A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency

Lecture 3
 Parallel Prefix, Pack, and Sorting

Dan Grossman

Last Updated: November 2012
For more information, see http://www.cs.washington.edu/homes/djg/teachingMaterials/

Outline

Done:

- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl's Law

Now: Clever ways to parallelize more than is intuitively possible

- Parallel prefix:
- This "key trick" typically underlies surprising parallelization
- Enables other things like packs
- Parallel sorting: quicksort (not in place) and mergesort
- Easy to get a little parallelism
- With cleverness can get a lot

The prefix-sum problem

Given int[] input, produce int[] output where output[i] is the sum of input[0]+input[1]+...+input[i]

Sequential can be a CS1 exam problem:

```
int[] prefix_sum(int[] input){
    int[] outpūt = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

Does not seem parallelizable

- Work: $O(n)$, Span: $O(n)$
- This algorithm is sequential, but a different algorithm has Work: $O(n)$, Span: $O(\log n)$

Parallel prefix-sum

- The parallel-prefix algorithm does two passes
- Each pass has $O(n)$ work and $O(\log n)$ span
- So in total there is $O(n)$ work and $O(\log n)$ span
- So like with array summing, parallelism is $n / \log n$
- An exponential speedup
- First pass builds a tree bottom-up: the "up" pass
- Second pass traverses the tree top-down: the "down" pass

Historical note:

- Original algorithm due to R. Ladner and M. Fischer at the University of Washington in 1977

Sophomoric Parallelism and Concurrency, Lecture 3

The algorithm, part 1

1. Up: Build a binary tree where

- Root has sum of the range [\mathbf{x}, \mathbf{y})
- If a node has sum of [lo,hi) and hi>lo,
- Left child has sum of [10, middle)
- Right child has sum of [middle, hi)
- A leaf has sum of [i,i+1), i.e., input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the range-sums

- Tree built bottom-up in parallel
- Could be more clever with an array like with heaps

Analysis: $O(n)$ work, $O(\log n)$ span

The algorithm, part 2

2. Down: Pass down a value fromLeft

- Root given a fromLeft of 0
- Node takes its fromLeft value and
- Passes its left child the same fromLeft
- Passes its right child its fromLeft plus its left child's sum (as stored in part 1)
- At the leaf for array position i, output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result

- Leaves assign to output
- Invariant: fromLeft is sum of elements left of the node's range

Analysis: $O(n)$ work, $O(\log n)$ span

Sequential cut-off

Adding a sequential cut-off is easy as always:

- Up:
just a sum, have leaf node hold the sum of a range
- Down:

$$
\begin{aligned}
& \text { output[lo] = fromLeft + input[lo]; } \\
& \text { for(i=lo+1; i <hi; i++) } \\
& \text { output[i] = output[i-1] + input[i] }
\end{aligned}
$$

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of i satisfying some property?
- Count of elements to the left of \mathbf{i} satisfying some property
- This last one is perfect for an efficient parallel pack...
- Perfect for building on top of the "parallel prefix trick"
- We did an inclusive sum, but exclusive is just as easy

Pack

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that $f(e l t)$ is true

Example: input $[17,4,6,8,11,5,13,19,0,24]$ f: is elt > 10 output [17, 11, 13, 19, 24]

Parallelizable?

- Finding elements for the output is easy
- But getting them in the right place seems hard

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements input $[17,4,6,8,11,5,13,19,0,24]$
bits $[1,0,0,0,1,0,1,1,0,1]$
2. Parallel-prefix sum on the bit-vector bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
3. Parallel map to produce the output output [17, 11, 13, 19, 24]
```
output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
    if(bits[i]==1)
        output[bitsum[i]-1] = input[i];
}
```


Pack comments

- First two steps can be combined into one pass
- Just using a different base case for the prefix sum
- No effect on asymptotic complexity
- Can also combine third step into the down pass of the prefix sum
- Again no effect on asymptotic complexity
- Analysis: $O(n)$ work, $O(\log n)$ span
- 2 or 3 passes, but 3 is a constant
- Parallelized packs will help us parallelize quicksort...

Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C

Best / expected case work O(1)
O(n)

2T(n/2)

How should we parallelize this?

Quicksort

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C

2T(n/2)

Easy: Do the two recursive calls in parallel

- Work: unchanged of course $O(n \log n)$
- Span: now $\mathrm{T}(n)=O(n)+1 \mathrm{~T}(n / 2)=O(n)$
- So parallelism (i.e., work / span) is $O(\log n)$

Doing better

- $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
- Sort 10^{9} elements 30 times faster
- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
- The Internet has been known to be wrong ©
- But we need auxiliary storage (no longer in place)
- In practice, constant factors may make it not worth it, but remember Amdahl's Law
- Already have everything we need to parallelize the partition...

Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

- This is just two packs!
- We know a pack is $O(n)$ work, $O(\log n)$ span
- Pack elements less than pivot into left side of aux array
- Pack elements greater than pivot into right size of aux array
- Put pivot between them and recursively sort
- With a little more cleverness, can do both packs at once but no effect on asymptotic complexity
- With $O(\log n)$ span for partition, the total best-case and expected-case span for quicksort is

$$
\mathrm{T}(n)=O(\log n)+1 \mathrm{~T}(n / 2)=O\left(\log ^{2} n\right)
$$

Example

- Step 1: pick pivot as median of three

8	1	4	9	0	3	5	2	7	6

- Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
- Fancy parallel prefix to pull this off not shown

1	4	0	3	5	2				

- Step 3: Two recursive sorts in parallel
- Can sort back into original array (like in mergesort)

Now mergesort

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
2. Merge results

2T(n/2)
O(n)

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the span to $\mathrm{T}(n)=O(n)+1 \mathrm{~T}(n / 2)=O(n)$

- Again, parallelism is $O(\log n)$
- To do better, need to parallelize the merge
- The trick won't use parallel prefix this time

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

| 0 | 1 | 4 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |\quad| 2 | 3 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- |

Idea: Suppose the larger subarray has m elements. In parallel:

- Merge the first $m / 2$ elements of the larger half with the "appropriate" elements of the smaller half
- Merge the second $m / 2$ elements of the larger half with the rest of the smaller half

Parallelizing the merge

| 0 | 4 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |\quad| 1 | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index

Parallelizing the merge

	0	4	6	8	9	1		2	3	5	7

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the lefthalf split: $O(\log n)$ to do binary search on the sorted small half

Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the lefthalf split: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$

Parallelizing the merge

$\left.$| 0 | 4 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 1 | 2 |
| :--- | :--- | $\mathbf{3} \right\rvert\,$| 5 |
| :--- |

0	1	2	3	4	5	6	7	8	9
lo									hi

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the lefthalf split: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel

The Recursion

0	4	6	8	9

1	2	3	5	7

| 0 | 4 |
| :--- | :--- |\quad| 6 | 8 | 9 |
| :--- | :--- | :--- |

1	2	3	5

7

When we do each merge in parallel, we split the bigger one in half and use binary search to split the smaller one

Analysis

- Sequential recurrence for mergesort:

$$
\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+O(n) \text { which is } O(n \log n)
$$

- Doing the two recursive calls in parallel but a sequential merge: Work: same as sequential Span: $\mathrm{T}(n)=1 \mathrm{~T}(n / 2)+O(n)$ which is $O(n)$
- Parallel merge makes work and span harder to compute
- Each merge step does an extra $O(\log n)$ binary search to find how to split the smaller subarray
- To merge n elements total, do two smaller merges of possibly different sizes
- But worst-case split is (1/4)n and (3/4)n
- When subarrays same size and "smaller" splits "all" / "none"

Analysis continued

For just a parallel merge of n elements:

- Work is $\mathrm{T}(n)=\mathrm{T}(3 n / 4)+\mathrm{T}(n / 4)+O(\log n)$ which is $O(n)$
- Span is $\mathrm{T}(n)=\mathrm{T}(3 n / 4)+O(\log n)$, which is $O\left(\log ^{2} n\right)$
- (neither bound is immediately obvious, but "trust me")

So for mergesort with parallel merge overall:

- Work is $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+O(n)$, which is $O(n \log n)$
- Span is $\mathrm{T}(n)=1 \mathrm{~T}(n / 2)+O\left(\log ^{2} n\right)$, which is $O\left(\log ^{3} n\right)$

So parallelism (work / span) is $O\left(n / \log ^{2} n\right)$

- Not quite as good as quicksort's $O(n / \log n)$
- But worst-case guarantee
- And as always this is just the asymptotic result

