
A Sophomoric Introduction to Shared-Memory

Parallelism and Concurrency

Lecture 3

 Parallel Prefix, Pack, and Sorting

Dan Grossman

Last Updated: November 2012

For more information, see http://www.cs.washington.edu/homes/djg/teachingMaterials/

Outline

Done:

– Simple ways to use parallelism for counting, summing, finding

– Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible

– Parallel prefix:

• This “key trick” typically underlies surprising parallelization

• Enables other things like packs

– Parallel sorting: quicksort (not in place) and mergesort

• Easy to get a little parallelism

• With cleverness can get a lot

2 Sophomoric Parallelism and Concurrency, Lecture 3

The prefix-sum problem

Given int[] input, produce int[] output where output[i]

is the sum of input[0]+input[1]+…+input[i]

Sequential can be a CS1 exam problem:

3 Sophomoric Parallelism and Concurrency, Lecture 3

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;

}

Does not seem parallelizable

– Work: O(n), Span: O(n)

– This algorithm is sequential, but a different algorithm has
Work: O(n), Span: O(log n)

Parallel prefix-sum

• The parallel-prefix algorithm does two passes

– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

– So like with array summing, parallelism is n/log n

• An exponential speedup

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the “down” pass

Historical note:

– Original algorithm due to R. Ladner and M. Fischer at the

University of Washington in 1977

4 Sophomoric Parallelism and Concurrency, Lecture 3

Example

5 Sophomoric Parallelism and Concurrency, Lecture 3

input

output

6 4 16 10 16 14 2 8

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7,8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

Example

6 Sophomoric Parallelism and Concurrency, Lecture 3

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7,8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 66 6 26 52 68

10 66

36

The algorithm, part 1

1. Up: Build a binary tree where

– Root has sum of the range [x,y)

– If a node has sum of [lo,hi) and hi>lo,

• Left child has sum of [lo,middle)

• Right child has sum of [middle,hi)

• A leaf has sum of [i,i+1), i.e., input[i]

This is an easy fork-join computation: combine results by actually

building a binary tree with all the range-sums

– Tree built bottom-up in parallel

– Could be more clever with an array like with heaps

Analysis: O(n) work, O(log n) span

7 Sophomoric Parallelism and Concurrency, Lecture 3

The algorithm, part 2

2. Down: Pass down a value fromLeft

– Root given a fromLeft of 0

– Node takes its fromLeft value and

• Passes its left child the same fromLeft

• Passes its right child its fromLeft plus its left child’s sum

(as stored in part 1)

– At the leaf for array position i,
output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1

and produce no result

– Leaves assign to output

– Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span

8 Sophomoric Parallelism and Concurrency, Lecture 3

Sequential cut-off

Adding a sequential cut-off is easy as always:

• Up:

 just a sum, have leaf node hold the sum of a range

• Down:

 output[lo] = fromLeft + input[lo];

 for(i=lo+1; i < hi; i++)

 output[i] = output[i-1] + input[i]

9 Sophomoric Parallelism and Concurrency, Lecture 3

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,

prefix-sum illustrates a pattern that arises in many, many problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property

– This last one is perfect for an efficient parallel pack…

– Perfect for building on top of the “parallel prefix trick”

• We did an inclusive sum, but exclusive is just as easy

10 Sophomoric Parallelism and Concurrency, Lecture 3

Pack

[Non-standard terminology]

Given an array input, produce an array output containing only

elements such that f(elt) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable?

– Finding elements for the output is easy

– But getting them in the right place seems hard

11 Sophomoric Parallelism and Concurrency, Lecture 3

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector

 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output

 output [17, 11, 13, 19, 24]

12 Sophomoric Parallelism and Concurrency, Lecture 3

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

 if(bits[i]==1)

 output[bitsum[i]-1] = input[i];

}

Pack comments

• First two steps can be combined into one pass

– Just using a different base case for the prefix sum

– No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum

– Again no effect on asymptotic complexity

• Analysis: O(n) work, O(log n) span

– 2 or 3 passes, but 3 is a constant

• Parallelized packs will help us parallelize quicksort…

13 Sophomoric Parallelism and Concurrency, Lecture 3

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)

14 Sophomoric Parallelism and Concurrency, Lecture 3

 Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

How should we parallelize this?

Quicksort

15 Sophomoric Parallelism and Concurrency, Lecture 3

 Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel

• Work: unchanged of course O(n log n)

• Span: now T(n) = O(n) + 1T(n/2) = O(n)

• So parallelism (i.e., work / span) is O(log n)

Doing better

• O(log n) speed-up with an infinite number of processors is

okay, but a bit underwhelming

– Sort 109 elements 30 times faster

• Google searches strongly suggest quicksort cannot do better

because the partition cannot be parallelized

– The Internet has been known to be wrong

– But we need auxiliary storage (no longer in place)

– In practice, constant factors may make it not worth it, but

remember Amdahl’s Law

• Already have everything we need to parallelize the partition…

16 Sophomoric Parallelism and Concurrency, Lecture 3

Parallel partition (not in place)

• This is just two packs!

– We know a pack is O(n) work, O(log n) span

– Pack elements less than pivot into left side of aux array

– Pack elements greater than pivot into right size of aux array

– Put pivot between them and recursively sort

– With a little more cleverness, can do both packs at once but

no effect on asymptotic complexity

• With O(log n) span for partition, the total best-case and

expected-case span for quicksort is

T(n) = O(log n) + 1T(n/2) = O(log2 n)

17 Sophomoric Parallelism and Concurrency, Lecture 3

 Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

Example

• Step 1: pick pivot as median of three

18 Sophomoric Parallelism and Concurrency, Lecture 3

8 1 4 9 0 3 5 2 7 6

• Steps 2a and 2c (combinable): pack less than, then pack

greater than into a second array

– Fancy parallel prefix to pull this off not shown

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

– Can sort back into original array (like in mergesort)

Now mergesort

Recall mergesort: sequential, not-in-place, worst-case O(n log n)

19 Sophomoric Parallelism and Concurrency, Lecture 3

1. Sort left half and right half 2T(n/2)

2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes

the recurrence for the span to T(n) = O(n) + 1T(n/2) = O(n)

• Again, parallelism is O(log n)

• To do better, need to parallelize the merge

– The trick won’t use parallel prefix this time

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

20 Sophomoric Parallelism and Concurrency, Lecture 3

0 1 4 8 9 2 3 5 6 7

Idea: Suppose the larger subarray has m elements. In parallel:

• Merge the first m/2 elements of the larger half with the

“appropriate” elements of the smaller half

• Merge the second m/2 elements of the larger half with the

rest of the smaller half

Parallelizing the merge

21 Sophomoric Parallelism and Concurrency, Lecture 3

0 4 6 8 9 1 2 3 5 7

Parallelizing the merge

22 Sophomoric Parallelism and Concurrency, Lecture 3

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

Parallelizing the merge

23 Sophomoric Parallelism and Concurrency, Lecture 3

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half

Parallelizing the merge

24 Sophomoric Parallelism and Concurrency, Lecture 3

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

Parallelizing the merge

25 Sophomoric Parallelism and Concurrency, Lecture 3

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

4. Do two submerges in parallel

0 1 2 3 4 5 6 7 8 9

lo hi

The Recursion

26 Sophomoric Parallelism and Concurrency, Lecture 3

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

When we do each merge in parallel, we split the bigger one in half

and use binary search to split the smaller one

7 6 9 8

Analysis

• Sequential recurrence for mergesort:

T(n) = 2T(n/2) + O(n) which is O(n log n)

• Doing the two recursive calls in parallel but a sequential merge:

Work: same as sequential Span: T(n)=1T(n/2)+O(n) which is O(n)

• Parallel merge makes work and span harder to compute

– Each merge step does an extra O(log n) binary search to find

how to split the smaller subarray

– To merge n elements total, do two smaller merges of possibly

different sizes

– But worst-case split is (1/4)n and (3/4)n

• When subarrays same size and “smaller” splits “all” / “none”

27 Sophomoric Parallelism and Concurrency, Lecture 3

Analysis continued

For just a parallel merge of n elements:

• Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n)

• Span is T(n) = T(3n/4) + O(log n), which is O(log2 n)

• (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:

• Work is T(n) = 2T(n/2) + O(n), which is O(n log n)

• Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n)

So parallelism (work / span) is O(n / log2 n)

– Not quite as good as quicksort’s O(n / log n)

• But worst-case guarantee

– And as always this is just the asymptotic result

28 Sophomoric Parallelism and Concurrency, Lecture 3

