graph parameters [6, 15]. This gives us
a good range of sizes such that graphs chosen at random
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almost surely do not have an independent set of size in
this range. We study the problem of proving this fact
under a fixed proof system.

Influenced by algorithms of Tarjan and Tro-
janowski [19, 20] for finding maximum independent
sets, Chvatal [8] devised a specialized proof system for
the independent set problem and proved almost certain
exponential lower bounds for proofs of non-existence
of large independent sets in random graphs with a lin-
ear number of edges in this system. Chvatal’s system
also captures the more recent improved algorithms of

. Jian [16] and Robson [18], the latter of which has the
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current record for such algorithms.

Given a graph G and an integer k, we consider en-
coding the existence of an independent set of size & in
G as a CNF formula and examine the proof complexity
of such formulas under resolution proofs. Resolution on
one of the encodings we present captures the behavior
of a fairly broad class of search algorithms on the corre-
sponding graphs. In particular, the bounds we prove for
resolution complexity also imply similar lower bounds
in Chvital’s system. We show that given a randomly
chosen graph with not too many edges, almost surely a
resolution proof of the statement that this graph does not
have an independent set of a certain size must be expo-
nential. This gives us an exponential lower bound on the
running time of a natural class of algorithms for search-
ing for a largest independent set in a given graph. This is
also interesting because it shows lower bounds for ran-
dom formulas with significant structure as opposed to
the unstructured random k-CNF formulas for which res-
olution bounds have previously been shown [9, 3]. In
this sense, it adds to the random graph k-coloring exam-
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ple for which exponential resolution lower bounds are
already known [2].

Instead of looking at the general problem of dis-
proving the existence of any large independent set in a
graph, we focus only on a restricted class of indepen-
dent sets that we call block-respecting independent sets.
We prove that even ruling out this smaller class of inde-
pendent sets requires exponential size resolution proofs.
These restricted independent sets are simply the ones
obtained by dividing the n vertices of the given graph
into k blocks of equal size (assuming n is a multiple of
k) and choosing one vertex from each block. Since it
is easier to rule out a smaller class of independent sets,
the lower bounds we obtain for the restricted version are
stronger in the sense that they imply lower bounds for
the general problem. Further, the independent set prob-
lem encoded in terms of block-respecting independent
sets also captures Chvital’s proof system and hence our
lower bounds also apply to proofs in his system, as well
as to a number of algorithms that his system captures
[16, 18, 19, 20]. Towards the end, we give a simple up-
per bound for the general problem based on expected
sizes of independent sets in random graphs.

Most known resolution complexity lower bounds can
be proved using a general technique that is shown by
Ben-Sasson and Wigderson [5] and is derived from ear-
lier papers by Haken [13] and Clegg, Edmonds and Im-
pagliazzo [10]. It is based on a relationship between
the size of resolution proofs and the width, the length
of the longest clause, in such proofs. It uses the prop-
erty that any resolution proof for a given problem must
contain clauses that are minimally implied by a middle-
size fraction of the relevant input clauses and that any
such derived clauses must have large width. Therefore
we begin by analyzing the width of any resolution proof
saying that a graph does not have an independent set of
a certain size and then apply the width-size relationship
of [5] to get good lower bounds on tree-like and general
resolution proof sizes.

The proof of the width bound can be broadly divided
into two parts, both of which use the fact that random
graphs are almost surely locally sparse. We first show
that the minimum number s of input clauses that are
needed for any refutation of the problem is large for
most graphs. We then use combinatorial properties of
independent sets in random graphs to say that any clause
minimally implied by a middle-size subset of these s
clauses has to be large. These together allow us to say
that the width of any such proof has to be large.
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2. Resolution and DLL Proofs

A propositional formula F is said to be in conjunc-
tive normal form (CNF) if it is a conjunction of clauses,
where each clause is a disjunction of literals and each
literal is either a variable or its negation. Resolution is
a very simple proof system for CNF formulas. It forms
the basis of most popular systems for practical theorem
proving. Lower bounds on resolution proof sizes thus
have a bearing on the running time of these algorithms.
The construction of Tseitin [21] can be used to effi-
ciently convert any given propositional formula to one
in CNF form. Hence we don’t lose much by restricting
ourselves to CNF formulas.

21 General Resolution

To prove that a given input CNF formula F is unsat-
isfiable, we start with the original input clauses of F" and
repeatedly pick pairs of clauses to apply the resolution
rule: given (AVz) and (BV-), one can derive (AV B).
It is clear that a derived clause will be satisfied by any
assignment that satisfies both the parent clauses. Since
we are interested in proving that F' is unsatisfiable, the
goal is to start with F" and derive the empty (and trivially
unsatisfiable) clause A.

Let ¢ be a set of clauses. A resolution derivation
from ¢ is a sequence of clauses 7 = C4,Ch,...,C;
where each clause C; is either an element of ¢ or is de-
rived by applying the resolution rule to two clauses C)
and Cy, 7,k < 1, occurring earlier in 7. A resolution
derivation of the empty clause A from ¢ is called a refu-
tation or proof of ¢. Given any resolution refutation, we
can associate with it in a natural way a directed acyclic
graph where edges go from parent clauses to the clause
obtained by resolving them on a certain literal. The spe-
cial case where this graph is a tree is referred to as tree-
like resolution and is discussed in section 2.2.

Let F' be a set of clauses encoding a given problem
as a CNF formula and P a resolution proof. The size of
the proof P, s(P), is the number of clauses appearing
in P. Define the resolution complexity of F, Res(F),
to be the minimum of s(P) over all proofs P of F'; if
no such proofs exist we define Res(F') = co. As shown
in [5] and we will see in section 2.3, resolution complex-
ity is intimately related to another measure of proofs,
their width. Let the width of a clause be the number of
literals occurring in it. Given F and proof P we define
w(F) and w(P) to be the maximum of the widths of all
clauses in F' and P, respectively. Now define width(F’)
to be the minimum of w(P) over all proofs P of F. To
prove a lower bound on Res(F'), it is sufficient to prove
a lower bound on width(F') — w(F).



2.2. Davis-Putnam (DLL) Procedure and Tree-like
Resolution

The Davis-Putnam or DLL procedure [12] is both a
proof system and a collection of algorithms for finding
proofs. A simple Davis-Putnam algorithm to refute a
CNF formula F is to repeatedly pick a variable = of
F and recursively refute both F'|;. o and F'|;1. Vari-
ants of this algorithm form the most widely used family
of complete algorithms for formula satisfiability. As a
proof system, the DLL procedure forms a special case
of resolution where the proof graph is a tree, that is,
any clause that is used more than once in the proof must
be re-derived. The tree-resolution complexity of a given
formula F is defined to be the minimum of s(P), the
size of P, over all tree-like resolution proofs P of F'.

We can think of DLL refutations as trees where we
branch at each node based on the value of a variable.
DLL refutations can be easily converted into tree-like
resolution proofs of essentially the same size, and vice
versa (see, for example, [3]). Given this correspondence,
we will use these two terms interchangeably and de-
note the tree-resolution complexity of a formula F' by
DLL(F). This correspondence also shows that a lower
bound on the size of tree-like resolution proofs also gets
us a lower bound on DLL refutation sizes and hence on
the running time of DLL type algorithms. The transcript
of any algorithm for finding a largest independent set in
a given graph is also a proof that no independent set of a
larger size exists. Our results show that the running time
of any such DLL type algorithms working on randomly
chosen input graphs with not too many edges will almost
certainly be exponential.

Even though we described DLL algorithms here as
working on propositional formulas, they capture a much
more general class of algorithms that are based on
branching and backtracking. For instance, basic algo-
rithms for finding a largest independent set such as that
of Tarjan [19] branch on each vertex by either including
it in the current independent set and deleting itself and
all its neighbors from further consideration, or exclud-
ing it from the current independent set and recursively
finding a largest independent set in the remaining graph.
More complicated algorithms such as that of Tarjan and
Trojanowski [20] branch in a similar manner on small
subsets of vertices, reusing subproblems already solved.
Such algorithms also fall under the category of resolu-
tion type (not necessarily tree-like) algorithms and our
lower bounds apply to them as well.

2.3. The Width-Size Relationship

Our proof uses the relationship between the size and
the width of a resolution proof given by Ben-Sasson and

54

Wigderson [S]. Let F' be any unsatisfiable CNF formula
over n variables with initial width w(F'). Ben-Sasson
and Wigderson showed that any short proof of unsatisfi-
ability of F' can be converted to one of small width, thus
showing that a lower bound on the width of any resolu-
tion proof gets us a lower bound on the size of such a
proof.

Proposition 1 ([51). DLL(F) > 2width(F)-w(F)

Proposition 2 ([5]). Forc=1/(91n2),
RCS(F) > QC(width(F)—w(F))z/n'

3. Independent Sets

For any undirected graph G = (V, E), let n % |V

and m & |E|. A k-independent set in G is a set of
k vertices no two of which are adjacent. We will de-
scribe reasonable ways of encoding in clausal form the
statement that G has a k-independent set. Their refu-
tations will then be proofs that G does not contain any
k-independent set. We will be interested in size bounds

for such proofs. Our results will be in terms of n, k and

de

the graph edge density A defined as A tef m/n.

3.1. Random Graph Models

Combinatorial properties of random graphs have
been studied well, for instance in [6, 15]. We say a prop-
erty holds almost certainly in a random graph if it holds
with probability 1 — o(1) in the number of vertices when
the graph is selected at random according to some dis-
tribution. A property of a graphs is called monotone if
adding more edges to a graph that has the property can-
not prevent it from having that property anymore. It is
called anti-monotone if deleting edges from the graph
that has this property cannot prevent it from having the
property anymore. Thus containing an independent set
of a certain size is an anti-monotone property.

There are various models saying how to pick a graph
with n vertices at random. One could choose a graph
from the distribution G, , where each of the (7;) edges
is chosen independently with probability p. The result-
ing graph has m edges on average if p = m/ (;) One
could also use the distribution G;* where each of the

((31)) graphs with m edges have equal probability of be-
ing chosen. This will guarantee that the resulting graph
has exactly m edges. A third distribution, which we de-
note by Gy, m, is to pick m edges uniformly at random
with replacement and ignore duplicates. The resulting
graph has m — o(m) edges with probability 1 — o(1) in
n.



As shown, for example, in [1],if p = m/(3), then the
almost certain monotone and anti-monotone properties
of graphs are the same under all three models up to a
change from m to m=o(m). The third distribution G,, .,
is the easiest to use in our case. We will therefore use
this throughout, but our results also apply to G, , and
G, We will use the notation G ~ G, to denote a
graph G picked randomly from this distribution.

3.2. Independent Set Sizes

For a graph G with n vertices and An edges, the aver-
age degree over all vertices is 2A. At least half of these
vertices, the ones with low degree, must have degree at
most twice the average, otherwise the high-degree half
fraction of vertices by themselves will contribute more
than 2A to the average. Consider the subgraph G’ in-
duced by these 1/2 low-degree vertices. This subgraph
G’ must have maximum degree at most 4A. Let us re-
peatedly apply the following procedure to G’ until no
vertices are left: pick a vertex v of G’ arbitrarily, put it

in a set I and remove v and all its neighbors from G'. It

is easy to see that the set I is an independent set of G’
of size at least T;Zm - each step removes a vertex and
at most 4A neighbors of it. Moreover, since G’ is an in-
duced subgraph of G, I is also an independent set of G.

This gives us the following simple bound:

Observation 1. Any graph with n vertices and An
edges has an independent set of size 37 ¢x.

Sizes of largest independent sets in random graphs
are in fact known to high accuracy [6, 15]. For e > 0,
let k4 be defined as follows:

A
[A(l X t1-In2xq)

Then we know the following:

Proposition 3 ([15]). For any € > 0, there exists a con-
stant C, such that for Cc < A < n/ log?n, asymptot-
ically almost all graphs chosen at random from G, an
have the largest independent set size between k_. and
k'_,.f.

4. Encoding Independent Sets as Formulas

In order to use a propositional proof system to prove
that a graph does not have an independent set of a par-
ticular size, we first need to formulate the problem as a
propositional formula. This is complicated by the dif-
ficulty of counting set sizes using CNF formulas. One
natural way to encode the independent set problem is to

have variables that say which vertices are in the inde-
pendent set and auxiliary variables that count the num-
ber of vertices in this independent set. We will discuss
this encoding in section 4.1. The existence of two differ-
ent types of variables makes this encoding more difficult
to reason about directly. A second encoding, derived
from this counting-based encoding, is described in sec-
tion 4.2. It uses a mapping from the vertices of the graph
to k additional nodes as an alternate to straightforward
counting and uses variables of only one type. This is es-
sentially the same encoding as the one used by Bonet,
Pitassi and Raz [7] for the clique problem, except that
in our case we need to add an extra set of clauses called
ordering clauses to make the lower bounds non-trivial.
Section 4.3 finally describes a much simpler encoding
which we analyze directly for our lower bounds. This
encoding discusses only arestricted class of independent
sets that we call block-respecting independent sets, for
which the problem of counting the set size is trivial so it
has only one type of variables that say which vertices are
in the independent set. Refutation of this third encoding
rules out the existence only of this smaller class of inde-
pendent sets. Intuitively, this should be easier to do than
ruling out all possible independent sets. In fact, we show
that its resolution and DLL refutations are bounded in
size by those of the mapping encoding and at worst a
small amount larger than those of the counting encod-
ing, so we can translate our lower bounds for this third
encoding to each of the other encodings. Further, we
give upper bounds for the two general encodings which
also apply to the simpler block-respecting independent
set encoding.

We will identify the vertex set of the input graph with
{1,2,...,n}. Each encoding will be defined over vari-
ables from one or more of the following three categories:

1. z,,1 < v < n, which will be TRUE iff vertex v
is chosen by the truth assignment to be in the inde-
pendent set,

2. Yu,i,0 €7 € v < 10,0 <4 <k, which will be
TRUE iff precisely ¢ of the first v vertices are chosen
in the independent set, and

3. 24,1 € v <n,1<4 <k, which will be TRUE iff
vertex v is chosen as the i*" node of the indepen-
dent set.

4.1. Encoding Based on Counting

We construct the counting encoding ctcount(G, k) of
the independent set problem over variables z, and y, ;
using the following three kinds of clauses:



Edge Clauses For each edge (u,v), Qcount(G, k) has
one clause saying that not both u and v are selected;
V(u,v) € E: (_‘.'l'u \ _“'Cu) € acount(Gu k)

Size-k Clause There is a clause saying that the indepen-
dent set chosen is of size k; Yn .k € @count(G, k)

Counting Clauses There are clauses saying that vari-
ables y, ; correctly count the number of vertices
chosen. For simplicity, we first write this con-
dition not as a set of clauses but as more gen-
eral propositional formulas. For the base case,
Qcount(G, k) contains yg 0 and the clausal form
of (Y0 « (Yv—1,0 A xy)) forv € {1,...n}.
Further, Vi,v,1 < ¢ < v < n, 1 <1 <k,
acount(G, k) contains the clausal form of (y,,; <
((Yu—1,i A"Zy) V (Yu-1,i—1 ATy)) unless i = v, in
which case acount(G, k) contains the clausal form
of the simplified (y;; < (¥i—1,i-1 A T;)).

Translated into clauses, these conditions take
the following form. Formulas defining y, ¢ for
v 2> 1 translate into {(=yy,0 V Yv—1,0), ("Yv,0 V
“Zy), (Yv,0 V 7Yu—1,0 V Ty)}. Further, formulas
defining y,; for v > ¢ > 1 translate into {(y,,; V
Wo1,i V&), Wi V Wu—1,i-1 V Oy, (Yui V
Yo=1,i V Yo-1,i-1), ("Yv,i V Yo—1,i V L0 ), ("Yu,i V
Yu—1,i—1 V TZy)} whereas in the case i = v
they translate into {(-yi; V yi—1,i-1), (~¥i: V
zi), (02 V Wis1,i-1 V¥ia) )

4.2. Encoding Based on Mapping

This encoding, denoted amap(G, k), uses a mapping
from n vertices of G to k nodes of the independent set
as an indirect way of counting the number of vertices
chosen by a truth assignment to be in the independent
set. It can be viewed as a set of constraints restricting
the mapping (see Figure 1). It is defined over variables
2zy,; and has the following four kinds of clauses:

Edge Clauses For ecach edge (u,v) € E, there is
one clause saying that not both » and v are cho-
sen in any independent set; V(u,v) € E,i,j €
{1, ki # 7 (Pzui Vozuj) € amap(GL k)

Surjective Clauses For each i,1 < 7 < k, there is
a clause saying that some vertex is chosen as the
ith node of the independent set; Vi € {1,...,k} :
(21 V 22 V...V 204) € Qap(GL k)

Function Clauses For each vertex, there are clauses
saying that this vertex is not mapped to two nodes,
i.e. it is not counted twice in the independent
set; Vv € {1,...,n},4,5 € {1,...,k},i # j :
(m2zv V 72y 5) € Omap(G, k)
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1-1 Clauses For each node in the independent set, there
are clauses saying no two vertices map to this node;
Vi € {1,...,k},u,v € {1,...,n},u # v
(m2ui V 20,:) € Qmap(G, k)

Ordering Clauses For every pair of consecutive ver-
tices, there is a clause saying that these are not
mapped in the reverse order. This, by associativity,
implies that there is a unique mapping to k£ nodes
once we have chosen k vertices to be in the inde-
pendent set. Vu,v € {1,...,n},2 € {1,...,k —
1hu <v: (Dzuigr V "20i) € Cmap(G, k).

This encoding differs in spirit from the clique en-
coding of Bonet, Pitassi and Raz [7] only in that it has
additional ordering clauses. By omitting such clauses,
the encoding in [7] merely stated that there is a bijec-
tion from the independent set to a set of size k. Since
they worked in the more powerful Cutting Planes proof
system this method of counting was easy to reason
about. However, in resolution, the well-known exponen-
tial lower bounds for the pigeonhole principle [13, 4, 17]
imply that refuting such an encoding even for finding
large independent sets in a trivial graph would be ex-
ponentially hard for resolution. Adding the ordering
clauses makes counting easy and ensures that any lower
bound we prove says something about the hardness of
the independent set problem as a graph problem rather
than merely as a problem of counting.

n vertices

of the graph

lo

k nodes of the lo

2e independent set 2
X .\. .
) ;\‘ )
—_—e3
i/‘ k

n

an ordered

a k—independent set

k—independent set

Figure 1. Viewing independent sets as a
mapping from n vertices to k£ nodes



4.3. Encoding Using Block-respecting Indepen-
dent Sets

We define a restricted class of independent sets which
we call block-respecting independent sets. We will fix
b = n/k for the rest of the paper and assume for sim-
plicity that k divides n. Partition the vertices of G into
k subsets of size b each. We will refer to these subsets
as blocks. A block-respecting independent set of size
k is an independent set in which precisely one vertex
comes from each of these £ blocks (see Figure 2). The
definition implicitly assumes a partitioning of the ver-
tices of G into k equal size blocks. We note that the
restriction that k divides n is only to make the presenta-
tion simple. We can extend this argument to all k < n
by letting each block have either b or b + 1 vertices for
b = [n/k]. The calculations are nearly identical to what
we present here. Clearly, if a graph does not contain any
k-independent set, then it certainly does not contain any
block-respecting independent set of size k either.

We now define a CNF formula ayocr (G, k) over
variables z, which says that G contains a block-
respecting independent set. We will fix an arbitrary
ordering of vertices such that the first b vertices form
the first block, the second b vertices form the second
block, and so on. Henceforth, in all references to G,
we will implicitly assume this fixed ordering of vertices
and division into k blocks. Since this ordering is cho-
sen arbitrarily, the bounds we derive hold for any order-
ing. apock (G, k) contains the following three kinds of
clauses:

Edge Clauses For each edge (u,v), there is one clause
saying that not both u and v are selected; V(u,v) €
E: (mxy V xy) € biock (G, k)

Block Clauses For each block, there is one clause say-
ing that at least one of the vertices in the block is
selected; Vi € {0,1,...,k — 1}, (Tpi+1 V Thir2 V
eV Zhigs) € pock (G k)

1-1 Clauses For each block, there are clauses saying
that at most one of the vertices in the block is se-
lected; Vie {0,....,k—1},5,l € {1,...,b},5 #
U (mxhits V 2 Zpitt) € Qbiock (G k)

Clearly apock (G, k) is satisfiable iff G has a block-
respecting independent set of size k.

4.4 Relationships Among Encodings

Lemma 1. For any graph G on n vertices and any inte-
ger k dividing n,

Res(awiock (G, k)) < b Res(eouni(G, k), and
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DLL(tioex (G, k)) < (2 DLL(0count(G, k)))'082 20,

Proof. Resolution proofs of acount(G, k) can be con-
verted into proofs of apieer (G, k) by applying a restric-
tion to the variables. We do this by starting with a fixed
resolution proof of @ oyunt(G, k) and setting some of the
variables so that its initial clauses either transform into
initial clauses of @piock (G, k) or are satisfied trivially.
Foreachi € {0,1,.. ., k}, we simplify the proof by set-
ting ysi;; = TRUE and ys;,; = FALSE for j # i. We
also set all i, ; = FALSE if vertex v does not belong to
either block ¢ + 1 or block ¢ (no vertex belongs to block
0). Finally, for 1 < j < b, we replace all occurrences of
Ybi+j,i+1 and ~Ypiyj; in the proof with (zpi11 VIpiia V
...Vpiy ;) and all occurrences of =Ypit;. 41 and Ypiyj i
with (-’Ifbi+j+1 VZpirjra V... Vl'bi+b)- Note that setting
Ysi,; = TRUE for each ¢ logically implies the rest of the
restrictions we stated.

The edge clauses are the same in both encodings.
The size-k clause y,  and the counting clause yg ¢ of
0count(G, k) are trivially satisfied. The following can
also be easily verified by plugging in the substitutions
for the y variables. The counting clauses that define
Y0 for v > 1 are either satisfied or translate into the
first block clause (z; V ...V ). Further, the count-
ing clauses that define y,; for v > 1,4 > 1 are ei-
ther satisfied or transform into the i*® or the (i + 1)t
block clause, i.e. into (p(i—1)41 V .- V Tp(i—1)+5) OF
(zpix1 V ... V Zpiyp). Hence, all initial clauses of
eount(G, k) are either trivially satisfied or transform
into initial clauses of apoer (G, k).

Note that the substitutions for ¥pi4j 41 and Ypiyj
replace these variables by a disjunction of at most b pos-
itive literals. Any resolution step performed on these
y’s in the original proof must now be converted into a
set of equivalent resolution steps, which will blow up
the size of the transformed refutation. More specifi-
cally, a step resolving clauses (y V 4) and (—y V B)
on the literal y (where y is either ypiyji+1 OF Ybitj,i)
will now be replaced by a set of resolution steps de-
riving (4’ v B') from clauses (zy, V...V zy, V A')
and (z,, V ...V z,, V B') and any initial clauses of
atock (G, k), where all z’s mentioned belong to the
same block of G, p + ¢ = band A" and B’ correspond
to the translated versions of A and B respectively.

The obvious way of doing this is to resolve the clause
(Tu, V... Va,, VA') withall 1-1 clauses (-, V =y, )
obtaining (~z,, V A"). Repeating this for all z,,’s gives
us clauses (—z,, VA'). Note that this reuses (z,, V...V
Ty, V A') g times and is therefore not tree-like. Resolv-
ing all (=z,; V A') in turn with (z,,, V...V z, Vv B')
givesus (A’ Vv B’). This takes pg + g < b® steps. Hence
the blow up in size for general resolution is at most a
factor of b%. Note that this procedure is symmetric in A’



and B'; we could also have picked the clause (-y V B)
to start with, in which case we would need gp + p < b?
steps.

The tree-like case is somewhat trickier because we
need to replicate clauses that are reused by the above
procedure. We handle this using an idea similar to the
one used in [10] for deriving the size-width relationship
for tree-like resolution proofs. Let newSize(s) denote
the maximum over the sizes of all transformed tree-like
proofs obtained from original tree-like proofs of size s
by applying the above procedure and creating enough
duplicates to take care of reuse. We use induction to
prove that newSize(s) < (2s)'°82 2%_ For the base case,
newSize(1l) = 1 < 2b. For the inductive case, consider
the subtree of the original proof that derives (A V B) by
resolving (y vV A) and (-y V B) on the literal y as above.
Let this subtree be of size s > 2 and assume w.l.0.g. that
the subtree deriving (y V A4) is of size s4 < 5/2. By in-
duction, the transformed version of this subtree deriving
(T, V.. .V, VA') is of size at most newSize(s 4) and
that of the other subtree deriving (z,, V...V z,, V B')
is of size at most newSize(s — sa — 1). Choose
(T, V... Ty, VA’) as the clause to start the new deriva-
tion of (A’ V B’) as described in the previous paragraph.
The size of this refutation is at most b - newSize(s4) +
newSize(s — s — 1) + b2, Since we can do this for any
original proof of size s, we must have newSize(s) <
b - newSize(sa) + newSize(s — sa — 1) + b? for
s > 2and s4 < s/2. It can be easily verified that
newSize(s) = 2bs bl°62° = (25)1°622® is a solution
to this. We thus have the bound for the DLL case as
well. O

Lemma 2. For any graph G on n vertices and any inte-
ger k dividing n,

Res(apiock (G, k)) and

DLL(chlack(G, k))

< Res(amap(G,k)),
< DLL(tmap(G, k)).
Proof. In the general encoding am.,(G, k), a vertex
v can potentially be chosen as the ¢*"* node of the k-
independent set for any ¢ € {1,2,...,k}. In the re-
stricted encoding, however, vertex v belonging to block
7 can be thought of as either being selected as the jt*
node of the independent set or not being selected at all.
Hence, if we start with a resolution (or DLL) refutation
of amap(G, k) and set z,; = FALSE for i # j, we geta
simplified refutation where the only variables are of the
form z, ; where vertex v belongs to block 7. Renaming
these z,,;’s as x,’s, we get a refutation in the variables
of aprocr (G, k) that is no larger in size than the original
refutation of (map(G, k).

All we now need to do is verify that this trans-
formation either converts any given initial clause of
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amap(G, k) to an initial clause of apocr (G, k) or sat-
isfies it trivially. The transformed refutation will then
be a refutation of apiocr (G, k) itself. This reasoning is
straightforward:

o Edge clauses (—zy,; V —2y,j) of Qmap(G, k) that
represented edge (u,v) € E with u in block 7 and
v in block j transform into the corresponding edge
clause (=xy V ~zy) of aprock (G, k). If vertex u (or
v) is not in block 7 (or j, resp.), then the transfor-
mation sets 2, ; (Or zy j, resp.) to FALSE and the
clause is trivially satisfied.

o Surjective clauses of amqp (G, k) clearly transform
to the corresponding block clauses of apiocr (G, k)
— for the 7** such clause, variables corresponding
to vertices that do not belong to block ¢ are set to
FALSE and simply vanish, and we are left with the
it" block clause of aprock (G, k).

o It is easy to see that all function clauses and order-
ing clauses are trivially satisfied by the transforma-
tion.

o 1-1 clauses (—zy,i V —24,i) Of @map(G, k) that in-
volved vertices u and v both from block ¢ transform
into the corresponding 1-1 clause (~z, V -z,) of
aptock (G, k). If vertéx u (or v) is not in block 1,
then the transformation sets z, ; (Or zy ;, resp.) to
FALSE and the clause is trivially satisfied.

Thus, this transformed proof is a refutation of
apiock (G, k) and the desired bounds follow. O

5. Simulating Chvatal’s Proof System

We show that resolution on apieck (G, k) can simulate
Chvatal’s proofs [8] of non-existence of k-independent
sets in G. This indirectly provides bounds on the run-
ning time of various algorithms for finding a largest in-
dependent set in a given graph. We first briefly describe
his proof system. Let (.9, t) be the statement that the sub-
graph of G induced by a vertex subset S does not have
an independent set of size . (¢, 1) is given as an axiom
and the goal is to prove the statement (V, k), where V
is the vertex set of G' and k is given as input. Proofs
in his system are based on the following property. Pick
any vertex v. v is either present in some largest indepen-
dent set of G, or not. Therefore, (S,t) is TRUE iff both
(§ — N(w) — {v},t — 1) and (S — {v},t) are TRUE,
where N (v) is the set of neighbors of v. To prove (S, ),
one then recursively proves the two subproblems. We
will denote by Chv(G, k) the size of the smallest proof
in Chvdtal’s system of the statement (V(G), k).



A key idea for getting short proofs in Chvital’s sys-
tem is to reuse proofs for subproblems. We say (S,t)
dominates (S§',t') iff S 2 S andt < t'. It is clear
that once we have proved (.5, t), there is no need to pro-
vide a separate proof of (S’,t'). Chvital’s system al-
lows one to derive such an (S',¢) from (S, t) in a single
step using the monotone rule. Also, one can easily sim-
plify the proof of (S, t) to get a proof of (S’,t'). This
notion of reusing proofs for subproblems that are domi-
nated by previously solved subproblems makes proofs
in Chvital’s system look like directed acyclic graphs.
As we will soon see, one can convert these proofs to
corresponding resolution proofs by traversing the proof
graph bottom-up and locally replacing each inference in
Chvital’s system by a small number of resolution infer-
ences.

We call a proof system for independent sets monotone
if adding more edges to the original graph does not make
it any harder to prove that there is no independent set of
a certain size.

Observation 2. Chvdtal’s proof system is monotone.

Proof. Let G’ be a graph obtained by adding edges to a

graph G. Let V' denote both the vertex set of G and that
of G'. In order to prove (V, k) for the denser graph G/,

we have to recursively prove (V — N'(v) — {v},k — 1)

and (V — {v},k) in G’, for some vcrtex v. Here N'
denotes the set of neighbors of v in G'. Since G’ has
all the edges of G and some more, V — N(v) — {v} D
V — N'(v) — {v}. Hence (V — N(v) — {v} k-1)

G dominates (V — N'(v) — {v},k — 1) in G. We can

therefore rewrite the proof of (V — —{v}k-1)
in G to get a proof of (V — N'(v) —{v} k—-1)inG.
This is still not a proof of (V — N'(v) — {v},k — 1) in

G’ because the induced subgraph in G has a different
set of edges than the induced graph in G. However, we
can now inductively use the monotonicity of the smaller
problem to convert the proof of (V — N'(v) —{v}, k—1)
in G to one in G’. Using monotonicity inductively once
again, we can also convert the proof of (V — {v},k) in
G toone in G'. Hence, by induction, we have a no larger
proof of (V, k) in G’ than we had in G. O

Lemma 3. For any graph G on n vertices and any inte-
ger k dividing n,

Res(ablock(G7 k)) <2n ChU(G7 k)

Proof. Let V denote the vertex set of G. Divide V into
k blocks of equal size and let Gpiocr be the graph ob-
tained by taking G and adding all edges (u, v) such that
vertices u and v belong to the same block of G. In other
words, Gprocr 18 G with modified to contain a clique on
each block. By the monotonicity of Chvital’s system,
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we can convert the given proof of (V, k) in G to a proof
of (V, k) in Gpiock that is no larger than that in G.

We will start with a fixed proof of (V,k) in Giock
in Chvdtal’s system and use it to guide the construction
of a resolution refutation for apocr (G, k). Observe that
without loss of generality, for any statement (S, ¢) in the
proof, t is at least the number of blocks of G containing
vertices in S. This is so because it is true for the final
statement (V, k) and if it is true for (5, t), then it is also
true for both (S — {v},t) and (S — N(v) — {v},t -
1) from which (5,t) is derived. We will call (S,t) a
trivial statement if ¢ is strictly bigger than the number
of blocks of G containing vertices in S. Notice that the
initial statement (@, 1) of the proof is trivial, whereas the
final statement (V, k) is not. Also, all statements derived
by applying the monotone rule are non-trivial.

The resolution proof we will construct will have a
clause associated with each non-trivial statement (S, t)
occurring in the proof. This clause will be a subclause

of the clause Cs % (Vuens Tu) Where Ng is the set
of all vertices in V' — S that are in blocks of G contain-
ing at least one vertex of S. We will construct our res-
olution proof inductively, going bottom-up through the
non-trivial statements of the given proof. Note that the
clause associated in this manner with (V, k) will be the
empty clause and hence we have a refutation.

Suppose (S,t) is non-trivial and is derived in the
original proof by applying the branching rule to vertex
v € S. Then we write our target clause Cs as (C% Vv C%)
where CL is the disjunction of all variables correspond-
ing to vertices of Ng that are in the same block as v and
Cf is the disjunction of all variables corresponding to
vertices of Ng that are in the remaining blocks. v € S,
Before deriving the subclause of C's, we will derive two
clauses C!l; and Cl; as follows depending on the prop-
erties of the inference that produced (.5, t):

Case 1: Both (S—{v},t) and (S— N(v)—{v},t—1) -
are trivial. It is easy to see that since (S, t) is non-trivial,
if (S — {v}, t) is trivial then v is the only vertex of S in
its block. We let Cl; be the initial block clause for the
block containing v which is precisely (z, V C%). The
fact that (§ — N(v) — {v},t — 1) is also trivial implies
that the neighbors of v include not only every vertex of S
appearing in the block containing v but also all vertices
in § N B where B is some other block that does not
contain v. Resolving the block clause for block B with -
all edge clauses (—z, V =) foru € SN B givesus a
subclause Cly of (-z, V C%).

Case 2: (S—{v},t)is trivial but (S—N(v)—{v},t—
1) is non-trivial. We set Cl; exactly as in casc 1. Given
that (§ — N(v) — {v},t — 1) is non-trivial, we have
by inductive assumption a subclause of C's_ y(v)—{uv}-
Since the given proof applies to Gyocr, N(v) U v con-



tains every vertex in the block containing v as well as all
neighbors of v in G that are not in v’s block. Therefore
the subclause of C's_ y(v)-{v} We have by induction, is
asubclause of (C§ V &y, V...V xy, ), where each u; is
a neighbor of v in S in blocks other than v’s block. We
derive a new clause Cls by resolving this clause with
all edge clauses (—z, V —z,,). Observe that Cly is a
subclause of (—z, V CE).

Case 3: (S — {v}.t) is non-trivial but (S — N(v) —
{v},t—1) is rivial. We set Cl; as in case 1. Since (S —
{v},t) is non-trivial, we have by induction a subclause
Cly of Cs_(yy, i.e. a subclause of (z, V Cs).

Cased: Both (S—{v},t)and (S—N(v)—{v},t—-1)
are non-trivial. In this case, we derive Cl; as in case 3
and Cl, as in case 2.

It is easy to verify that C!; is a subclause of (z,VCgs)
and Cl; is a subclause of (—z, vV C%). If either Cl; or
Cl, does not mention z,, at all, then we already have the
desired subclause of C's. Otherwise we resolve C'l; with
Cl; to get a subclause of C's. This completes the con-
struction. Given any statement in the original proof, it
takes at most 2n steps to derive the subclause associated
with it in the resolution proof, given that we have al-
ready derived the corresponding subclauses for the two
branches of that statement. This gives the bound on the
size of the constructed resolution refutation. O

It follows that our bounds apply to Chvital’s system
and hence also to many algorithms for finding a largest
independent set in a given graph that are captured by his
proof system [16, 18, 19, 20].

6. Key Concepts for Lower Bounds

This section defines key concepts that will be used in
the lower bound argument given in the next section. We
will fix a graph G and a partition of its n vertices into k
subsets of size b each. For any edge (u,v) in G, we will
call it an inter-block edge if u and v belong to different
blocks of G and an intra-block edge otherwise.

6.1. Critical Truth Assignment

We call a truth assignment to variables of
abiock (G, k) critical if it sets exactly one variable
in each block to TRUE. Ciritical truth assignments
clearly satisfy all block, 1-1 and intra-block edge
clauses but may leave some inter-block edge clauses
unsatisfied. It is easy to see that if apecr (G, k) does
have a satisfying assignment, it also has a satisfying
critical assignment — we can simply reset all but one
TRUE variable in each block to FALSE.

Fix a critical truth assignment . Then for each
i € {0,1,...,k — 1} and each j € {1,2,...,b},
¥(~Zpirj) = TRUE iff y(zpir1 V ... V Tpiyj1 V
Tpitj+1 V...V Teiys) = TRUE. We can use this equiva-
lence to convert any clause C in the variables appearing
in apiock (G, k) into a clause Ct in which every variable
occurs positively by replacing each negated variable by
the disjunction of the other variables in the block. Ob-
serve that C and C* are equivalent under all critical
truth assignments.

6.2. Block Graph

It will be useful to look at the block multi-graph of G,
denoted B(G), obtained by identifying all vertices that
belong to the same block in G and removing any self-
loops that are thus generated. B(G) contains exactly
k nodes and possibly multiple edges between pairs of
nodes. The degree of a node in B(G) is the number
of inter-block edges touching the corresponding block
of G. Given the natural correspondence between G and
B(G), we will write nodes of B(G) and blocks of G
interchangeably. '

6.3. Block Induced Subgraphs and Boundary

Let H be a subgraph of G and S a subset of blocks of
G. We say that H is block induced by S if it is the sub-
graph of G induced by all vertices present in the blocks
S. Clearly, if H is block induced by S, then B(H) is
induced by S in B(G). H will be called a block induced
subgraph of G if there exists a subset S of blocks such

" that H is block induced by S. Further, if H is a block
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induced subgraph, then we can find a unique minimal
block set S such that H is block induced by S. This S
simply contains all blocks which have non-zero degree
in B(H). With each block induced subgraph, we will
associate such a minimal .S and say that the subgraph is
induced by |S| blocks.

We define the boundary of a block induced subgraph
H, denoted B(H), to be the set of nodes of B(H)
(blocks of H) which have degree (number of inter-block
edges, respectively) between 1 and b — 1. The following
property will be useful in obtaining a lower bound on the
width of clauses implied by subgraphs.

Observation 3. Given any boundary block, we can find
two vertices u and v in it such that w has no inter-block
edges and v has at least one.

6.4. Minimal Implication and Block Width

For a block induced subgraph H of G, let E(H) de-
note the conjunction of the edge clauses of apiocr (G, k)



corresponding to the edges of H. We say that H
critically implies a clause C iff E(H) — C is true
for all critical truth assignments to the variables of
aplock (G, k). Let subgraph H be induced by the block
set S. We say that H minimally implies C if H critically
implies C' and no subgraph of G which is induced by a
proper subset of S critically implies C.

The block width of a clause C' with respect to G, de-
noted w§j, ., (C), is the number of different blocks of G
the variables appearing in C' come from.

Observation 4. For any clause C' and any block in-
duced subgraph H of G,

1. H minimally implies C iff H minimally implies
ct.

2. w(C) 2 wgock(c) = wgock(c+)
6.5. Clause Complexity

Let C be a clause over variables of aiock (G, k). The
complexity of C, denoted pu(C), is the minimum over
the sizes of subsets S of blocks such that subgraph H
induced by S critically implies C. In other words, it is
the minimum number of blocks we need to look at so as
to make the block induced subgraph critically imply C.
In the following, we state some simple properties of the
complexity measure fig.

Observation 5. Let G be a graph and A denote the
empty clause. Then

I. For an initial clause C, i.e. for C € apiock (G, k),
pe(C) <2

2. ug(A) is the number of blocks in the smallest
block induced subgraph of G that has no block-
respecting independent set of size k.

3. Subadditive property: If clause C is a resolvant
of clauses Cy and Cs, then ug(C) < pg(Ch) +
}LG(CQ).

Proof. Each initial clause is either an edge clause, a
block clause or a 1-1 clause. Any critical truth assign-
ment, by definition, satisfies all block, 1-1 and intra-
block edge clauses. Further, an edge clause correspond-
ing to an inter-block edge (u,v) is implied by the sub-
graph induced by the two blocks to which u and v be-
long. Hence, complexity of an initial clause is at most 2,
proving part 1.

Part 2 is trivially true by definition of p¢. Part 3 fol-
lows from the simple observation that if G; critically
implies Cy, G critically implies C» and both G; and
G are block induced subgraphs, then G2, defined as
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the block graph induced by the union of the blocks Gy
and G, are induced by, critically implies both C; and
C4, and hence critically implies C. O

7. Proof of Lower Bounds

We use combinatorial properties of block graphs and
independent sets to obtain a lower bound on the size of
resolution refutations for a given graph in terms of its ex-
pansion properties. Next, we argue that random graphs
almost surely have good expansion properties. Section
8 combines these two to obtain an almost certain lower
bound for random graphs.

7.1. Relating Proof Size to Graph Expansion

Lemmad. Let C be a clause in the variables of
apock (G k). If H is a block induced subgraph of G
that minimally implies C, then v, .,.(C) > |B8(H)|.

Proof. By Observation 4, it suffices to assume that every
literal of C' is positive.

We will use the toggling property of block-respecting
independent sets (Figure 2) to show that each boundary
block of H contributes to C every positive literal that
corresponds to a vertex in it with no inter-block edges.
In particular, at least one literal from every boundary
block appears in C.

Fix a boundary block B. From Observation 3, B
must contain two vertices © and v such that u has no
inter-block edge and v has an inter-block edge (v, w).
If we let Hp be the block induced subgraph that has all
edges of H except those that have an endpoint in block
B, then Hp is a strict subgraph of H and by minimality,
cannot critically imply C. Therefore, there must exist a
critical truth assignment «y such that y(E(Hpg)) is TRUE
but v(C) is FALSE. We can think of -y as picking exactly
one vertex from each block. Note that v cannot pick
vertex u from block B because then the lack of edges
with endpoints in B won’t matter. -y will not violate any
edge clauses of H itself. In other words, v(E(H)) will
be TRUE which would imply that v(C') is TRUE — a con-
tradiction. Therefore for suitable choices of v and w,
v picks v from block B and its neighbor w from some
other block.

Now create another critical truth assignment v’ which
differs from « only in that it picks vertex u from block
B whereas v didn’t. Since ' is identical to - in blocks
other than B and v(E(Hp)) is TRUE, 7' (E(Hp)) must
also be TRUE. Moreover, since ' picked vertex u from
block B and u does not have any inter-block edges, '
cannot violate any edge with an endpoint in B. There-
fore, even +/(E(H)) is TRUE, implying that 7'(C) is
TRUE.
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Figure 2. Toggling property of block-
respecting independent sets (selected ver-
tices are shown in bold)

Block B with u selected

We now have two critical truth assignments ~ and '
that differ only in that the latter sets z,, to TRUE whereas
the former doesn’t, and that the latter satisfies C while
the former doesn’t. This is what we earlier referred to
as the toggling property. Since C contains only positive
literals, this can happen only if z,, € C. O

If we start with G and keep throwing edges away,
the resulting subgraph will surely contain a block-
respecting independent set after enough edges are gone.
Let s + 1 be the minimum number of blocks such that
some subgraph of G induced by s + 1 blocks does not
have a k-independent set. Now define the sub-critical
expansion, e(G), of G to be the maximum over all
t,2 <t < s, of the minimum boundary size of any sub-
graph H of G induced by ¢’ blocks, where t/2 < t' < t.

Lemma 5. Any resolution refutation of apock(G, k)
must contain a clause of width at least e(G).

Proof. Let t be chosen as in the definition of e(G) and
let 7 be a resolution refutation of ook (G, k). By Ob-
servation 5.2, ug(A) = s + 1. Further, Observation
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5.1 says that any initial clause has complexity at most
2. Therefore for 2 < t < s there exists a clause C in
7 such that ug(C) > t > 2 and no ancestor of C has
complexity greater than ¢.

Since pug(C) > 2, C cannot be an initial clause. It
must then be a resolvant of two parent clauses C; and
C5. By Observation 5.3 and the fact that no ancestor of
C has complexity greater than ¢, one of these clauses,
say C, must have ug(C1) between (t + 1)/2 and ¢. If
H is a block induced subgraph that witnesses the value
of pg(Ch), then by Lemma 4, w¢, ., (C1) > |B(H)|.
From Observation 4, this implies w(C}) > |3(H)]. By
definition of e(G), |B(H)| > e(G). Thus w(C:) >
e(G) as required. O

Lemma 6. If G is a graph with vertices divided into k
blocks of size b = n/k each and apjocr, (G, k) is the CNF
formula saying that G has a block-respecting indepen-
dent set of size k, then for the constant ¢ > 0 in Propo-
sition 2,

2c(e(G)—b)2/n
9e(G)—b

Res(ablock(G, k))
DLL(apiocr{G, k))

> and
>

Proof. This follows immediately from Lemma 5 and
Propositions 2 and 1 by observing that the initial width
of Qplock (G, k‘) is b. O

7.2. Lower Bounding Sub-critical Expansion

Throughout this section, the probabilities we mention
will be with respect to the random choice of the graph G
from distribution G, ,, for some parameters n and m.
Let B{G) be a block graph corresponding to G with
block size b. We call B(G) (r, q)-dense if some sub-
graph of G induced by r blocks (i.e. some subgraph of
B(G) with 7 nodes) contains at least ¢ edges. The fol-
lowing Lemma shows that for almost all random graphs
G, B(G) is locally sparse.

Lemma7. Let G ~ G, and B(G) be a correspond-
def

ing block graph with block size b. Let A = m/n. Then
forr,qg 21,
neyr [ eb*r?A\*
Pr[B i —d —
r[B(G) is (r,q)—dense] < (bT> ( g )

Proof. Let R be a subset of r nodes of B(G). R
then corresponds to br vertices of G. A given edge
of G transforms into an edge of B(G) with its end-
points in two different blocks in R with probability
p = (br)(br=r)/(n(n—-1)) < (br/n)?. For G ~ Gy m,
the number of edges contained in R has the binomial dis-
tribution B(m, p). Hence, the probability that at least g
edges of B(G) are contained in R is



Pr[B(m,p) > q]
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Summing this over all the ("1") < (ne/br)" r-subsets,
R, of nodes of B(G), we obtain

Pr[B(G) is (r, ¢)—dense] < (:—:)T <ebj:q2A)q.

O

We use this local sparseness property of almost all

random graphs to prqve that the smallest block induced
subgraph one needs to consider for proving that G does
not have a block-respecting independent set of size k is
almost surely large. This shows that any resolution proof
that G does not have a block-respecting independent set
of size k will have to consider at least a constant fraction
of blocks when G has does not have too many edges.
More precisely,
Lemma 8. Let m,n, b be integers with A def m/n and
b > 3and k = n/b. There exists a constant C such
that if s < Cn/(bAY®=2)) then the probability that
G ~ Gn,m contains a subgraph induced by at most s
blocks that has no block-respecting independent set of
sizekiso(1) in s.

Proof. The probability that G contains a subgraph in-
duced by at most s blocks that has no block-respecting
independent set of size k is the same as the probability
that there is some minimal subgraph H of G which is in-
duced by 7 < s blocks and has no block-respecting inde-
pendent set of size k. Since clauses corresponding to H
are unsatisfiable, H critically implies the empty clause
A which is of width 0. It follows from Lemma 4 that H
has no boundary blocks. Further, since H is minimal,
it does not have any blocks with no inter-block edges.
It follows that each of the r blocks that induce H must
have at least b inter-block edges. Hence, the subgraph
of B(G) with the 7 nodes corresponding to the r blocks
that induce H must have at least br /2 edges.

Thus, the probability that G contains such a block
induced subgraph H is at most

iPr[B(G) is (7, br /2)—dense].

r=1
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By Lemma 7, we have Pr[B(G) is (r, br/2)—dense] <

D(r) where
(ﬁ)’" 2ebrA /2
br n

ne (208" (s '
b n

(Q(b,n, A) ro=2/2)r

D(r)

Il

for Q(b,n, A) = (ne/b)(2ebA/n)%?. Now

D(r+1) _ @Q@,n,4) (r+ 1){6-2)/2yr+1

D(r) (Q(b,n, A) r=2)72)r
r(b=2)/2
= Q(b,n,A) (r+1)07272 (%—1)
< Qb,n, A) (r 4+ 1)(0-2)/2 g(b=2)/2
< (ne/b)(2ebA/n)/? (e(r + 1))-2)/2

(1/b)(2€2bA)Y/2 ((r + 1) /n)( b=/

This quantity is at most 1/2 when

r+1 b2/~ 1
n 2 (2e2bA)b/(b=2)

( b/2 >2/(b_2) 1

2e2b 2e2b Ab/(b=2)

- G 1
T \de? 2e2h Ab/(b-2)

For b > 3, (1/4€?)?/(®-2) > 1/(16e%). Hence it suf-
fices to have (r + 1)/n < 1/(16e? 2e2bAY (*=2)) =
1/(32¢® bAY/(>=2)) Therefore, D(r + 1)/D(r) < 1/2
for1 < r < Cn/(bAY =2 where C ' 1/(32¢%) is
aconstant. Let s+1 = Cn/(bAY(=2)), Then the prob-
ability that G contains such a block induced subgraph is
bounded above by a geometric series in 7 with common
ratio 1/2. It is therefore at most twice the largest term
of the series which is less than D(1). Rewriting D(1) in

terms of s using the fact that A = (b(ffl) )(6=2)/b gives

(E) 2ebA\ "2

b n
L e LY
(s +1)(0=2)/2 € 16e4

which for b > 3 is o(1) in s as required.

IN

D(1)

Il

a

We again use the local sparseness property to prove
that any subgraph induced by not too many as well as
not too few blocks has large boundary for almost all



random graphs G. The intuition is that for sparse sub-
graphs, most blocks have degree < b whereas for dense
subgraphs, most blocks have degree > 0. Hence, if we
look at middle size subgraphs, it is very likely that some
large fraction of blocks will have degree between 1 and
b — 1, and will therefore belong to the boundary.

Lemma 9. Let m,n,b be integers with A e m/n and

b>5 For0<e<1/2leet < b—(b-1e

There exists a constant ¢ such that if t < cn/ (bA"’b_—2 ),
then the probability that G ~ G, ., has a subgraph H
induced by r blocks, t/2 < v < t, with S(H) < er is
o(l)int. ’

Proof. Fix b,e and r satisfying all conditions of the
Lemma. Since H is induced by r blocks, by defini-
tion, all r blocks inducing H must have non-zero de-
gree in B(H ). Moreover, if H has at most er boundary
blocks, the other (1 — €)r blocks of non-zero degree in-
ducing it must have degree at least b. Hence, the r nodes
of B(G) that induce H form a subgraph with at least
(er + (1 — €)rb)/2 = b'r/2 edges. Therefore, H has
at most er boundary blocks only if B(G) is (r,b'r/2)-
dense. Thus by Lemma 7, the probability that such an
H exists is at most

Pr[B(G) is (r,b'r)—dense]
(B (%b%%)”'”?
br nb'r
(s (Zeb_ﬁ)’ (1)“’"””)7
b b n

Sincer > t/2, it will suffice to obtain an upper bound
on this probability that is exponentially small in r. We
first note that since € < 1/2, b’ must be at least (b+1)/2.
Moreover, since b > 5, b’ must be at least 3. Rearrang-
ing terms now gives that Pr[B(G) is (r, b'r)—dense] <

27" when
b\ 2/ =2) b o' /(b —2)
@) (=)
po\ 2/=2) b
- (E) 2eb? AV/(b'-2)

< 1 2/("’_2) 1
= \8&e deb AV /(¥ =2)

since b' > (b +1)/2.

For b’ > 3, we see that 1/(8¢2)%/(¥' =2 is at
least 1/(64e?). Hence, it suffices to have r/n <
1/(64e* 4ebAY/¥'=2)) = 1/(256€%h AY/(t'-2))
Therefore, the probability that B(G) is (r,b'r)-dense

IN

r
n

is at most 277 for r < cn/(bAY/('=2)) where ¢ def
1/(256€°) is a constant. It follows that the probabil-
ity that there exists such an A with /2 < r < tis
at most Zi:[(t+l)/2'| 277, This sum is o(1) in ¢ as re-
quired. O

Combining Lemmas 8 and 9 we obtain the following
lower bound on sub-critical expansion:

Lemma 10. Let m,n,b be integers with A def m/n and

b>5 For0<e<1/2 letd défb—(b—l)esand

w n/(bAY /' =2 Then there exists a constant c.

depending only on € such that the probability that G ~
Gnm hase(G) < cWiso(l)inW.

Proof. Let C be the constant from Lemma 8, ¢ be the
one from Lemma 9 and ¢* be the minimum of these
two. By Lemma 8, if G ~ G, and s + 1 =
Cn/(bAb/(*=2)) then the probability that a subgraph H
of G induced by at most s blocks does not have a block-
respecting independent set of size k is o(1) in s, which
is o(1) in W. Now let t = ¢*W, which is at most s
because of our choice of ¢* and the fact that b’ < b. By
Lemma 9, the probability that G ~ G, ,, has a subgraph
H induced by r blocks, t/2 < r < t, that has at most er
boundary blocks is o(1) in ¢, and thus o(1) in W.

It follows that with probability 1 — o(1) in W, every
subgraph of G induced by r blocks with ¢/2 < r <t <
s has at least er > €t/2 = ec*W/2 boundary biocks.
Letting ¢ = ec*/2 yields the desired bound on e(G).

[

8. Main Results
8.1. Lower Bounds

Theorem 1. Let m,n, k be integers with A def m/n,
k < n/5and n a multiple of k. If G ~ Gpm and A =
o(n1/?), then for each 0 < € < 1/2, there exists a global
constants Ce, C! such that with probability 1 — o(1) in
n,

Res(ablock(G,kI)) 2Cek2/(nA2+25)

DLL(ablock(G) k))

v

, and
Zc;k/Al“

v

2k

where 5 = m

Proof Let b = nj/k > 5, b = b— (b— 1)e and
W = n/(bAY /(¥ =2)) From Lemma 10, there exists
a constant ¢, such that with probability 1 — o(1) in W,
e(G) > ¢.W. Then by Lemma 6 Res(aptock (G, k)) >
2¢(ceW=0)*/n \with probability 1 — o(1) in W where
c=1/(91n2).



We now show that our conditions imply that W is
large enough that this yields our claimed exponential
lower bounds with probability 1 —o(1) in n. Since b > 5
ande < 1/2,b'/(b' —2) < 3. Hence W/b > n/(b?A3).
Note that for b > 4A, k is at most n/(4A) and by Ob-
servation 1, an independent set of size k surely exists.
In this case, there are simply no resolution refutations of
lock (G, k). Therefore, we can safely assume b < 4A,
in which case W/b > n/(16A%). Since by assumption
A = o(n!/?), there is some constant C. > 0 such that
c(ccW —b)? > C.W?2. Thus

logy (Res(abiock (G, k)))

> CW?/n
Con? ) (nb*AF7)
C.k? ) (nAPt = neT )
C k2 [ (nA? 7=ty )
ka2/(nA2+26)

A similar calculation gives the DLL bound. 0

Corollary 1. For G,m,n,k,A,¢,6 as in Theorem ]
there are constants c, ci, ¢!, ¢, "' > 0, such that
with probability 1 — o(1) in n,

Res(map(G k) 2 20k /na™™)
DLL(amap(G, k) > 2c’£k/A]+5’
Res(count(G k) > 264K/,
DLL(Coount (G, k) > 26<k/(A 105 8) g
Chu(G, k) > gl k[ (na?TEe)

Proof. The bounds for oum.p(G,k) follow directly
from Theorem 1 and Lemma 2. For the bounds on
Qeount (G, k), observe that we can assume b < 4A be-
cause otherwise k = n/b < n/(4A) and from Ob-
servation 1, G definitely contains a k-independent set.
The numbers b and log, 2b from Lemma 1 are there-
fore bounded above by 16A? and log, (8A) respectively.
Combining this with Theorem 1, we get the desired
bounds. O

Corollary 2. For almost all graphs G = (V, E) with
a linear number of edges and for any k < |V|/5,
Res(aprock (G, k)) = 294,

Proof. Follows from Theorem 1 by setting A = con-
stant and observing that the largest independent set in a
graph with a linear number of edges is also linear in size
almost surely. O

Corollary 3. Let m,n, k be integers with A def m/n,

k < n/5andn amultiple of k. If G ~ G and A =
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o{n/®), then there are global constants ¢ and ¢ such
that with probability 1 — o(1) in n,
2617.1/25

c’n“/25

Res(ablock(G7 k)) 2 and

DLL(ablock(G, k)) > 2

Proof. A trivial calculation shows that for 0 < € < 1/2
and £ < n/5, mﬁm < 4/5, and this value is
achieved for ¢ = 1/2. If & < n/(4A), then from
Observation 1, G surely has a k-independent set and
no resolution refutations of apecr (G, k) exist. There-
fore, we can safely assume k£ > n/(4A). It then fol-
lows from Theorem 1 that log,(Res(apiock (G, k))) >
Ci/2(n®/(16A2))/(nA*T4/5) = Cy/pn/(16AH/5),
Since A = o{n'/?), this quantity is at least cn'/25 for
Sz hig gives us the resolution bound. A similar

€= 76
calculation gives the DLL bound. 0O

8.2. Upper Bounds

Theorem 2. Let G be a graph with n vertices and m
edges, A def m/n and k be any integer for which G
does not have a k-independent set. Then

DLL(0map(G, k)) = 20k lo8(n/k))

This bound also holds when amqp(G, k) does not in-
clude 1-1 clauses.

Proof. A straightforward way to disprove the existence
of a k-independent set is to go through all (2) subsets
of vertices of size k and use as evidence an edge from
each subset. We will use this to derive a refutation of
Amap(G, k).

To begin with, we apply trasitivity to derive all or-
dering clauses of the form (—z,; V —z,,;) foru < v
and ¢ < 5. If 3 1 + 1, this is simply one of the
original ordering clauses. For j = i + 2, we derive the
new clause (~z,, ;42 V -2, ;) as follows. Consider any
w € {1,2,...,n}. If u < w, we have the ordering
clause (—zy i1 V =2y i42), and if u > w, thenv > w
and we have the ordering clause (—zy ; V =2y, i41). Re-
solving these n ordering clauses (one for each w) with
the surjective clause (23 ;41 V...V 2zp ;41) gives us the
new ordering clause (—z, ;42 V —2zy ;) associated with
u and v. This clearly requires only n steps and we can
do this for all w < v and j = ¢ + 2. We now continue
to apply this argument for j = 7+ 2,7+ 3,...,k and
derive all new ordering clauses in n steps each.

We will construct a tree-like refutation starting with
the initial clauses and the new ordering clauses we de-
rived above. We claim that for any ¢ € {1,2,...,k} and
forany 1 < wv; < iy < ... < v < n, wecanderive a



clause that is a subclause of (—zy, s V 22y, 641 V... V
2y, k). Let us first see how we will get a refutation
given this claim. For ¢ = k, the claim says that we can
derive a subclause of -z, j forall 1 < v, < n. If any
of these is a strict subclause, we already have the empty
clause. Otherwise, we have -z, 1, for every ;. Resolv-
ing all these with the surjective clause (23 1 V...V z, 1)
results in the empty clause.

We now prove the claim by induction on ¢. For the
base case, fix i 1. For any given k vertices v; <
vy < ... < vy, pick an edge (v,, v,) that witnesses the
fact that these & vertices do not form an independent set.
The corresponding edge clause (—zy,,p V 72y, ,4) then
works as the required subclause.

For the inductive step, fix v;41 < vi42 < ... < vg.
We will derive a subclause of (—2y, ., ,i41V 22y, 5,i42 V
... 7Zy k). By induction, we can derive a subclause
of (m2zy,,i V 22y, 1 i41 V ... V 2y, &) for any choice of
v; < wiy1. If for some such v;, -z, ; does not ap-
pear in the corresponding subclause, then the same sub-
clause works here for the inductive step and we are done.
Otherwise for every v; < wv;41, we have a subclause
of (m2y;,i V "2y ,i41 V ... V D2y ) that contains
—Zy;,i- Resolving all these subclauses with the surjec-
tive clause (z1,; V 22,; V... V 2,;), we get the clause
(Zoig1,i Voo V2 i V 22y jy V..oV 22y, ), where
each z,_ ;. liesin {zy,,, it1,. ., 2v, 5 }. Observe that
for each positive literal 2,,;,7 + 1 < ¢ < k, in this
clause, (—zy,,i V 72y, ,i+1) is either a 1-1 clause or an
ordering clause. Resolving with all these clauses finally
gives us (m2y,,, i+1 V DZuy iy V...V oz, 5, ), which is
the kind of subclause we wanted to derive. This proves
the claim.

We can associate each subclause obtained using the
iterative procedure with the tuple (v;,viy1,...,v) for
which it was derived, giving a total of Zle (M <
k(ne/k)* subclauses. Each of these subclauses is used
at most once in the proof. Further, the derivation of each
such subclause uses at most n new ordering clauses,
each of which can be derived in at most n? steps.
Thus, with enough copies to make the refutation tree-
like, the size of the proof is O(n3k(ne/k)*), which is
QO(klog(n/k))‘ O

Corollary 4. Let G ~ G,, , be a random graph, A def
m/n and k be any integer for which G does not have a
k-independent set. With probability 1 — o(1) inn,

DLL(apiock(G, k)) = 20((n/2)1n* 4)

This bound also holds when 1-1 clauses are removed

from awiock (G, k)

Proof. Let k' be the smallest integer such that G does
not have a k'-independent set. Clearly, &' < k. We first
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prove the bound for the mapping based encoding. Start-
ing With aunep (G, k), we will ignore clauses that involve
variables z,; for ¢ > k' and construct a refutation us-
ing only the remaining clauses. The clauses that remain,
however, are simply the clauses of &p,qp(G, k'). From
Theorem 2, we can construct a tree-like resolution refu-
tation of these which is of size 20" 108(n/k")) Also, this
refutation does not use the 1-1 clauses of q,05(G, k).
Applying Proposition 3, we can almost certainly bound
the size by 20(k+<n(n/k-))  which is 20((n/2)In® &)
This gives us an upper bound on DLL(Gmap(G, k))
without using 1-1 clauses. Finally, we apply Lemma 2
to get the desired bound on DL L(ai0ck (G, k)) without
1-1 clauses. O

Theorem 3. Let G be a graph with n vertices and m

edges, A def m/n and k be any integer for which G
does not have a k-independent set. Then

DLL(tcount(G, k)) = 20(klos(n/k))

Proof. As in the proof of Theorem 2, we construct a
refutation by looking at each size k subset of vertices
and using as evidence an edge from that subset.

For every ¢,v such that 0 < 7 < v < mn, we
first derive a new counting clause (—~yy41,i41 V Yui V
Yu—1,i V... VY; ;) by resolving original counting clauses
(“Yu+1,i+1 VYu,it1 VYu i) foru = v,v—=1,... i+ 110-
gether, and resolving the result with the counting clause
(=¥it1,i+1 V ¥4,:). Next, for any edge (7,7), 1 > j, we
resolve the edge clause (—z; V —z;) with the counting
clauses (—y;,; V x;) and (—y;,; V z;) to get the clause
(~wi,s V yj,5). We call this clause E; ;. We will now
construct a tree-like refutation using the initial clauses,
these new counting clauses and the new E; ; clauses.

We claim that for any i € {1,2,...,k} and for any
1 <wv <wvy <...<wp <nwithy; > jfori <
J < k, we can derive a subclause of (—~yy; i V Yv;—1,i V
Wiyt Vv —Litl Voo VY 1 V yvk-—l,k) such
thatif y,;_, ; occurs in the subclause for some j, then so
does —y,;,;. Note that for v; = j, the variable y,,_; ;
does not even exist and will certainly not appear in the
subclause. Given this claim, we can derive for i = k
a subclause B; of (my;x V yj—1,) foreach j € {k +
1,...,n} and a subclause By of —yy ;. If any of these
Bj’s is the empty clause, we are done. Otherwise every
B; contains —y; ;. Let j' be the largest index such that
Bj: does not contain y;_y,;. Since By has to be the
clause =y 1, such a j° must exist. Resolving all B;’s
for j € {j',...,k} with each other gives us the clause
Yn,k. Resolving this with the size-k clause yy, 1, gives the
empty clause.

We now prove the claim by induction on 7. For the
basecase i = 1,fix 1 <v; < w3 <...< v, <n. Pick



an edge (vp,v,) that witnesses the fact that these v;’s
do not form an independent set. We then have the edge
clause (=&, V Ty, ). Resolving this with the counting
clauses (—yu, p V Yo, ~1,p V Tp) and (Y, ¢ V Yvy—1,4 V
zq), we get (Y, p VY, ~1,pV “Yugq VYo, ~1,¢), Which
is a subclause of the desired form.

For the inductive step, fix v;41 < viq2 < ... < Ug.
By induction, we can derive a subclause C; of (~y;,; V
Yi—1,iV Woigr,itt Vi —Lit1 Ve o Vo 1 VYo —1,k)
foranyjin {i,2+ 1,...,v,41 — 1}. If for some such j,
neither —y; ; nor y;_1; appears in C;, then this sub-
clause also works here for the inductive step and we
are done. Otherwise for every j, C; definitely contains
—¥;,i, possibly y;_1 ; and other positive or negative oc-
currences of variables of the form y, » where ¢/ > 1.
We now use these C;’s to derive clauses C}’s such that
C} contains —y;; but not y;_; ;. The other variables
appearing in C; will all be of the form y, i fori’ > i.

If {vi+1,...,vx } is notan independent set, then there
is an edge (vp, vq) witnessing this. In this case, we sim-
ply use E, ; as the desired subclause and the inductive
step is over. Otherwise there must be an edge (i,v,)
from vertex 4 touching this set. We let C] be the clause
E; ,,. For j going from i + 1 to k, we do the following
iteratively. If y;_, ; does not appear in C}, then we set
C} = C;. Otherwise we set C'; to be the clause obtained
by resolving C; with C;_,. If Cj_; does not contain
—¥;,i» then it can be used as the desired subclause for this
inductive step and we stop the iteration here, otherwise
we continue onto the next value of 7. If we do not derive
a desired subclause somewhere along this iterative pro-
cess, then we end up with all C’J’«’s containing -y, ; but
not y;_1,;. Resolving all these with the new counting
clause (=u; 141 V Yoipi =1, V Yorp1 -2, VooV Yii)
finally gives us a subclause of the desired form. This
proves the claim.

We can associate each subclause obtained using the
iterative procedure with the tuple (v;,v;41,...,v;) for
which it was derived, giving a total of Zle (M <
k(ne/k)* subclauses. Each of these subclauses is used
at most once in the proof. Further, the derivation of each
such subclause uses one new counting clause and one
new clause E; ;, each of which can be derived in at most
n steps. Thus, with enough copies to make the refutation

tree-like, the size of the proof is O(nk(ne/k)*), which
is QO(hog(n/k))' 0O

9. Directions for Further Work

A natural open problem at this point is to see if one
can get similar lower bounds on the complexity of inde-
pendent sets in random graphs for more powerful proof
systems such as Cutting Planes [14, 7] and Frege sys-
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tems [11]. This is interesting in its own right and also
because some of the very simple algorithms for finding
large independent sets do not seem to be captured by
resolution. For instance, the algorithm of Robson [18]
uses the following idea: if a vertex v is not included in a
maximum independent set then w.l.0.g. we might as well
assume that at least two of its neighbors are included. In
other words, if only one neighbor of v is chosen, we
don’t lose anything by choosing v instead. It is, how-
ever, not clear how one could translate this simple “with-
out loss of generality” argument into a resolution proof.
In Robson’s paper, this is only applied in a limited way
when the neighborhood set is of constant size and only
one such set of neighbors is remembered at a time. This
makes it possible to translate the reasoning into a small
resolution proof. However, in a more general search, this
w.l.o.g. idea does not seem to be captured by resolution
arguments.

On another front, we now have exponential resolu-
tion lower bounds for random k-CNF formulas [9, 3],
k-coloring of random graphs [2] and independent sets
in random graphs. It would be interesting to understand
more fully which coNP-complete problems require large
resolution proofs for random instances.
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