
Existential Types for Imperative Languages?

Dan Grossman
danieljg@cs.cornell.edu

Cornell University

Abstract. We integrate existential types into a strongly typed C-like
language. In particular, we show how a bad combination of existential
types, mutation, and aliasing can cause a subtle violation of type safety.
We explore two independent ways to strengthen the type system to re-
store safety. One restricts the mutation of existential packages. The other
restricts the types of aliases of existential packages. We use our frame-
work to explain why other languages with existential types are safe.

1 Introduction

Strongly typed programming languages prevent certain programming errors and
provide a foundation on which the user can enforce strong abstractions. High-
level languages usually have primitive support for data hiding (e.g., closures, ob-
jects), which mitigate the burden of strong typing. At lower levels of abstraction,
such as in C, exposed data representation and a rich set of primitive operations
make it difficult to provide strong typing without unduly restricting the set of
legal programs. A powerful technique is to provide a rich type system that the
programmer can use to express invariants that ensure a program’s safety.

In particular, existential types (often written ∃α.τ where τ is a type) are
a well-known device for permitting consistent manipulation of data containing
values of unknown types. Indeed, they have become the standard tool for mod-
eling the data-hiding constructs of high-level languages. Mitchell and Plotkin’s
seminal work [11] explains how constructs for abstract types, such as the rep
types in CLU clusters [8] and the abstype declarations in Standard ML [9], are
really existential types. For example, an abstraction for the natural numbers
could have the type ∃α{zero:α; succ:α → α}. As desired, if we had two such
abstractions, we could not apply one’s succ function to the other’s zero value.

Existential types also serve an essential role in many encodings of objects [1]
and closures [10]. For example, we can represent a closure as a record of values
for the original code’s free variables (its environment) and a closed code pointer
taking the environment as an extra parameter. By abstracting the environment’s
type with an existential type, source functions with the same type but different
environments continue to have the same type after this encoding.
? This material is based on work supported in part by AFOSR under grant F49620-

00-1-0198. Any opinions, findings, and conclusions or recommendations expressed in
this publications are those of the author and do not reflect the view of this agency.

More recently, existential types have also proven useful in safe low-level lan-
guages [12, 3]. For example, many low-level interfaces let a client register a call-
back with a server along with data to pass to the call-back when it is invoked.
If the server specifies the data’s type, then the interface is too restrictive. This
idiom bears an uncanny resemblance to the closure encoding: A record holding
the call-back and the data should have an existential type. Essentially, low-level
languages do not provide data-hiding constructs directly, so it is sensible for the
type system to be rich enough for programs to create them. Existential quan-
tification has also been used to express connections beyond simple types. For
example, Xanadu [20] lets programmers express that an integer holds the length
of a particular array. An existential type lets us pack an array with its length.

In C, we must resort to void* and unchecked casts when existential types
would be appropriate. For example, using the aforementioned encoding, a func-
tion closure that consumes an int and returns void could have the type struct
T {void (*f)(int,void*); void* env;};. If x had this type, we could write
x.f(37,x.env), but nothing enforces that x.env has the type that x.f expects,
nor can we prevent calling x.f with any other pointer. With existential types, we
can enforce the intended usage by declaring struct T ∃α.{void (*f)(int,α);
α env;};. For this reason, Cyclone [2, 6], a safe C-like language developed by
Trevor Jim, Greg Morrisett, the author, and others, allows struct declarations
to have existential type variables.

However, it does not appear that the interaction of existential types with
features like mutation and C’s address-of (&) operator has been carefully studied.
Orthogonality suggests that existential types in a C-like language should permit
mutation and acquiring the address of fields, just as ordinary struct types do.
Moreover, such abilities are genuinely useful. For example, a server accepting
call-backs can use mutation to reuse the same memory for different call-backs
that expect data of different types. Using & to introduce aliasing is also useful.
As a small example, given a value v of type struct T ∃α.{α x; α y;}; and
a polymorphic function ∀β. void swap(β*, β*) for swapping the contents of
two locations, we would like to permit a call like swap(&v.x, &v.y).

Unfortunately, a subtle interaction among all these features can violate type
safety. Somewhat embarrassingly, Cyclone was unsafe for several months before
the problem was discovered. In order to expose the problem’s essential source
and provide guidelines for using existential types in low-level languages, this
paper explains the unsoundness, describes two independent solutions, proves the
solutions are correct, and explores why this problem did not arise previously.

In the next section, we present a full example exploiting the unsoundness that
assignment, aliasing, and existential types can produce. We use this example to
explain how we restore soundness. Section 3 presents a small formal language
suitable for arguing rigorously that we have, in fact, restored soundness. Section
4 describes the soundness proof for the formal language; the excruciating details
appear in a companion technical report [4]. Section 5 discusses related work. In
particular, it uses the insights of the preceding sections to explain why other
languages with existential types are safe.

2 Violating Type Safety

In this section, we present a violation of type safety discovered in Cyclone [2,
6] (a safe C-like language) and how we fixed the problem. We describe only the
Cyclone features necessary for our present purposes, and we take the liberty of
using prettier syntax (e.g., Greek letters) than the actual language.

A struct declaration may declare existentially-bound type variables and use
them in the types of fields. Repeating an earlier example, a value of the type

struct T ∃α.{void (*f)(int, α); α env;};

contains a function pointer in the f field that can be applied to an int and the
env field of the same value.

Different values of type struct T can instantiate α with different types. Here
is a program exploiting this feature. (The form T(e1,e2) is just a convenient
way to create a struct T object with fields initialized to e1 and e2.)

void ignore(int x, int y) {}
void assign(int x, int *y) { *y = x; }
void f(int* ptr) {
struct T p1 = T(ignore, 0xabcd);
struct T p2 = T(assign, ptr);
/* use p1 and p2 ... */

}

The type-checker infers that in T(ignore,0xabcd), for example, α is int. We
call int the witness type for the existential package T(ignore,0xabcd). The
type-checker would reject T(assign,0xabcd) because there is no appropriate
witness type. Witness types are not present at run time.

Because p1 and p2 have the same type, we could assign one to the other with
p2=p1. As in C, this assignment copies the fields of p1 into the fields of p2. Note
that the assignment changes p2’s witness type.

We cannot access fields of existential packages with the “.” or “→” opera-
tors.1 Instead, Cyclone provides pattern-matching to bind variables to parts of
aggregate objects. For existential packages, the pattern also opens (sometimes
called “unpacking”) the package by giving an abstract name to the witness type.
For example, the function f could continue with

let T(g,arg)<β> = p2 in g(37,arg);

The pattern binds g to (a copy of) p2.f and arg to (a copy of) p2.env. It also
makes β a type. The scope of g, arg, and β is the statement after in. The types
of g and arg are void (*f)(int,β) and β, respectively, so the function call is
well-typed.

It is well-known that the typing rule for opening an existential package must
forbid the introduced type variable (β) from occurring in the type assigned to

1 struct declarations without existential type variables permit these operators.

the term in which β is in scope. In our case, this term is a statement, which has
no type (or a unit type if you prefer), so this condition is trivially satisfied. Our
unsoundness results from a different problem.

Another pattern form, which we call a reference pattern, is *id; it binds id
to the address of part of a value. (So *id has the same type as that part of the
value.) We need this feature for the swap example from the previous section. We
can modify our previous example to use this feature gratuitously:

let T(g,*arg)<β> = p2 in g(37,*arg);

Here arg is an alias for &p2.env, but arg has the opened type, in this case β∗.
At this point, we have seen how to create existential packages, use assignment

to modify memory that has an existential type, and use reference patterns to get
aliases of existential-package fields. It appears that we have a smooth integration
of several features that are natural for a language at the C level of abstraction.
Unfortunately, these features conspire to violate type safety:

void f(int* ptr) {
struct T p1 = T(ignore, 0xabcd);
struct T p2 = T(assign, ptr);
let T(g,*arg)<β> = p2 in { p2 = p1; g(37,*arg); }

}

The call g(37,*arg) executes assign with 37 and 0xabcd—we are passing an
int where we expect an int∗, allowing us to write to an arbitrary address.

What went wrong in the type system? We used β to express an equality
between one of g’s parameter types and the type of value at which arg points.
But after the assignment, which changes p2’s witness type, this equality is false.

We have developed two solutions. The first solution forbids using reference
patterns to match against fields of existential packages. Other uses of reference
patterns are sound because assignment to a package mutates only the fields of
the package. We call this solution, “no aliases at the opened type.” The second
solution forbids assigning to an existential package (or an aggregate value that
has an existential package as a field). We call this solution, “no witness changes.”

These solutions are independent : Either suffices and we could use different
solutions for different existential packages. That is, for each existential-type dec-
laration we could let the programmer decide which restriction the compiler en-
forces. Our current implementation supports only “no aliases at the opened type”
because we believe it is more useful, but both solutions are easy to enforce.

To emphasize the exact source of the problem, we mention some aspects
that are not problematic. First, pointers to witness types are not a problem. For
example, given struct T2 ∃α.{void f(int, α); α* env;}; and the pattern
T2(g,arg)<β>, an intervening assignment changes a package’s witness type but
does not change the type of the value at which arg points. Second, assignment
to a pointer to an existential package is not a problem because it changes which
package a pointer refers to, but does not change any package’s witness type.

Witness changes are more difficult with multithreading: A similar unsound-
ness results if the witness can change in-between the binding of g and arg. We

would need some mechanism for excluding a mutation while binding a package’s
fields. If we restricted (shared, witness-changeable) packages to a single field (a
pointer), atomic reads and writes of a single word would suffice.

3 Sound Language

To investigate the essential source of the unsoundness described in Section 2,
we present a small formal language with the same potential problem. Instead of
type definitions, we use “anonymous” product types (pairs) and existential types.
Instead of pattern-matching, we use open statements for destructing existential
packages. We omit many features that have no relevance to our investigation,
including loops and function calls. Such features can be added in typical fashion.

3.1 Syntax

Figure 1 presents the language’s syntax. Types include a base type (int), products
(τ1 × τ2), pointers (τ∗), existentials (∃φα.τ), and type variables (α). Because
aliasing is relevant, all uses of pointers are explicitly noted. In particular, a
value of a product type is a record, not a pointer to a record.2 To distinguish
our two solutions to restoring soundness, we annotate existential types with δ
(the witness type can change) or & (aliases at the opened type are allowed).

` ∈ Lab c ∈ Int x ∈ Var α ∈ Tyvar H : Lab ⇁ Value

Type τ ::= int | α | τ ∗ | τ1 × τ2 | ∃φα.τ

Exp e ::= c | x | `p | (e1, e2) | e.i | &e | ∗ e | pack τ ′, e as ∃φα.τ
Stmt s ::= skip | e1 := e2 | s1; s2 | let x : τ = e in s

| open e as α, x in s | open e as α, ∗x in s
Path p ::= · | ip | up
Field i ::= 0 | 1
Style φ ::= δ | &

Value v ::= c | &`p | pack τ ′, v as ∃φα.τ | (v1, v2)

Fig. 1. Syntax

Expressions include variables (x), constants (c), pairs ((e1, e2)), field accesses
(e.i), pointer creations (&e), pointer dereferences (∗e), and existential packages
(pack τ ′, e as ∃φα.τ). In the last form, τ ′ is the witness type; its explicit mention
is just a technical convenience. We distinguish locations (“lvalues”) from values
(“rvalues”). Locations have the form `p where ` is a label (an address) for a heap
2 Hence we could allow casts between τ1 × (τ2 × τ3) and (τ1 × τ2) × τ3, but we have

no reason to add this feature.

record and p is a path that identifies a subrecord. Locations do not appear in
source programs, but we use them in the dynamic semantics, as described below.

Statements include doing nothing (skip), assignment—altering the contents
of a heap record (e1 := e2), and local bindings—extending the heap (let x :
τ = e in s). Because memory management is not our present concern, the
dynamic semantics never contracts the heap. There are two forms for destructing
existential packages. The form open e as α, x in s binds x to a copy of the
contents of the evaluation of e, whereas open e as α, ∗x in s binds x to a
pointer to the contents of the evaluation of e. The latter form corresponds to
the previous section’s reference patterns, but for simplicity it produces a pointer
to the entire contents, not a particular field.

3.2 Dynamic Semantics

A heap (H) maps labels (`) to values. We write H[` 7→ v] for the heap that is
like H except that ` maps to v, and we write · for the empty heap. Because
values may be pairs or packages, we use paths (p) to specify parts of values.
A path is just a sequence of 0, 1, and u (explained below) where · denotes the
empty sequence. We write p1p2 for the sequence that is p1 followed by p2. We
blur the distinction between sequences and sequence elements as convenient. So
0p means the path beginning with 0 and continuing with p and p0 means the
path ending with 0 after p.

The get relation defines the use of paths to destruct values. As examples,
get((v0, v1), 1, v1) and get(pack τ ′, v as ∃φα.τ , u, v). That is, we use u to get a
package’s contents. The set relation defines the use of paths to update parts of
values: set(v1, p, v2, v3) means updating the part of v1 corresponding to p with v2

produces v3. For example, set((v1, ((v2, v3), v4)), 10, (v5, v6), (v1, ((v5, v6), v4))).
Figure 2 defines both relations.

Unlike C, expression evaluation in our core language has no side effects, so
we have chosen a large-step semantics. Given a heap, we use the ⇓L relation to
evaluate expressions to locations and the ⇓R relation to evaluate expressions to
values. The two relations are interdependent (see the ⇓L rule for ∗e and the ⇓R

rule for &e). For many expressions there are no H, `, and p such that H ` e ⇓L `p
(for example, e = (e1, e2)). Only a few rules merit further discussion: The ⇓L

rule for projection puts the field number on the right of a path. The ⇓R rules
for `p and ∗e use the heap H and the get relation. Figure 3 defines ⇓L and ⇓R.

Statements operate on heaps; we define a small-step semantics in which
(H, s) → (H ′, s′) means, “under heap H, statement s produces H ′ and becomes
s′.” The meaning of a program s is H where (·, s) →∗ (H, skip) (where →∗ is
the reflexive transitive closure of →). We write s{`p/x} for the substitution of
`p for x in s and s{τ/α} for the capture-avoiding substitution of τ for α in s.
We omit the straightforward but tedious definitions of substitution.

We now describe the interesting rules for evaluating statements. (All rules
are in Figure 4.) The interesting part for assignment is in the set judgment. For
let, we map a fresh label ` in the heap to (a copy of) the value and substitute
that location (that is, the label and path ·) for the binding variable in the body

get(v, ·, v)

get(v0, p, v)

get((v0, v1), 0p, v)

get(v1, p, v)

get((v0, v1), 1p, v)

get(v1, p, v)

get(pack τ ′, v1 as ∃&α.τ , up, v)

set(vold , ·, v, v)

set(v0, p, v, v′)

set((v0, v1), 0p, v, (v′, v1))

set(v1, p, v, v′)

set((v0, v1), 1p, v, (v0, v
′))

set(v1, p, v, v′)

set(pack τ ′, v1 as ∃φα.τ , up, v, pack τ ′, v′ as ∃φα.τ)

Fig. 2. Dynamic Semantics: Heap Objects

H ` `p ⇓L `p

H ` e ⇓L `p

H ` e.i ⇓L `pi

H ` e ⇓R &`p

H ` ∗e ⇓L `p

H ` c ⇓R c

get(H(`), p, v)

H ` `p ⇓R v

H ` e ⇓R (v0, v1)

H ` e.0 ⇓R v0

H ` e ⇓R (v0, v1)

H ` e.1 ⇓R v1

H ` e0 ⇓R v0 H ` e1 ⇓R v1

H ` (e0, e1) ⇓R (v0, v1)

H ` e ⇓L `p

H ` &e ⇓R &`p

H ` e ⇓R &`p get(H(`), p, v)

H ` ∗e ⇓R v

H ` e ⇓R v

H ` pack τ ′, e as ∃φα.τ ⇓R pack τ ′, v as ∃φα.τ

Fig. 3. Dynamic Semantics: Expressions

H ` e1 ⇓L `p H ` e2 ⇓R v set(H(`), p, v, v′)

(H, e1 := e2) → (H[` 7→ v′], skip)

(H, skip; s) → (H, s)

(H, s1) → (H ′, s′
1)

(H, s1; s2) → (H ′, s′
1; s2)

H ` e ⇓R v ` 6∈ dom(H)

(H, let x : τ = e in s) → (H[` 7→ v], s{`·/x})

H ` e ⇓R pack τ ′, v as ∃φα.τ ` 6∈ dom(H)

(H,open e as α, x in s) → (H[` 7→ v], s{τ ′/α}{`·/x})

H ` e ⇓L `′p get(H(`′), p,pack τ ′, v as ∃φα.τ) ` 6∈ dom(H)

(H,open e as α, ∗x in s) → (H[` 7→ &`′pu], s{τ ′/α}{`·/x})

Fig. 4. Dynamic Semantics: Statements

of the statement. The rule for open e as α, x in s is similar; we also substitute
τ ′ for α, where τ ′ is the witness type in the package to which e evaluates. The
rule for open e as α, ∗x in s is like the rule for open e as α, x in s except that
we use ⇓L to evaluate e to a location `′p and we map ` to &`′pu.

As an example, here is a variation of the previous unsoundness example.
Instead of using function pointers, we use assignment, but the idea is the same.
For now, we do not specify the style of the existential types.

(1) let zero : int = 0 in
(2) let pzero : int∗ = &zero in
(3) let pkg : ∃φα.α∗ × α = pack int∗, (&pzero, pzero) as ∃φα.α∗ × α in
(4) open pkg as β, ∗pr in
(5) let fst : β∗ = (∗pr).0 in
(6) pkg := pack int, (pzero, zero) as ∃φα.α∗ × α ;
(7) ∗fst := (∗pr).1 ;
(8) ∗pzero := zero

In describing the example, we assume that when binding a variable x, we
choose `x as the fresh location. Hence line (3) substitutes `pkg · for pkg and line
(4) substitutes int∗ for β and `pr · for pr . Furthermore, after line (4), `pkg contains
pack int∗, (&`pzero ·,&`zero ·) as ∃φα.α∗ × α and `pr contains &`pkgu. After line
(6), `fst contains &`pzero · and `pkg contains pack int, (pzero, 0) as ∃φα.α∗ × α.
Hence line (7) assigns 0 to `pzero , which causes line (8) to be stuck because there
is no `p to which ⇓L can evaluate ∗0.

To complete the example, we need to choose δ or & for each φ. Fortunately,
as the next section explains, no choice produces a well-typed program.

Note that the type information associated with packages and paths is just to
keep type-checking syntax-directed. We can define an erasure function over heaps
that replaces pack τ ′, v as ∃φα.τ with v and removes u from paths. Although
we have not formally done so, it should be straightforward to prove that erasure
and evaluation commute. That is, we do not need type information at run time.

3.3 Static Semantics

We now present a type system for source (label-free) programs. Section 4 extends
the system to heaps and locations in order to prove type safety.

We use two auxiliary judgments on types. We allow pack τ ′, v as ∃φα.τ
only if ` τ ′ packable. Assuming constants and pointers have the same run-time
representation, this restriction ensures that code manipulating a package need
not depend on the witness type, as it would if τ1×τ2 could be a witness type. We
allow e1 := e2 only if e1 has a type τ such that ` τ assignable. This judgment
requires that any type of the form ∃&α.τ ′ occurring in τ occurs in a pointer
type. As a result, the witness type of a location holding pack τ1, v as ∃&α.τ2

never changes. A judgment on expressions, ` e lval, defines the terms that are
sensible for &e and e := e′. Figure 5 defines these auxiliary judgments.

With these auxiliary judgments, the rules for expressions and statements
(Figure 6) are mostly straightforward. The context includes the type variables

` int packable ` α packable ` τ∗ packable

` τ packable

` τ assignable

` τ0 assignable ` τ1 assignable

` τ0 × τ1 assignable

` τ assignable

` ∃δα.τ assignable

` x lval ` `p lval ` ∗e lval
` e lval
` e.i lval

Fig. 5. Static Semantics: Auxiliary Judgments

and term variables that are in scope. Term variables map to types. The rule
for package expressions requires that the witness type is packable. The rules
for let and open extend the context appropriately. The rule for assignment
requires that the expressions’ type is assignable. Most importantly, the rule for
open e as α, ∗x in s requires that e has the form ∃&α.τ . (The repetition of α
is not a restriction because ∃&α.τ is α-convertible.) In other words, you cannot
use this statement form to get an alias to a value of type ∃δα.τ .

∆ ⊂ Tyvar
Γ : Var ⇁ Type

τ is closed under ∆
∆ ` τ

for all τ ∈ rng(Γ), ∆ ` τ

∆ ` Γ

∆ ` Γ
∆; Γ ` c : int

∆ ` Γ
∆; Γ ` x : Γ (x)

∆; Γ ` e : τ0 × τ1

∆; Γ ` ei : τi

∆; Γ ` e0 : τ0 ∆; Γ ` e1 : τ1

∆; Γ ` (e0, e1) : τ0 × τ1

∆; Γ ` e : τ{τ ′/α} ` τ ′ packable

∆; Γ ` pack τ ′, e as ∃φα.τ : ∃φα.τ

∆; Γ ` e : τ ` e lval

∆; Γ ` &e : τ∗
∆; Γ ` e : τ∗
∆; Γ ` ∗e : τ

∆ ` Γ
∆; Γ ` skip

∆; Γ ` s1 ∆; Γ ` s2

∆; Γ ` s1; s2

∆; Γ [x 7→ τ] ` s ∆; Γ ` e : τ x 6∈ dom(Γ)

∆; Γ ` let x : τ = e in s

∆; Γ ` e1 : τ ∆; Γ ` e2 : τ ` e1 lval ` τ assignable

∆; Γ ` e1 := e2

∆, α; Γ [x 7→ τ] ` s ∆; Γ ` e : ∃φα.τ α 6∈ ∆ x 6∈ dom(Γ)

∆; Γ ` open e as α, x in s

∆, α; Γ [x 7→ τ∗] ` s ∆; Γ ` e : ∃&α.τ α 6∈ ∆ x 6∈ dom(Γ)

∆; Γ ` open e as α, ∗x in s

Fig. 6. Static Semantics: Source Programs

In short, the static semantics ensures that “δ-packages” are not aliased except
with existential types and that “&-packages” are not mutated. The next section
shows that these restrictions suffice for type soundness.

Returning to the example from Section 3.2, we can show why this program
is not well-typed: First, the rules for packages and assignment ensure that the

three φ in the program (lines 3 and 6) must be the same. If they are δ, then line 4
is not well-typed because pkg ’s type does not have the form ∃&α.τ . If they are &,
then line 6 is not well-typed because we cannot derive ` ∃&α.α∗ × α assignable.

4 Soundness Proof

In this section, we show how to extend the type system from the previous section
in order to attain a syntactic [19] proof of type soundness. We then describe the
proof, the details of which we relegate to a technical report [4].

For the most part, the extensions are the conventional ones for a heap and
references [5], with several tedious complications that paths introduce. The basic
idea is to prove that the types of labels are invariant. (That is, the value to
which the heap maps a label may change, but only to a value of the same type.)
However, we also need to prove an additional heap invariant for packages that
have been opened with the open e as α, ∗x in s form. Such a package has the
form pack τ ′, v as ∃&α.τ ; its type does not mention τ ′, but τ ′ must not change.
As explained below, we prove this invariant by explicitly preserving a partial
map from locations to the witness types of “&-packages” at those locations.

4.1 Heap Static Semantics

For heap well-formedness, we introduce the judgment H ` Ψ ;Υ , where Ψ maps
labels to types and Υ maps locations (labels and paths) to types. Intuitively,
Ψ gives the type of each heap location, whereas Υ gives the witness types of
the “&-packages” at some locations. Ψ is a conventional device; the use of Υ is
novel. Every label in the heap must be in the domain of Ψ , but not every location
containing an “&-package” needs to be in the domain of Υ . The location `p must
be in the domain of Υ only if there is a value in the heap or program of the form
`pup′. We say that Ψ ′ extends Ψ (similarly, Υ ′ extends Υ) if the domain of Ψ ′

contains the domain of Ψ and the two maps agree on their intersection.
The rule for type-checking locations, described below, needs a Ψ and Υ in its

context. Hence we add a Ψ and Υ to the context for type-checking expressions
and statements. Each rule in Figure 6 must be modified accordingly. A program
state is well-typed if its heap and statement are well-typed and type-closed using
the same Ψ and Υ . All of the above considerations are summarized in Figure 7.

What remains is type-checking expressions of the form `p. Intuitively, we start
with the type Ψ(`) and destruct it using p. However, when p = up′ we require
that the type has the form ∃&α.τ and the current location is in the domain of
Υ . The resulting type uses Υ to substitute the witness type for α in τ . This
operation is very similar to the way the dynamic semantics for open substitutes
the witness type for the binding type variable. Υ has the correct witness type
because ` H : Ψ ;Υ . We formalize these considerations with the auxiliary gettype
relation in Figure 8. Using this relation, the rule for type-checking locations is:

Υ ; ` ` gettype(·, Ψ(`), p, τ) ∆ ` Γ

Ψ ;Υ ;∆;Γ ` `p : τ

Ψ : Lab ⇁ Type
Υ : Lab× Path ⇁ Type

` H : Ψ ; Υ Ψ ; Υ ; ∅; ∅ ` s
for all τ ∈ rng(Ψ) ∪ rng(Υ), τ is closed

` (H, s)

dom(H) = dom(Ψ)
for all ` ∈ dom(H), Ψ ; Υ ; ∅; ∅ ` H(`) : Ψ(`)
for all (`, p) ∈ dom(Υ), get(H(`), p,pack Υ (`, p), v as ∃&α.τ)

` H : Ψ ; Υ

Fig. 7. Static Semantics: States and Heaps

Υ ; ` ` gettype(p, τ, ·, τ)

Υ ; ` ` gettype(pu, τ ′{Υ (`, p)/α}, p′, τ)

Υ ; ` ` gettype(p,∃&α.τ ′, up′, τ)

Υ ; ` ` gettype(p0, τ0, p
′, τ)

Υ ; ` ` gettype(p, τ0 × τ1, 0p′, τ)

Υ ; ` ` gettype(p1, τ1, p
′, τ)

Υ ; ` ` gettype(p, τ0 × τ1, 1p′, τ)

Fig. 8. Static Semantics: Heap Objects

4.2 Proving Type Safety

We now summarize our proof of type safety. As usual with syntactic approaches,
our formulation indicates that a well-typed program state (a heap and a state-
ment) is either a terminal configuration (the statement is skip) or there is a
step permitted by the dynamic semantics and all such steps produce well-typed
program states.3 Type safety is a corollary of preservation (subject-reduction)
and progress lemmas, which we formally state as follows:

Lemma 1 (Preservation). If ` (H, s) and (H, s) → (H ′, s′), then ` (H ′, s′).

Lemma 2 (Progress). If ` (H, s), then either s = skip or there exist H ′ and
s′ such that (H, s) → (H ′, s′).

Proving these lemmas requires analogous lemmas for expressions:

Lemma 3 (Expression Preservation). Suppose ` H : Ψ ;Υ and Ψ ;Υ ; ∅; ∅ `
e : τ . If H ` e ⇓L `p, then Ψ ;Υ ; ∅; ∅ ` `p : τ . If H ` e ⇓R v, then Ψ ;Υ ; ∅; ∅ ` v : τ .

Lemma 4 (Expression Progress). If ` H : Ψ ;Υ and Ψ ;Υ ; ∅; ∅ ` e : τ , then
there exists a v such that H ` e ⇓R v. If we further assume ` e lval, then there
exist ` and p such that H ` e ⇓L `p.

We prove the progress lemmas by induction on the structure of terms, using
the preservation lemmas and a canonical-forms lemma (which describes the form
of values of particular types) as necessary.
3 For our formal language, it is also the case that the dynamic semantics cannot

diverge, but we do not use this fact.

For example, if s = open e as α, x in s′, we argue as follows: By assumption,
there must be a Ψ and Υ such that Ψ ;Υ ; ∅; ∅ ` s, which means there is a τ such
that Ψ ;Υ ; ∅; ∅ ` e : ∃φα.τ . So by the expression-progress lemma, there is a
v such that H ` e ⇓R v. By the expression-preservation lemma, Ψ ;Υ ; ∅; ∅ `
v : ∃φα.τ . By the canonical-forms lemma, v = pack τ ′, v′ as ∃φα.τ for some
τ ′ and v′. So for any ` 6∈ dom(H), we can derive (H,open e as α, x in s) →
(H[` 7→ v], s{τ ′/α}{`·/x})

The proof cases involving explicit heap references (such as s = e1 := e2 be-
cause H ` e1 ⇓L `p) require a lemma relating the get, set, and gettype relations:

Lemma 5 (Heap-Record Type Safety). Suppose ` H : Ψ ;Υ and Υ ; ` `
gettype(·, Ψ(`), p, τ). Then there is a v′ such that get(H(`), p, v′) and Ψ ;Υ ; ∅; ∅ `
v′ : τ . Also, for all v1 there is a v2 such that set(v, p, v1, v2).

This lemma’s proof requires a stronger hypothesis: We assume get(H(`), p1, v
′′),

Υ ; ` ` gettype(p1, τ
′′, p2, τ), and Ψ ;Υ ; ∅; ∅ ` v′′ : τ ′′ to prove get(H(`), p1p2, v

′)
(and analogues of the other conclusions), by induction on the length of p2. The in-
teresting case is when p2 = up′ because its proof requires the heap invariant that
the map Υ imposes. In this case, the gettype assumption implies that (`, p1) ∈
dom(Υ), which means we know get(H(`), p1,pack Υ (`, p1), vp as ∃&α.τ ′). With-
out Υ and heap well-formedness, a type other than Υ (`, p1) could be in the
package. We then could not invoke the induction hypothesis—there would be no
suitable τ ′′ when using vp for v′′.

We prove the preservation lemmas by induction on the evaluation (dynamic
semantics) derivation, proceeding by cases on the last rule used in the derivation.
We need auxiliary lemmas for substitution and heap extension:

Lemma 6 (Substitution).

– If Ψ ;Υ ;∆, α;Γ ` s, ∆ ` τ ′, and ` τ ′ packable, then Ψ ;Υ ;∆;Γ{τ ′/α} `
s{τ ′/α}.

– If Ψ ;Υ ;∆;Γ [x 7→ τ ′] ` s and Ψ ;Υ ;∆;Γ ` `p : τ ′, then Ψ ;Υ ;∆;Γ ` s{`p/x}.

Lemma 7 (Heap Extension). Suppose Υ ′ and Ψ ′ are well-formed extensions
of well-formed Υ and Ψ , respectively.

– If Ψ ;Υ ;∆;Γ ` e : τ , then Ψ ′;Υ ′;∆;Γ ` e : τ .
– If Ψ ;Υ ;∆;Γ ` s, then Ψ ′;Υ ′;∆;Γ ` s.

With these lemmas, most of the proof cases are straightforward arguments:
Rules using substitution use the substitution lemma. Rules extending the heap
use the heap-extension lemma for the unchanged heap values and the resulting
statement. Rules using the get relation use the heap-record type-safety lemma.

The most interesting cases are for e1 := e2 (proving the invariant Υ imposes
still holds) and open e as α, ∗x in s′ (extending Υ in the necessary way).4

4 The H ` e.i ⇓L `pi case is also “interesting” in that it extends the path on the right
whereas the gettype relation destructs paths from the left. The open e as α, ∗x in s′

case has an analogous complication because it adds u on the right.

We prove the case e1 := e2 as follows: By the assumed derivations and the
expression-preservation lemma, there are `, p, v, v′, and τ such that we have
Ψ ;Υ ; ∅; ∅ ` `p : τ , Ψ ;Υ ; ∅; ∅ ` v : τ , ` τ assignable, and set(H(`), p, v, v′).
Letting Ψ ′ = Ψ and Υ ′ = Υ , we need to show ` H[` 7→ v′] : Ψ ;Υ . The technical
difficulties are showing Ψ ;Υ ; ∅; ∅ ` v′ : Ψ(`) and for all p such that (`, p) ∈
dom(Υ), get(v′, p,pack Υ (`, p), v′′ as ∃&α.τ). The proofs are quite technical, but
the intuition is straightforward: The typing judgment holds because v has type
τ . The other requirement holds because the part of the old H(`) replaced by v
has no terms of the form pack Υ (`, p), v as ∃&α.τ (because ` τ assignable) and
the rest of the old H(`) is unchanged.

We prove the case open e as α, ∗x in s′ as follows: By the assumed deriva-
tions, the expression-preservation lemma, and the induction hypothesis, there
are `′, p, τ ′, v, and τ such that H ` e ⇓L `′p, get(H(`′), p,pack τ ′, v as ∃&α.τ),
and Ψ ;Υ ;α; [x 7→ τ∗] ` s′. Heap well-formedness ensures ` τ ′ packable. Letting
Ψ ′ = Ψ [` 7→ τ{τ ′/α}∗] and Υ ′ = Υ [(`′, p) 7→ τ ′], we must show ` H[` 7→ &`′pu]
and Ψ ;Υ ; ∅; ∅ ` s{τ ′/α}{`·/x}.5 The latter follows from the heap-extension and
substitution lemmas. For the former, we need a technical lemma to conclude that
Υ ′; `′ ` gettype(·, Ψ(`′), pu, τ{τ ′/α}). The difficulty comes from appending u to
the right of the path. From this fact, we can derive Ψ ′;Υ ′; ∅; ∅ ` &`′pu : τ{τ ′/α}∗.
The heap-extension lemma suffices for showing the rest of the heap is well-typed.

5 Related Work

It does not appear that previous work has combined existential types with C-
style aliasing and assignment.

Mitchell and Plotkin’s original work [11] used existential types to model
“second-class” abstraction constructs, so mutation of existential packages was
impossible. Similarly, encodings using existentials, such as objects [1] and clo-
sures [10], have not needed to mutate a witness type. Current Haskell implemen-
tations [16, 15] include existential types for “first-class” values, as suggested by
Läufer [7]. Of course, these systems’ existential packages are also immutable.

More relevant are low-level languages with existential types. For example,
Typed Assembly Language [12] does not allow aliases at the opened type. There
is also no way to change the type of a value in the heap—assigning to an existen-
tial package means making a pointer refer to a different heap record. Xanadu [20],
a C-like language with compile-time reasoning about integer values, also does
not have aliases at the opened type. Roughly, int is elaborated to ∃α ∈ Z.α and
uses of int values are wrapped by the necessary open expressions. This expres-
sion copies the value, so aliasing is not a problem. It appears that witnesses can
change: this change would happen when an int in the heap is mutated.

Languages with linear existential types can provide a solution different than
the ones presented in this work. In these systems, there is only one reference
to an existential package, so a fortiori there are no aliases at the opened type.

5 Note that get(H(`′), p,pack τ ′, v as ∃&α.τ) ensures Υ ′ is an extension of Υ .

Walker and Morrisett [18] exploit this invariant to define a version of open that
does not introduce any new bindings. Instead, it mutates the location holding
the package to hold the package’s contents. The Vault system [3] also has linear
existential types. Formally, opening a Vault existential package introduces a new
binding. In practice, the Vault type-checker infers where to put open statements
and how to rewrite terms using the bindings that these statements introduce.

Smith and Volpano [13, 14] describe an integration of universal types into
C. Their technical development is somewhat similar to ours, but they leave the
treatment of structures to future work. It is precisely structures that motivate
existential types and our treatment of them.

The well-studied problem of polymorphic references in ML [5, 19, 17] also
results from quantified types, aliasing, and mutation, so it is natural to suppose
the work presented here is simply the logical dual of the same problem. We have
not found the correspondence between the two issues particularly illuminating,
but we nonetheless point out similarities that may suggest a duality.

In this work’s notation, if NULL can have any pointer type, the polymorphic-
reference problem is that a naive type system might permit the following:

(1) let x : ∀α.(α∗) = NULL in
(2) let zero : int = 0 in
(3) let pzero : int∗ = &zero in
(4) x := &pzero ;
(5) ∗x := 0 ;
(6) ∗pzero := zero

The problem is giving x type ∀α.(α∗) (as opposed to (∀α.α)∗ or a monomorphic
type), which allows us to treat the same location as though it had types int∗∗
and int∗. The example assigns to x at an instantiated type (line 4) and then
instantiates x at a different type (line 5). In contrast, our unsoundness example
with existential types assigns to a value at an unopened type only after creating
an alias at the opened type.

The “value restriction” is a very clever way to prevent types like ∀α.(α∗) by
exploiting that expressions of such types cannot be values in ML. It effectively
prevents certain types for a mutable locations’ contents. In contrast, our “no
witness changes” solution prevents certain types for a mutation’s location.

With the exception of linear type systems, we know of no treatment of uni-
versal types that actually permits the types of values at mutable locations to
change, as our “no aliases at the opened type” solution does. It is unclear what
an invariant along these lines would look like for polymorphic references.

6 Acknowledgments

I am grateful for relevant discussions with Rob DeLine, Manuel Fähndrich, Greg
Morrisett, David Walker, Kevin Watkins, Yanling Wang, and Steve Zdancewic.

References

1. Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encod-
ings. Information and Computation, 155:108–133, 1999.

2. Cyclone User’s Manual, 2001. http://www.cs.cornell.edu/projects/cyclone.
3. Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level

software. In ACM Conference on Programming Language Design and Implemen-
tation, pages 59–69, Snowbird, UT, June 2001.

4. Dan Grossman. Existential types for imperative languages: Technical results. Tech-
nical Report 2001-1854, Cornell University Computer Science, October 2001.

5. Robert Harper. A simplified account of polymorphic references. Information Pro-
cessing Letters, 51(4):201–206, August 1994.

6. Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and
Yanling Wang. Cyclone: A safe dialect of C. In 2002 USENIX Annual Technical
Conference, Monterey, CA, June 2002. To appear.

7. Konstantin Läufer. Type classes with existential types. Journal of Functional
Programming, 6(3):485–517, May 1996.

8. B. Liskov et al. CLU Reference Manual. Springer-Verlag, 1984.
9. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML (Revised). MIT Press, 1997.
10. Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conver-

sion. In 23rd ACM Symposium on Principles of Programming Languages, pages
271–283, St. Petersburg, FL, January 1996.

11. J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Trans-
actions on Programming Languages and Systems, 10(3):470–502, 1988. Preliminary
version in 12th ACM Symposium on Principles of Programming Languages, 1985.

12. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and Systems,
21(3):528–569, May 1999.

13. Geoffrey Smith and Dennis Volpano. Towards an ML-style polymorphic type sys-
tem for C. In 6th European Symposium on Programming, volume 1058 of Lec-
ture Notes in Computer Science, pages 341–355, Linköping, Sweden, April 1996.
Springer-Verlag.

14. Geoffrey Smith and Dennis Volpano. A sound polymorphic type system for a
dialect of C. Science of Computer Programming, 32(2–3):49–72, 1998.

15. The Glasgow Haskell Compiler User’s Guide, Version 5.02, 2001.
http://www.haskell.org/ghc/docs/latest/set/book-users-guide.html.

16. The Hugs 98 User Manual, 2001.
http://www.cse.ogi.edu/PacSoft/projects/Hugs/pages/hugsman/index.html.

17. Mads Tofte. Type inference for polymorphic references. Information and Compu-
tation, 89:1–34, November 1990.

18. David Walker and Greg Morrisett. Alias types for recursive data structures. In
Workshop on Types in Compilation, volume 2071 of Lecture Notes in Computer
Science, pages 177–206, Montreal, Canada, September 2000. Springer-Verlag.

19. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

20. Hongwei Xi. Imperative programming with dependent types. In 15th IEEE Sym-
posium on Logic in Computer Science, pages 375–387, Santa Barbara, CA, June
2000.

