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Outline 

Done: 

– Simple ways to use parallelism for counting, summing, finding 

– Analysis of running time and implications of Amdahl’s Law 
 

Now:  Clever ways to parallelize more than is intuitively possible 

– Parallel prefix:  

• This “key trick” typically underlies surprising parallelization 

• Enables other things like packs 

– Parallel sorting: quicksort (not in place) and mergesort 

• Easy to get a little parallelism 

• With cleverness can get a lot 

2 Sophomoric Parallelism and Concurrency, Lecture 3 



The prefix-sum problem 

Given int[] input, produce int[] output where output[i] 

is the sum of input[0]+input[1]+…+input[i] 
 

Sequential can be a CS1 exam problem: 
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int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 

} 

Does not seem parallelizable 

– Work: O(n), Span: O(n) 

– This algorithm is sequential, but a different algorithm has 
Work: O(n), Span: O(log n) 



Parallel prefix-sum 

• The parallel-prefix algorithm does two passes 

– Each pass has O(n) work and O(log n) span 

– So in total there is O(n) work and O(log n) span 

– So like with array summing, parallelism is n/log n 

• An exponential speedup 
 

• First pass builds a tree bottom-up: the “up” pass 
 

• Second pass traverses the tree top-down: the “down” pass 
 

Historical note: 

– Original algorithm due to R. Ladner and M. Fischer at the 

University of Washington in 1977 
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Example 
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Example 
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The algorithm, part 1 

1. Up: Build a binary tree where  

– Root has sum of the range [x,y) 

– If a node has sum of [lo,hi) and hi>lo,  

• Left child has sum of [lo,middle) 

• Right child has sum of [middle,hi)  

• A leaf has sum of [i,i+1),  i.e., input[i] 
 

 

This is an easy fork-join computation: combine results by actually 

building a binary tree with all the range-sums 

– Tree built bottom-up in parallel 

– Could be more clever with an array like with heaps 
 

Analysis: O(n) work, O(log n) span 
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The algorithm, part 2 

2. Down: Pass down a value fromLeft 

– Root given a fromLeft of 0 

– Node takes its fromLeft value and 

• Passes its left child the same fromLeft 

• Passes its right child its fromLeft plus its left child’s sum 

(as stored in part 1) 

– At the leaf for array position i, 
output[i]=fromLeft+input[i] 

 

This is an easy fork-join computation: traverse the tree built in step 1 

and produce no result  

– Leaves assign to output 

– Invariant: fromLeft is sum of elements left of the node’s range 
 

Analysis: O(n) work, O(log n) span 
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Sequential cut-off 

Adding a sequential cut-off is easy as always: 

 

• Up:  

 just a sum, have leaf node hold the sum of a range 

 

• Down:  

    output[lo] = fromLeft + input[lo]; 

     for(i=lo+1; i < hi; i++) 

       output[i] = output[i-1] + input[i] 
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Parallel prefix, generalized 

Just as sum-array was the simplest example of a common pattern, 

prefix-sum illustrates a pattern that arises in many, many problems 

 

• Minimum, maximum of all elements to the left of i 

 

• Is there an element to the left of i satisfying some property? 

 

• Count of elements to the left of i satisfying some property 

– This last one is perfect for an efficient parallel pack… 

– Perfect for building on top of the “parallel prefix trick” 

 

• We did an inclusive sum, but exclusive is just as easy 
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Pack 

[Non-standard terminology] 

 

Given an array input, produce an array output containing only 

elements such that f(elt) is true 

 

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

        f: is elt > 10 

        output [17, 11, 13, 19, 24] 

 

Parallelizable? 

– Finding elements for the output is easy 

– But getting them in the right place seems hard 

11 Sophomoric Parallelism and Concurrency, Lecture 3 



Parallel prefix to the rescue 

1. Parallel map to compute a bit-vector for true elements 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 
 

2. Parallel-prefix sum on the bit-vector 

 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 
 

3. Parallel map to produce the output 

 output [17, 11, 13, 19, 24] 
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output = new array of size bitsum[n-1] 

FORALL(i=0; i < input.length; i++){ 

  if(bits[i]==1) 

    output[bitsum[i]-1] = input[i]; 

} 



Pack comments 

 

• First two steps can be combined into one pass 

– Just using a different base case for the prefix sum 

– No effect on asymptotic complexity 

 

• Can also combine third step into the down pass of the prefix sum 

– Again no effect on asymptotic complexity 

 

• Analysis: O(n) work, O(log n) span  

– 2 or 3 passes, but 3 is a constant 

 

• Parallelized packs will help us parallelize quicksort… 
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Quicksort review 

Recall quicksort was sequential, in-place, expected time O(n log n) 
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          Best / expected case work 

1. Pick a pivot element        O(1) 

2. Partition all the data into:       O(n) 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C                             2T(n/2) 

 

How should we parallelize this? 

 



Quicksort 
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         Best / expected case work 

1. Pick a pivot element        O(1) 

2. Partition all the data into:       O(n) 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C                             2T(n/2) 

 

 
Easy: Do the two recursive calls in parallel 

• Work: unchanged of course O(n log n) 

• Span: now T(n) = O(n) + 1T(n/2) = O(n) 

• So parallelism (i.e., work / span) is O(log n) 

 

 



Doing better 

• O(log n) speed-up with an infinite number of processors is 

okay, but a bit underwhelming 

– Sort 109 elements 30 times faster 

 

• Google searches strongly suggest quicksort cannot do better 

because the partition cannot be parallelized 

– The Internet has been known to be wrong  

– But we need auxiliary storage (no longer in place) 

– In practice, constant factors may make it not worth it, but 

remember Amdahl’s Law 

 

• Already have everything we need to parallelize the partition… 
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Parallel partition (not in place) 

• This is just two packs! 

– We know a pack is O(n) work, O(log n) span 

– Pack elements less than pivot into left side of aux array  

– Pack elements greater than pivot into right size of aux array 

– Put pivot between them and recursively sort 

– With a little more cleverness, can do both packs at once but 

no effect on asymptotic complexity 
 

• With O(log n) span for partition, the total best-case and 

expected-case span for quicksort is  

T(n) = O(log n) + 1T(n/2) = O(log2 n) 
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 Partition all the data into:        

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 



Example 

• Step 1: pick pivot as median of three 
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8 1 4 9 0 3 5 2 7 6 

• Steps 2a and 2c (combinable): pack less than, then pack 

greater than into a second array 

– Fancy parallel prefix to pull this off not shown 

  
1 4 0 3 5 2   

1 4 0 3 5 2 6 8 9 7 

• Step 3: Two recursive sorts in parallel 

– Can sort back into original array (like in mergesort) 



Now mergesort 

Recall mergesort: sequential, not-in-place, worst-case O(n log n) 
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1. Sort left half and right half      2T(n/2) 

2. Merge results       O(n) 

Just like quicksort, doing the two recursive sorts in parallel changes 

the recurrence for the span to T(n) = O(n) + 1T(n/2) = O(n) 

• Again, parallelism is O(log n) 

• To do better, need to parallelize the merge 

– The trick won’t use parallel prefix this time 



Parallelizing the merge 

Need to merge two sorted subarrays (may not have the same size) 
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0 1 4 8 9 2 3 5 6 7 

Idea: Suppose the larger subarray has m elements.  In parallel: 

• Merge the first m/2 elements of the larger half with the 

“appropriate” elements of the smaller half 

• Merge the second m/2 elements of the larger half with the 

rest of the smaller half 

 

 

 



Parallelizing the merge 
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0 4 6 8 9 1 2 3 5 7 



Parallelizing the merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

 

 



Parallelizing the merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half 

 

 



Parallelizing the merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half 

3. Size of two sub-merges conceptually splits output array: O(1) 

 

 



Parallelizing the merge 
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0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half 

3. Size of two sub-merges conceptually splits output array: O(1) 

4. Do two submerges in parallel 

 

0 1 2 3 4 5 6 7 8 9 

lo hi 



The Recursion 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

When we do each merge in parallel, we split the bigger one in half 

and use binary search to split the smaller one 

 

7 6 9 8 



Analysis 

• Sequential recurrence for mergesort: 

T(n) = 2T(n/2) + O(n) which is O(n log n) 

 

• Doing the two recursive calls in parallel but a sequential merge: 

Work: same as sequential    Span: T(n)=1T(n/2)+O(n) which is O(n) 

 

• Parallel merge makes work and span harder to compute 

– Each merge step does an extra O(log n) binary search to find 

how to split the smaller subarray 

– To merge n elements total, do two smaller merges of possibly 

different sizes 

– But worst-case split is (1/4)n and (3/4)n 

• When subarrays same size and “smaller” splits “all” / “none” 
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Analysis continued 

For just a parallel merge of n elements: 

• Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n) 

• Span is T(n) = T(3n/4) + O(log n), which is O(log2 n) 

• (neither bound is immediately obvious, but “trust me”) 

 

So for mergesort with parallel merge overall: 

• Work is T(n) = 2T(n/2) + O(n), which is O(n log n) 

• Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n) 

 

So parallelism (work / span) is O(n / log2 n) 

– Not quite as good as quicksort’s O(n / log n) 

• But worst-case guarantee 

– And as always this is just the asymptotic result 
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